
Fast Exhaustive Search for Polynomial Systems
over F3

Bo-Yin Yang1, Wei-Jeng Wang2, Shang-Yi Yang1,2, Char-Shin Miou3 and
Chen-Mou Cheng2

1 Academia Sinica, Taiwan by@crypto.tw,nick.yang@chelpis.com
2 National Taiwan University, Taiwan willwang8129@hotmail.com.tw,cheng@btq.li

3 Chunghwa Telecom Laboratories, Taiwan mcs@cht.com.tw

Abstract. Solving multivariate polynomial systems over finite fields is an important
problem in cryptography. For random F2 low-degree systems with equally many
variables and equations, enumeration is more efficient than advanced solvers for all
practical problem sizes. Whether there are others remained an open problem.
We here study and propose an exhaustive-search algorithm for low degrees systems
over F3 which is suitable for parallelization. We implemented it on Graphic Processing
Units (GPUs) and commodity CPUs. Its optimizations and differences from the F2
case are also analyzed.
We can solve 30+ quadratic equations in 30 variables on an NVIDIA GeForce GTX
980 Ti in 14 minutes; a cubic system takes 36 minutes. This well outperforms
existing solvers. Using these results, we compare Gröbner Bases vs. enumeration for
polynomial systems over small fields as the sizes go up.

Keywords: multivariate polynomial, algebraic cryptanalysis, exhaustive search, paral-
lelization, Graphic Processing Units (GPUs)

Note
This is a tech report which summarizes the work done for Wei-Jeng Wang’s masters thesis
at National Taiwan University, 2016.

1 Introduction
If one can solve large systems of polynomial equations, one can break all cryptosystems.
This general approach is often called algebraic cryptanalysis [1]. Unfortunately, solving
such systems are not easy. Indeed, not only is this an NP-hard problem [2], the following
problem is conjectured to be probabilistically hard [3]:

Problem MQpq; n, mq: Solve p1pxq “ ¨ ¨ ¨ “ pmpxq “ 0, where each pi is a quadratic in
x “ px1, . . . , xnq. All coefficients and variables are in Fq.

To be exact, the QUAD stream cipher [3] can be proved secure for certain parameters under
the assumption that: “If we randomly generate the n2pn ` 1q coefficients in a set of 2n
quadratic equations in n bit-variables to generate instances in MQp2; n, 2nq, the probability
for any algorithm A to terminate within time polypnq with a solution would be less than any
given fixed ϵ ą 0 as n Ñ 8.” To date, no one has seriously challenged this statement.
Multivariate Public-Key Cryptosystems (MPKCs) [4, 5, 6], where the public map is a
multivariate quadratic map. also require MQ to be hard. However, MPKCs have built-in



2 Fast Exhaustive Search for Polynomial Systems over F3

trapdoors, so many effective known attacks are structural attacks solving the instance of
extended Isomorphism of Polynomials. Of course, in practice MQ complexity still needs
to be evaluated for every MPKC, as an upper bound of security.

Since Buchberger [7], Gröbner-basis techniques have been the most prominent tool for
solving systems of equations. For over a decade, the standard benchmark of cryptographic
system-solving has been the Gröbner-basis algorithm F4[8], more precisely the variant
that is commercially available in the computer algebra MAGMA [9]. A more advanced
(but not publicly available) algorithm[10] F5 was the first to break the first HFE challenge
in 2002 [11]. The properties of algebraic solvers such as F4 and XL has been studied in
detail [12, 13, 14]

In 2010, Bouillaguet et al showed that exhaustive search algorithms can be made
extremely efficient, practically faster than existing techniques for solving generic systems
over F2 using commodity computers and graphics cards and even reconfigurable computing
[15]. Especially for random systems over F2, it seems as if enumeration represent the best
solution for most cases of cryptographical interest [16]. An open source software library
[17] is available for use with SAGE. The leaders board of the Fukuoka MQ Challenge series
I and IV (dealing with F2 systems) are dominated by enumerative solutions.

Since 2010, there seemed to have been folklore among cryptographers that similar
results might hold for enumerative solutions of systems over F3 and possibly even larger
fields, just as it does over F2. However, there is no publication on record to that effect.

1.1 Our Contribution

We provide a comparative study of enumerative solutions vs. Gröbner basis methods in
small fields other than F2. Of course, F3 is very ill-suited for computers it takes two bits
to represent a ternary digit (“trit”) but this is a handicap both for Gröbner basis methods
and for enumeration. We can restate the end of the above section as the following open
question:

Do enumerative methods hold a similar advantage over Gröbner-basis
techniques for other small fields and how well does that enumeration do in
practice for F3 (and F4, F5, . . . )?

Our answer is that Brute Force or Enumeration can achieve nearly as much for F3 as it
did for F2, although the set-up phase and book-keeping issues are messier. For quadratic
systems, each test vector only takes on average two parallelized additions in F3 (which the
same as F2). The enumerative approach is also extensible to higher degrees for F3 just
as for F2, although when enumerating for a degree-d system, each test vector would take
more than d adds in F3.

Our algorithm has been implemented with several optimizations on CPU and GPU
using SSE2 intrinsics and the CUDA framework respectively. Although there is still room
for improvement (e.g., no provision to use multiple GPUs simultaneously), it outruns all
existing Gröbner solvers to which we have access.

Today, we can solve 30+ quadratic equations in 30 variables with one NVIDIA GeForce
GTX 980 Ti graphics card in 14 minutes. A cubic system under the otherwise the same
conditions takes 26 minutes. Using MAGMA-2.21-9 on a 4-GHz core of the AMD FX-8350,
FF4 (i.e., guess an optimal number of variables before running the F4 solver, the hybrid
approach [12, 18]) would take 150 core-days to solve 30 quadratic equations in as many
F3-variables. This is the best Gröbner-basis solvers commercially available today.



Bo-Yin Yang , Wei-Jeng Wang , Shang-Yi Yang , Char-Shin Miou and Chen-Mou Cheng3

2 Preliminaries
2.1 Notational Conventions
In this paper, we enumerate over the finite-dimensional vector space (F3)n, and use the
base-3 or ternary numerals. Analogous to a bit, a ternary digit is a trit.

We use Cβ1,β2,...,βk
to stand for the coefficient of the monomial xβ1xβ2 ¨ ¨ ¨ xβk

of a
polynomial f , and use C for the constant term. Because we know that any xα

β where α ě 1
can be reduced to xγ

β where γ P t1, 2u, γ “ α mod 2, so the restrictions on the indices βi

can be formulated as follows for 1 ď i ď k ´ 2:

1. 0 ď β1 ď β2 ď ¨ ¨ ¨ ď βk ă n, and

2. βi`1 ‰ βi`2 if βi “ βi`1.

