
Exponential Quantum Speedup for the Traveling
Salesman Problem*

Anant Sharma
Centre for Quantum Engineering, Research and Education (CQuERE)
TCG Centres for Research and Education in Science and Technology

Kolkata 700091, India.
anantsharma2410@gmail.com

Nupur Deshpande
Department of Physics

Indian Institute of Science Education and Research
Tirupati 517507, India.

rajeshdeshpande@students.iisertirupati.ac.in

Sanchita Ghosh
Centre for Quantum Engineering, Research and Education (CQuERE)
TCG Centres for Research and Education in Science and Technology

Kolkata 700091, India.
sanchita.ghosh14@gmail.com

Sreetama Das
Istituto Nazionale di Ottica del Consiglio

Nazionale delle Ricerche (CNR-INO)
50125 Florence, Italy.

European Lab. for Non-Linear Spectroscopy (LENS)
Department of Physics and Astronomy

University of Florence
50019 Sesto Fiorentino, Italy.

sreetama.das@ino.cnr.it
Shibdas Roy

Centre for Quantum Engineering, Research and Education (CQuERE)
TCG Centres for Research and Education in Science and Technology

Kolkata 700091, India.
Academy of Scientific and Innovative Research (AcSIR)

Ghaziabad 201002, India.
roy.shibdas@gmail.com

Abstract

The traveling salesman problem is the problem of
finding out the shortest route in a network of cities,
that a salesman needs to travel to cover all the cities,
without visiting the same city more than once. This
problem is known to be NP -hard with a brute-force
complexity of O(NN) or O(N2N) for N number of
cities. This problem is equivalent to finding out the
shortest Hamiltonian cycle in a given graph, if at least
one Hamiltonian cycle exists in it. Quantum algorithms
for this problem typically provide with a quadratic
speedup only, using Grover’s search, thereby having
a complexity of O(NN/2) or O(NN). We present a
bounded-error quantum polynomial-time (BQP) algorithm
for solving the problem, providing with an exponen-
tial speedup. The overall complexity of our algorithm
is O(N3 log(N)κ/ϵ + 1/ϵ3), where the errors ϵ are
O(1/poly(N)), and κ is the not-too-large condition num-
ber of the matrix encoding all Hamiltonian cycles.

Index Terms

Traveling Salesman Problem, Hamiltonian Cycle
Problem, Quantum Algorithm, Exponential Speedup.

I. INTRODUCTION

Logistics and complex supply chain related problems that
require optimization are challenging to solve. The Traveling

Salesman Problem (TSP) is the most commonly explored
use case of combinatorial optimization. The problem appears
simple: find the shortest path in a graph that visits each
node exactly once and returns to its origin. It is an NP -hard
problem, where NP stands for nondeterministic polynomial-
time [1]. The hardest of all problems in NP complexity class
are NP -complete, while problems that are at least as hard
as NP -complete problems and can lie outside NP are NP -
hard. The real-world applications of TSP extend to domains,
such as transportation, manufacturing, and network design.

Classically, the problem has been tackled by exact as
well as heuristic algorithms. Notably, seminal work in linear
programming in Ref. [2] introduced cutting planes, laying the
groundwork for branch and cut methods [3]–[5], and branch
and bound algorithms [6], [7]. In particular, Ref. [8] discussed
an implementation of the method from Ref. [2], suitable for
TSP instances having a million or more cities. There are
other approaches to solve TSP in the literature, such as a
thermodynamic approach to find approximate solutions using
a Monte Carlo algorithm in Ref. [9].

With the advent of quantum computing and the possibility
of solving combinatorial optimization problems faster than
classical methods, TSP became a test bed for ample Noisy In-

*S. D. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme under FET-OPEN Grant Agreement
No. 828946 (PATHOS) and from the European Commission’s Horizon Europe Framework Programme under the Research and Innovation Action Grant
Agreement No. 101070546 (MUQUABIS).

termediate Scale Quantum (NISQ)-era algorithms. Both gate-
based approaches and annealer-based approaches have been
tested extensively for TSP. Refs. [10]–[12] use annealer-based
approaches for the problem. For example, while Ref. [10]
explored the use of Quadratic Unconstrained Binary Opti-
mization (QUBO) models in solving TSP through quantum
annealing algorithms and Graph Neural Networks (GNN),
Ref. [11] proposed a path-integral Monte Carlo quantum
annealing scheme. By contrast, gate-based approaches include
the use of Quantum Approximate Optimization Algorithm
(QAOA) [13], and Variational Quantum Eigensolvers (VQE)
[14]. Fault-Tolerant Quantum Computing (FTQC) algorithms
use approaches based on Grover’s search to solve the problem
with a quadratic speedup [15]–[18]. In Ref. [16], the eigen-
states corresponding to Hamiltonian cycles in the graph are
treated as given, but in practice, finding all the Hamiltonian
cycles in a graph itself is an NP -complete problem.

