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Abstract. Blind Signatures are a useful primitive for privacy preserving applications such as
electronic payments, e-voting, anonymous credentials, and more. However, existing practical
blind signature schemes based on standard assumptions require either pairings or lattices.
We present the first construction of a round-optimal blind signature in the random oracle
model based on standard assumptions without resorting to pairings or lattices. In particular,
our construction is secure under the strong RSA assumption and DDH (in pairing-free
groups). For our construction, we provide a NIZK-friendly signature based on strong RSA,
and efficiently instantiate Fischlin’s generic framework (CRYPTO’06). Our Blind Signature
scheme has signatures of size 4.28 KB and communication cost 62.19 KB. On the way, we
develop techniques that might be of independent interest. In particular, we provide efficient
relaxed range-proofs with subversion zero-knowledge and compact commitments to elements
of arbitrary groups.

1 Introduction

In privacy-preserving authentication of data, a central question is how to authenticate without
compromising one’s private information. A blind signature solves this question by allowing a user
to obtain signatures blindly from a signer while satisfying strong security guarantees. The property
of blindness ensures that the signer cannot learn anything about the message when signing and
cannot link signatures to the signing sessions of a user. This must hold even when the signer’s
public key is chosen maliciously. On the other hand, the property one-more unforgeability imposes
that after ℓ completed signing sessions, a user cannot obtain more than ℓ valid signatures (i.e., it
cannot forge an additional signature).

Due to the strong security guarantees, blind signatures have applications in e-cash [26, 29, 67],
e-voting [28, 45], or anonymous credentials [27, 20], and more. In the past few years blind signatures
also play an important role in new applications such as blockchains [79, 22] or private access
tokens [55, 49].

Initial constructions. Since their introduction by Chaum [26], many variants of blind signatures
were proposed. The first proposed construction—blind RSA [26]—was proven secure under one-
more RSA [12]. A similar construction secure under one-more CDH was proposed in [19]. These
constructions have great efficiency—a signing interaction requires only two rounds—but require
both the random oracle model (ROM) and an interactive security assumption. (These assumptions
are non-falsifiable and considered non-standard.)

Protocols with three or more rounds. Historically, the main alternative to blind RSA and blind
BLS are signatures based on linear identification protocols such as blind Schnorr [71] or similar
constructions [66, 5, 51, 59]. These blind signatures are shown to be secure under falsifiable
assumptions (e.g., DLOG, RSA) for poly-logarithmically many concurrent signing sessions in the
ROM. But for a polynomially large number of concurrent sessions, there are efficient attacks on
such protocols [74, 15]. Since, interesting mechanisms that bind an obtained signature to a signing
session were proposed, and the resulting schemes are secure in the ROM for an unbounded number
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of concurrent sessions [1, 44, 58, 73, 34] under standard assumptions. Unfortunately, the security
proof also requires the generic group model (i.e., it is assumed that the adversary interacts with
the group in a black-box manner). Alternatively, stateful blind signatures can be obtained for an
a-priori bounded number of signatures via a cut-and-choose technique [23, 69, 62]. Generally, these
Schnorr-style approaches require more than 2 rounds of interaction, i.e., are not round-optimal.

Round optimality. Round optimality is a desirable efficiency measure as it removes the requirement
of storing a state for each signing session and less interaction is required to obtain a signature.
Another advantage of round optimal blind signatures is that sequential security implies concurrent
security [63, 52]. However, it is difficult to construct round-optimal blind signatures in the plain
model under standard assumptions which is supported by several impossibility results [63, 40, 68].
Katsumata et al. [60] shows that this is possible under classical and quantum standard assumptions.
While this result is of theoretical interest, the construction is impractical, due to its reliance on
general-purpose cryptographic primitives, namely garbled circuit. More commonly, constructions
circumvent such hurdles via a trusted setup [39, 4, 65, 16, 18, 72, 2], idealized models (e.g., generic
groups and/or the random oracle model [50, 3, 17, 35, 50, 61]), complexity leveraging [47, 46], or
interactive assumptions [10, 64, 7, 43, 42, 48]. All such constructions require pairings or lattices 4

with the exception of blind RSA [26, 12, 64, 7].
But over large networks and complex web applications, existing implementations of pairings

(e.g., [76]) seem to remain a significant bottleneck. Another disadvantage of pairing-based construc-
tions is that highly-verified standard cryptographic libraries (for instance BoringSSL and NSS) do
not support pairing-friendly curves. Similarly, lattice-based constructions are still in the process
of being standardized [75]. On the other hand, plain groups (without pairings) and RSA-based
constructions have found widespread use in practice, e.g., in Apple’s Proposal for Click Fraud
Prevention in Safari [77] or SSH [78]. The only efficient round-optimal blind signature in this setting
is blind RSA [26, 12] and its variants [64, 7]. The latter are covered in an RTF draft [36] and blind
RSA is still a recommended nowadays [25]. Unfortunately, these schemes require both an interactive
assumption (tailored to the scheme itself) and the ROM. This brings us to the following natural
question:

Can we construct efficient round optimal blind signatures in the ROM, based on standard
non-interactive assumptions without resorting to pairings or lattices?

1.1 Our Contributions

In this paper we improve the state of the art of blind signatures by answering the above question
affirmatively. We construct a round optimal blind signature scheme with competitive efficiency,
whose security is proven in the ROM under standard assumptions in the RSA setting and group
setting (without pairings) simultaneously. Concretely, our construction is secure under the strong
RSA (sRSA) assumption and DDH in ordinary prime-order groups.

Our starting point for our construction is the Fischlin framework [39] and more concretely, the
framework proposed in [61] that instantiates Fischlin efficiently via a signature scheme with an
all-but-one reduction 5. We instantiate the framework with a variant of the signature proposed
in [38] (hereafter denoted by Sfis), and obtain blind signatures with 62.19 KB communication
and signatures of size 4.28 KB. We provide a comparison to prior works in Table 1. Notably, our
signatures are only 11.15 times larger than blind RSA [26] (which relies on both the ROM and an
interactive security assumption).

We emphasize that our instantiation is non-trivial and requires several new techniques to achieve
round-optimality and malicious blindness (i.e., blindness holds even if the signer’s verification key
was setup maliciously). Also, since the security proof of Sfis does not fit the framework as it has
no all-but-one reduction, the one-more unforgeability proof requires new insights. We refer to the

4 The framework of Fischlin [39] yields round-optimal blind signatures with trusted setup generically, but
efficient instantiations rely either on pairings [17, 3, 61] or lattices [35, 6].

5 In the context of signatures, an all-but-one reduction allows to puncture the verification key in such a
way that all-but-one message m∗ can be signed and given a signature on m∗, a hard problem can be
solved.
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technical overview in Section 1.2 for more details. Along the way, we provide techniques that might
be of independent interest, such as:

– Easy-to-use notions for subversion zero-knowledge in the ROM (i.e., zero-knowledge holds even
for a maliciously setup crs).

– Efficient relaxed range proofs, i.e., zero-knowledge proofs that prove to a verifier that a given
value x ∈ [0, B] lies in a range [−TB,BT ], where T ∈ N is the slack, with subversion zero-
knowledge.

– Compact commitments to elements of arbitrary groups based on DDH in an independent
prime-order group. Our commitments can be opened efficiently in zero-knowledge using our
relaxed range proofs.

– A zero-knowledge-friendly variant of the Sfis signature [38]. Knowledge of a signature on a given
message m can be shown efficiently in zero-knowledge using our relaxed range proofs.

Table 1. Round-optimal blind signatures in the ROM under standard assumptions

Reference Sig. size Comm. size Setting Assumption

del Pino et al. [35] 100 KB 850 KB Lattices DSMR,MLWE,MSIS

Blazy et al. [17] 96 B 220 KB † Pairings SXDH,CDH
Abe et al. [3] 5.5 KB 1 KB Pairings SXDH

Hanzlik et al. [50]‡
5 KB 72 KB Pairings CDH9 KB 36 KB

Katsumata et al. [61] 447 B 303 B Pairings SXDH
96 B 2.2 KB DDH,CDH

This work 4.28 KB 62.19 KB RSA, Groups sRSA,DDH

We provide signature size, communication size, the algebraic setting, and the underlying assumptions
for known blind signatures in the ROM. We do not consider schemes that rely on non-falsifiable
assumptions (e.g., interactive assumptions). We stress that our work relies on assumptions in
prime-order groups without pairing.
(†): Communication of [17] scales linearly with the message size, and is given here for 256 bit
messages. (‡): [50] offers tradeoffs between signature and communication sizes.

1.2 Technical Overview

We provide an overview of our construction. Since our blind signature builds on the framework
proposed in [61], we give a brief recap.

The framework. The framework of [61] is based on an additively homomorphic commitment scheme
Com (i.e., Com(m; r)+Com(m′; r′) = Com(m+m′; r+r′)) with a compatible signature scheme. That
is, the signing algorithm Sign(sk,m) can be rewritten as Ŝig(sk,Com(m; r))− Com(0; r). Namely,
Ŝig first commits to the message m with randomness r, proceeds with signing and then removes
the randomness r homomorphically. To turn this into a blind signature, a user can generate a valid
commitment c = Com(m; r), send it to the signer, and the signer can simply return σr ← Ŝig(sk, c).
Then, the user obtains a valid signature σ ← σr − Com(0; r). This approach hides the message m
during signing, and if the scheme is rerandomizable, then a user can produce a fresh signature σ′

on the message m to ensure blindness. For one-more unforgeability (OMUF), the proof relies on
the all-but-one reduction of the signature scheme. Recall that an all-but-one reduction allows to
setup a punctured verification key vk∗ along with a trapdoor td in such a way that all-but-one
message m∗ can be signed via an algorithm σ = ŜimSig(td,m) for m ̸= m∗. Importantly, given
a signature σ∗ on m∗ that verifies with respect to vk∗, a hard problem can be solved. Also, the
user needs to send a zero-knowledge proof π along with c that proves knowledge of (m, r) such
that c = Com(m; r) via an online-extractable NIZK 6. With this in mind, the OMUF reduction

6 This is a non-interactive zero-knowledge proof (NIZK) which allows to extract in an on-the-fly manner
by embedding a trapdoor in the crs, i.e., without rewinding.
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simply punctures the verification key vk∗ for some message m∗ with trapdoor td. Then, to sign a
commitment c, it extracts (m, r) from π on-the-fly, and generates σr = ŜimSig(td,m) + Com(0; r)
via the trapdoor. If the messages are hashed via a random oracle, then the reduction can guess m∗

initially among the oracle outputs and with sufficient probability, the adversary provides a signature
on m∗ among the ℓ+ 1 forgeries that it outputs. This allows to solve a hard problem. Katsumata
et al. [61] instantiates this framework with Boneh-Boyen signatures and Pedersen commitments in
the pairing setting.

A compatible RSA-based commitment. A natural approach to construct pairing-free blind signatures
is to identify a signature scheme in the RSA setting which suffices these requirements. Unfortunately,
there are none. To the best of our knowledge, all RSA-based signatures are not rerandomizable or
have no all-but-one reduction. For the start, we choose a signature scheme that is compatible with
Pedersen commitments over ZN . A natural scheme for this is the signature scheme Sfis [38] based
on Cramer-Shoup signatures [33]. Here, the verification key vk = (N,h, h1, h2) consists of an RSA
modulus N and three QRN generators h, h1, h2. As usual, the secret key is the factorization of N .
To sign a message m ∈ [0, 22λ], the signer chooses a 2λ+ 1 bit prime e and a 2λ bit value a, and
computes y such that

ye ≡ h · ha
1 · ha⊕m

2 mod N (1)

using its secret key. A valid signature is a tuple (e, a, y) that satisfies Equation (1) and with
a ∈ [0, 22λ − 1] and odd e ∈ [22λ, 22λ+1]. While the scheme is not quite compatible with Pedersen
commitments, we observe that a functions as a mask for m in the security proof. Thus, instead of
masking m via ⊕, we mask additively via noise flooding, and modify Equation (1) as follows:

ye ≡ h · ha
1 · ha+m

2 mod N, (2)

where a ∈ [0, 23λ − 1] and e ∈ [23λ, 23λ+1]. Since in Equation (2), m is masked statistically by a
the security proof can be adapted in a straightforward manner. Note that we still require that e is
prime during signature generation and odd during verification.

Turning it into a blind signature. Let g be another QRN generator. Then, we can sign a commitment
c ≡ hm

2 · gr mod N for some random r by first choosing an appropriate e and a, then computing y
such that

yer ≡ h · ha
1 · ha

2 · c mod N. (3)

But now, the user cannot derive a valid signature from y, since it requires computing y ≡ yr ·
g−r/emodΦ(N) mod N . But taking e-th roots is assumed to be hard in the first place! To fix this, we
can let the signer send e first, and let the user commit via c ≡ hm

2 · ge·r mod N . Then, it is easy to
compute y ≡ yr · g−r mod N , where yr is generated as in Equation (3) as before. Then, as in [61],
the user proves with a proof πped that she committed to m ∈ [0, 22λ − 1] with randomness e · r to
the signer via an online-extractable NIZK Πped. Since the Sfis signatures are not rerandomizable, to
present a signature, the user generates a proof πfis via an additional NIZK Πfis that proves that it
knows a Sfis signature on message m (instead of presenting (e, a, y) directly).

Making it round optimal. Unfortunately, the above construction requires an additional round of
communication. Note that the user cannot generate e itself, as then the security proof of Sfis fails.
Indeed, it is required that a fresh e and a is picked for each fresh message m to be signed. A natural
idea is to let the user generate it via a hash function mapping HP into 2λ+ 1 bit primes. But it is
unclear how to derive e via HP. We cannot set e← HP(c) since the user needs e to setup c in the
first place. We also cannot derive e← HP(m) itself, as m is supposed to be hidden from the signer,
but the signer needs to derive e to sign c.

Our idea is to derive e based on an integer commitment cZ ← CZ.Commit(m, r; rz) to (m, r)
instead. Since cZ fixes c implicitly, this ensures that for each fresh commitment c, we use a fresh e.
Under binding of CZ, this implies that for each distinct message m, a fresh e is picked as desired.
For technical reasons, we also need that if e is reused, e.g., if the same commitment is sent twice,
the signer reuses the same mask a. This can be guaranteed by deriving a from a pseudorandom
function PRF via a← PRF(c∥cZ). Also, we let the user hash the message m first, i.e., commit to
m← H(m) in c. Then, the blind signature works for arbitrary messages m ∈ {0, 1}∗.
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In summary, the user hashes the message m via m← H(m), commits to (m, r) in cZ , computes
e← Hpp(cZ) and sets c ≡ hm

2 · gr·e mod N . Then, the user proves in πped generated via a NIZK Πped

that the commitment c is constructed based on the values committed in cZ , and sends (c, cZ , πped)
to the signer. The signer verifies πped, sets e← Hpp(cZ) and a← PRF(c∥cZ), then computes yr as
in Equation (3). Finally, the user sets y ← yr · g−r and obtains a valid Sfis signature (e, a, y) for m.
The blind signature is πfis generated via Πfis.

Proving one-more unforgeability. While the unforgeability reduction of Sfis has no one-more flavor,
we can show one-more unforgeability for our blind signature with the above modifications if the
NIZK Πfis is adaptively knowledge sound 7.

For this, we first sketch how the unforgeability proof of Sfis works. The reduction first punctures
the verification key vk∗. Roughly, this is done by generating all primes E = {e1, · · · , eQ} chosen
during signing in advance, and setting up h, h1, h2 with respect to E . There are two cases for the
punctured setup 8:

1. The reduction guesses that the forgery’s e was used during signing, i.e., e ∈ E .
2. The reduction guesses that the forgery contains a fresh e, i.e., e /∈ E .