In addition, we use ‘ to denote trit-wise addition of vectors in Fn
3 , which means that

each corresponding pairs of trits is added together pmod 3q without carry. In a similar
way, trit-wise subtraction is denoted by a. We also use Ï (resp. Î) to denote ternary
right-shift (resp. left-shift) operation. Since 3 “ 0, we also have 2 “ ´1 and occasionally
subtracting the same variable is achieved by adding the same variable twice.

2.2 Representation used for Ternary Arithmetic
Each trit must be represented by 2 bits. In our implementation, we represent 0 as 00, 1 as
10 and 2 as 11. This representation has the advantage that it is easy to check whether a trit
is equal to zero just by checking its most significant bit (MSB). Suppose we have elements
x, y, z P F3 with their 2-bit representations being bits px0, x1q, py0, y1q, pz0, z1q, where the
MSB is indexed as 1 and the LSB as 0. Formulas corresponding to basic operations in F3
are:

• z “ x ` y Ø z1 “ px1 ‘ y1q _ px0 ‘ y1 ‘ y0q, z0 “ px1 ‘ y0q ^ px0 ‘ y1q.

• z “ xy Ø z1 “ px1 ^ y1q, z0 “ px1 ^ y0q _ px0 ^ y1q.

2.3 Ternary Gray Code
A k-trit ternary Gray code, sometimes called a p3, kq-Gray Code[19] is a Hamiltonian path
in Fk

3 , or a sequence of all 3k possible k-trit sequence such that two successive values differ
in only one trit. Ternary gray codes are not unique, but the example given in Wikipedia[20]
seems as much of a standard as any other.

Definition 1 (Standard k-trit Ternary Gray Code).
Express all integers in r0; 3k ´ 1s as k-trit ternary numerals, then

TERNARYGRAYCODEpxq :“ x a px Ï 1q.

The is analogous to that of the standard Gray Code and may be in fact proved to
be a valid ternary Gray Code in a similar manner[19]. Table 1 shows part of a standard
4-trit ternary Gray code along with their corresponding indices in ternary. For example, if
x “ 012, then px Ï 1q “ 001, and therefore TERNARYGRAYCODEpxq “ 012a001 “ 011,
which can be also found in Table 1. The bi columns in that table, is the analogue of the
“the i-th rightmost non-zero bit position” of the binary case. We can capture their meaning
in the following definition. Let x be written in ternary, as an index of a ternary Gray code.

Definition 2 (Position of the i-th difference vector). The notation b1pxq is defined the
index of the least significant nonzero trit of x as a ternary number, and ´1 if x “ 0. For
i ą 1 we can then define recursively bipxq :“ bi´1px ´ 3b0pxqq.



4 Fast Exhaustive Search for Polynomial Systems over F3

1 Sol Ð ∅;
2 for i “ 0 to 3n ´ 1 do
3 δ Ð fpxiq;
4 if δ “ 0 then
5 Sol Ð Sol Y txiu;
6 end
7 end
8 return Sol;

Figure 1: Pseudocode of Naïve Evaluation

We can see as a corollary that if the Hamming weight of x, defined as the sum as an
integer of all trits in the ternary expansion of x is equal to h, then bjpxq “ ´1 for h ă j.

Warning: One should note that in Definition 2, when one of the trits in x is two,
the corresponding index occurs twice in the b sequence. Therefore, while bipxq is the
analogue of “the position of the i-th rightmost non-zero bit” in the binary case„ for our
(ternary) case Definition 2 is not “the position of the i-th rightmost non-zero trit”. If we
want to think of bi that way, we must split each trit further into its two-bit form and
consider bi as the i-th rightmost bit in that expansion. In the same example used above,
b1p5q “ 0, b2p5q “ 0, b3p5q “ 1 and b4p5q “ ´1 because 510 “ p012q3.

Lemma 1. Let ei be the unit vector in the i-th direction (3i as an integer), then

TERNARYGRAYCODEpx ` 1q “

TERNARYGRAYCODEpxq ‘ eb1px`1q.

Definition 3 (Partial Derivative). Let f be a scalar- or vector-valued polynomials over
(F3)n. Then we define: Bf

Bi pxq “ fpx ‘ eiq ´ fpxq. Thus for any vector x, we have:

fpx ‘ eiq “ fpxq `
Bf

Bi
pxq . (1)

For our convenience, TERNARYGRAYCODEpxq is denoted by gx in the following
pages. So Lemma 1 can be re-written as

fpgxq “ fpgx´1q `
Bf

Bb1pxq
pgx´1q.

We will build on this result in our paper to construct a better exhaustive search algorithm.

3 Known Techniques for Enumerations

3.1 Naïve Evaluation
The simplest way to perform an enumeration algorithm is to evaluate the polynomial f
over pF3qn. For every integer 0 ď i ă 3n, we can form a vector of trits from its ternary
expansion zero-padded to n trits, and term that xi, the vector formed by integer i. So
numeration means we check whether fpxiq is equal to zero or not for i “ 0, 1, . . . , 3n ´ 1.
The process of naïve evaluation is shown in Fig. 1.



Bo-Yin Yang , Wei-Jeng Wang , Shang-Yi Yang , Char-Shin Miou and Chen-Mou Cheng5

1 Sol Ð ∅;
2 δ Ð C;
3 for i “ 0 to 3n ´ 1 do
4 β1 Ð b1piq;
5 if β1 ě 0 then
6 δ Ð δ `

Bf
Bβ1piq

pgi´1q;
7 end
8 if δ “ 0 then
9 Sol Ð Sol Y tgiu;

10 end
11 end
12 return Sol;

Figure 2: Pseudocode of Basic Ternary Gray Code Enumeration

3.2 Basic Ternary Gray Code Enumeration
According to the proposition 1, we compute fpgiq by updating fpgi´1q with their difference

Bf
Bb1piq

pgi´1q. Therefore, this indicates that searching the candidate vectors in the order
of ternary Gray code requires less arithmetical operations than the requirement in naïve
evaluation. The pseudocode is shown in Fig. 2.

3.3 Generalized Ternary Gray Code Enumeration
From the last section, we have known that while any two successive values differ in only
one trit, the evaluations can be accelerated. In this section, we introduce a new algorithm,
which we call generalized ternary Gray code enumeration (GTGCE). This method is the
extension of Section 3.2. It not only keeps the advantage as mentioned above but also
makes use of the recursive technique.