In this work, we develop a gate-based FTQC BQP algo-
rithm that solves TSP with exponential speedup. We achieved
this by using a novel quantum circuit involving controlled
swap gates to yield all candidate Hamiltonian cycles of a
given graph of N nodes, quantum phase estimation to capture
the sums of edges of these Hamiltonian cycles, and density
matrix exponentiation to find the shortest Hamiltonian cycle.
The algorithm complexity is O(N3 log(N)κ/ϵ + 1/ϵ3), that
is polynomial in N , when the errors ϵ are polynomially but
not exponentially small in N , as required for the overall error

probability of our algorithm to be less than or equal to 1/3,
and κ is the condition number of the matrix encoding all
Hamiltonian cycles of the graph.

II. METHOD

Consider that an arbitrary directed graph is given, with N
vertices that are connected by edges. Then, there can be a
maximum of 2 × NC2 = 2 × N !/(2(N − 2)!) = N(N − 1)
number of edges in the graph. A Hamiltonian cycle, if one
exists in the graph, would have exactly N vertices and N
edges. We here want to find a quantum algorithm that would
take time, polynomial in N , to solve the problem of finding
out the shortest Hamiltonian cycle, if one exists, in the graph.

We start with ⌈logN⌉ number of qubits. For example, if
we have 4 vertices in a graph, we would use 2 qubits that can
have 4 levels: |0⟩ = |00⟩, |1⟩ = |01⟩, |2⟩ = |10⟩, |3⟩ = |11⟩.
We create a unitary operator U , that encodes the distances of
all the edges into the phase factors of their eigenstates:

U =

N−1∑
j,k=0

eiϕjk |jk⟩⟨jk|, (1)

where ϕjk is the distance between city j to city k. The phase
factor ϕjk is equal to the phase factor ϕkj in case of an
undirected graph. For example, if we have N = 4, i.e, cities
represented by index values j = 0, 1, 2, 3, then we create the
following diagonal unitary matrix:

U = eiϕ00 |00⟩⟨00|+ eiϕ01 |01⟩⟨01|+ eiϕ02 |02⟩⟨02|+ eiϕ03 |03⟩⟨03|
+ eiϕ10 |10⟩⟨10|+ eiϕ11 |11⟩⟨11|+ eiϕ12 |12⟩⟨12|+ eiϕ13 |13⟩⟨13|
+ eiϕ20 |20⟩⟨20|+ eiϕ21 |21⟩⟨21|+ eiϕ22 |22⟩⟨22|+ eiϕ23 |23⟩⟨23|
+ eiϕ30 |30⟩⟨30|+ eiϕ31 |31⟩⟨31|+ eiϕ32 |32⟩⟨32|+ eiϕ33 |33⟩⟨33|.

(2)

However, some edges from among all the possible 2×NC2

number of edges may not exist in the actual given graph. We
would, then, precompute the sum of all the up to 2 × NC2

number of edges in the graph. Call this sum s, computing
which is cheap and efficient even classically. Then, we would
encode the phase factor for every edge that does not exist
in the graph, including ϕkk, as equal to s in the unitary U .
With logL := ⌈logN⌉, we will assume L = N for simplicity,

without loss of generality, in the rest of the paper.
If we now have V = U⊗N , then there are N ! number

of eigenstates, that can be possible Hamiltonian cycles from
among a total of N2N number of eigenstates of V , of which
(N − 1)! Hamiltonian cycles are unique. For example, for
N = 4, there are a total of 48 number of eigenstates of V ,
but we have the following (4−1)! = 6 eigenstates representing
unique Hamiltonian cycles starting from city 0:

|ν⟩ = |01122330⟩ : φν = ϕ01 + ϕ12 + ϕ23 + ϕ30 : 0 → 1 → 2 → 3 → 0,

|ν⟩ = |03322110⟩ : φν = ϕ03 + ϕ32 + ϕ21 + ϕ10 : 0 → 3 → 2 → 1 → 0,

|ν⟩ = |02211330⟩ : φν = ϕ02 + ϕ21 + ϕ13 + ϕ30 : 0 → 2 → 1 → 3 → 0,

|ν⟩ = |03311220⟩ : φν = ϕ03 + ϕ31 + ϕ12 + ϕ20 : 0 → 3 → 1 → 2 → 0,

|ν⟩ = |01133220⟩ : φν = ϕ01 + ϕ13 + ϕ32 + ϕ20 : 0 → 1 → 3 → 2 → 0,

|ν⟩ = |02233110⟩ : φν = ϕ02 + ϕ23 + ϕ31 + ϕ10 : 0 → 2 → 3 → 1 → 0.

(3)

Notice that there are NPN = N ! = 4! = 24 number of
possible permutations of four different vertices |0⟩, |1⟩, |2⟩,
|3⟩. For example, the eigenstates |01122330⟩ and |23300112⟩
represent the same Hamiltonian cycle, but the starting points

are different, i.e. cities 0 and 2, respectively. So, there are
N number of same Hamiltonian cycles, but simply rotated
with respect to each other, for each of the (N − 1)! unique
Hamiltonian cycles, amounting to a total of N ! Hamiltonian

cycle eigenstates of V for a fully-connected directed graph.
Now, we initialize N number of data registers, each of

⌈logN⌉ qubits, to |0⟩, |1⟩, . . . , |N − 1⟩, respectively. Then,
we create all possible permutations of 0, 1, . . . , N−1 by using
NC2 number of single-qubit ancilla registers, each initialized
to state |+⟩ = 1√

2
(|0⟩+ |1⟩), and applying ⌈logN⌉ number

of controlled swap gates on each of every combination of two
of the N data registers with one ancilla register as the control
qubit. Please see the circuit in Figure 1.

We will then have the following state in the data registers,
upon tracing out the ancilla registers, with

∑
µ β

2
µ = 2

NC2 :

ρ =
1

2NC2

∑
µ

β2
µ|µ⟩⟨µ|. (4)

We, then, expand the state ρ from an N -register state to
a 2N -register state. For example, for N = 4, we augment
a state |0123⟩ to the state |01122330⟩, so that it forms a
valid eigenstate for the unitary V . We can augment the N -
register state by adding N new registers, each of ⌈logN⌉
qubits initialised to |0⟩, at appropriate places, and applying
CNOT gates to create adjacent copies of every register in ρ.
This way, we will now have terms like |01122330⟩ replacing
|0123⟩ (for N = 4) in ρ. Please see Figure 2. Call this new
state σ, so that we have, with

∑
ν β

2
ν = 2

NC2 :

σ =
1

2NC2

∑
ν

β2
ν |ν⟩⟨ν|. (5)

We use this state σ as the input eigenstates to perform
quantum phase estimation of the unitary V , to obtain the
following state at the output:

γ =
1

2NC2

∑
ν

β2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν|. (6)

The state γ then has all the valid Hamiltonian cycle eigenstates
|ν⟩, along with the estimates φ̃ν of their corresponding
(normalised-) sums φν of weights of constituent edges ϕjk.

Notice that we use the improved quantum phase estimation
method from Ref. [19] in the phase estimation of V , and so,
we would have the time variable t = O(ηκ/ε) (the factor
ηκ arises as a result of using C = ηκ in the controlled
rotation later) when simulating the unitary U in the beginning
by exponentiating a diagonal matrix Φ, such that U = eiΦt.
The matrix Φ to exponentiate to obtain unitary U of (2) is:

Φ = ϕ00|00⟩⟨00|+ ϕ01|01⟩⟨01|+ ϕ02|02⟩⟨02|+ ϕ03|03⟩⟨03|
+ ϕ10|10⟩⟨10|+ ϕ11|11⟩⟨11|+ ϕ12|12⟩⟨12|+ ϕ13|13⟩⟨13|
+ ϕ20|20⟩⟨20|+ ϕ21|21⟩⟨21|+ ϕ22|22⟩⟨22|+ ϕ23|23⟩⟨23|
+ ϕ30|30⟩⟨30|+ ϕ31|31⟩⟨31|+ ϕ32|32⟩⟨32|+ ϕ33|33⟩⟨33|,

which, being diagonal, and so, sparse, U can be simulated
efficiently [19], [20]. Here, ε/2 is the estimation precision
error in trace distance, and so, the maximum probability of
estimation error. We use ε = O(1/poly(N)) to let time t to
simulate U be polynomial, and not exponential, in N , as long
as the error probability of our overall algorithm is below 1/3.