Then, the reduction sets up h, h1, h2 in such a way that it can sign Q arbitrary messages via a
trapdoor td but without knowing the factorization of N . This is done by embedding E into h, h1, h2

depending on the guess. Note the punctured setup is indistinguishable from the real setup in both
cases. Also, signing via the trapdoor td reveals no information about the guess. Then, it answers
all Q signing queries via td and hopes that its guess was correct. If so, the reduction can derive a
sRSA solution. Since the guess remains hidden, this happens with sufficient probability.

In the proof of one-more unforgeability we apply the same technique, i.e., we generate all
outputs E for HP in advance. Then, we guess that e ∈ E or e /∈ E , and puncture vk∗ with trapdoor
td accordingly. To sign a commitment c, the signer extracts (m, r) on-the-fly from the proof πped,
then uses the td to sign m and blinds the obtained y with gr to generate yr ← y · gr. When the
adversary outputs its forgeries, we look for a signature πfis on a message m that we never signed 9,
and then extract a valid signature (e, a, y) from πfis.

One would assume that now the adversary’s output e confirms our guess with sufficient probability
as before, but there is a subtlety. While the punctured signing algorithm with td reveals no
information about our guess during a single run, this information might be revealed during a second
run with the same setup. This happens, e.g., if Πfis is rewinding-based and the adversary asks
signing queries in a specific manner during rewinding. Thus, the extracted signature might depend
on our guess now, and we might not be able to reduce to sRSA anymore.

We resolve this by asking that the user commits to (e, a) in cI with a perfectly binding
commitment CRInt

10. Then, the extracted values (e, a) are fixed during the initial run, and at that
point our guess is hidden. Even if our guess is revealed during extraction, the extractor still succeeds
in finding a valid signature with fixed (e, a). With this modification, we can conclude that we guess
correctly with sufficient probability which allows to solve sRSA.

Making it maliciously blind. An observant reader might realize that our scheme is not blind yet.
Concretely, there are two types of problems: (1) Pedersen commitments over Z∗

N are not hiding
for malicious modulus N and ⟨h2⟩ ≠ ⟨g⟩. To illustrate this, observe that to distinguish whether
m0 or m1 is signed, the blindness adversary could raise c to the power of ord(g) to remove the
part gre and then check whether cord(g) = (hm0

2 )ord(g) or cord(g) = (hm1
2 )ord(g), where mb = H(mb).

If m1 · ord(g) ̸= m0 · ord(g) mod ord(h2), then this leads to an efficient attack. (2) Also, since we
wish to avoid a trusted setup, we let the signer include the common reference string crs into its
verification key vk. But in that case, zero-knowledge is not sufficient as its privacy guarantee holds
only if crs is setup in a trusted manner.

Fortunately, the fixes are rather straightforward. For the first problem, we simply let the signer
prove that ⟨h2⟩ = ⟨g⟩ via a NIZK with subversion soundness [11] (i.e., soundness holds even
7 That is, there is an extractor that can extract a witness via black-box access to the prover, e.g., via

rewinding.
8 The first case has two additional sub cases, but for the sake of exposition we simplify the proof sketch.
9 Since we sign at most ℓ messages but there are ℓ+ 1 forgeries on distinct messages, such a proof exists.

10 The case we omitted also depends on which a is part of the forgery, so we also fix a.
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for malicious crs). Then, the Pedersen commitment is statistically hiding if r is sampled from a
sufficiently large interval. A similar but more subtle problem appears in our instantiation. Here,
we need that y ∈ ⟨yr⟩ and thus, we let the signer prove this statement, again via an appropriate
subversion sound NIZK.

For the second problem, we simply require that the NIZKs Πped and Πfis are subversion zero-
knowledge, i.e., zero-knowledge holds even for a malicious setup [11]. Yet, there remains one
problem since this notion is difficult to instantiate in our setting. To the best of our knowledge, all
instantiations of subversion zero-knowledge NIZKs [11, 41] require strong knowledge assumptions
(which we wish to avoid). Instead, we give a simplified definition which yields the similar guarantees
in the ROM. Importantly, our notion can be instantiated under standard assumption (e.g., DDH
in pairing-free groups). Roughly, we split the crs = (urs, srs) into a uniform part urs ∈ {0, 1}ℓ of
length ℓ and structured part srs ∈ SRS. In our notion, we ask that (a) membership in SRS is
testable efficiently and (b) zero-knowledge holds with respect to crs = (urs, srs) for some random
urs← {0, 1}ℓ and any malicious srs ∈ SRS. For this notion, we can instantiate efficient NIZKs for
our relations with subversion zero-knowledge. Roughly, we embed the structure that guarantees
zero-knowledge into the uniform urs and make sure that for any srs ∈ SRS, zero-knowledge remains
intact (e.g., via zero-knowledge proofs). Our notion is sufficient to instantiate our blind signature
framework. Here, the uniform part urs is setup via a random oracle (as is common for NIZKs with
uniform crs) and the signer can choose an arbitrary structured part srs as part of its verification key.

Given these modifications, we can show blindness. Essentially, observe that with the above
adaptions, the commitments cZ and c leak no information about m. Also, a blind signature (πfis, cI)
is distributed independently from the signing interaction, since cI reveals no information about
(e, a) from the interaction and πfis leaks nothing beyond the fact that the user knows a valid Sfis

signature on m = H(m).
Lastly, we note that sampling urs via a random oracle is a well-known technique to obtain

zero-knowledge with a trustless setup. In our case, we also require a structured part srs for our
instantiations (e.g., to argue that relations hold over the integers in our NIZKs.) Below, we give
more details.

Instantiation. There are several challenges when instantiating the NIZKs required for our blind
signature. While it is somewhat straightforward to obtain an instantiation with generic techniques,
our goal is to keep the instantiation as efficient as possible. These instantiations form a core technical
contribution of this work. We give a brief overview of the challenges and our solutions.

Online-extraction and integer commitments. Recall that we require an integer commitment scheme
CZ to commit to (m, r) ∈ Z2 in combination with an efficient online-extractable NIZK for the
statement

cZ = CZ.Commit(m, r; rz) ∧ c ≡ hm
2 · gr·e mod N. (4)

For online-extraction, we use the approach of [61] (cf. Section 6). Let G be a pairing-free group of
prime order p with generators G,H. The values (m, r) are decomposed into (ei)i = ((mi)i, (ri)i)
via B-ary decomposition (e.g., B = 264), committed in ElGamal commitments Ei = eiG+ siH for
s← Zp, and a range proof proves that ei ∈ [0, B − 1] (e.g., Bulletproofs [21]). We then interpret
(Ei)i as the integer commitment. This approach suffices for online-extraction of ei from which (m, r)
can be reconstructed, but we also need to extract the randomness si ∈ Zp to reduce to binding.
But since the commitments are perfectly binding, we avoid this by relaxing online-extraction: we
ask that an extractor can extract (m, r) such that there exists an opening rZ = (si)i for which
Equation (4) holds. A more subtle problem is that the public parameters G,H are now part of the
statement but online-extraction requires that we embed a trapdoor into G,H. Thus, we further
modify the notion to enable embedding the trapdoor into the parts of the statement, so long it is
picked uniformly. With this notion, we can prove one-more unforgeability and avoid the considerable
overhead of online-extracting rZ . We also need a structured random string srs to ensure that certain
relations hold over the integers, but we refer to Appendix E for more details.

Proof for Sfis signatures. To derive a blind signature, we need a perfectly binding commitment CRInt

and a NIZK Πfis for the relation in Equation (2) with cI = CRInt.Commit(e, a, rI) and a ∈ [0, 23λ−1],
e ∈ [23λ, 23λ+1] ∩ Zodd. While it is fine to employ range proofs during the (one-time) signing
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interaction, it is somewhat undesirable to include a range proof for presenting the signature (as the
overhead is noticeable for such large ranges).

Instead, we relax the range requirements in such a way that the unforgeability proof of Sfis still
goes through, i.e., we allow that a and e lie in larger (but distinct) intervals for verification. Then,
we construct very efficient relaxed range proofs with subversion zero-knowledge for CRInt consisting
of ElGamal commitments over a prime-order G (for perfect binding). Roughly, the range proof is
a simple Σ-protocol to open ElGamal in zero-knowledge, where we also add range checks for the
messages sent in third flow, compiled with Fiat-Shamir. In addition, we add a fresh RSA modulus
Ñ to the crs and commit to a and e in a commitment over Z∗

Ñ
(similar to [30]). This technique

guarantees that extracted values are short integers (but within a larger range). The overhead over
simply opening the ElGamal commitment in zero-knowledge—which we need anyway to instantiate
the NIZK—is just 784 Byte for a modulus of size 3072. For comparison, a Bulletproof for the above
ranges requires 932 Byte [21]. Our relaxed range proofs are smaller and allow seamless integration
into more complex Σ-protocols.

To construct Πfis, we combine our relaxed range proofs for CRInt with standard commit-then-prove
Σ-protocol techniques to show the remaining equations. For this, we require commitments over
Z∗
N for potentially malicious N to commit to y. Using the above techniques, we construct such

commitments and provide efficient openings in zero-knowledge. Roughly, such a commitment is
of the form y · gs for s ∈ [N · 2λ] with y ∈ ⟨g⟩, in conjunction with a CRInt commitment to fix s
over the integers. Especially for this purpose our relaxed range proofs shine, since s lies in a large
interval. (For such ranges, e.g., Bulletproofs requires 1.6 seconds for proof generation and almost
5 ms for verification.) We generalize the construction for arbitrary untrusted groups.

The remaining NIZKs are straightforward to instantiate. In total, we obtain blind signatures
with 62.19 KB communication of size 4.28 KB. We remark that the bulk of communication is
required for the NIZK to show y ∈ ⟨yr⟩ (i.e., roughly 50 KB) as we require subversion soundness. A
more efficient NIZK for this statement would largely improve communication.

1.3 Concurrent Works

There is an independent and concurrent work that also constructs a pairing-free blind signature in
the ROM from standard assumptions [24]. We give a brief comparison. [24] presents three blind
signatures: two constructions BS1 and BS2 based on an interactive assumption, and BS3 based on
a non-interactive assumption in the ROM. When instantiating BS3 with a group of order 256 bit, it
has communication and signature size of roughly 26 KB and 10 KB, respectively. Compared to our
construction, their signature size is roughly 2.3 times larger than ours, whereas their communication
size is smaller by roughly the same factor. Their construction relies on weaker assumptions, namely
CDH, but has 4 rounds of interaction. Our construction is round-optimal, but relies on DDH and
sRSA. We believe it to be non-trivial to reduce the number of rounds in the protocol of BS3 as it
relies on a Schnorr-style proof of knowledge that is interactively computed.

2 Preliminaries

Notations. We denote the security parameter by λ. A probabilistic polynomial time (PPT)
algorithm A runs in time polynomial in the (implicit) security parameter λ. We write Time(A)
for the runtime of A. A function f(λ) is negligible in λ if it is O(λ−c) for every c ∈ N. We write
f = negl(λ) for short. Similarly, we write f = poly(λ) if f(λ) is a polynomial with variable λ. If
D is a probability distribution, x← D means that x is sampled from D and if S is a set, x← S
means that x is sampled uniformly and independently at random from S. We also write |S| for the
cardinality of set S. Further, we write D0

c
≈ D1 for distributions D0, D1, if for all PPT adversaries

A, we have |Pr[x0 ← D0 : A(1λ, x0) = 1]− Pr[x1 ← D1 : A(1λ, x1) = 1]| = negl(λ). Similarly, we
write D0

s
≈ D1 if the above holds even for unbounded adversaries. For some PPT algorithm A, we

write AO if A has oracle access to the oracle O. If A performs some check, and the check fails, we
assume that A outputs ⊥ immediately. Generally, we assume that adversaries are implicitly stateful.
We denote with [n] the set {1, . . . , n} for n ∈ N. We write P for the set of primes and PI for the set
of primes in the interval I. For some odd prime p, we use the representatives {−p−1

2 , · · · , p−1
2 } for
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Zp. For a group G we write ord(G) to denote the order of G and unless stated otherwise we write
G with additive notation. For a group element g we write ord(g) to denote the order of the group
element. We denote by QRN = {a ∈ Z∗

N : ∃ b ∈ Z∗
N , b2 ≡ a mod N} the quadratic residues modN .

For some N ∈ N, the group QRN is a cyclic subgroup of Z∗
N and we denote by Gen(QRN ) the set

of generators of QRN . Some properties of QRN are recalled in lemma 2 in Appendix A

Probability Let V,L ∈ N. We define uniform rejection sampling for the interval [0, V ] with
masking overhead L as in [30]. Let v ∈ [0, V ]. To mask v additively with a mask µ via rejection
sampling, perform the following steps.

1. Draw a random mask µ← [0, (V + 1)L].
2. Abort if v + µ /∈ [V, (V + 1)L].
3. Output w = v + µ.

The value w is uniform over [V, (V + 1)L] conditioned on no abort and the abort probability is
at most 1/L. We use a version of Forking Lemma that fits our usage of it. The lemma was first
introduced by Pointcheval and Stern [70] then generalized by Bellare and Neven [13]. The formal
statement can be found in Appendix A.2.

Hardness Asssumptions. We use the following assumptions in this paper. Let GenG be a PPT
algorithm that on input 1λ and prime order p, outputs (a description of) a group G← GenG(1λ) of
order p. We generally use additive notations for prime order groups and capital letters for elements.
Also, we assume that given the description, group operations and membership tests are efficient.
We write g ← G for drawing elements from some group G at random. In the following, we assume
that prime order groups are setup with GenG implicitly.

Let GenRSA be a PPT algorithm that on input 1λ outputs (N,P,Q)← GenRSA(1λ) such that
N = P ·Q with P,Q ∈ P, where P = 2P ′ + 1 and Q = 2Q′ + 1 are strong primes (i.e., P ′, Q′ are
also primes). We assume that P ′, Q′ > 2λ.

First of all, the (D, ℓ)-relaxed DLOG assumption with regards to g⃗, where g⃗ = (g0, . . . , gℓ) ∈
QRℓ+1

N , assumes that for any PPT adversary, given (N, g0, . . . , gℓ) it is only with negligible probability
to output (c, d, x0, . . . , xℓ) satisfying cd =

∏ℓ
i=0 g

xi
i ∧ ∃i :

xi

d ̸∈ Z ∧ d ∈ [0, D] ∧ xi ∈ Z. The (D, ℓ)-
relaxed DLOG assumption holds under the strong RSA assumption for all D ≤ 2λ+1. Next,
the Decisional Diffie-Hellman (DDH) assumption in a cyclic group G assumes that for all PPT
adversary it is only with negligible probability that the adversary can distinguish (aG, bG, abG)
from (aG, bG, cG) where G← G and a, b, c← ord(G). Finally, the strong RSA (sRSA) assumes that
it is only with negligible probability for any PPT adversary to output (e, z) such that ze ≡ y mod N .

Explaining Random Group Elements as Random Strings. For our framework, we require
commitments with uniform public parameters pp. For readability, we allow pp (and also uniform
random strings urs of NIZKs) to contain (uniform) group elements g of prime-order groups G with
known order p. This is without loss of generality because with explainable sampling, we can explain
g ← G as a random bitstring. We refer to, e.g., [61, Appendix B] for more details.