First of all, let us consider a special situation in proposition 1. If Bf
Bi pxq and Bf

Bi px ‘ ejq

are known differences, the equation B
2f

BiBj pxq “
Bf
Bi px ‘ ejq ´

Bf
Bi pxq can be derived by

the definition. Similarly, the ternary Gray code form can be represented as Bf
Bi pgkq “

Bf
Bi pgk´1q `

B
2f

Bb1pxkqBb2pxkq
pgk´1q. In summary, we can extend the proposition to any higher

degree.
Now we are going to illustrate the algorithm. The pseudocode of GTGCE is shown

in Fig. 3. At the beginning, some variables need to be initialized (line 1-5). δ, which is
also used in Fig. 2, stores fpgiq and δβ1,...,βk

store all kinds of differences B
kf

Bβ1pxq¨¨¨Bβkpxq
pgq.

Further, we need to notice that addition in the subscript of g is trit-wise operation. For
example, given β1 “ 2, β2 “ 4, we can derive p32 ´ 1q ‘ p34 ´ 1q “ 0022 ‘ 2222 “ 2211,
and then g2211 equals 2020. Therefore, the following equations can be derived.

δ2,4 “
B2f

B2B4 p2020q

“
Bf

B2 p12020q ´
Bf

B2 p2020q

“ pfp12120q ´ fp12020qq ´ pfp2120q ´ fp2020qq

“ C2,4 ` C2,2,4 ` C2,4,4 ´ C1,2,4 ´ C2,3,4 . (2)

Initialization of δβ1,...,βk
is listed in Table 2 and Table 3. These differences will always

stay up-to-date (correct) because their values will be updated every round in the for



6 Fast Exhaustive Search for Polynomial Systems over F3

1 Sol Ð ∅;
2 δ Ð C;
3 foreach coefficient Cβ1,...,βk

of f do
4 δβ1,...,βk

Ð
B

kf
Bβ1p3β1 `¨¨¨`3βk q¨¨¨Bβkp3β1 `¨¨¨`3βk q

pgp3β1 ´1q‘¨¨¨‘p3βk ´1qq(see Table 2,
Table 3)

5 end
6 for i “ 0 to 3n ´ 1 do
7 α Ð min(HammingWeight(i),d);
8 β1, . . . , βα Ð b1,...,αpiq;
9 for j “ α to 1 do

10 δβ1,...,βj´1 Ð δβ1,...,βj´1 ` δβ1,...,βj
(see Table 4, Table 5)

11 end
12 if δ “ 0 then
13 Sol Ð Sol Y tgiu;
14 end
15 end
16 return Sol;

Figure 3: Pseudocode of Generalized Ternary Gray Code Enumeration

loop. After initialization, the process will enter exhaustive search stage. The stage can be
divided into three steps roughly.

The first step (line 7-8) is finding corresponding indices of the differences (where the
non-zero trits are, 2’s counting twice) in the ternary index i. If the degree of a polynomial
system is d, we only need to record d least significant nonzero bits at most.

The second step (line 9-11) is updating the variable differences and the result according
to the indices determined in the first step. In Fig. 2, the formula δ` “

Bf
Bβ1pxiq

pgi´1q

updates the result. However, the value of Bf
Bβ1pxiq

pgi´1q must be updated with the second
order difference prior to being used. In short, we add one higher-order difference into a
lower-order one to get its new value, recursively. These actions are clarified by the following
expression (with α ě 3):

δ` “ pδβ1 ` “ pδβ1,β2 ` “ pδβ1,β2,β3 ` “ ¨ ¨ ¨ qqq . (3)

These recursive in-place prefix-sum operations do not halt until we meet a terminal
condition, which means a difference that need not be updated. Moreover, we sometimes
need to add more than one higher-order difference in an update. That is, having to add
several δβ1,...,βj

to δβ1,...,βj´1 is possible. If this happens in a terminal step (meaning,
for a degree-d system, we are using one or more order-d differences), we would always
precompute the sum of all involved differences to get a new difference constant δ˚

β1,...,βj
, and

in such case only one addition is needed. However, when d ą 2, sometimes this situation
happens in the middle of the recursive process in Eq. 3, and we cannot precompute so
easily because every δβ1,...,βj

must be updated individually before a dependent lower-order
difference can be updated. In short, the process of updating depend on indices we find in
the first step. The relation between these is illustrated in Table 4 and Table 5, and we
illustrate their correctness with Table 1.

Now we are going to introduce the terminal conditions of the recursion. Note that a
difference δβ1,...,βd will be initialized to B

df
Bβ1pxq¨¨¨Bβdpxq

pgq, and its value is equal to or some
multiple of the monomial coefficient Cβ1,...,βd. It depends on βi. If every βi is different,
the multiplier is 1; for every pair of βi “ βi`1 (which means that a trit is 2), the multiplier
will be doubled; thus with ℓ equal pairs of indices, the multiple is equal to 2ℓ. Since these



Bo-Yin Yang , Wei-Jeng Wang , Shang-Yi Yang , Char-Shin Miou and Chen-Mou Cheng7

Table 2: Initialization of differences with degree = 2
first order

difference constraint initialization
δ0 C0 + C0,0
δi 0 ă i Ci - Ci-1,i + Ci,i

second order
δi,i - Ci,i

δi,j i ă j Ci,j

Table 3: Initialization of differences with degree = 3
first order

difference constraint initialization
δ0 C0 + C0,0

δi 0 ă i
Ci - Ci-1,i + Ci,i

+ Ci´1,i´1,i - Ci´1,i,i

second order
difference constraint initialization

δ0,0 - C0,0
δ0,1 C0,1 - C0,0,1 + C0,1,1

δ0,j 1 ă j
C0,j + C0,0,j - C0,j-1,j

+ C0,j,j

δi,i 0 ă i - Ci,i - Ci-1,i,i

δi,i+1 0 ă i
Ci,i+1 - Ci-1,i,i+1 - Ci,i,i+1
+ Ci,i+1,i+1

δi,i+t 0 ă i & 1 ă t
Ci,i+t - Ci-1,i,i+t + Ci,i,i+t

+ Ci,i+t,i+t - Ci,i+t-1,i+t

third order
difference constraint initialization

δi,i,k i ă k - Ci,i,k

δi,j,j i ă j - Ci,j,j

δi,j,k i ă j & j ă k Ci,j,k

Table 4: formulas of Updating in Quadratic System
b1 b2 constraint formula
0 0 δ0 += δ0,0
0 j 0 ă j δ0 += pδ0,0 + δ0,jq

i i 0 ă i δi += p - δi-1,i + δi,iq

i j 0 ă i & i ă j δi += pδi-1,i + δi,i + δi,jq



8 Fast Exhaustive Search for Polynomial Systems over F3

Table 5: formulas of Updating in Cubic System
b1 b2 b3 constraint formula-1 formula-2 formula-3
0 0 k 0 ă k δ0,0 += δ0,0,k