In order to find the shortest Hamiltonian cycle, we add to γ
an ancilla qubit, initialized in the state (|0⟩⟨0|+|1⟩⟨1|)/2, and
rotate it, conditioned on |φ̃ν⟩, to get, with α2

ν := β2
ν/2

NC2 :

ξ =
∑
ν

α2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν|

⊗
[
(1− C2φ̃2

ν)|0⟩⟨0|+ C2φ̃2
ν |1⟩⟨1|

]
.

(7)

We ensure that all the eigenphases φ̃ν are normalised to
be between 0 and 1 by initially dividing all edges ϕjk by
φ̂max, that is taken as the sum of the N largest edges as an
estimate of φmax. If φ̂max is equal to φmax and if the phase
estimation was perfect, then we have the minimum φ̃ν , which
is φ̃min, equal to the inverse of the not-too-large condition
number (of the matrix of which φν’s are the eigenvalues),
1/κ = φmin/φmax. This would mean that the ancilla qubit
above will be rotated from |0⟩ only for φ̃min that is equal to
1/κ, if we use C = κ, since the probability C2φ̃2

ν , attached
to |1⟩, will be equal to 1 only for φ̃min. In other words,
the ancilla qubit will not be rotated at all for any φ̃ν , other

Figure 1. Quantum circuit to create a superposition of all permutations of 0, 1, 2, . . . , N − 1 for N = 4.

Figure 2. Quantum circuit to augment terms like |0123⟩ in ρ to |01122330⟩ in σ for N = 4.

than φ̃min. However, since φ̂max would almost always be an
overestimate of φmax, we would have 1/κ rather larger than
φ̃min, more so when the variance in the given edges is large,
or there are missing edges initially assigned a value of s. This
is why we use an extra multiplicative factor η, that we discuss
later, to ensure that only φ̃min is likely going to be less than
or equal to 1/(ηκ). So, in order to find and separate out φ̃min,
we choose above C = ηκ, so that the ancilla qubit is rotated
from |0⟩ only for φ̃min that is less than or equal to 1/(ηκ).
We will discuss shortly how to guess the value of ηκ to use.

We then need to find and output the Hamiltonian cycle |ν⟩,
that corresponds to φ̃min. Notice that if Cφ̃min = O(1), then
the probability of obtaining 1 as the outcome of measuring
the ancilla qubit above can be as small as O(N/2

NC2) =
O(1/2O(N2)), which is more than exponentially small in
N . So, we cannot efficiently perform a postselection on the
outcome being 1 of measuring the ancilla like in Ref. [19],
to obtain the below desired state from the state ξ in (7):

ζ =
∑
φ̃min

α2
νC

2φ̃2
ν

λmin
|φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν|, (8)

where if only φ̃min is less than 1/(ηκ) = 1/C, then we
would have N terms in the summation, all of which are
the same Hamiltonian cycles (with the same sum of weights
of edges), just rotated with respect to each other, so that
λmin :=

∑
φ̃min

α2
νC

2φ̃2
ν . We would not use amplitude

amplification either, as used in Ref. [19], since it gives only a
quadratic speedup, while we want to get exponential speedup.

Instead, in order to get the above state ζ in (8), we first
exponentiate the ancilla qubit (call it ϱ) from (7) to get the
unitary Y = eiϱτ , and perform phase estimation on Y for
eigenstate |1⟩. We create Y by repeatedly applying the below

to state ϱ of ancilla “anc” and another state ς [21], [22]:

Tranc
[
eiS∆τ (ϱ⊗ ς)e−iS∆τ

]
= ς−i∆τ [ϱ, ς]+O(∆τ2). (9)

Here, S is the swap operator, which is sparse and so, eiS∆τ

can be performed efficiently [19], [20]. Also, here, τ = n∆τ ,
where n = O(τ2/ϵ) is the required number of copies of ϱ,
and so, the required number of times (9) needs to be repeated
to obtain a simulation of Y with an error of ϵ. The phase
estimation process requires controlled-eiϱτ operations, that
can be performed by simply using conditional swap instead
of swap operation above for varying times τ (see Ref. [21]).