2.1 Cryptographic Primitives

Commitment Scheme. A commitment scheme is a PPT algorithm C = C.Commit such that

– C.Setup(1λ): generates the public parameters pp,
– C.Commit(pp,m): given the public parameters pp, message m ∈ Cmsg, computes a commitment

c ∈ Ccom with opening randomness d, and outputs the pair (c, d),
– Verify(pp, c,m, d): given the public parameters pp, message m ∈ Cmsg, and opening randomness

d, outputs a bit b ∈ {0, 1} which depends on the validity of the opening (m, d) with respect to
the commitment c.

Here, Cmsg, Crnd, Ccom, are message, randomness, and commitment spaces, respectively. If the public
parameters are uniform or explainable (i.e., Setup outputs some pp← {0, 1}ℓ for ℓ ∈ N) we omit
Setup without loss of generality.
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We require the correctness, hiding and binding properties for a commitment scheme. A com-
mitment schemes is correct, if honest commitments (c, d) ← Commit(pp,m; r) always verify, i.e.
it holds that Verify(pp, c,m, d) = 1 where pp is the public parameters. It is hiding if it is hard to
decide whether an unopened commitment c commits to message m0 or m1, and it is binding if it is
hard to open commitments c to distinct messages. We can have computational, statistical, perfect
variants for hiding and biding properties. The formal definitions can be found in Appendix A.5.

Signature Scheme. A signature scheme is a tuple of PPT algorithms S = (KeyGen,Sign,Verify)
such that

– KeyGen(1λ): generates a verification key vk and a signing key sk,
– Sign(sk,m): given a signing key sk and a message m ∈ Smsg, deterministically outputs a

signature σ,
– Verify(vk,m, σ): given a verification key pk and a signature σ on message m, deterministically

outputs a bit b ∈ {0, 1}.

Here, Smsg is the message space. We define the standard notion of correctness and euf-cma
security. Correctness requires that any honestly generated signature σ ← Sign(sk,m) verifies, i.e.
Verify(vk,m, σ) = 1. The euf-cma security imposes that even with oracle accesses to Sign(sk, ·), no
PPT adversary will be able to forge a valid signature σ on a message m that is not queried to
Sign(sk, ·).

Blind Signature Scheme. A blind signature scheme is a tuple of PPT algorithms BS =
(KeyGen,Sign,Verify) such that

– KG(1λ): generates the verification key bvk and signing key bsk,
– User(bvk,m): given verification key bvk and message m ∈ BSmsg, outputs a first message ρ1

and a state st,
– Signer(bsk, ρ1): given signing key bsk and first message ρ1, outputs a second message ρ2,
– Derive(st, ρ2): given state st and second message ρ2, outputs a signature σ,
– Verify(bvk,m, σ): given verification key bvk and signature σ on message m ∈ BSmsg, outputs a

bit b ∈ {0, 1}.

Here, BSmsg is the message spaces. We consider the standard security notions for blind signatures [57].
Below, we define correctness, blindness under malicious keys, and one-more unforgeability of a blind
signature scheme. Moreover, we assume the state is kept implicit in the following for better readability.
A blind signature BS is correct if for all m ∈ BSmsg, (bvk, bsk)← KG(1λ), (ρ1, st)← User(bvk,m),
ρ2 ← Signer(bsk, ρ1), and σ ← Derive(st, ρ2), it holds that Verify(bvk,m, σ) = 1.

It is blind under malicious keys if a malicious signer cannot distinguish whether it first signed m0

or m1, after engaging with a honest user in two signing sessions and being presented the obtained
signatures on messages (m0,m1) in a fixed order. Here, the honest user permutes the order of the
signing sessions at random, and the verification key bvk is adversarially chosen. It is one-more
unforgeable if a malicious user that engages in at most QS signing sessions with the signer, can
output at most QS valid distinct signature- message pairs. The formal definitions can be found in
Appendix A.7.

Σ-Protocol. Let R be an NP relation with statements x and witnesses w. We denote by LR =
{x | ∃w s.t. (x,w) ∈ R} the language induced by R. A Σ-protocol for an NP relation R for language
LR is a tuple of PPT algorithms Σ = (Init,Chall,Resp,Verify) such that

– Init(x,w): given a statement x ∈ LR, and a witness w such that (x,w) ∈ R, outputs a first flow
message (i.e., commitment) α and a state st, where we assume st includes x,w,

– Chall(): samples a challenge β ← CH (without taking any input),
– Resp(st, β): given a state st and a challenge β ∈ CH, outputs a third flow message (i.e.,

response) γ,
– Verify(x, α, β, γ): given a statement x ∈ LR, a commitment α, a challenge β ∈ CH, and a

response γ, outputs a bit b ∈ {0, 1}.
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We recall the standard notions of correctness, high-min entropy, honest- verifier zero-knowledge,
and 2-special soundness. A Σ-protocol is correct, if for all (x,w) ∈ R, if for any honestly generated
transcripts (α, β, γ), the verifier accepts, i.e. Verify(x, α, β, γ) = 1. It has high min-entropy if for
all (x,w) ∈ R, it is statistically hard to predict a honestly generated first flow α. It is honest-
verifier zero-knowledge (HVZK), if there exists a PPT zero-knowledge simulator Sim such that the
distributions of Sim(x, β) and the honestly generated transcript with Init initialized with (x,w)
are computationally indistinguishable for any x ∈ LR, and β ∈ CH, where the honest execution
is conditioned on β being used as the challenge. Finally, it is 2-special sound, if there exists a
deterministic PT extractor Ext such that given 2 valid transcripts {(α, βi, γi)}i∈[2] for statement x
with pairwise distinct challenges (βi)i, outputs a witness w such that (x,w) ∈ R.

Non-Interactive Zero Knowledge All formal definitions of the following can be found in
Appendix A.9. Let URS = {0, 1}ℓ be a set of uniform random strings for some ℓ ∈ N and
SRS be some set of structured random strings with efficient membership test 11. An NIZK for a
relation R with common reference string space CRS = SRS × URS is a tuple of PPT algorithms
(GenCRS,ProveH,VerifyH), where the latter two are oracle-calling, such that:

– GenCRS(1λ): outputs a structured reference string srs ∈ SRS,
– ProveH(crs, x, w): receives a crs = (srs, urs) ∈ CRS, a statement x and a witness w, and outputs

a proof π,
– VerifyH(crs, x, π): receives a crs = (srs, urs) ∈ CRS, a statement x and a proof π, and outputs a

bit b ∈ {0, 1}.

We recall that LR = {x | ∃w : (x,w) ∈ R} denotes the language induced by R. If there
is no crs needed, i.e. CRS = ∅, we then omit crs as an input to Prove and Verify. A NIZK
is correct if for any crs = (srs, urs) with srs ← GenCRS(1λ) and urs ← URS, (x,w) ∈ R, and
π ← ProveH(crs, x, w), it holds that VerifyH(crs, x, π) = 1. It is zero-knowledge if there exists a
PPT simulator Sim = (Simcrs,SimH,Simπ) such that the distributions of π′ ← Simπ(crs, x) and
π ← ProveH(crs, x, w) are computationally indistinguishable for any (x,w) ∈ R. For simulated proofs,
the algorithm SimH simulates the random oracle and Simcrs simulates the crs = (srs, urs), where
there is an structured part srs. We also define a notion of subversion zero-knowledge, inspired by
the notion introduced in [11]. To recall, the second part of the crs = (srs, urs) is a random reference
string which can later be sampled via a random oracle, and the first part is a structured string srs.
For subversion zero-knowledge, there is no Simcrs anymore and the structured srs can be chosen by
A, while urs is sampled uniformly at random by H for the real proofs π ← ProveH(crs, x, w) or by
SimH for the simulated proofs π′ ← Simπ(crs, x). Here we also require that the subverted srs belong
to SRS.

We define adaptive knowledge soundness. We remark that the soundness relation R̃ can be
different from the (correctness) relation R. If R̃ is not explicitly defined, we implicitly set R̃ = R. An
NIZK is adaptively knowledge sound for relation R̃ if there exist positive polynomials pT, pP, a PPT
algorithm Ext and a PPT SimCRS so that for any (crs, td)← SimCRS(1λ), given oracle access to any
PPT A (with explicit random tape ρ and making QH = poly(λ) RO queries) that cannot distinguish
crs ∈ CRS from a real crs := (srs ← GenCRS(1λ), urs ← URS), given (x, π) ← AH(crs; ρ), with
probability at least µ(λ)−negl(λ)

pP(λ,QH) the extractor finds w ← Ext(crs, td, x, π, ρ, h⃗) where (x,w) ∈ R̃.

Here, h⃗ contains the outputs of H, the probability is over the random tape ρ of A, the random tape
of SimCRS, and the random choices of H. Also, we require that the runtime of Ext is bounded by
pT(λ,QH) · Time(A).

We further define partial online-extractability for NIZKs over a relation with statements x =
(x0, x1) and witnesses w = (w0, w1). A NIZK is partially online-extractable if there extists an
algorithm Ext = (Ext1,Ext2) such that Ext1 samples a partial statement x0 uniformly at random
along with a trapdoor td and for any PPT adversary that outputs pairs of partial statements x1,i

and proofs πi such that all ((x0, x1,i), πi) verify with probability µ(λ), the extraction algorithm
Ext1 can use the trapdoor to extract partial witnesses w1,i for all statements such that there exist
11 This membership test is required for our definition of subversion zero-knowledge. Note that in general it

is difficult to check that some srs was generated via GenCRS. (We allow that SRS is not equal to the
output space of GenCRS.)
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partial witnesses w0,i with probability µ(λ)−negl(λ)
pP(λ,QH) where pP is a polynomial and QH is the number

of hash queries made by the adversary. Looking forward, we will set the first partial statement x0 to
be the public parameters of a commitment scheme and the extracted witness to be the committed
values - where the non-extracted witness is the opening of the commitments.

We also define (statistical) adaptive subversion soundness. Note that this notion does not require
an extractor for the witness and the srs can be maliciously set up by an adversary, which differs
from the standard notion of adaptive soundness. An NIZK is (statistically) adaptively subversion
sound for relation R̃ inducing a language LR̃ if no (possibly unbounded) adversary, given a urs
and access to the RO H, can output a subverted srs, an instance x, and a proof π such that
VerifyH(crs := (srs, urs), x, π) = 1 but x /∈ LR̃.

Fiat-Shamir transformation. We recall the Fiat-Shamir transformation [37, 9] to turn a Σ-
protocol Σ = (Init,Chall,Resp,Verify) that satisfies correctness, high-min entropy, honest verifier
zero-knowledge, and 2-Special Soundness, into a NIZK FS[Σ] = (GenCRS,ProveH,VerifyH) below:

– GenCRS(1λ): outputs the empty string ϵ as we do not require a common reference string and
omit crs as an input for other below algorithms,

– ProveH(x,w): receives a statement x and a witness w, runs (α, st)← Init(x,w), computes the
challenge β ← H(st, α), then computes γ ← Resp(st, β) and outputs π = (α, β, γ).

– VerifyH(x, π): receives a statement x and a proof π = (α, β, γ), and outputs b← Verify(x, α, β, γ).

The resulted NIZK satisfies correctness, adaptive knowledge soundness and zero-knowledge.

Pseudorandom Functions. A PRF is a family of efficient keyed functions F : K ×D → R with
key space K, domain D, and range R such that a randomly chosen function from the family should
behave like a truly random function with same domain and range. Specifically, pseudorandomness
of a standard PRF requires that any efficient adversary, given oracle access to F (K, ·) where K
is secret and chosen uniformly at random, cannot distinguish F (K,x∗) from a uniformly random
value in R for some challenge x∗ chosen by the adversary.

3 NIZK-friendly Signature Scheme

3.1 The scheme

We describe a variant of Fischlin’s variant of the Cramer-Shoup signature. We adapt it with the
goal of constructing an efficient proof of knowledge of a signature later. We denote by PX the set of
primes within a set X.

The signature consists of three values y ∈ Z∗
N , a ∈ Z and e ∈ Z. We define intervals Sa and Se

which we use to sample a and e in Sign, respectively. Also, we define the intervals Ra and Re which
we use to in Verify to check range membership of a and e, respectively.

Let A = 23λ and Sa = [0, A]. Also, let Ra ⊇ Sa, Se and Re ⊇ Se be intervals such that for all
a ∈ Ra, we have a < e for any e ∈ Re. Further, we require that |PSe

| = Ω(22λ) (i.e., Se contains at
least Ω(22λ) primes).

– Sfis.KeyGen(1
λ): Sets (N,P,Q)← GenRSA(1λ). Samples generators h, h1, h2 ← Gen(QRN ) for

QRN at random. Outputs the public key vk = (N,h, h1, h2) and the secret key sk = (P,Q).
– Sfis.Sign(sk,m): Parses sk = (P,Q) and computes m = H(m). Then, picks e← PSe

and a← Sa
at random. Computes y such that

ye = h · ha
1 · ha+m

2 mod N.

Output the signature σ = (e, a, y).
– Sfis.Verify(vk,m, σ): Parses vk = (N,h, h1, h2) and σ = (e, a, y). Checks that e ∈ Re is odd,

a ∈ Ra, and that
ye = hha

1h
a+H(m)
2 mod N.
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3.2 Proof of Security

This proof mostly follows the proof given in [38], using some alternative ways to set up the verification
key with an embedded strong RSA challenge (N, z). These alternative key generation algorithms
come with corresponding alternative signing algorithms, and they are indexed by bits b, b′ that
correspond to cases in a case distinction in the proof. We provide the full proof for completeness in
Appendix B.2. As we will re-use this strategy in the proof of the blind signature scheme in Section 5,
we describe this alternative key generation and alternative signing in Appendix B.1.

4 Commitment Schemes

We give an overview of the commitment schemes we require in this work.

4.1 Pedersen Commitments in QRN

We recall Pedersen multi-commitments (MPed) over QRN with message space Zℓ for some ℓ ∈ N
[32].

– MPed.GenPP(1λ): set (N,P,Q) ← Gen(1λ) and sample ℓ random generators gi of QRN , and
output pp = (N,h, g1, · · · , gℓ). Note that with (P,Q), we can check whether gi generates QRN .

– MPed.Commit(pp, m⃗): sample r ← [0, N · 2λ], set c← hr ·
∏ℓ

i=1 g
mi
i mod N , and output (c, r).

– MPed.Verify(pp, c, m⃗, r): check if c = ±hr ·
∏ℓ

i=1 g
mi
i mod N .

MPed commitments are correct, statistically hiding and binding under the factoring assumption
(which is implied by sRSA). Throughout this work, we use MPed commitments in QRN to enforce
in security proofs that values extracted from NIZKs are integers via Lemma 5.

4.2 Relaxed Integer Commitments with Slack

We define the notion of relaxed integer commitment schemes parameterized by B, T ∈ N. Those are
commitments with message space Cmsg = [0, B] that admit efficient opening proofs in zero-knowledge
with some slack, i.e., soundness guarantees that x ∈ [−BT,BT ]. We refer to B as the range and T
as the slack.

Definition 1. A relaxed integer commitment is a commitment scheme CB⃗,T
RInt = (Setup,Commit,Verify)

parameterized by two values T ∈ N and B⃗ ∈ Nℓ for some ℓ ∈ N. The value B⃗ defines the message
space Cmsg = [0, B⃗] ⊆ Zℓ. The value T defines a relaxed message space Crelmsg = [−B⃗T, B⃗T ]. We
further require that the commitment scheme CRInt is

1. correct and hiding with respect to Cmsg ( i.e., the messages are sampled from Cmsg in the definitions
Definitions 6 and 7), and

2. binding with respect to Crelmsg ( i.e., the adversarial messages are allowed to be in Crelmsg instead of
Cmsg in Definition 8).