0 1 1 δ0,1 += pδ0,0,1 + δ0,1,1q

0 j j 1 ă j δ0,j += p - δ0,j-1,j + δ0,j,jq

0 j k 1 ă j & j ă k δ0,j += pδ0,j-1,j + δ0,j,j + δ0,j,kq

i i k 0 ă i & i ă k δi-1,i += δi-2,i-1,i δi-1,i += δi-1,i-1,i δi,i += p - δi-1,i,i + δi,i,kq

i i+1 i+1 0 ă i δi-1,i += δi-2,i-1,i δi,i += δi-1,i,i δi,i+1 += p - δi-1,i,i+1 + δi,i,i+1 + δi,i+1,i+1q

i i+1 k 0 ă i & i+1 ă k δi-1,i += δi-2,i-1,i δi,i += δi-1,i,i
δi,i+1 += p - δi-1,i,i+1 + δi,i,i+1 + δi,i+1,i+1

+ δi,i+1,kq

i i+t i+t 0 ă i & 1 ă t δi-1,i += δi-2,i-1,i δi,i += δi-1,i,i δi,i+t += p - δi,i+t-1,i+t + δi,i+t,i+tq

i i+t k 0 ă i & 1 ă t & i+t ă k δi-1,i += δi-2,i-1,i δi,i += δi-1,i,i δi,i+t += pδi,i+t-1,i+t + δi,i+t,i+t + δi,i+t,kq

differences are always constants, the multiplier values need no updates. So, there are two
ways we stop the recursive updating:

1. α “ d, and we have reached the highest degree difference, which is constant.

2. δβ1,...,βα
appears for the first time and we use its known initial value.

The last step (line 12-14) is checking whether the new result is equal to zero or not. If
the condition is satisfied, we add the corresponding ternary Gray code to the group which
contains all legal solutions.

Of course, an actual run starts with a script which enumerate through the indices and
compute the corresponding bi’s and generate the actual C program with no unnecessary
branches or table lookups. A main difference with F2 is the possibility of having to add
several differences to update one lower order difference, causing the number of additions
per candidate to be greater than d on average for a degree-d system when d ą 2.

4 Variants and Analysis
4.1 Partial Evaluation
Now we understand how various exhaustive search solvers work, it is easy to see that they
are suitable for parallelization. So we will divide an input system into multiple subsystems
to be solved simultaneously.

Partial evaluation is an obvious method for splitting the problem. The main idea is
to substitute all possible values for s variables. Therefore, we can use s to control the
number of subsystems. It generates 3s subsystems each with n ´ s variables.

We illustrate with an example as below. Consider a system with d “ 2, n “ 4, and
choose s “ 2. Hence there are 4 variables, which are x0, x1, x2 and x3 in the input system,
and x2 and x3 will be substituted to find 9 subsystem individually with only variables x0
and x1. After reorganizing the coefficients, we can obtain the following expression:

C0,0x2
0 ` C1,1x2

1 ` C0,1x0x1`

pC0,2x2 ` C0,3x3 ` C0qx0`

pC1,2x2 ` C1,3x3 ` C1qx1`

pC2,2x2
2 ` C3,3x2

3 ` C2,3x2x3 ` C2x2 ` C3x3 ` Cq .

It is easy to see that coefficients of the highest degree still retains their original values.
The new constant is C2,2x2

2 ` C3,3x2
3 ` C2,3x2x3 ` C2x2 ` C3x3 ` C; the new coefficient

of x0 is C0,2x2 ` C0,3x3 ` C0 and the new coefficient of x1 is C1,2x2 ` C1,3x3 ` C1. We
may substitute x2 and x3 with their different possible values (0,1 or 2) for each subsystem
so that 9 subsystems will be derived. Since there may be many substituted variables, we
can use the same Generalized Ternary Gray Code enumeration technique.



Bo-Yin Yang , Wei-Jeng Wang , Shang-Yi Yang , Char-Shin Miou and Chen-Mou Cheng9

Table 6: A Scheme of Unrolling with Unroll Factor 27
index b4 b3 b2 b1 index b4 b3 b2 b1 index b4 b3 b2 b1

˚ ¨ ¨ ¨ ˚ 000 β4 β3 β2 β1 ˚ ¨ ¨ ¨ ˚ 100 β3 β2 β1 2 ˚ ¨ ¨ ¨ ˚ 200 β2 β1 2 2
˚ ¨ ¨ ¨ ˚ 001 β3 β2 β1 0 ˚ ¨ ¨ ¨ ˚ 101 β2 β1 2 0 ˚ ¨ ¨ ¨ ˚ 201 β1 2 2 0
˚ ¨ ¨ ¨ ˚ 002 β2 β1 0 0 ˚ ¨ ¨ ¨ ˚ 102 β1 2 0 0 ˚ ¨ ¨ ¨ ˚ 202 2 2 0 0
˚ ¨ ¨ ¨ ˚ 010 β3 β2 β1 1 ˚ ¨ ¨ ¨ ˚ 110 β2 β1 2 1 ˚ ¨ ¨ ¨ ˚ 210 β1 2 2 1
˚ ¨ ¨ ¨ ˚ 011 β2 β1 1 0 ˚ ¨ ¨ ¨ ˚ 111 β1 2 1 0 ˚ ¨ ¨ ¨ ˚ 211 2 2 1 0
˚ ¨ ¨ ¨ ˚ 012 β1 1 0 0 ˚ ¨ ¨ ¨ ˚ 112 2 1 0 0 ˚ ¨ ¨ ¨ ˚ 212 2 1 0 0
˚ ¨ ¨ ¨ ˚ 020 β2 β1 1 1 ˚ ¨ ¨ ¨ ˚ 120 β1 2 1 1 ˚ ¨ ¨ ¨ ˚ 220 2 2 1 1
˚ ¨ ¨ ¨ ˚ 021 β1 1 1 0 ˚ ¨ ¨ ¨ ˚ 121 2 1 1 0 ˚ ¨ ¨ ¨ ˚ 221 2 1 1 0
˚ ¨ ¨ ¨ ˚ 022 1 1 0 0 ˚ ¨ ¨ ¨ ˚ 122 1 1 0 0 ˚ ¨ ¨ ¨ ˚ 222 1 1 0 0

4.2 Early-abort Strategy
In contrast with partial evaluation, an early-abort strategy focuses on equations. Each
candidate vector is first checked against a fixed portion of the equations. Only if the
candidate passes that test do we check whether it satisfies the remaining equations.