The phase estimate so obtained would be λ̃min, using which
we further apply a rotation to the ancilla qubit in (7), to get:

χ =
∑
ν

α2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν|

⊗
[(

1− C2φ̃2
ν

λ̃min

)
|0⟩⟨0|+ C2φ̃2

ν

λ̃min

|1⟩⟨1|
]
,

(10)

where since the eigenvalue of the eigenstate |1⟩ of the
ancilla qubit is evidently

∑
ν

α2
νC

2φ̃2
ν

λ̃min
= 1, we get the

eigenvalue of the eigenstate |0⟩ of the ancilla qubit to be∑
ν α

2
ν

(
1− C2φ̃2

ν

λ̃min

)
=

∑
ν α

2
ν −

∑
φ̃min

α2
νC

2φ̃2
ν

λ̃min
= 1−1 = 0.

Thus, the above state, upon tracing out the ancilla qubit, is
just the desired state ζ from (8), where every φ̃ν is equal to
φ̃min, so that measuring the two registers yield the outputs,
φ̃min and an eigenstate ν, corresponding to the desired shortest
Hamiltonian cycle in the graph. Clearly, if φ̃min so obtained
is larger than s/φ̂max, the eigenstate ν so obtained would not
be a desired Hamiltonian cycle, since it would have at least
one missing edge assigned a normalised value of s/φ̂max. So,
we can decide that there is no Hamiltonian cycle in the given
graph. Otherwise, our algorithm would output the obtained

values of ν and φ̃min × φ̂max as the shortest Hamiltonian
cycle of the graph, and the sum of its edges, respectively.

Note that the controlled rotation in (7) is achieved by
considering two ancilla qubits, denoted by A and B, initialised
in the state |0A0B⟩, and then rotating this state, conditioned on
phase estimates |φ̃ν⟩, and ignoring one of the ancilla qubits:

ξ = TrB

{∑
ν

α2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν| ⊗ |ΦAB⟩⟨ΦAB |

}
, (11)

where |ΦAB⟩ :=
√

1− C2φ̃2
ν |0A0B⟩+Cφ̃ν |1A1B⟩. In order

to simulate the unitary Y , we perform density matrix expo-
nentiation of the state ϱ of the ancilla qubit (as pointed out
earlier), that requires n = O(τ2/ϵ) copies of ϱ. Clearly, we
can obtain two copies of ϱ from above, one by ignoring the
qubit B, and the other by ignoring the qubit A, but undoing
the action of eiςτ on ϱ in between. Thus, we get the desired
n copies of ϱ, required for simulation of Y , by considering n
ancilla qubits, initialised in the state |0⊗n⟩, and then rotating
this state, conditioned on phase estimates |φ̃ν⟩:

ϑ =
∑
ν

α2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν| ⊗ |ψ⟩⟨ψ|, (12)

where |ψ⟩ :=
√
1− C2φ̃2

ν |0⊗n⟩+Cφ̃ν |1⊗n⟩. With n ancilla
qubits, the state corresponding to χ of (10) is:

Θ =
∑
ν

α2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν| ⊗ |Ψ⟩⟨Ψ|, (13)

where |Ψ⟩ :=
√
1− C2φ̃2

ν

λ̃min
|0⊗n⟩+ Cφ̃ν√

λ̃min

|1⊗n⟩.
We discuss an empirical way to guess C = ηκ. The mid-

range of the means (of N edges) of the Hamiltonian cycles is
normally close or equal to the mean M of all edges. We use an
extra scaling factor ω/(2N), to offset our overestimate φ̂max

of φmax, to get: (φmin/N + φ̂max/N)/2 = ωM/(2N), with
ω = max(2N, (e! = 0)θ), where θ = NC2 for undirected
graphs, θ/2 = NC2 for directed graphs, e is number of too
large (at least ten times the smallest edge) or missing edges.
So, a guess of 1/κ is 1/κ̂ = ωM/φ̂max−1. We use η = Ω/ϖ,
if ω > 2N , η = (Ω/ϖ) · (ω/(2N)), if ω > 4N , else η = 1, if
ω = 2N , where Ω is the sum of all edges including missing
edges, ϖ is the sum of all edges excluding missing or too large
edges. Usually, 1/C = 1/(ηκ̂) would be below, and yet close
to, the normalised φmin, so that we repeat our algorithm a
few times, slightly raising 1/C each time till we capture φ̃min

only. We find that this empirical method rarely fails [23].