We now instantiate CRInt over a group G with prime order p ≥ 22λ. Let pp = (G,H) ∈ G2

be the public parameters. Let B, T ∈ N such that BT < p−1
2 . The commitments are ElGamal

commitments c ← (xG+ rH, rG) for r ← Zp, except that we add the additional requirement of
x ∈ [−BT,BT ] in verification. Note that as we have [−BT,BT ] ⊂ [−p−1

2 , p−1
2 ], this condition

ensures that no overflows occur (so we commit to a subset of Z). Looking ahead, our zero-knowledge
opening proofs leverage the structure of QRN to ensure that extracted values are integers in the
relaxed range.

We naturally generalize our commitment scheme to vectors m⃗ = (m1, · · · ,mℓ) ∈ [0, B⃗] of integers
from (potentially different) intervals induced by B⃗ = (B1, · · · , Bℓ). We require that Bi · T < p−1

2

for all i ∈ [ℓ]. The integer commitment CB⃗,T
RInt with uniform public parameters pp = (H, G⃗) is given

below, where G⃗ = (G1 · · · , Gℓ). The randomness space is Crnd = Zp. By definition, the message
space is Cmsg = [0, B⃗] and the relaxed message space is Crelmsg = [−B⃗T, B⃗T ].
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– CB⃗,T
RInt .Commit(pp, m⃗): Takes as input public parameters pp and m⃗ ∈ [0, B⃗], samples r ← Zp,

sets Ci ← miH + rGi, C⃗ ← (C1, · · · , Cℓ), F ← rH, and outputs (c, r) for c = (C⃗, F ).
– CB⃗,T

RInt .Verify(pp, c, m⃗, r): Takes as input (c, r) ∈ Gℓ+1 × Zp, parses c = (C⃗, F ) and checks that

m⃗ ∈ [−B⃗T, B⃗T ], F = rH, C⃗ = m⃗H + rG⃗.

If the (relaxed) range (induced by B⃗ and T ) is clear by context, we often write CRInt for short.

Theorem 1. The scheme CRInt is correct, hiding under DDH in G, and perfectly binding.

Proof. Correctness is straightforward.
For hiding, we have (H,Gi, rH, rGi)

c
≈ (H,Gi, rH, tiGi) for ti ← Zp under DDH. Since tiGi

masks miH additively, the value miH + tiGi is uniform in G. Thus, (C⃗, F )
c
≈ D⃗ for D⃗ ← Gℓ+1

after ℓ game hops.
For binding, observe that since m⃗ ∈ [−B⃗T, B⃗T ] ⊂ [−p−1

2 , p−1
2 ]ℓ, the message m⃗ is uniquely

determined by c and the verification equations. In more detail, if c = (C⃗, F ) verifies correctly, then
we have r = logH(F ) ∈ Zp and miH = Ci− rGi. Thus, we have mi ≡ logH(Ci− rGi) mod p. Since
for every x ∈ Zp, there is exactly one mi ∈ [−p−1

2 , p−1
2 ] such that mi ≡ x, the value mi is uniquely

determined.

Note that we could also set C ← rH +
∑

i xiGi to obtain compact commitments. We choose
ElGamal commitments instead of Pedersen commitments as in our applications, we require perfect
binding. In our construction, we also require exact integer commitments for some fixed range.

Definition 2 (Integer commitments with bounded range). If the range in verification is
identical to the message space, we say that the commitment is an (exact) integer commitment with
Cmsg = [0, B⃗] (and Cmsg = Crelmsg).

4.3 Commitments in Arbitrary Groups

Let Ĝ = ⟨ĝ⟩ be an arbitrary cyclic group with generator ĝ. We assume an upper bound U on the
order of Ĝ.

We construct a commitment scheme with message space Cmsg = Ĝ (i.e., for messages x̂ ∈ Ĝ).
Looking ahead, we cannot rely on computational hardness assumptions in Ĝ (as in our construction,
this group can be chosen maliciously by the adversary). As secure (non-interactive) commitments
require some type of hardness assumption, we need some additional structure. For this, we use an
additional relaxed integer commitment scheme CB,T

RInt (with parameters B, T defined below) 12. To
commit to x̂ ∈ Ĝ, a user first sets ĉ← x̂ĝs for s← [0, U · 2λ]. Note that ĉ hides x̂ statistically, but
is not binding to x̂. For example, a user can open ĉ = ĝĝ2 to message ĝ or ĝ2.

To achieve binding, the user additionally commits to its randomness s in a commitment c via
CB,T
RInt for B = U · 2λ and T arbitrary. If s is fixed over the integers Z, the user is forced to open the

commitment ĉ to the message x̂ = ĉ · ĝ−s. Note that the commitment c fixes s over a subset of Z
(due to binding of CRInt) which is sufficient 13. Since CRInt is hiding, the additional commitment c
reveals no information about s and thus, the scheme remains hiding.

Since our instantiation of CRInt requires a group G (whose size scales with B), we allow s

to be split into a vector s⃗ with si ∈ [0, B]. Then, the user commits to s⃗ ∈ [0, B⃗] via CB⃗,T
RInt for

B⃗ = (B, · · · , B) and arbitrary B ∈ N. Let ℓ = ⌈log(U · 2λ)/ log(B)⌉. The commitment scheme CGrp

(which is implicitly parameterized by CRInt) is given below.

– CGrp.Setup(1
λ): Outputs pp← CB⃗,T

RInt .Setup(1
λ).

12 If we instantiate CRInt as in Section 4.2, then the additional structure is a prime order group G in which
DDH is assumed to be hard.

13 Note that for our construction, it is important that CRInt commits over the integers. For example, a
commitment c over Zp is not sufficient. To illustrate this, assume that s ∈ Z is fixed over Zp. Then,
ĉ = ĝsĝps can be opened to ĝs or ĝps since s ≡ ps mod p. But we have ĝs = ĝps only if ord(ĝ) | p(s− 1).
Since the order is unknown, this does not hold in general and thus, the commitment is not binding.
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– CGrp.Commit(pp, x̂): Takes as input public parameters pp and x̂ ∈ Ĝ, samples s← [0, U ·2λ], sets
ĉ← x̂ĝs. Then, decomposes s =

∑ℓ
i=1 siB

i−1 with si ∈ [0, B] and commits to s⃗ = (s1, · · · , sℓ)
via (c, r)← CRInt.Commit(pp, s⃗). Outputs (cx, rx) for cx = (ĉ, c) and rx = (s⃗, r).

– CGrp.Verify(pp, cx, x̂, rx): Parses cx, rx as above. Then, sets s =
∑ℓ

i=1 siB
i−1 and checks that

CRInt.Verify(pp, c, s⃗, r) = 1 and ĉ = x̂ĝs.

Theorem 2. The scheme CGrp is correct, hiding and binding under the hiding and binding property
of CRInt, respectively.

We defer the security proof to Appendix C.1.

4.4 Efficient Opening in Zero-Knowledge

We construct efficient NIZKs Πint and Πgrp to open CRInt and CGrp, respectively, in zero-knowledge.
Due to space limitations, we refer to the Section 1.2 for a brief overview. The full schemes are given
in Appendix C.2.

5 Blind Signature with Malicious Signer Blindness

In this section, we detail our blind signature construction based on the strong RSA assumption and
DDH in prime order groups.

5.1 Primitives

Before we detail our construction, we prepare the required primitives and related parameters.

Remark 1. In the following, we will define several NIZKs. As the reference string crs of these NIZKs
are set up by the signer, we need to be careful with the security guarantees of each NIZK. For cases
where the signer takes the role of the prover, we require subversion soundness (i.e., the soundness
property should hold even with regard to a maliciously generated crs) but standard zero-knowledge
is sufficient. If the signer takes on the role of the verifier, we require subversion zero-knowledge (i.e.,
the zero-knowledge property should still hold even with regard to a maliciously generated crs).

Relaxed integer commitment. For constructing a proof of knowledge of a signature of the
scheme Sfis, we require a relaxed integer commitment. We describe the choices of parameters and
motivate them in the following.

Let T ∈ N. Let A = 23λ, E = 23λ, and E ∈ N such that the following equations hold.

log(E) = poly(λ) (5)

A · T < E − ET. (6)

Let CB⃗,T
RInt be a relaxed integer commitment scheme with uniform public parameters of length ℓrint,

statistical binding and computational hiding (cf. Section 4.2) for B⃗ := (A,E) and slack T . We write
CRInt for short. The choices for these parameters are motivated below.

Recall that B⃗ defines the message space [0, B⃗] and that the slack T dictates the relaxed message
space [−B⃗T, B⃗T ], i.e., the message space for verification 14.

For convenience, let Sa := [0, A] and Se := [E,E +E]. In our construction, we commit to a ∈ Sa
and e− E ∈ [0, E] for e ∈ Se via CRInt. The above parameter choices guarantee that for message
(a, e− E) that passes CRInt verification, it holds that the values (a, e) pass the range checks in the
Sfis signature.

To illustrate this, set Ra := [−AT,AT ] and Re := [E − ET,E + ET ]. By Equation (6), we
have that for any a ∈ Ra and e ∈ Re that a < e. Further, verification of CRInt guarantees that the
14 In our instantiation, we have T = 2λ+1L with L = 210. It is sufficient to set E = 25λ to have

AT = 24λ+11 < 25λ − 24λ+11 = E − ET for Equation (6) if λ ≥ 14.
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committed a lies in the interval a ∈ Sa as desired. Also, since we commit to e− E ∈ [−ET,ET ],
we have e ∈ Se.

In our instantiation, we can employ our CRInt construction from Section 4.2 which can be opened
with a simple NIZK Πint. This is the core technique that allows us to construct a proof of knowledge
of a Sfis signature in an efficient manner 15.

In the instantiation, we set E = 25λ. Then, it is guaranteed that the interval Se = [E,E + E]
contains at least Ω(22λ) primes. This follows from a recent refinement [54] of Huxley’s bound [56, 53].
We provide a full proof in Appendix D.1. This is required to avoid collisions in a hash function
mapping into Se.

Proof of Knowledge for Sfis signatures. We require a NIZK to proof knowledge of a valid Sfis
signature (e, a, y) on the hash of a message m. To prove one-more unforgeability, we require that
(e, a) are fixed statistically in the statement. Thus, we add a CRInt commitment for (e, a) which also
enables efficient proofs for range membership (as discussed above). Let Πfis be an NIZK with oracle
Hfis for the relation

Rfis :=
{
(x,w) | ye ≡ h · ha

1 · ha+m
2 mod N, e ≡ 1 mod 2, y ∈ ⟨h1⟩,

(cI , dI) = CRInt.Commit(ppI , (a, e− E); rI), e ∈ Se, a ∈ Sa
}

for x = (ppI , N, h1, h2, h,m, cI), w = (e, a, y, rI , dI) with subversion zero-knowledge, correctness,
and adaptive knowledge soundness for the relation

R̃fis :=
{
(x,w) | ye ≡ h · ha

1 · ha+m
2 mod N, e ≡ 1 mod 2,

CRInt.Verify(ppI , (a, e− E), dI) = 1
}

with x,w as above. Note that the soundness relation R̃fis implies that a ∈ Ra and e ∈ Re (cf.
Section 5.1) and thus, (e, a, y) form a valid Sfis signature. For zero-knowledge and correctness, there
are stronger requirements for the witness (which are fulfilled in our construction). Notably, we
require that a ∈ Sa, e ∈ Se, and that y ∈ ⟨h1⟩. (The latter is required to commit to y via CGrp in
our instantiation.)

Integer commitment and opening proof for Pedersen. Let S ∈ N. Let CZ be an exact
integer commitment scheme with message space CZ.Cmsg = [0, 2λ − 1]× [0, S] with uniform public
parameters of length ℓz, correctness, perfect binding, and computational hiding (cf. Definition 2).
We denote by CZ.Copn the opening space of CZ. In the blind signature scheme, we will require the
user to both the hash m as well as the random coins r that it plans to use to derive the Pedersen
commitment using the perfectly binding commitment scheme CZ. This first commitment is hashed
to obtain the prime e used for singing. Furthermore, the user is required to attach a proof πped that
the Pedersen commitment c is consistent with the hash m and the coins r. The commitment cZ
along with the proof πped allows the reduction in the one-more unforgeability proof to obtain the
value m and the coins r which in turn enables it to generate signatures using the alternate signing
algorithms from Appendix B.1. In the proof of blindness, we rely on the zero-knowledge property of
Πped as well as the hiding property of the commitment schemes for blindness.

Let Πped be an NIZK with oracle Hped for the relation

Rped :=
{
(x,w) | c ≡ hm

2 · gre mod N,CZ.Verify(pp, cZ , (m, r), dZ) = 1,

m ∈ [0, 2λ − 1], r ∈ [0, S]
}
,

for x = (pp, N, e, h2, g, c, cZ), w = (m, r, dZ) with correctness and subversion zero-knowledge. We
also require partial online-extraction for Rped, where we split the statement x into x0 = pp and
x1 = (N, e, h2, g, c) and the witness into w0 = dZ and w1 = (m, r). (This implicitly defines the
partial statement space X0 = {0, 1}ℓz and the partial witness space W1 = CZ.Copn.) The user uses

15 In our construction, the value B⃗ is large. Our technique allows to avoid the use of exact range proofs
whose efficiency scales with the range [0, B⃗].

15



the NIZK to ensure that the commitment c is indeed formed with the values committed via CZ.
For the security proof, the reduction “punctures” the verification key in such a way that it can
sign messages without knowing the secret key. For this reason, online-extraction is required to
extract the messages before signing. As mentioned above, we exclude dZ from the extracted witness
for efficiency (as existence is sufficient). Also, we embed the extraction trapdoor in the public
parameters (instead of the crs also for efficiency) 16.

NIZKs for group membership. As the factorization of the RSA modulus N is private, it is hard
to check whether a given g ∈ Z∗

N generates the entire group QRN . But such a check is required,
e.g., to check that a Sfis verification key is setup honestly.

It is necessary to have such a check as the adversary sends a blinded commitment c = hm
2 gre

to the signer during signing. When ⟨h2⟩ ≠ ⟨g⟩, the blindness adversary could raise c to the power
of ord(g) to remove the part gre and then check whether the resulting cord(g) = (hm0

2 )ord(g) or
cord(g) = (hm1

2 )ord(g).
We carefully design our blind signature such that such that the following check is sufficient:

given some generator g for a group G = ⟨g⟩ and an arbitrary element h, check whether ⟨h⟩ = G.
While this check remains inefficient, we ask that the signer adds a NIZK for ⟨h⟩ = G to the

verification key. Since the signer sets up the elements g and h itself, it can set h = gx for some
x ∈ Zord(g). Knowing x, constructing such a proof for ⟨h⟩ = G is simple. Since the signer sets up
multiple such values h, we batch the statement for simplicity.

Let Πgen be an NIZK with oracle Hgen satisfying statistical adaptive subversion soundness,
zero-knowledge, and correctness for the relation

Rgen =
{
(x,w) | ∀i ∈ [k] : hαi

i ≡ h mod N,hβi ≡ hi mod N
}

,

where x = (N, k, h, (hi)i∈[k]), w = ((αi, βi)i∈[k]). Note that Rgen implies that ⟨h⟩ = ⟨hi⟩ for all i.
Similarly, we need a NIZK to prove subgroup membership of a single element. For this, let Πsub

be an NIZK with oracle Hsub satisfying statistical adaptive subversion soundness, zero-knowledge,
and correctness for the relation

Rsub =
{
(x,w) | z ≡ hd mod N

}
,

where x = (z,N, h), w = d, and Rsub induces LRsub
= {(z,N, h) | z ∈ ⟨h⟩ ⊆ Z∗

N}.