This method is like a filter, which removes impossible vectors early. We call the first
part "enumeration phase", and call the second part "check phase". Suppose a system
has n variables and m equations. There are total 3n candidate vectors which need to be
evaluated. Then we check only the first k equations in enumeration phase. On average only
1

3k vectors will pass the filter so that the number of possible vectors decreases obviously.

5 Implementations on GPU

5.1 Overview
We start with an input system with n variables and m equations and we compute all
differences which will be used in the enumeration. We then divide the system into numerous
subsystems by guessing s variables, with each subsystem going to one thread on the GPU.
The differences for 3s subsystems may not be all the same due to the substitutions. Every
thread will only test the first 32 equations with GTGCE and return at most one candidate
vector which satisfies all equations during in enumeration phase. All possible solutions are
then checked against the other equations. If more than one vector is found in a thread, we
will need to perform GTGCE again on the CPU during the check phase because we can
only return one, as in the details below.

We test 32 equations simultaneously in the enumeration phase since that is the width
of a GPU register. The two bits in the 2-bit representation of each of the 32 trit-results
are split into two registers to take full advantage of bit-slicing. Addition (and occasional
subtraction) uses only bitwise AND, OR and XOR with no carries.

5.2 Unrolling
When we update the result of fpgiq, accumulating is a necessary procedure. However,
another thing which is almost as important as that is finding indices, and it occupies a lot
of time in this stage. For this reason, unrolling is an intuitive method for decreasing the
overhead.

We illustrate the method with Table 6. It is a scheme of unrolling with unroll factor
27. Suppose the system is cubic, so we only need to consider three bk. Recall that bkpiq
represents the index of the k-th least significant nonzero bit in ternary index i. These
columns indicate some bk are fixed even if we do not know the values of higher trits. For
example, b1p˚ ¨ ¨ ¨ ˚ 012q is a constant. Further, we can determine unknown items only if all
bk in the first index, which is p˚ ¨ ¨ ¨ ˚ 000q, are evaluated. The reason is that every series of



10 Fast Exhaustive Search for Polynomial Systems over F3

higher trits is equal in the same scheme, thus we use these bk’s repeatedly in the other
indices. For example, b1p˚ ¨ ¨ ¨ ˚ 001q “ b0p˚ ¨ ¨ ¨ ˚ 000q.

Let us formulate the description above. We consider any scheme of unrolling with
unroll factor 3u, and the first index is i. The other indices in the same scheme can be
defined as i1 “ i ` k, where 0 ă k ă 3u. Hence the indices of the HammingWeight(k)
least significant nonzero bits in i1 are constants. These values can be computed before
enumeration phase. In contrast, there are still some bjpi1q which can not be known
beforehand (HammingWeightpkq ă d). However, these indices can be determined by
bjpi1q “ bj´hpiq, where h “ HammingWeightpkq and j ą h.

5.3 Returning
Let us recap the pseudocode in Fig. 3. When a candidate vector satisfies all equations in
enumeration phase it is added into a set of candidate solutions. Nevertheless there are
some problems even with this simple approach. One problem is the limitation of memory,
we may need to keep too many candidates. Another problem is synchronization on GPU.
Every thread performs individually and finds their respective solutions. Integrating all of
the solutions into an appropriate form is a complicated mission.

We use a similar techniques as in [21] to avoid branching or collecting too many
solutions. Each thread has two variables: count the total number of possible vectors and
sol the last candidate vector found. Since the thread keeps only one possible result. We
also only care about count in three states: 0, 1 or 2+ (2 solutions are too many!). Since
sol by design takes less than 32 bits, we simply assign the most significant trit (MST) of
sol to 1 if count “ 2`, and only returns we check whether more than one vector is founded
or not by MST in CPU. Note that sol is always less than 32-bit, so changing the highest
trit does not affect the correctness of the solution.

By the way, each of the threads does not calculate the result of fp0, . . . , 0q in enumeration
phase. It will be checked individually in CPU. Therefore, that sol equals zero represents
no legal solution rather than an all zero solution.

5.4 Re-enumeration
After executions of enumeration phase, the candidate vectors which pass the first 32
equations will be tested for the rest of input equations in check phase. According to the
previous section, we know that the number of solutions can be determined by the value of
MST. If it exists only one, we evaluate the equations over this vector; if there are more
than one, we will execute GTGCE with the first 32 equations again on CPU, which we
call re-enumeration. sol can be used in this stage as well. Since enumeration is performed
in ternary Gray code order and sol is the last legal solution, re-enumeration can terminate
early if the order of vector we are processing is larger than the order of sol. In addition, if
any possible solution is found, it will be checked for the other equations immediately. The
reason is that the cost of branches on CPU is less than GPU.

However, re-enumeration will spend a lot of time so that we do not want to encounter
this situation. To avoid re-enumeration, we control the number of variables in every thread.
That is to say, we determine variable s in Section 4.1 to make each of the threads finds
only one solution at most.

6 Implementations on CPU
6.1 Overview
The input system has n variables and m equations and all differences are computed initially.
Next, the system is divided into various subsystems. This is “partial evaluation” similar



Bo-Yin Yang , Wei-Jeng Wang , Shang-Yi Yang , Char-Shin Miou and Chen-Mou Cheng11

1 Mask_x1 = _mm_cmpeq_epi16(res_x1, zero);
2 mask = _mm_movemask_epi8(Mask_x1);
3 if(mask) check(mask, idx, x1, x0);

Figure 4: A Few Lines of SSE2 Intrinsics in CPU Implementations

to what we execute on GPU. At this point every thread processes the first 32 equations on
GPU. On a CPU, each subsystem will have only 16 equations tested at a time so that a
register can hold and therefore process information from more systems at the same time.

Another difference between CPU and GPU is the checking phase after enumeration.
A possible solution is sent to the check queue immediately. The reason is that a CPU is
comparatively much more efficient at branching and threading. It is because branches are
so costly on a GPU, that there is no checking phase until all work on GPU is finished.

6.2 Batched Enumeration
In enumeration phase on CPU, we take advantage of the 128-bit XMM registers, and we
make each of the subsystems process the first 16 equations. That is, all differences are only
16-bit. In this way, we can execute 8 subsystems simultaneously. Since the type of value is
__int128, accumulating can be done by the intrinsics _mm_and_si128, _mm_or_si128
and _mm_xor_si128. However, that a result is equal to zero does not represent a legal
solution owing to 8 solutions in a register. We use some SSE2 intrinsics to solve this
problem similar to [21].