III. ALGORITHM

1) We create the unitary U = eiΦt encoding all weights of

edges ϕjk, where Φ =
N−1∑
j,k=0

ϕjk

φ̂max
|jk⟩⟨jk|, s is the sum

of all given edges, and φ̂max is the sum of the largest
N edges of the graph, after replacing any missing edge
by s. We create N copies of U to yield V = U⊗N .

2) We initialize N number of data registers of ⌈logN⌉
qubits each to |0⟩, |1⟩, |2⟩, . . . , |N − 1⟩, respectively.

We generate all permutations of 0, 1, 2, . . . , N−1 using
NC2 number of single-qubit ancilla registers, each ini-
tialized to |+⟩ = 1√

2
(|0⟩+ |1⟩), and applying ⌈logN⌉

number of controlled swap gates on each combination
of two data registers with one ancilla as control qubit.

3) The first register has the state ρ = 1

2
NC2

∑
µ β

2
µ|µ⟩⟨µ|,

where
∑

ν β
2
µ = 2

NC2 . We augment this N -register
state by adding N ancilla registers each of ⌈log(N)⌉
qubits in state |0⟩ and acting CNOT gates to get
a 2N -register state σ = 1

2
NC2

∑
ν β

2
ν |ν⟩⟨ν|, where∑

ν β
2
ν = 2

NC2 .
4) We perform quantum phase estimation [19] on V using

σ as input to get γ = 1

2
NC2

∑
ν β

2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν|.

5) We add to the state γ an ancilla register of n qubits,
initialized in the state |0⊗n⟩, and rotate it, conditioned
on |φ̃ν⟩, to get the state ϑ =

∑
ν α

2
ν |φ̃ν⟩⟨φ̃ν | ⊗

|ν⟩⟨ν| ⊗ |ψ⟩⟨ψ|, where α2
ν := β2

ν/2
NC2 , |ψ⟩ :=[√

1− C2φ̃2
ν |0⊗n⟩+ Cφ̃ν |1⊗n⟩

]
and C is set to ηκ.

6) We exponentiate the effective state ϱ of each ancilla
qubit, using n copies of ϱ from n ancilla qubits, to get
a unitary Y := eiϱτ , and perform phase estimation on
Y for the eigenstate |1⟩. If the phase estimate for |1⟩ is
0, we repeat step 5 with a slightly smaller value of C,
and then repeat this step, until we can capture φ̃min in
step 5 and get λ̃min as the phase estimate in this step.

7) We further apply a rotation to the ancilla register in
the state ϑ from step 5, using λ̃min obtained in step 6,
to get Θ =

∑
ν α

2
ν |φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν| ⊗ |Ψ⟩⟨Ψ|, where

|Ψ⟩ :=

[√
1− C2φ̃2

ν

λ̃min
|0⊗n⟩+ Cφ̃ν√

λ̃min

|1⊗n⟩
]

. So, upon

tracing out the ancilla register |Ψ⟩ from Θ, we get ζ =∑
φ̃min

α2
νC

2φ̃2
ν

λmin
|φ̃ν⟩⟨φ̃ν | ⊗ |ν⟩⟨ν|, as

∑
ν

α2
νC

2φ̃2
ν

λ̃min
= 1.

8) Measure the two registers in the state ζ from step 7 to
get φ̃min and a ν. If φ̃min is larger than s/φ̂max, output
the decision that there is no Hamiltonian cycle in the
graph. Otherwise, output the obtained values of ν and
φ̃min × φ̂max as the desired shortest Hamiltonian cycle
of the graph, and the sum of its edges, respectively.

The improved quantum phase estimation method from
Ref. [19], that we use above, is as follows. We start with
an initial state |Λ0⟩|uj⟩, where |uj⟩ is the j-th eigenstate of
the Hermitian matrix Γ, that we exponentiate, and |Λ0⟩ :=√

2
T

∑T−1
ι=0 sin

π(ι+ 1
2)

T |ι⟩ for some large T . The state |Λ0⟩ can
be prepared upto some error ϵΛ in time poly log(T/ϵΛ) (see
Ref. [19]). We apply the conditional Hamiltonian evolution∑T−1

ι=0 |ι⟩⟨ι| ⊗ eiΓιt/T on the initial state in both registers,
and then apply inverse quantum Fourier transform on the
first register to get the state

∑T−1
q=0 υq|j |q⟩|uj⟩. Defining the

estimate r̃q of the q-th eigenvalue rq of Γ as r̃q := 2πq
t , we

relabel the Fourier basis states |q⟩ to get
∑T−1

q=0 υq|j |r̃q⟩|uj⟩.
If the phase estimation is perfect, we have υq|j = 1 if r̃q = rj ,
and 0 otherwise. So, we get the state |r̃j⟩|uj⟩, from which we
obtain the estimate of rj upon measuring the first register.