Pseudorandom Function. For technical reasons, we require the signer’s choice of a to be
deterministic (in particular, during the one-more unforgeability proof, there will be a case where the
signer needs to re-use the same a when signing the same message twice with the same e). Therefore,
to avoid having the signer keep state, instead of choosing a uniformly at random from Sa, we let
the signer use a PRF to derive a.

The input to the PRF is a bitstring concatenated to length ℓN + ℓCRInt
, where ℓN denotes bit

length of an RSA modulus N and ℓCRInt
denotes the bit length of CZ commitments. Let {PRFK}K∈K

be a PRF consisting of PRFK : {0, 1}ℓN+ℓCRInt → Sa, which is index by K ∈ K from some key space
K = {0, 1}poly(λ).

Hash functions. We require the following hash functions in our construction. Each hash function
is modeled as random oracle in the security proofs.

– Hurs: Let Hurs : {0, 1}∗ → {0, 1}ℓped × {0, 1}ℓfis × {0, 1}ℓgen × {0, 1}ℓsub be a hash function, where
ℓzkp is the bit-size of the uniform reference string of Πzkp. Later, we use Hurs to setup the random
part urs of each crs for the above NIZKs.

– H: Let H : {0, 1}∗ → [0, 22λ − 1] be a hash function. Later, we use H to compute a short digest
m = H(m) of the message m ∈ {0, 1}∗.

– HP: Let HP : {0, 1}∗ → PSe
be a hash function mapping into the primes in the interval Se.

16 Roughly, the commitment CZ is extractable and we embed the extraction trapdoor into pp. But pp is
part of the statement, so we make sure that this part is sampled at random (cf. Definition 22).
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– Hpp: Let Hpp : {0, 1}∗ → {0, 1}ℓz × {0, 1}ℓrint be a random oracle.

Note that we can instantiate HP : {0, 1}∗ → PSe by picking uniformly random elements in the
space Se := [E,E + E] until we hit a prime. The distribution of the outputs of HP is uniform over
PSe

, which is the set of primes in the interval Se. The cardinality of PSe
satisfies |PSe

| = Ω(22λ)
following Appendix D.1.

5.2 Construction

Set S = N · 2λ which is passed implicitly as parameter in our construction. Also, we set pp =
(ppI , ppZ) ← Hpp(0). We assume that user and signer compute pp = Hpp(0) implicitly. The
construction is detailed below. We also detail a signing session in Figure 1.

– BSfis.KG(1
λ): First, generates the crs for the NIZKs as crszkp ← (srszkp, urszkp), where (ursped, ursfis, ursgen, urssub)←

Hurs(0) and srszkp ← Πzkp.GenCRS(1
λ) for zkp ∈ {ped, fis, gen, sub}. Then, generates a public key

for Sfis as follows. Sets (N,P,Q)← GenRSA(1λ) and samples g ∈ QRN . Samples αi ← Zord(g)

and sets βi ← α−1
i mod ord(g) for i ∈ [3]. Computes h1 ← gα1 mod N , h2 ← gα2 mod N

and h ← gα3 mod N . Note that h, h1 and h2 are generators of QRN with overwhelming
probability. Next, proves that all QRN elements in bvk key generate the same group via
πgen ← Πgen.Prove

Hgen(crsgen, xgen, wgen), where xgen = (N, 3, g, (h, h1, h2)), wgen = (αi, βi)i∈[3].
Then, sample a key K ← K for PRF. Finally, output

bvk = (crsfis, crsped, crsgen, crssub, N, h, h1, h2, g, πgen),

bsk = (bvk, P,Q,K).

– BSfis.User(bvk,m): Given verification key bvk, and message m, checks

Πgen.Verify
Hgen(crsgen, xgen, πgen) = 1

for xgen = (N, 4, (h, h1, h2, g)). Then, sets m ← H(m) and set up a commitment c to m
as follows. Samples randomness r ← [0, S] for c and commits to (m, r) via (cZ , dZ) ←
CZ.Commit(pp, (m, r)). Sets e ← HP(cZ) and compute c = hm

2 · gre mod N . Next, generate a
proof πped ← Πped.Prove

Hped(crsped, xped, wped) for xped = (pp, N, e, h2, g, c, cZ), wped = (m, r, dZ).
Note that πped proves that the generation of c was performed honestly with respect to cZ .
Finally, output

ρ1 = (c, cZ , πped),

stU = (e, r,m).

– BSfis.Signer(bsk, ρ1): Given signing key bsk = (bvk, P,Q,K) and user’s output ρ1 = (c, cZ , πped),
checks Πped.Verify

Hped(crsped, xped, πped) = 1 for xped = (pp, N, e, h2, g, c, cZ). Next, computes e←
HP(cZ) and sets d← e−1 mod ϕ(N). Then, sets a← PRFK(c ∥ cZ) which it uses as randomness
for the signing process. Using d and a, computes a presignature z via z′ ← h · ha

1 · c · ha
2 mod N

and z ← (z′)d mod N . Finally, proves that z ∈ ⟨z′⟩ via πsub ← Πsub.Prove
Hsub(crssub, xsub, wsub)

for xsub = (z,N, z′), wsub = d and outputs

ρ2 = (z, a, πsub).

– BSfis.Derive(stU , ρ2): given state stU and last message ρ2 = (z, a, πsub), sets z′ ← h · ha
1 · c · ha

2 ,
checks Πsub.Verify

Hsub(crssub, xsub, πsub) = 1 for xsub = (z,N, z′) and a ∈ Sa. Next, computes a
Sfis signature on m from the presignature z via y ← z · g−r mod N . Then, checks whether σfis =
(e, a, y) indeed forms a correct signature on m via Sfis.Verify(vk,m, σfis) = 1. Next, generates
a BSfis signature as follows. Sets m = H(m) and (cI , dI) ← CRInt.Commit(ppI , (a, e − E); rI)
for rI ← CRInt.Crnd. Proves that σfis verifies correctly via πfis ← Πfis.Prove

Hfis(crsfis, xfis, wfis) for
xfis = (ppI , N, h1, h2, h,m, cI), wfis = (e, a, y, rI , dI). Outputs

σ = (πfis, cI).
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– BSfis.Verify(bvk,m, σ): Given verification key bvk, message m, and signature σ = (πfis, cI),
computes m = H(m) and checks

Πfis.Verify
Hfis(crsfis, xfis, πfis),

for xfis = (pp, N, h1, h2, h,m, cI).

Signer(bvk, bsk) User(bvk,m)

1 : check Πgen.Verify
Hgen(crsgen, xgen, πgen) = 1

2 : m← H(m)

3 : r ← [0, S]

4 : (cZ , dZ)← CZ.Commit(ppZ , (m, r))

5 : e← HP(cZ)

6 : c = hm
2 · gre mod N

7 : πped ← Πped.Prove
Hped(crsped, xped, wped)

(c, cZ , πped)

8 : check Πped.Verify
Hped(crsped, xped, πped) = 1

9 : e← HP(cZ)

10 : d← e−1 mod ϕ(N)

11 : a← PRFK(c ∥ cZ)
12 : z′ ← h · ha

1 · c · ha
2 mod N

13 : z ← (z′)d mod N

14 : πsub ← Πsub.Prove
Hsub(crssub, xsub, wsub)

z, a, πsub

15 : check Πsub.Verify
Hsub(crssub, xsub, πsub) = 1

16 : check a ∈ Sa
17 : y ← z · g−r mod N

18 : check Sfis.Verify(vk,m, (e, a, y)) = 1

19 : rI ← CRInt.Crnd
20 : (cI , dI)← CRInt.Commit(ppI , (a, e− E), rI)

21 : πfis ← Πfis.Prove
Hfis(crsfis, xfis, wfis)

22 : return σ = (πfis, cI)

Fig. 1. A signing session of BSfis for message m. We have (ppI , ppZ) = Hpp(0), xgen =
(N, 4, (h, h1, h2, g)), xped = (pp, N, e, h2, g, c, cZ), wped = (m, r, dZ), xsub = (z,N, z′), wsub = d, xfis =
(ppI , N, h1, h2, h,m, cI), wfis = (e, a, y, rI , dI). If a check fails, the party aborts.

5.3 Blindness under Malicious Keys

Before proving that our scheme BSfis satisfies blindness under malicious keys, we state a lemma
that will be used in our proof:

18



Lemma 1. Let λ ∈ N and N > 3 be an odd natural number of bitlength polynomially large in λ.
We consider Z∗

N and fix G = ⟨g⟩ ⊆ Z∗
N where g ∈ Z∗

N . Given e ← Se where Se contains at least
Ω(2λ) primes, we have

Pr [⟨ge⟩ ≠ G : e← Se] ≤ negl(λ)

where the probability is taken over the choice of e.

We defer the proof to Appendix D.2. We now state the main theorem for blindness of BSfis.

Theorem 3. The scheme BSfis is blind under malicious keys following the statistical adaptive
soundness of Πsub, the statistical adaptive soundness of Πgen, the subversion zero-knowledge property
of Πfis, and the subversion zero-knowledge property of Πped.

We refer to Appendix D.3 for a detailed proof. We give a brief overview below.

Proof Overview. In the proof we use a sequence of games to transition from the blindness game
as in Definition 12 with coin = 0 to the blindness game with coin = 1. To achieve this, we first
employ the subversion zero-knowledge property of Πfis as well as the adaptive soundness of Πsub

and Πgen to switch to simulating the proofs πfis. This allows us to change the commitment cI of
the signature on m0 to a commitment to 0 which makes the signature independent of the signing
session’s exponents e and a. We then to turn to exchanging the CRS of Πped to a simulated one
along with simulating the proof πped using the subversion zero-knowledge property of Πped. We
also rule out that the signer gave us a key with ⟨h2⟩ ≠ ⟨g⟩ via the adaptive soundness of Πgen as
otherwise the Pedersen commitment would not be perfectly hiding. The previous game hop allows
us to switch to a uniformly random Pedersen commitment c ← ⟨g⟩ for the session where m0 is
getting signed. After the Pedersen commitment is independent of the message, we also switch the
commitment cZ to be independent of the message using the hiding property of CZ. We then use the
an analogous series of games in the other direction to make end up with the real game for coin = 1.

5.4 One-more Unforgeability

Theorem 4. If the strong RSA problem is hard, H, HP, Hurs, and Hpp are random oracles, Πped

is a NIZK with Partial Online-Extractability, CZ is a perfectly binding commitment scheme, PRF
is a pseudo-random function, Πsub is a NIZK with CRS indistinguishability and subversion zero-
knowledge, Πfis is a NIZK with adaptive knowledge-soundness, and CRInt is a perfectly binding integer
commitment scheme then BSfis is secure against one-more-unforgeability.

Proof Overview. For one-more unforgeability, we want to use similar techniques to generate
signatures and solve the strong RSA problem as the scheme in Section 3.1. To do this, we need to
do a hybrid argument to transition to a game where

– The reduction can online-extract the hash of the message m and the random blinding factor r
used to generate the blinded message c. This we achieve by switching to the CRS that allows
for extraction and by introducing extraction in a game.

– The reduction can be sure that in signing queries, the adversary uses an exponent e for which
the reduction has trapdoored its verification key. This we achieve through programming the
hash oracle HP accordingly (as well as through online-extraction).

– The reduction needs to be able to obtain an actual fresh signature (like in the EUF-CMA game
for the adapted Fischlin scheme from Section 3.1). This we achieve by applying the knowledge
extractor of Πfis.

– We need to be sure that the extracted signature is independent of the various signature
simulation modes employed by the reduction (i.e. the choices of b, b′, j). This is provided by
employing a perfectly binding commitment to contain the signature.

– We make additional game hops to rule out corner cases such as collisions in the hash functions.

The proof proceeds as a series of games to apply the changes described above and then we describe
the reduction that solves the strong RSA problem (which roughly follows the security proof of Sfis).
We refer to Appendix D.4 for a detailed proof.
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5.5 Instantiation

We instantiate the primitives from Section 5.1 required for our blind signature BSfis as follows.
For CRInt, we use our construction from Section 4.2 which admits efficient opening proofs in zero-
knoweldge. For Πgen, we use the construction from Appendix C.2 and for the PRF, an arbitrary
choice is sufficient. It remains to instantiate Πfis and Πped. Our constructions are technically involved.
We refer to Section 1.2 for a brief overview. For detailed constructions, we refer to Appendix E.

For our instantiation, we choose a standard RSA modulus of size 3072 bit for λ = 128. In
total, we obtain blind signatures secure under DDH and sRSA of size 4.28 KB with 62.19 KB
communication. We remark that Πsub is the largest overhead (51.216 KB) in communication. A
more efficient subgroup membership proof over ZN with subversion soundness would heavily reduce
the communication overhead.
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A Full Preliminaries

A.1 Notation

Let λ ∈ N be the security parameter. A probabilistic polynomial time (PPT) algorithm A runs
in time polynomial in the (implicit) security parameter λ. We write Time(A) for the runtime of
A. A function f(λ) is negligible in λ if it is O(λ−c) for every c ∈ N. We write f = negl(λ) for
short. Similarly, we write f = poly(λ) if f(λ) is a polynomial with variable λ. If D is a probability
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distribution, x ← D means that x is sampled from D and if S is a set, x ← S means that x is
sampled uniformly and independently at random from S. We also write |S| for the cardinality
of set S. Further, we write D0

c
≈ D1 for distributions D0, D1, if for all PPT adversaries A, we

have |Pr[x0 ← D0 : A(1λ, x0) = 1] − Pr[x1 ← D1 : A(1λ, x1) = 1]| = negl(λ). Similarly, we write
D0

s
≈ D1 if the above holds even for unbounded adversaries. For some PPT algorithm A, we write

AO if A has oracle access to the oracle O. If A performs some check, and the check fails, we assume
that A outputs ⊥ immediately. Generally, we assume that adversaries are implicitly stateful.

We denote with [n] the set {1, . . . , n} for n ∈ N. We write P for the set of primes and PI for the
set of primes in the interval I. For some odd prime p, we use the representatives {−p−1

2 , · · · , p−1
2 }

for Zp. For a group G we write ord(G) to denote the order of G and unless stated otherwise we
write G with additive notation. We denote by QRN = {a ∈ Z∗

N : ∃ b ∈ Z∗
N , b2 ≡ a mod N} the

quadratic residues modN . For some N ∈ N, the group QRN is a cyclic subgroup of Z∗
N and we

denote by Gen(QRN ) the set of generators of QRN . We recall some properties of QRN

Lemma 2 (Proposition 1, [32]). Let λ ∈ N and (N,P,Q)← GenRSA(1λ). Considering QRN ,
the following holds:

– The group QRN is cyclic of order P ′Q′ where P = 2P ′ + 1 and Q = 2Q′ + 1.
– −1 /∈ QRN .
– Any square h ∈ QRN has excatly four roots, among which there is exactly one square.
– For any element h ∈ QRN , finding roots of h is equivalent to factoring N .
– For g, h← QRN , finding a, b ∈ N \ {0} such that gq ≡ hb mod N is equivalent to factoring N .
– For any e ∈ N coprime with ϕ(N) and y ∈ Z∗

N , finding x, e′ ∈ N such that xe ≡ ye
′
mod N is

equivalent to finding an e-th root of y in Z∗
N .

