For groups of odd group order q we show that every two 2<sup>-j</sup>-fractions of exp<sub>\alpha</sub> are equally one-way by a polynomial time transformation: Either they are all one-way or none of them. Our <i> key theorem</i> shows that arbitrary j consecutive shift bits of x are simultaneously secure when given exp<sub>\alpha</sub>(x) iff the 2<sup>-j</sup>-fractions of exp<sub>\alpha</sub> are one-way. In particular this applies to the j least-significant bits of x and to the j most-significant bits of x/q \in [0,1). For one-way exp<sub>\alpha</sub> the individual bits of x are secure when given exp<sub>\alpha</sub>(x) by the method of Hastad, Naslund [HN98]. For groups of even order 2<sup>s</sup>q we show that the j least-significant bits of \lfloor x/2<sup>s</sup>\rfloor, as well as the j most-significant bits of x/q \in [0,1), are simultaneously secure iff the 2<sup>-j</sup>-fractions of exp<sub>\alpha'</sub> are one-way for \alpha' := \alpha<sup>2<sup>s</sup> </sup>.
We use and extend the models of generic algorithms of Nechaev (1994) and Shoup (1997). We determine the generic complexity of inverting fractions of exp<sub>\alpha</sub> for the case that \alpha has prime order q. As a consequence, arbitrary segments of (1-\varepsilon)\lg q consecutive shift bits of random x are for constant \varepsilon >0 simultaneously secure against generic attacks. Every generic algorithm using t generic steps (group operations) for distinguishing bit strings of j consecutive shift bits of x from random bit strings has at most advantage O((\lg q)j\sqrt{t} (2<sup>j</sup>/q)<sup>1/4</sup>).
Category / Keywords: Hard bit, secure bit, discrete logarithm, exponentiation, fractions of exponentiation, simultaneous security of bits, one-way function, generic network, generic one-wayness. Publication Info: Appeared in the THEORY OF CRYPTOGRAPHY LIBRARY and has been included in the ePrint Archive. Date: received June 16th, 1998. Contact author: schnorr at cs uni-frankfurt de Available format(s): Postscript (PS) | Compressed Postscript (PS.GZ) | BibTeX Citation Short URL: ia.cr/1998/020 Discussion forum: Show discussion | Start new discussion