IV. ALGORITHM COMPLEXITY

In Figure 1 for step 2, the swap gates on ⌈logN⌉ number of
qubits of each data register are applied parallelly. Since there
are NC2 number of such sets of swap gates, the complexity
of this step is O(N2). The complexity is independent of N
in Figure 2 for step 3, since all the CNOT gates can be
applied in parallel. In step 1, creating each copy of U has a
complexity of O(2 log(N)t) [19], [20], since each eigenstate
has 2⌈logN⌉ qubits. Further, N copies of U , required for
V , can be created in parallel. In step 4, we use improved
quantum phase estimation from Ref. [19], the complexity of
which is dominated by the inverse quantum Fourier transform
involved, and is, thus, O(ℓ2), if we use ℓ qubits in the
phase estimate register. The use of improved quantum phase
estimation in this step along with the controlled rotation with
C = ηκ in step 5 require the time variable t in step 1 to
be O(ηκ/ε) (see Ref. [19]). In step 5, the complexity is
polynomial for the controlled rotation of the ancilla register
state, as in Ref. [19]. The circuit depth of the density matrix
exponentiation in step 6 of the (single) ancilla qubit is
O(log(2)n) = O(τ2/ϵ) = O(1/ϵ3) [21], [22], where ϵ is the
simulation error for Y , as also the precision error of phase
estimation of Y for |1⟩ for which τ = O(1/ϵ). Here, ϵ is
an error in trace distance, and so, determines the maximum
probability of error in the simulation or estimation of Y [24].
Notice that the eigenvalue of ϱ for the eigenstate |1⟩ can be
as low as O(1/2O(N2)), that can be indistinguishable from
0, if less than O(N2) qubits are used in the phase estimate
register, but using O(N2) qubits leads to the time variable
in simulating Y to scale as τ = O(2O(N2)). However, since
ϵ determines the maximum probability of error, we can use
ϵ = O(1/poly(N)), and not necessarily ϵ = O(1/2O(N2)),
so that τ is polynomial and not exponential in N , as long
as the cumulative error probability of our algorithm does not
exceed 1/3. The complexities of steps 7 and 8 can be ignored.
So, the overall complexity of our algorithm is O(2 log(N)t),
which yields O(log(N)ηκ/ϵ) ≤ O(N3 log(N)κ/ϵ), taking
ε = ϵ for simplicity, with ϵ = O(1/poly(N)), and η ≤
O(N3). This is because the complexity of step 1 is dominant
amongst all steps, if it suffices to have ϵ ≥ O(1/N). Also,
κ = O(poly(N)), since it is geometrically unlikely, if not
impossible, for a Hamiltonian cycle of N edges to be expo-
nentially larger than another Hamiltonian cycle of N edges in
a city-network graph, even with missing or too-large edges, as
each Hamiltonian cycle must visit all cities, including too-far
ones, and η captures skewness in the edge-weights anyway.
Note that we need classical preprocessing of all the input
weights of the edges, e.g. computing φ̂max by summing the
N largest edges, for which we sort the data, that is expensive.
If we use merge sort to sort the NC2 number of edges, the
complexity is O(NC2 log(

NC2)) = O(N2 log(N)), which
is less than O(N3 log(N)κ/ϵ). But if ϵ ≤ O(1/N2), the
complexity of step 6 is dominant, so the overall complexity
of our algorithm is at least O(1/ϵ3) = O(N6). Clearly, this
is an exponential speedup over the brute-force complexity of
O(NN) for undirected [1], or O(N2N) for directed graphs.

REFERENCES

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2002.

[2] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale
traveling-salesman problem,” Operations Research, vol. 2, no. 4, pp.
393–410, November 1954.

[3] M. Grötschel and O. Holland, “Solution of large-scale symmetric
travelling salesman problems,” Mathematical Programming, vol. 51, pp.
141–202, July 1991.