The method is shown in Fig. 4. The intrinsic _mm_cmpeq_epi16 compares the 8
unsigned 16-bit blocks in res_x1 and the 8 unsigned 16-bit blocks in zero, which is a
128-bit all-zero variable, for equality. res_x1 represents the higher bit in a trit. If two
corresponding blocks are equal in two variables, the same position of the block in Mask will
be assigned to 0xFFFF, and 0x0000 otherwise. Next, the intrinsic _mm_movemask_epi8
creates a 16-bit mask from the most significant bits of the 16 unsigned 8-bit blocks in
Mask; hence that mask is not equal to zero represents at least one solution exists. Because
a 16-bit block is all-zero in res, it makes a bit in mask equals 1. Any candidate vector
found is sent to the check queue to have the rest of equations tested. Note that we check
every bit in mask as more than one bit may be set, which means that more than one
subsystem is satisfied.

7 Empirical Results and Concluding Remarks
We tabulate all results in the appendix. We can see that we can solve a 30-variable,
30-equation system over F3 on a GeForce GTX980 Ti in 14 minutes. The same run on an
AMD FX-8350 core (4 GHz) takes 32 hours. For 20 variables and 20 equations, the GPU
takes 0.21 seconds, and the CPU takes 1.2 seconds.

We tested MAGMA-2.21 on the same CPU with guessing (FF4 or Hybrid Approach)
for the same systems and tabulate the results in the appendix. Not all runs are complete,
as in some cases we only ran sufficiently many subsystems to ensure that the run with
the correct guess and a run with an incorrect guess takes comparable amounts of time.
From these data we may extrapolate where the Gröbner bases method will catch up to
enumeration on the same CPU. Going by just the endpoints, we expect that FF4 to catch up
to enumeration at 58 equations and variables (292 complexity) and if we use the regression
line, the crossover point would be 60 equations and variables (295 complexity). This is in
comparison with the binary case, where we do not expect the crossover until about 500
bit-variables.



12 Fast Exhaustive Search for Polynomial Systems over F3

Table 7: Enumeration Performance on GPU (nVidia GeForce GTX 980 Ti)
quadratic system cubic system

equations variables guesses unroll time(sec.) equations variables guesses unroll time(sec.)
20 20 9 5 0.21 20 20 8 4 0.31
22 22 9 5 0.34 22 22 9 4 0.71
24 24 11 5 1.27 24 24 9 4 3.19
26 26 11 5 8.75 26 26 10 4 26.34
28 28 12 5 86.72 28 28 11 4 237.98
30 30 13 5 788.83 30 30 11 4 2143.35

Table 8: Enumeration Performance on 1 CPU core (AMD FX-8350 4GHz)
quadratic system cubic system

equations variables guesses unroll time(sec.) equations variables guesses unroll time(sec.)
20 20 8 5 1.20 20 20 8 5 1.80
22 22 8 5 8.40 22 22 8 5 17.40
24 24 8 5 76.80 24 24 8 5 159.60
26 26 8 5 691.20 26 26 8 5 1426.80
28 28 8 5 6241.80 28 28 8 5 12804.60
30 30 8 5 56140.80 30 30 8 5 115560.60

There are a number of caveats to this comparison. While MAGMA has well-optimized
linear algebra and uses semi-sparse operations where possible, it is not specifically tuned
for F3, and we expect that a tuned solver would do better. In the other direction, Gröbner
basis methods takes a huge penalty once the state becomes larger. Also, GPUs can be
used effectively in enumeration, speeding it up by a factor of two orders of magnitude
on a per-dollar basis. We can also expect that an FPGA implementation similar to [15]
would speed enumeration up by another order of magnitude. Factoring in everything,
it is likely that for a generic quadratic system with as many equations as variables over
F3, enumeration will be better than algebraic solvers for all tractable problem sizes. If
we repeat the same computation for F4, we can estimate the crossover point to be close
to 40 equations and variables, or 280 complexity level (close to the limit of researchers’
resources). Finally, for F5 we estimate that the crossover point would be as low as 260

complexity, well within reach of academics.
One big difference from the F2 case: We extrapolate that FF4 will catch up to

enumeration on the same CPU at n “ 30, m “ 60. After taking into consideration
special hardware, we estimate algebraic solvers to match enumeration for the m{n “ 2
overdetermined generic case in F3 around the 264 (40 trits) level.

References
[1] N. Courtois, G.V. Bard, and D. Wagner, “Algebraic and slide attacks on KeeLoq,”

Fast Software Encryption — FSE 2008, ed. K. Nyberg, Lecture Notes in Computer
Science, vol.5086, pp.97–115, Springer, 2008.

[2] M.R. Garey and D.S. Johnson, Computers and Intractability — A Guide to the
Theory of NP-Completeness, W.H. Freeman and Company, 1979. ISBN 0-7167-1044-7
or 0-7167-1045-5.

[3] C. Berbain, H. Gilbert, and J. Patarin, “QUAD: A practical stream cipher with
provable security,” Advances in Cryptology — EUROCRYPT 2006, ed. S. Vaudenay,
Lecture Notes in Computer Science, vol.4004, pp.109–128, Springer, 2006.

[4] N. Courtois, L. Goubin, and J. Patarin, SFLASH, A Fast Asymmetric Signature
Scheme for Low-Cost Smartcards: Primitive Specification, 2002. Second Revised
Version, https://www.cosic.esat.kuleuven.be/nessie/tweaks.html.

[5] J. Patarin, “Hidden field equations (HFE) and isomorphisms of polynomials (IP): Two
new families of asymmetric algorithms,” Advances in Cryptology — EUROCRYPT

https://www.cosic.esat.kuleuven.be/nessie/tweaks.html


Bo-Yin Yang , Wei-Jeng Wang , Shang-Yi Yang , Char-Shin Miou and Chen-Mou Cheng13

20 22 24 26 28 3010´1

100

101

102

103

104

105

106

The Number of Variables

Ru
nn

in
g

T
im

e
(s

ec
on

ds
)

GPU-quadratic
GPU-cubic

CPU-quadratic
CPU-cubic

Figure 5: Comprehensive Results

16 18 20 22 24 26 28 30101

102

103

104

105

106

107

108

1 day

1 month

The Number of Variables

Ru
nn

in
g

T
im

e
(s

ec
on

ds
)

F3-m= n
F3-m=2n
F4-m= n
F4-m=2n

Figure 6: Comprehensive Results in MAGMA



14 Fast Exhaustive Search for Polynomial Systems over F3

Table 9: Performance Results of Quadratic System in MAGMA
Testing platform: AMD FX(tm)-8350 Eight-Core @ 4 GHz

F3 F4
equations variables guesses time(sec.) equations variables guesses time(sec.)