A.2 Probability

Rejection Sampling. Let V,L ∈ N. We define uniform rejection sampling for the interval [0, V ]
with masking overhead L as in [30]. Let v ∈ [0, V ]. To mask v additively with a mask µ via rejection
sampling, perform the following steps.

1. Draw a random mask µ← [0, (V + 1)L].
2. Abort if v + µ /∈ [V, (V + 1)L].
3. Output w = v + µ.

The value w is uniform over [V, (V + 1)L] conditioned on no abort and the abort probability is at
most 1/L.

Forking Lemma. We state here a version of Forking Lemma that fits our usage of it. The lemma
was first introduced by Pointcheval and Stern [70] then generalized by Bellare and Neven [13].

Lemma 3 (Forking Lemma). Let H be a set and let F : Hq → [q] be a possibly random function.
For every h⃗ ∈ Hq, let E(⃗h) be a probability event. The probability that when sampling k vectors
h⃗1, . . . , h⃗k uniformly and independently at random (conditioned that vectors are identical on their
first F (⃗h1) components), E(⃗hi) happens for all i ∈ [k] and F (⃗h1) = F (⃗h2) = · · · = F (⃗hk), is at
least δ(E)k/qk−1, where δ(E) := Pr[⃗h← Hq : E(⃗h)].

A.3 Assumptions

Groups and RSA. Let GenG be a PPT algorithm that on input 1λ and prime order p, outputs (a
description of) a group G← GenG(1λ) of order p. We generally use additive notations for prime
order groups and capital letters for elements. Also, we assume that given the description, group
operations and membership tests are efficient. We write g ← G for drawing elements from some
group G at random. In the following, we assume that prime order groups are setup with GenG
implicitly.
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Let GenRSA be a PPT algorithm that on input 1λ outputs (N,P,Q)← GenRSA(1λ) such that
N = P ·Q with P,Q ∈ P, where P = 2P ′ + 1 and Q = 2Q′ + 1 are strong primes (i.e., P ′, Q′ are
also primes). We assume that P ′, Q′ > 2λ.

Before recalling some standard hardness assumptions, let us recall the following well-known
lemma.

Lemma 4. Given x, y ∈ Z∗
N with a, b ∈ Z such that xa = yb and gcd(a, b) = 1, one can efficiently

compute x̄ ∈ Z∗
N such that x̄a = y.

Remark 2. We need the following well-known fact. Let G be a group and let G← G be a random
element from G. Let S ∈ N. We consider the problem of distinguishing zG, where z ← [0, S], from
z̃G where z̃ ← Zord(G).

If the order p of the group G is known, then the distinguishing probability is 0 for S = p− 1. If
only an upper bound U on the order is known, then the distinguishing probability is upper bounded
by 1/L for S = L · U . For the latter, we set L = 2λ throughout to obtain negligible distinguishing
probability.

Next, we recall the definition of a relaxed DLOG-relation from [30] (for the hidden order group
QRN ).

Definition 3 ((D, ℓ)-relaxed DLOG-relation). Let (N,P,Q) ← GenRSA(1λ), D, ℓ ∈ N, and
g⃗ = (g0, . . . , gℓ) ∈ QRℓ+1

N . Define the (D, ℓ)-relaxed DLOG relation with regards to g⃗ as

RD,ℓ(g⃗) =

{
(c, d, {xi}ℓi=1)

∣∣∣∣ cd =
∏ℓ

i=0 g
xi
i ∧ ∃i :

xi

d ̸∈ Z
∧ d ∈ [0, D] ∧ xi ∈ Z

}
We define the advantage of A against the hardness of the (D, ℓ)-relaxed DLOG-relation as

Advrel-dlog(D,ℓ),A(λ) := Pr

(N,P,Q)← GenRSA(1λ); g0, · · · , gℓ ← Gen(QRN );
(c, d, x0, . . . , xℓ)← A(N, g0, . . . , gℓ) :

(c, d, x0, . . . , xℓ) ∈ RD,ℓ(g⃗)

 .

The following lemma is a simplification of Lemma A.13 of [30] sufficient for our purpose. Note
that ord(QRN ) = P ′Q′ and we assume that P ′, Q′ > 2λ+1.

Lemma 5. For all D ≤ 2λ+1 and every PPT adversary A we have that Advrel-dlog(D,ℓ),A(λ) = negl(λ)

under the strong RSA assumption.

Definition 4 (Decisional Diffie-Hellman). In a cyclic group G of prime order p, which are set
up w.r.t a security parameter λ ∈ N, the Decisional Diffie-Hellman (DDH) assumption in G holds if
for all PPT adversary A the advantage

Pr [G← G; a, b← Zp : A(G, aG, bG, abG) = 1]

−Pr [G← G; a, b, c← Zp : A(G, aG, bG, cG) = 1]

= negl(λ)

is negligible in λ.

Definition 5 (Strong RSA). Let λ ∈ N and (N,P,Q) ← GenRSA(1λ). The strong RSA (sRSA)
assumption holds if for all PPT A the advantage

Advs-rsaA (λ) := Pr

[
(N,P,Q)← GenRSA(1λ); y ← Z∗

N

(e, z)← A(N, y) : ze ≡ y mod N

]
.

is negligible in λ.

A.4 Explaining Random Group Elements as Random Strings

For our framework, we require commitments with uniform public parameters pp. For readability,
we allow pp (and also uniform random strings urs of NIZKs) to contain (uniform) group elements
g of prime-order groups G with known order p. This is without loss of generality because with
explainable sampling, we can explain g ← G as a random bitstring.
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A.5 Commitment Scheme

A commitment scheme is a PPT algorithm C = C.Commit such that

– C.Setup(1λ): generates the public parameters pp,
– C.Commit(pp,m): given the public parameters pp, message m ∈ Cmsg, computes a commitment

c ∈ Ccom with opening randomness d, and outputs the pair (c, d),
– Verify(pp, c,m, d): given the public parameters pp, message m ∈ Cmsg, and opening randomness

d, outputs a bit b ∈ {0, 1} which depends on the validity of the opening (m, d) with respect to
the commitment c.

Here, Cmsg, Crnd, Ccom, are message, randomness, and commitment spaces, respectively. If the public
parameters are uniform or explainable as per Appendix A.4 (i.e., Setup outputs some pp← {0, 1}ℓ
for ℓ ∈ N) we omit Setup without loss of generality.

Below, we define the correctness, hiding and binding properties of a commitment scheme.

Definition 6 (Correctness). A commitment scheme is correct, if for all pp← Setup(1λ),m ∈
Cmsg, r ∈ Crnd, (c, d)← Commit(pp,m; r), it holds that Verify(pp, c,m, d) = 1.

Definition 7 (Hiding). A commitment scheme is hiding if for any PPT adversary A, we have

AdvhideA (λ) =

∣∣∣∣∣∣Pr
pp← Setup(1λ), (m0,m1)← A(pp),
m0,m1 ∈ Cmsg, coin← {0, 1}
(c, d)← Commit(pp,mcoin),

: coin = A(c)

− 1

2

∣∣∣∣∣∣ = negl(λ).

Definition 8 (Binding). A commitment scheme is binding if for any PPT adversary A, we have

AdvbindA (λ) = Pr

pp← {0, 1}ℓC ,(c,m0,m1, d0, d1) ← A(pp),
Verify(pp, c,mb, db) = 1, b ∈ {0, 1}

: m0 ̸= m1 ∈ Cmsg

 = negl(λ).

Remark 3. A commitment scheme is said to be perfectly binding if for any (possibly unbounded) A,
it holds that AdvbindA (λ) = 0.

A.6 Signature Scheme

A signature scheme is a tuple of PPT algorithms S = (KeyGen,Sign,Verify) such that

– KeyGen(1λ): generates a verification key vk and a signing key sk,
– Sign(sk,m): given a signing key sk and a message m ∈ Smsg, deterministically outputs a

signature σ,
– Verify(vk,m, σ): given a verification key pk and a signature σ on message m, deterministically

outputs a bit b ∈ {0, 1}.

Here, Smsg is the message space. We define the standard notion of correctness and euf-cma security

Definition 9 (Correctness). A signature scheme is correct, if for all (vk, sk) ← KeyGen(1λ),
m ∈ Smsg, and σ ← Sign(sk,m), it holds that Verify(vk,m, σ) = 1.

Definition 10 (EUF-CMA). A signature scheme is euf-cma if for any PPT adversary A, we
have

AdveufA (λ) = Pr

[
(vk, sk)← KeyGen(1λ)
(m,σ)← ASign(sk,·)(vk)

: m /∈ L ∧ Verify(vk,m, σ) = 1

]
= negl(λ),

where L is the list of messages A queried to the Sign-oracle.
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A.7 Blind Signature Scheme

A blind signature scheme is a tuple of PPT algorithms PBS = (KeyGen,Sign,Verify) such that

– KG(1λ): generates the verification key bvk and signing key bsk,
– User(bvk,m): given verification key bvk and message m ∈ BSmsg, outputs a first message ρ1

and a state st,
– Signer(bsk, ρ1): given signing key bsk and first message ρ1, outputs a second message ρ2,
– Derive(st, ρ2): given state st and second message ρ2, outputs a signature σ,
– Verify(bvk,m, σ): given verification key bvk and signature σ on message m ∈ BSmsg, outputs a

bit b ∈ {0, 1}.

Here, BSmsg is the message spaces. We consider the standard security notions for blind signatures
[57]. Below, we define correctness, blindness under malicious keys, and one-more unforgeability of a
blind signature scheme. Moreover, we assume the state is kept implicit in the following for better
readability.

Definition 11 (Correctness). A blind signature scheme is correct, if for all messages m ∈ BSmsg,
(bvk, bsk)← KG(1λ), (ρ1, st)← User(bvk,m), ρ2 ← Signer(bsk, ρ1), σ ← Derive(st, ρ2), it holds that
Verify(bvk,m, σ) = 1.

Definition 12 (Blindness Under Malicious Keys). A blind signature scheme is blind under
malicious keys if for any PPT adversary A, we have

AdvblindA (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



(bvk,m0,m1)← A(1λ), coin← {0, 1},
(ρ1,b, stb) ← User(bvk,mb) for b ∈
{0, 1},
(ρ2,coin, ρ2,1−coin)← A(ρ1,coin, ρ1,1−coin),
σb ← Derive(stb, ρ2,b) for b ∈ {0, 1},
if ∃b s.t. Verify(bvk,mb, σb) = 0:

then σ0 = σ1 = ⊥,

: coin = A(σ0, σ1)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ).

Definition 13 (One-more Unforgeability). A blind signature scheme is one-more unforgeable
if for any Q = poly(λ) and PPT adversary A that makes at most Q signing queries, we have

Advomuf
A (λ) = Pr

[
(bvk, bsk)← KG(1λ)
{(mi, σi)}i∈[Q+1] ← ASigner(bsk,·)(bvk)

:
∀i ̸= j ∈ [Q+ 1] : mi ̸= mj

∧ Verify(bvk,mi, σi) = 1

]
= negl(λ).

A.8 Σ-Protocol

Let R be an NP relation with statements x and witnesses w. We denote by LR = {x | ∃w s.t. (x,w) ∈
R} the language induced by R. A Σ-protocol for an NP relation R for language LR is a tuple of
PPT algorithms Σ = (Init,Chall,Resp,Verify) such that

– Init(x,w): given a statement x ∈ LR, and a witness w such that (x,w) ∈ R, outputs a first flow
message (i.e., commitment) α and a state st, where we assume st includes x,w,

– Chall(): samples a challenge β ← CH (without taking any input),
– Resp(st, β): given a state st and a challenge β ∈ CH, outputs a third flow message (i.e.,

response) γ,
– Verify(x, α, β, γ): given a statement x ∈ LR, a commitment α, a challenge β ∈ CH, and a

response γ, outputs a bit b ∈ {0, 1}.

Definition 14 (Correctness). A Σ-protocol is correct, if for all (x,w) ∈ R, (α, st)← Init(x,w),
β ∈ CH, and γ ← Resp(st, β), it holds that Verify(x, α, β, γ) = 1.

Definition 15 (High Min-Entropy). A Σ-protocol has high min-entropy if for all (x,w) ∈ R
and (possibly unbounded) adversary A, it holds that

Pr[(α, st)← Init(x,w), α′ ← A(1λ) : α = α′] = negl(λ).
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Definition 16 (HVZK). A Σ-protocol is honest-verifier zero-knowledge (HVZK), if there exists
a PPT zero-knowledge simulator Sim such that the distributions of Sim(x, β) and the honestly
generated transcript with Init initialized with (x,w) are computationally indistinguishable for any
x ∈ LR, and β ∈ CH, where the honest execution is conditioned on β being used as the challenge.

Definition 17 (k-Special Soundness). A Σ-protocol is k-special sound, if there exists a deter-
ministic PT extractor Ext such that given k valid transcripts {(α, βi, γi)}i∈[k] for statement x with
pairwise distinct challenges (βi)i, outputs a witness w such that (x,w) ∈ R.

A.9 Non-Interactive Zero Knowledge

Let URS = {0, 1}ℓ be a set of uniform random strings for some ℓ ∈ N and SRS be some set of
structured random strings with efficient membership test 17. An NIZK for a relation R with common
reference string space CRS = SRS ×URS is a tuple of PPT algorithms (GenCRS,ProveH,VerifyH),
where the latter two are oracle-calling, such that:

– GenCRS(1λ): outputs a structured reference string srs ∈ SRS,
– ProveH(crs, x, w): receives a crs = (srs, urs) ∈ CRS, a statement x and a witness w, and outputs

a proof π,
– VerifyH(crs, x, π): receives a crs = (srs, urs) ∈ CRS, a statement x and a proof π, and outputs a

bit b ∈ {0, 1}.

We recall that LR = {x | ∃w : (x,w) ∈ R} denotes the language induced by R. If there is no crs
needed, i.e. CRS = ∅, we then omit crs as an input to Prove and Verify.

Definition 18 (Correctness). An NIZK is correct if for any crs = (srs, urs) with srs← GenCRS(1λ)
and urs← URS, (x,w) ∈ R, and π ← ProveH(crs, x, w), it holds that VerifyH(crs, x, π) = 1.

Definition 19 (Zero-Knowledge). An NIZK is zero-knowledge (ZK) if there exists a PPT
simulator Sim = (Simcrs,SimH,Simπ) such that for any PPT adversary A, it holds that

AdvzkA (λ) =

∣∣∣∣∣∣Pr
srs← GenCRS(1λ),

crs = (srs, urs),
AH,P(crs) = 1

− Pr

crs← Simcrs(1
λ),

crs = (srs, urs),
ASimH,S(crs) = 1

∣∣∣∣∣∣ = negl(λ),

where P and S are oracles that on input (x,w) return ⊥ if (x,w) /∈ R, and else output ProveH(crs, x, w)
or Simπ(crs, x) respectively. Note that the probability is taken over the randomness of Sim and A,
and the random choices of H and urs. Also, Simcrs,SimH and Simπ have a shared state.

We also define a notion of subversion zero-knowledge, inspired by the notion introduced in [11].
Informally, it guarantees that zero-knowledge holds even for a malicious crs.