[4] M. Padberg and G. Rinaldi, “A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman problems,” SIAM
Review, vol. 33, no. 1, pp. 60–100, March 1991.

[5] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “On the solution
of traveling salesman problems,” Documenta Mathematica, vol. 3, pp.
645–656, January 1998.

[6] J. D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel, “An
algorithm for the traveling salesman problem,” Operations Research,
vol. 11, no. 6, pp. 972–989, 1963.

[7] M. Held and R. M. Karp, “The traveling-salesman problem and mini-
mum spanning trees: Part II,” Mathematical Programming, vol. 1, pp.
6–25, 1971.

[8] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “Implementing
the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman
problems,” Mathematical Programming, vol. 97, pp. 91–153, 2003.

[9] V. Černý, “Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm,” Journal of Optimization Theory
and Applications, vol. 45, pp. 41–51, January 1985.

[10] H. He, “Quantum annealing and graph neural networks for solving TSP
with QUBO,” February 2024, arXiv:2402.14036.

[11] R. Martoňák, G. E. Santoro, and E. Tosatti, “Quantum annealing of
the traveling-salesman problem,” Physical Review E, vol. 70, no. 5, p.
057701, November 2004.

[12] E. Rodriguez, E. Osaba, and I. Oregi, “Analyzing the behaviour of D-
Wave quantum annealer: fine-tuning parameterization and tests with
restrictive Hamiltonian formulations,” in 2022 IEEE Symposium Series
on Computational Intelligence (SSCI), December 2022, pp. 938–946.

[13] W. Qian, R. A. M. Basili, M. M. Eshaghian-Wilner, A. Khokhar,
G. Luecke, and J. P. Vary, “Comparative study of variations in quantum
approximate optimization algorithms for the traveling salesman prob-
lem,” Entropy, vol. 25, no. 8, p. 1238, August 2023.

[14] A. Matsuo, Y. Suzuki, I. Hamamura, and S. Yamashita, “Enhancing
VQE convergence for optimization problems with problem-specific
parameterized quantum circuits,” IEICE Transactions on Information
and Systems, vol. E106.D, pp. 1772–1782, November 2023.

[15] J. Bang, J. Ryu, C. Lee, S. Yoo, J. Lim, and J. Lee, “A quantum heuristic
algorithm for the traveling salesman problem,” Journal of the Korean
Physical Society, vol. 61, pp. 1944–1949, January 2013.

[16] K. Srinivasan, S. Satyajit, B. K. Behera, and P. K. Panigrahi, “Efficient
quantum algorithm for solving travelling salesman problem: An IBM
quantum experience,” May 2018, arXiv:1805.10928.

[17] A. Moylett, N. Linden, and A. Montanaro, “Quantum speedup of
the traveling-salesman problem for bounded-degree graphs,” Physical
Review A, vol. 95, no. 3, p. 032323, March 2017.

[18] C. Tszyunsi and I. I. Beterov, “A quantum algorithm for solving the
travelling salesman problem by quantum phase estimation and quantum
search,” Journal of Experimental and Theoretical Physics, vol. 137, pp.
210–215, September 2023.

[19] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for
linear systems of equations,” Physical Review Letters, vol. 103, no. 15,
p. 150502, October 2009.

[20] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, “Efficient quan-
tum algorithms for simulating sparse Hamiltonians,” Communications
in Mathematical Physics, vol. 270, pp. 359–371, December 2006.

[21] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal compo-
nent analysis,” Nature Physics, vol. 10, pp. 631–633, July 2014.

[22] M. Kjaergaard, M. E. Schwartz, A. Greene, G. O. Samach, A. Bengts-
son, M. O’Keeffe et al., “Demonstration of density matrix exponentia-
tion using a superconducting quantum processor,” Physical Review X,
vol. 12, no. 1, p. 011005, January 2022.

[23] Tests of our empirical method for TSP: https://shorturl.at/npLN7.
[24] S. Kimmel, C. Y.-Y. Lin, G. H. Low, M. Ozols, and T. J. Yoder,

“Hamiltonian simulation with optimal sample complexity,” npj Quan-
tum Information, vol. 3, no. 13, March 2017.

https://arxiv.org/abs/2402.14036
https://arxiv.org/abs/1805.10928
https://shorturl.at/npLN7

	Introduction
	Method
	Algorithm
	Algorithm Complexity
	References