18 18 8 190.27 16 16 5 111.62
19 19 8 452.71 17 17 5 316.42
20 20 9 1180.98 18 18 6 937.98
21 21 10 2893.40 19 19 7 2768.90
22 22 11 6908.73 20 20 8 7143.42
23 23 12 20726.20 21 21 8 22937.60
24 24 12 52612.66 22 22 8 64225.28
25 25 12 121699.99 23 23 8 174325.76
26 26 12 291761.11 24 24 9 495452.16
27 27 13 829047.96
28 28 14 2008846.98
29 29 14 5213436.21
30 30 15 13186645.53
40 20 0 83.60 40 20 0 24.96
42 21 0 200.72 42 21 0 54.09
44 22 0 471.91 44 22 0 119.51
46 23 0 971.35 46 23 0 272.08
48 24 0 2857.02 48 24 0 2028.01
50 25 0 7277.18 50 25 0 4873.02

1996, ed. U. Maurer, Lecture Notes in Computer Science, vol.1070, pp.33–48, Springer,
1996.

[6] J. Patarin, N. Courtois, and L. Goubin, “QUARTZ, 128-bit long digital signatures,”
Topics in Cryptology — CT-RSA 2001, ed. D. Naccache, Lecture Notes in Computer
Science, vol.2020, pp.282–297, Springer, 2001.

[7] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal, Ph.D. thesis, Innsbruck, 1965.

[8] J.C. Faugère, “A new efficient algorithm for computing Gröbner bases (F4),” Journal
of Pure and Applied Algebra, vol.139, no.1–3, pp.61–88, June 1999.

[9] MAGMA project, Computational Algebra Group, University of Sydney, “The
MAGMA computational algebra system for algebra, number theory and geometry.”
http://magma. maths.usyd.edu.au/magma/.

[10] J.C. Faugère, “A new efficient algorithm for computing Gröbner bases without reduc-
tion to zero (F5),” International Symposium on Symbolic and Algebraic Computation

— ISSAC 2002, pp.75–83, ACM Press, July 2002.

[11] J.C. Faugère and A. Joux, “Algebraic cryptanalysis of Hidden Field Equations (HFE)
using Gröbner bases,” Advances in Cryptology — CRYPTO 2003, Lecture Notes in
Computer Science, vol.2729, pp.44–60, Dan Boneh, ed., Springer, 2003.

[12] B.Y. Yang, J.M. Chen, and N. Courtois, “On asymptotic security estimates in XL
and Gröbner bases-related algebraic cryptanalysis,” Information and Communications
Security — ICICS 2004, ed. J. Lopez, S. Qing, and E. Okamoto, Lecture Notes in
Computer Science, vol.3269, pp.401–413, Springer, Oct. 2004.

[13] M. Bardet, J.C. Faugère, and B. Salvy, “On the complexity of Gröbner basis com-
putation of semi-regular overdetermined algebraic equations,” Proceedings of the
International Conference on Polynomial System Solving, pp.71–74, 2004. Previously
INRIA report RR-5049.

[14] M. Bardet, J.C. Faugère, B. Salvy, and B.Y. Yang, “Asymptotic expansion of the
degree of regularity for semi-regular systems of equations,” MEGA 2005 Sardinia
(Italy), ed. P. Gianni, 2005.



Bo-Yin Yang , Wei-Jeng Wang , Shang-Yi Yang , Char-Shin Miou and Chen-Mou Cheng15

[15] C. Bouillaguet, C. Cheng, T. Chou, R. Niederhagen, and B. Yang, “Fast exhaustive
search for quadratic systems in F2 on FPGAs,” Selected Areas in Cryptography -
SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August 14-16, 2013,
Revised Selected Papers, ed. T. Lange, K.E. Lauter, and P. Lisonek, Lecture Notes in
Computer Science, vol.8282, pp.205–222, Springer, 2013.

[16] J.Y. Yeh, C. Cheng, and B. Yang, “Operating degrees for XL vs. F4/F5 for generic
MQ with number of equations linear in that of variables,” Number Theory and
Cryptography - Papers in Honor of Johannes Buchmann on the Occasion of His 60th
Birthday, ed. M. Fischlin and S. Katzenbeisser, Lecture Notes in Computer Science,
vol.8260, pp.19–33, Springer, 2013.

[17] C. Bouillaguet, “libFES: Fast exhaustive search for polynomial systems over F2.”
http://www.lifl.fr/~bouillag/fes/.

[18] L. Bettale, J.C. Faugère, and L. Perret, “Hybrid approach for solving multivariate
systems over finite fields,” Journal of Mathematical Cryptology, vol.3, no.3, pp.177–197,
2010.

[19] D.J. Guan, “Generalized gray code with applications,” Proc. Natl. Sci. Council
R.O.China (A), vol.22, pp.841–848, 1998.

[20] Wikipedia, “n-nary gray code.” Version of 04:13, 13 February 2016.

[21] C. Bouillaguet, H.C. Chen, C.M. Cheng, T. Chou, R. Niederhagen, A. Shamir, and
B.Y. Yang, “Fast exhaustive search for polynomial systems in F2,” in Cryptographic
Hardware and Embedded Systems – CHES 2010, ed. S. Mangard and F.X. Standaert,
Lecture Notes in Computer Science, vol.6225, pp.203–218, Springer, 2010.

http://www.lifl.fr/~bouillag/fes/


16 Fast Exhaustive Search for Polynomial Systems over F3

Ta
bl

e
1:

4-
tr

it
Te

rn
ar

y
G

ra
y

C
od

e
w

ith
In

de
x

an
d

En
um

er
at

io
n

A
ct

io
ns

in
de

x
co

de
b 1

b 2
b 3

ac
tio

ns
(q

ua
dr

at
ic

)
ac

tio
ns

(c
ub

ic
)