Definition 20 (Subversion Zero-Knowledge). An NIZK is subversion zero-knowledge (Sub-ZK)
if there exists a PPT simulator Sim = (SimH,Simπ) such that for any PPT adversary A, it holds
that

Advsub-zkA (λ) =

∣∣∣∣∣∣Pr
 (srs, st)← AH(urs),

crs = (srs, urs),
AH,P(st) = 1 ∧ srs ∈ SRS

− Pr

 (srs, st)← ASimH(urs),
crs = (srs, urs),

ASimH,S(st) = 1 ∧ srs ∈ SRS

∣∣∣∣∣∣ = negl(λ),

where P and S are oracles that on input (x,w) return ⊥ if (x,w) /∈ R, and else output ProveH(crs, x, w)
or Simπ(crs, x), respectively. Note that the probability is taken over the randomness of Sim and A,
and the random choices of H and urs. Also, both SimH and Simπ have a shared state.

We define different notions of soundness. We remark that the soundness relation R̃ can be
different from the (correctness) relation R. If R̃ is not explicitly defined, we implicitly set R̃ = R.

Definition 21 (Adaptive Knowledge Soundness). An NIZK is adaptively knowledge sound
for relation R̃ if there exists PPT simulator SimCRS and extractor Ext such that
17 This membership test is required for our definition of subversion zero-knowledge. Note that in general it

is difficult to check that some srs was generated via GenCRS. (We allow that SRS is not equal to the
output space of GenCRS.)
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CRS Indistinguishability. For any PPT adversary A, we have

AdvcrsA (λ) =

∣∣∣∣Pr [srs← GenCRS(1λ), urs← URS,
crs = (srs, urs) : AH(crs) = 1

]
− Pr

[
(crs, td)← SimCRS(1λ) :

AH(crs) = 1

]∣∣∣∣ = negl(λ),

Knowledge Soundness. There exists positive polynomials pT, pP such that given oracle access
to any PPT adversary A (with explicit random tape ρ) that makes QH = poly(λ) random oracle
queries with

Pr[(crs, td)← SimCRS(1λ), (x, π)← AH(crs; ρ) : VerifyH(crs, x, π) = 1] ≥ µ(λ),

we have

Pr

(crs, td)← SimCRS(1λ),
(x, π)← AH(crs; ρ),
w ← Ext(crs, td, x, π, ρ, h⃗)

: (x,w) ∈ R̃

 ≥ µ(λ)− negl(λ)

pP(λ,QH)
,

where h⃗ are the outputs of H, and the probability is over the random tape ρ of A, the random tape
of SimCRS, and the random choices of H. Also, we require that the runtime of Ext is bounded by
pT(λ,QH) · Time(A).

We also adapt the standard notion of online-extractability in two ways. Instead of embedding
the online-extraction trapdoor td into crs, we allow that the extractor embeds it into specific parts
of statement. Also, we relax the requirements in the sense that only a partial witness w1 is extracted.
For extraction, we require that there exists a witness w0 such that (x, (w0, w1)) ∈ R̃.

Definition 22 (Partial Online Extractability). An NIZK is partially online-extractable for
relation R̃ with statements x = (x0, x1) and witnesses w = (w0, w1), where w0 ∈W0 and x0 ∈ X0

for some sets W0, X0, if for all PPT adversaries A, there exists a stateful PPT extractor Ext =
(Ext1,Ext2), such that

1. x0 ∼ UX0
is distributed uniform over X0 for (x0, td)← Ext1(1

λ) and
2. there exists positive polynomials pT, pP such that for any QH = poly(λ) and PPT adversary A

that makes at most QH random oracle queries with

Pr

 (x0, td)← Ext1(1
λ), crs← GenCRS(1λ),

{(x1,i, πi)}i∈[QS ] ← AH(crs, x0), xi ← (x0, x1,i) :

∀i ∈ [QS ] : Verify
H(crs, xi, πi) = 1

 ≥ µ(λ),

it holds that

Pr


(x0, td)← Ext1(1

λ), crs← GenCRS(1λ),
{(x1,i, πi)}i∈[QS ] ← AH(crs, x0), xi ← (x0, x1,i)

{w1,i ← Ext2(crs, td, xi, πi)}i∈[QS ] :

∀i ∈ [QS ] ∃w0,i ∈W0 : (xi, (w0,i, w1,i)) ∈ R̃

∧ VerifyH(crs, xi, πi) = 1

 ≥ µ(λ)− negl(λ)

pP(λ,QH)
,

where the runtime of Ext is upper bounded by pT(λ,QH) · Time(A).

Adaptive Subversion Soundness. We also define adaptive subversion soundness, where we
allow that srs can be maliciously set up by an adversary. Note that this notion does not require an
extractor for the witness.

Definition 23 (Statistical Adaptive Subversion Soundness). An NIZK is (statistically)
adaptively sound for relation R̃ inducing a language LR̃ if for any possibly unbounded A we have

AdvsndA (λ) := Pr

[
urs← URS,
(srs, x, π)← AH(1λ; urs))

:
crs← (srs, urs), x /∈ LR̃,

VerifyH(crs, x, π) = 1

]
≤ negl(λ),

where the probability is over the random coins of A and GenCRS, the random choices of urs, and
the random choices of H.
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Fiat-Shamir transformation. We recall the Fiat-Shamir transformation [37] to turn a Σ-protocol
into a NIZK. Sometimes, we require more involved variants of this transformations. In that case, we
provide the compiled NIZK explicitly.

Theorem 5. Let Σ = (Init,Chall,Resp,Verify) be a Σ-protocol that satisfies correctness, high-min
entropy, honest verifier zero-knowledge, and 2-Special Soundness. The Fiat-Shamir transformation
FS[Σ] = (GenCRS,ProveH,VerifyH) is described below:

– GenCRS(1λ): outputs the empty string ϵ as we do not require a common reference string and
omit crs as an input for other below algorithms,

– ProveH(x,w): receives a statement x and a witness w, runs (α, st)← Init(x,w), computes the
challenge β ← H(st, α), then computes γ ← Resp(st, β) and outputs π = (α, β, γ).

– VerifyH(x, π): receives a statement x and a proof π = (α, β, γ), and outputs b← Verify(x, α, β, γ).

In the ROM, FS[Σ] is a NIZK that is correct and satisfies adaptive knowledge soundness.

A.10 Pseudorandom Functions

Definition 24 (Pseudorandom Functions). Let X , Y and K be sets representing domain,
range and key space, respectively. We assume that they are implicitly indexed by a security parameter
λ ∈ N. Furthermore, let R be the set of all functions with domain X and range Y. A family
of functions {FK}K∈K that consists of efficiently computable functions FK : X → Y is called a
pseudorandom function (PRF) if for any PPT adversary A, the following advantage is negligible in
λ:

AdvPRFFK ,A(1
λ) :=

∣∣∣Pr[AFK(·) = 1]− Pr[AR(·) = 1]
∣∣∣ ,

where K ← K and R← R. The probability is taken over the choices of K,R and the random coins
of A.

B Deferred Content from Section 3

B.1 Alternative Algorithms

For the proof of security, we describe some “alternative” algorithms for signing and key generation.
First, we describe the alternate key generation algorithms:

Sfis.KeyGen1,0(1
λ, N, z) sample QS primes e1, . . . , eQS

← Se. Sample β ← Sa. Sample v, w ← Z∗
N .

Sample j ← {1, . . . , QS}. Set h1 := z2
∏

i̸=j ei , h2 := v2
∏

i ei , h := h−β
1 · w2

∏
i ei . Output

vk = (N,h, h1, h2) along with sk0,0 = (β, v, w, e1, . . . , eQS
, j)

Sfis.KeyGen1,1(1
λ, N, z) sample QS primes e1, . . . , eQS

← Se. Sample β ← Sa. Sample v, w ← Z∗
N .

Sample v, w ← Z∗
N . Sample j ← {1, . . . , QS}. Set h1 := v2

∏
i ei , h2 := z2

∏
i̸=j ei , h := h−β

2 ·
w2

∏
i ei . Output vk = (N,h, h1, h2) along with sk0,1 = (β, v, w, e1, . . . , eQS

, j)
Sfis.KeyGen0(1

λ, N, z) sample QS primes e1, . . . , eQS
← Se. Sample a, a′ ← {1, . . . , N2} and set

h1 := z2
∏

i ei , h2 := ha′

1 , h := ha
1 . Output vk = (N,h1, h2, h) along with sk1 = (a, a′, e1, . . . , eQS

).

Corresponding to these alternate key generation algorithms, we describe how to use the internal
state for generating signatures on hashes of messages m where k is a counter for the number of
signing queries.

Sfis.Sign1,0(β, v, w, e1, . . . , eQS
, j, k,m) If k ̸= j, sample ak ← Sa. Compute

yk :=w2
∏

i̸=k ei ·

(
z
2
∏

i ̸=j
i ̸=k

ei
)ak−β (

v2
∏

i̸=k ei
)ak+m

=
(
h · hak

1 · h
ak+m
2

) 1
ek
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For k = j, it sets ak = β and computes

yk :=w2
∏

i̸=k ei ·
(
v2

∏
i̸=k ei

)ak+m

=
(
h · hak

1 · h
ak+m
2

) 1
ek

Output σk = (ek, ak, yk).
Sfis.Sign1,1(β, v, w, e1, . . . , eQS

, j, k,m) For any k ̸= j, sample ak ← Sa and compute

yk :=w2
∏

i̸=k ei ·

(
z
2
∏

i ̸=j
i ̸=k

ei
)ak+m−β (

v2
∏

i̸=k ei
)ak

=
(
h · hak

1 · h
ak+m
2

) 1
ek

For k = j, it sets ak = β −m and computes

yk :=w2
∏

i̸=k ei ·
(
v2

∏
i̸=k ei

)ak+m

=
(
h · hak

1 · h
ak+m
2

) 1
ek

Sfis.Sign0(a, a
′, e1, . . . , eQS

, k,m) Sample ak ← Sa and compute

yk :=z2·(a+ak·a′+(ak+m))
∏

i̸=k ei

=
(
h · hak

1 · h
ak+m
2

) 1
ek

B.2 Proof of security

Theorem 6. If the sRSA assumption is (t, εRSA)-hard and the hash function H is (t, εcoll)-collision
resistant then the scheme described above is (t′ ≈ t, 6QSεRSA+εcoll+

QS

2λ−2 )-EUF-CMA secure against
an adversary that makes QS signing queries.

Proof. Let A be an adversary against the EUF-CMA security of the scheme that runs in time t′

and has advantage ε′ and makes QS queries to the signing oracle.
We denote by mi the ith message queried to the signing oracle by A, by σi = (ei, ai, yi) the ith

signature output by the signing oracle to A, and by m∗, σ∗ = e∗, a∗, y∗) we denote A’s forgery. We
show security through a series of games.

Game 1: Game 1 is the original EUF-CMA game.

Game 2: In Game 2 the game aborts if for any i, j mi ̸= mj it holds that H(mi) = H(mj) or if
H(mi) = H(m∗). We can bound the abort probability using the collision resistance, namely,

|Pr[Game 2 = 1]− Pr[Game 1 = 1]| ≤ Advcoll
B1

for an adversary B1 against the collision resistance of H.

Game 3: In Game 3, we introduce an abort condition in which our reduction will not be able
to simulate. At the end of the game, the game Game 3 samples a bit b and aborts if b = 0 and
e∗ ∈ {e1, . . . , eQS

} or if b = 1 and e∗ /∈ {e1, . . . , eQS
}. It is easy to see that

Pr[Game 3 = 1] ≥ 1

2
Pr[Game 2 = 1].
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Game 4: In Game 4, if b = 1, the Game samples an index j ∈ {1, . . . , QS}. It aborts if e∗ ̸= ej . It
holds that

Pr[Game 4 = 1] ≥ 1

QS
Pr[Game 3 = 1]

Game 5: In Game 5, if b = 1, the Game samples a bit b′. If b = 0 and aj = a∗ (where j is as defined
in Game 4), the game aborts. If b = 1 and aj +H(mj) = a∗ +H(m∗), the game aborts. It holds that

Pr[Game 5 = 1] ≥ 1

2
Pr[Game 4 = 1].

Game 6: In Game 6, we change sample b, b′, j at the beginning of the game. This is a purely
conceptual change, thus

Pr[Game 6 = 1] = Pr[Game 5 = 1]

Game 7: In Game 7 we change how the values aj are sampled during signature generation. If b = 1,
b′ = 0, instead of sampling aj ← Sa, it first samples β ← Sa and then sets aj = β. If b = 1 and
b′ = 1, it samples β ← Sa and sets aj = β −H(mj). A simple argument shows that the distribution
of aj in Game 7 has statistical distance at most 1/2λ from the distribution of a in Game 6.

Thus, we get that |Pr[Game 7 = 1]− Pr[Game 6 = 1]| ≤ 1
2λ

.

The Reduction: We now provide a reduction that simulates Game 7 and breaks the strong RSA
assumption.

On input (N, z ∈ Z∗
N ) ,the reduction behaves as follows:

First, it samples a bit b, b′ and an index j. If b = 0 (recall that in this case Game 7 aborts if
e∗ ∈ {e1, . . . , eQS

}), the reduction works as follows:

Setup. Runs Sfis.KeyGen0,b′(1
λ, N, z) to obtain vk, sk0,b′ It passes the public key (N,h, h1, h2) to

the adversary.
Signing Queries. For the kth signing query it runs Sfis.Sign0,b′(sk0,b′ , k,H(m)) to obtain σk =

(ek, ak, yk) and outputs σk.
Output Determination. When the adversary outputs a forgery m∗, σ∗ = e∗, a∗, y∗), the re-

duction can compute an ejth root of z. As Game 7 aborts unless e∗ = ej , the reduction
obtains

h
−aj

1 h
−(aj+H(mj))
2 · yejj = h = h−a∗

1 h
−(a∗+H(m∗))
2 y∗ej

solving for z using the preselected values from the public key yields:

z2
∏

i̸=j ei·(a∗−aj) =
(
v2

∏
i̸=j ei·(aj+H(mj)−a∗−H(m∗))

)ej
Which we can solve for a ejth root of z if gcd(ej , 2

∏
i̸=j ei · (a∗ − aj)) = 1 using Lemma 4. It

holds that the gcd is 1 as aj < e and a∗ < e by virtue of the range checks, and thus also their
difference is smaller than ej . As ej is prime this immediately implies coprimality. Furthermore,
all the other ei are coprime to ej , and ej is odd, so it is also coprime with 2.

For the case that b = 1, the reduction simulates as follows:

Setup. Given N and z ∈ ZN , the reduction runs Sfis.KeyGen1(1λ, N, z) to obtain vk = (N,h, h1, h2)
and sk1. It outputs the public key vk to the adversary.

Signing Queries. The reduction responds to the kth signing query by running Sfis.Sign1(sk1, k,H(m))
to obtain σk. It outputs the signature σk.
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Output Determination. When the adversary outputs its forgery m∗, σ∗ = e∗, a∗, y∗), the reduc-
tion can learn the following

y∗e
∗
= hha∗

1 h
a∗+H(m∗)
2 = z2·(a+a∗·a′+(a∗+H(m∗)))

∏
i̸=k ei

Computing a root of z follows as in [38] where the probability of success is (1− 1/r) where r is
the smallest prime factor dividing e∗. As e∗ is odd, r is at least 3.
Putting this together yields

AdvsRSAB ≥2

3
Pr[Game 7 = 1]

≥2

3

(
Pr[Game 6 = 1]− 1

2λ

)
≥2

3

(
1

4QS
Pr[Game 2 = 1]− 1

2λ

)
≥2

3

(
1

4QS

(
Pr[Game 1 = 1]− Advcoll

B1

)
− 1

2λ

)
=

1

6QS
Adveuf−cma

A − 1

6QS
Advcoll

B1
− 1

3 · 2λ−1

C Deferred Content from Section 4

C.1 Security Proof of CGrp

Proof. Correctness is straightforward.
Hiding is argued as follows. First, observe that c ← CRInt(pp, s⃗)

c
≈ CRInt(pp, 0⃗) under the

hiding property of CRInt. Also, the distribution of ĉ = x̂ · ĝs for s ← [0, U · 2λ] has a statistical
distance of at most 2−λ to the uniform distribution UĜ over Ĝ. Thus, we have ĉ

s
≈ UG. In total,

(ĉ, c)
c
≈ (UĜ,CRInt(pp, 0⃗)) for (ĉ, c)← CGrp.Commit(pp, x̂).