00
0

00
0

-1
-1

-1
00

1
00

1
0

-1
-1

δ
+=

δ 0
δ

+=
δ 0

00
2

00
2

0
0

-1
δ

+=
pδ

0
+=

δ 0
,0

q
δ

+=
pδ

0
+=

δ 0
,0

q

01
0

01
2

1
-1

-1
δ

+=
δ 1

δ
+=

δ 1
01

1
01

0
0

1
-1

δ
+=

pδ
0

+=
pδ

0,
0

+
δ 0

,1
qq

δ
+=

pδ
0

+=
pδ

0,
0

+
δ 0

,1
qq

01
2

01
1

0
0

1
δ

+=
pδ

0
+=

δ 0
,0

q
δ

+=
pδ

0
+=

pδ
0,

0
+=

δ 0
,0

,1
qq

02
0

02
1

1
1

-1
δ

+=
pδ

1
+=

p
-

δ 0
,1

+
δ 1

,1
qq

δ
+=

pδ
1

+=
pδ

0,
1

+
pδ

0,
1

+=
δ 0

,0
,1

q
+

δ 1
,1

qq

02
1

02
2

0
1

1
δ

+=
pδ

0
+=

pδ
0,

0
+

δ 0
,1

qq
δ

+=
pδ

0
+=

pδ
0,

0
+

pδ
0,

1
+=

pδ
0,

0,
1

+
δ 0

,1
,1

qq
qq

02
2

02
0

0
0

1
δ

+=
pδ

0
+=

δ 0
,0

q
δ

+=
pδ

0
+=

pδ
0,

0
+=

δ 0
,0

,1
qq

10
0

12
0

2
-1

-1
δ

+=
δ 2

δ
+=

δ 2
10

1
12

1
0

2
-1

δ
+=

pδ
0

+=
pδ

0,
0

+
δ 0

,2
qq

δ
+=

pδ
0

+=
pδ

0,
0

+
δ 0

,2
qq

10
2

12
2

0
0

2
δ

+=
pδ

0
+=

δ 0
,0

q
δ

+=
pδ

0
+=

pδ
0,

0
+=

δ 0
,0

,2
qq

11
0

10
2

1
2

-1
δ

+=
pδ

1
+=

pδ
0,

1
+

δ 1
,1

+
δ 1

,2
qq

δ
+=

pδ
1

+=
pδ

0,
1

+
pδ

1,
1

+=
δ 0

,1
,1

q
+

δ 1
,2

qq

11
1

10
0

0
1

2
δ

+=
pδ

0
+=

pδ
0,

0
+

δ 0
,1

qq
δ

+=
pδ

0
+=

pδ
0,

0
+

pδ
0,

1
+=

pδ
0,

0,
1

+
δ 0

,1
,1

+
δ 0

,1
,2

qq
qq

11
2

10
1

0
0

1
δ

+=
pδ

0
+=

δ 0
,0

q
δ

+=
pδ

0
+=

pδ
0,

0
+=

δ 0
,0

,1
qq

12
0

11
1

1
1

2
δ

+=
pδ

1
+=

p
-

δ 0
,1

+
δ 1

,1
qq

δ
+=

pδ
1

+=
pδ

0,
1

+
pδ

0,
1

+=
δ 0

,0
,1

q
+

pδ
1,

1
+=

p
-

δ 0
,1

,1
+

δ 1
,1

,2
qq

qq

12
1

11
2

0
1

1
δ

+=
pδ

0
+=

pδ
0,

0
+

δ 0
,1

qq
δ

+=
pδ

0
+=

pδ
0,

0
+

pδ
0,

1
+=

pδ
0,

0,
1

+
δ 0

,1
,1

qq
qq

12
2

11
0

0
0

1
δ

+=
pδ

0
+=

δ 0
,0

q
δ

+=
pδ

0
+=

pδ
0,

0
+=

δ 0
,0

,1
qq

20
0

21
0

2
2

-1
δ

+=
pδ

2
+=

p
-

δ 1
,2

+
δ 2

,2
qq

δ
+=

pδ
2

+=
pp

δ 1
,2

+=
δ 0

,1
,2

q
+

pδ
1,

2
+=

δ 1
,1

,2
q

+
δ 2

,2
qq

20
1

21
1

0
2

2
δ

+=
pδ

0
+=

pδ
0,

0
+

δ 0
,2

qq
δ

+=
pδ

0
+=

pδ
0,

0
+

pδ
0,

2
+=

p
-

δ 0
,1

,2
+

δ 0
,2

,2
qq

qq

20
2

21
2

0
0

2
δ

+=
pδ

0
+=

δ 0
,0

q
δ

+=
pδ

0
+=

pδ
0,

0
+=

δ 0
,0

,2
qq

21
0

22
2

1
2

2
δ

+=
pδ

1
+=

pδ
0,

1
+

δ 1
,1

+
δ 1

,2
qq

δ
+=

pδ
1

+=
pδ

0,
1

+
pδ

1,
1

+=
δ 0

,1
,1

q
+

pδ
1,

2
+=

p
-

δ 0
,1

,2
+

δ 1
,1

,2
+

δ 1
,2

,2
qq

qq

21
1

22
0

0
1

2
δ

+=
pδ

0
+=

pδ
0,

0
+

δ 0
,1

qq
δ

+=
pδ

0
+=

pδ
0,

0
+

pδ
0,

1
+=

pδ
0,

0,
1

+
δ 0

,1
,1

+
δ 0

,1
,2

qq
qq

21
2

22
1

0
0

1
δ

+=
pδ

0
+=

δ 0
,0

q
δ

+=
pδ

0
+=

pδ
0,

0
+=

δ 0
,0

,1
qq

22
0

20
1

1
1

2
δ

+=
pδ

1
+=

p
-

δ 0
,1

+
δ 1

,1
qq

δ
+=

pδ
1

+=
pδ

0,
1

+
pδ

0,
1

+=
δ 0

,0
,1

q
+

pδ
1,

1
+=

p
-

δ 0
,1

,1
+

δ 1
,1

,2
qq

qq

22
1

20
2

0
1

1
δ

+=
pδ

0
+=

pδ
0,

0
+

δ 0
,1

qq
δ

+=
pδ

0
+=

pδ
0,

0
+

pδ
0,

1
+=

pδ
0,

0,
1

+
δ 0

,1
,1

qq
qq

22
2

20
0

0
0

1
δ

+=
pδ

0
+=

δ 0
,0

q
δ

+=
pδ

0
+=

pδ
0,

0
+=

δ 0
,0

,1
qq


	Introduction
	Our Contribution

	Preliminaries
	Notational Conventions
	Representation used for Ternary Arithmetic
	Ternary Gray Code

	Known Techniques for Enumerations
	Naïve Evaluation
	Basic Ternary Gray Code Enumeration
	Generalized Ternary Gray Code Enumeration

	Variants and Analysis
	Partial Evaluation
	Early-abort Strategy

	Implementations on GPU
	Overview
	Unrolling
	Returning
	Re-enumeration

	Implementations on CPU
	Overview
	Batched Enumeration

	Empirical Results and Concluding Remarks