Binding follows from the binding property of CRInt and since x̂ = ĝsĉ−1 is uniquely determined
if s is fixed. In more detail, we reduce binding to the binding property of CRInt. Let A be an
adversary on the binding property of CGrp. First, obtain pp from a challenger of the CRInt binding
property. Set (cx, x̂

(0), x̂(1), r
(0)
x , r

(1)
x ) ← A(pp). Parse cx = (ĉ, c) and r

(b)
x = (s⃗ (b), r(b)). Output

(c, s⃗ (0), s⃗ (1), r(0), r(1)) to the challenger.
To analyze the success probability, assume that A is successful. Then, we have x̂(0) ̸= x̂(1) ∈ Ĝ

and CGrp.Verify(pp, cx, x̂
(b), r

(b)
x ) = 1 for b ∈ {0, 1}. Set s(b) =

∑ℓ
i=1 s

(b)
i Bi−1. If s(0) = s(1) := s, we

have that
ĉ = x̂(0) · ĝs = x̂(1)ĝs.

Thus, we have x̂(0) = x̂(1) which contradicts our assumption. Consequently, it holds that s(0) ̸= s(1).
By construction of s(0) and s(1), it must hold that s⃗ (0) ̸= s⃗ (1) (over Z). But since CRInt.Verify(pp, c, s⃗

(b), r(b))
= 1 for b ∈ {0, 1}, the values (c, s⃗ (0), s⃗ (1), r(0), r(1)) form a valid solution solution for the binding
game of CRInt.

C.2 Efficient Opening in Zero-Knowledge

We construct efficient NIZKs Πint and Πgrp to open CRInt and CGrp, respectively, in zero-knowledge.

Proof for Public Parameters. Before we detail both NIZKs, we construct an additional NIZK
Πgen to prove that MPed is statistically hiding under public parameters pp = (N,h, g⃗) for MPed
and g⃗ = (g1, · · · , gℓ). This is the case if ⟨h⟩ = ⟨gi⟩ ⊆ Z∗

N for all i ∈ [ℓ]. More generally, we construct
an NIZK Πgen with oracle Hgen for the relation

Rgen =
{
(x,w) | ∀i ∈ [ℓ] : gαi

i ≡ h mod N,hβi ≡ gi mod N
}
,
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where x = (N, ℓ, h, (gi)i∈[ℓ]) and w = ((αi, βi)i∈[ℓ]) for some ℓ ∈ N. Note that we also use Πgen

in Section 5. It is based on the Σ-protocol Σgen given in Figure 2 with challenge space [0, C] for
C = 2λ − 1, compiled into a NIZK via Fiat-Shamir. The random oracle is denoted by Hgen. Note
that no crs is required (i.e., SRS = URS = {⊥}).

– Πgen.GenCRS(1
λ): Outputs ⊥.

– Πgen.Prove
Hgen(crs, x, w): On input crs, statement x, and witness w, outputs the proof π computed

as follows

(ΩΣ , st)← Σgen.Init(x,w),

γΣ ← Hgen(x,ΩΣ),

τΣ ← Σgen.Resp(x, st, γΣ),

π ← (ΩΣ , γΣ , τΣ).

– Πgen.Verify
Hgen(crs, x, π): On input crs, statement x, and proof π, checks

Hgen(x,ΩΣ) = γΣ ,

Σped.Verify(x,ΩΣ , γΣ , τΣ) = 1,

where π = (ΩΣ , γΣ , τΣ), and outputs 1 iff all checks succeed.

Prover(x;w) Verifier(x)

1 : µ⃗α, µ⃗β ←
(
[0, N · 22λ]ℓ

)λ

2 : Ω⃗g ← g⃗µ⃗α , Ω⃗h ← hµ⃗β

Ω⃗g, Ω⃗h

3 : γ⃗ ← {0, 1}λ

γ⃗

4 : τ⃗α ← γ⃗ ◦ α⃗+ µ⃗α, τ⃗β ← γ⃗ ◦ β⃗ + µ⃗β

τ⃗α, τ⃗β

5 : check Ω⃗g ◦ hγ⃗ ≡ g⃗ τ⃗α mod N

6 : check Ω⃗h ◦ gγ⃗ ≡ hτ⃗β mod N

Fig. 2. Description of Σgen for x = (N, ℓ, h, g⃗) and w = (αi, βi)i∈[ℓ] with g⃗ = (g1, · · · , gℓ). We denote the
Hadamard product by ◦.

We first show that the Σ-protocol Σgen given in Figure 2 satisfies desired properties for the
Fiat-Shamir transform.

Theorem 7. The Σ-protocol Σgen given in Figure 2 satisfies correctness, 2-special soundness,
honest verifier zero-knowledge, and has high min-entropy.

Proof. For the commitment vectors Ω⃗g, Ω⃗h and the response vectors τ⃗α, τ⃗β , their i-th element is
denoted by Ω⃗g,i, Ω⃗h,i, τ⃗α,i, τ⃗β,i. First of all, Σgen has high min-entropy due to the fact that the space
[0, N · 22λ]ℓ for commitment vectors is exponentially large in λ. Correctness is straightforward,
noting that by construction, for x = (N, ℓ, h, g⃗) and w = (αi, βi)i∈[ℓ], for all i ∈ [ℓ]

Ω⃗g,i ◦ hγ⃗ = g
µ⃗α,i

i ◦ gαi·γ⃗
i = g

τ⃗α,i

i ; Ω⃗h,i · gγ⃗i = hµ⃗β,i ◦ hβiγ⃗ = h
τ⃗β,i

i .
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For 2-special soundness, given two valid transcripts (Ω⃗g, Ω⃗h), γ⃗
b, τ⃗ bα, τ⃗

b
β where b ∈ {0, 1} and γ0 ̸= γ1,

a deterministic polynomial-time extractor Ext can executes as follows: First, identify an index j s.t.
γ0
j ̸= γ1

j

1. For each i ∈ [ℓ], Ext sets αi :=
τ⃗0
α,i−τ⃗1

α,i

γ0
j−γ1

j
.

2. For each i ∈ [ℓ], Ext sets βi :=
τ⃗0
β,i−τ⃗1

β,i

γ0
j−γ1

j
.

3. Outputs w := (αi, βi)i∈[ℓ] as a witness for x = (N, ℓ, h, g⃗).

The output w by Ext is well defined and indeed a witness of x because γ0 ̸= γ1, γ0
j − γ1

j ∈ {−1, 1}
(and thus has an efficiently computable multiplicative inverse) andΩ⃗g,i · hγ0

j = g
τ⃗0
α,i

i

Ω⃗g,i · hγ1
j = g

τ⃗1
α,i

i

;

Ω⃗h,i · g
γ0
j

i = hτ⃗0
β,i

Ω⃗h,i · g
γ1
j

i = hτ⃗1
β,i

⇒

hγ0
j−γ1

j = g
τ⃗0
α,i−τ⃗1

α,i

i

g
γ0
j−γ1

j

i = hτ⃗0
β,i−τ⃗1

β,i

.

A PPT simulator Sim for honest verifier zero-knowledge works as follows:

1. For each i ∈ [ℓ]

– Sim samples the challenge γ⃗ ← {0, 1}λ as well as the i-th responses τ⃗α,i, τ⃗β,i ← [0, N · 22λ].
– Sim computes Ω⃗g,i := g

τ⃗α,i

i (hγ⃗)−1 and Ω⃗h,i := hτ⃗β,i ◦ (gγ⃗i )−1. The commitments are defined
Ω⃗g := (Ω⃗g,i)i∈[ℓ], Ω⃗h := (Ω⃗h,i)i∈[ℓ].

– Output (Ω⃗g, Ω⃗h, γ, τ⃗α, τ⃗β).

For any x ∈ LR, i.e. ⟨h⟩ = ⟨gi⟩ ⊆ Z∗
N for all i ∈ [ℓ], the simulator Sim(x,C) outputs a valid

transcript that is distributed identically to the honestly generated transcript with Init initialized

with (x,w). We use the fact that because ⟨h⟩ = ⟨gi⟩, it holds that Ω⃗g,i :=
g
τ⃗α,i
i

hγ ∈ ⟨gi⟩ and
Ω⃗h,i :=

hτ⃗β,i

gγ
i
∈ ⟨h⟩ having the same distributions thanks to how Sim samples γ, τ⃗α,i, τ⃗β,i. The proof

is completed. ⊓⊔

We now show that the Πgen satisfies statistical adaptive subversion soundness, zero-knowledge,
and correctness.

Theorem 8. Πgen satisfies statistical adaptive subversion soundness, zero-knowledge, and correct-
ness.

Proof.

Correctness. Correctness directly follows from the correctness of the underlying Σ-protocol.

Soundness. As the CRS of this protocol is empty, it suffices to consider an adversary A that outputs
a pair (x, π) for x /∈ LR. Consider an arbitrary x /∈ LR, i.e. ⟨h⟩ ≠ ⟨gi⟩ for some i ∈ [ℓ]. W.l.o.g. we
consider the case that ⟨h⟩ ̸⊆ ⟨gi⟩ (the argument for the other direction is symmetrical). This in
particular means h /∈ ⟨gi⟩. Thus, for any value Ωg,i,j ∈ Z∗

N it cannot hold that both Ωg,i,j · h ∈ ⟨gi⟩
as well as Ωg,i,j ∈ ⟨gi⟩. We consider a hash query made by the statistical soundness adversary. The
adversary submits vectors Ω⃗g, Ω⃗h to the random oracle. By what we saw above, for each entry
Ω⃗g,i,j , it holds that either Ωg,i,j ·h ∈ ⟨gi⟩ or Ωg,i,j ∈ ⟨gi⟩ (if neither is the case the adversary cannot
output a proof using this hash query). As the hash oracle is a random oracle, with probability
≤ 1

2 , the j-th entry of the hash response is bj such that Ωg,i,j · hb ∈ ⟨gi⟩. As the bj are sampled
uniformly at random by the random oracle, it follows that the probability that for all j ∈ [λ],
Ωg,i,j · hb ∈ ⟨gi⟩ is ≤ 1

2λ
. Union bounding over all QHgen hash queries made by the adversary yields

that AdvsndA (λ) ≤ QHgen

2λ
.

Zero-knowledge. The Zero-Knowledge property directly follows from the honest verifier zero-
knowledge property of the Σ-protocol and the Fiat-Shamir transform.
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Efficient Proof of Opening for CRInt. We construct a NIZK Πint that allows to open CB⃗,T
RInt in

zero-knowledge for arbitrary B ∈ N and slack T = 2λ+1L, where L ∈ N is the masking overhead for
rejection sampling. Note that the size of T and B⃗ impact the size of the underlying group G.

To construct Πint, we compile a Schnorr-style Σ-protocol with challenge space [0, C] for C := 2λ−1
using Fiat-Shamir with abort. To ensure (relaxed) range membership we use techniques from
[31, 30]. Roughly, we add an MPed commitment c to m⃗ that in conjunction with a size check
ensures that the extracted integers are in the relaxed range [−B⃗T, B⃗T ]. The public parameters
ppMPed = (N,h, g1, · · · , gℓ) for MPed constitute the srs. To obtain subversion zero-knowledge, we
add a proof πgen generated via Πgen that ⟨h⟩ = ⟨gi⟩ for all i ∈ [ℓ] to ensure that MPed is hiding even
for a malicious ppMPed. We denote by Hgen the hash function for Πgen.

Formally, the zero-knowledge relation is

R = {(x,w) | (c, d) = CRInt.Commit(m⃗; r), m⃗ ∈ [0, B⃗]}

for x = (pp, c) with c = (C⃗, F ) and w = (m⃗, r), where d = r ∈ Zp. The soundness relation is

R̃ = {(x,w) | CRInt.Verify(pp, c, m⃗, r)}.

The underlying Σ-protocol Σint is given in Figure 3. Note that the crs is included in the statement
of Σint for technical reasons. The NIZK Πint with hash function Hint : {0, 1}∗ → [0, C], urs length
ℓint = 0 and

SRS =
{
(ppMPed, πgen) |ppMPed = (N,h, g⃗) ∈ N× (Z∗

N )ℓ+1,

Πgen.Verify
Hgen(xgen, πgen), xgen = (N, ℓ, h, g⃗)

}
is defined as follows. Note that membership checks for SRS are efficient by design.

– Πint.GenCRS(1
λ): On input 1λ, samples ppMPed = (N,h, g⃗)← MPed.Setup(1λ). Then, sets πgen ←

Πgen.Prove
Hgen(wgen, xgen) for xgen = (N, ℓ, h, g⃗) and appropriate wgen (which can be computed

explicitly during MPed.Setup). Outputs the structured reference string srs = (ppMPed, πgen).
– Πint.Prove

Hint(crs, x, w): Computes a proof π as follows for xσ = (x, crs).

(ΩΣ , st)← Σint.Init(x,w),

γΣ ← Hint(xΣ , ΩΣ),

τΣ ← Σint.Resp(xΣ , st, γΣ),

π ← (ΩΣ , γΣ , τΣ).

Restarts if if Σint.Resp aborted, else outputs π.
– Πint.Verify

Hgen(crs, x, π): On input crs, statement x, and proof π, sets xΣ = (x, crs) and checks

Hint(xΣ , ΩΣ) = γΣ ,

Σped.Verify(xΣ , ΩΣ , γΣ , τΣ) = 1,

where π = (ΩΣ , γΣ , τΣ), and outputs 1 iff all checks succeed.

We show that Πint is secure. We give a brief sketch. Correctness is clear (if the abort probability
is sufficiently low). For soundness, we use the forking lemma to obtain 2 accepting transcripts. Then,
we compute openings for CRInt as usual. Due to Lemma 5 and the shortness checks, the opening is in
the right interval. For subversion zero-knowledge, observe that for any srs ∈ SRS, the commitment
c is hiding (under soundness of Πgen).

Theorem 9. The NIZK is correct if (1− (1− 1
L )

ℓ)−1 = poly(λ), adaptively knowledge sound for R̃
and subversion zero-knowledge.

Proof. We give a proof sketch for correctness and subversion zero-knowledge (as the proofs are
straightforward) and give a detailed proof for soundness.
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Prover(x;w) Verifier(x)

1 : c← hr ·
ℓ∏

i=1

gmi
i mod N for r ← [0, N · 2λ]

2 : µr ← Zp, µr ← [0, CN · 22λ]

3 : µ⃗m ← [0, (B⃗C + 1)L]

4 : ΩF ← µrH, Ω⃗C ← µ⃗xH + µrG⃗

5 : Ωc ← hµr ·
ℓ∏

i=1

g
(µm)i
i mod N

c,ΩF , Ω⃗C , Ωc

6 : γ ← [0, C]

γ

7 : τ⃗m ← γm⃗+ µ⃗m

8 : check τ⃗m ∈ [B⃗C, (B⃗C + 1)L]

9 : τr ← γr + µr mod p, τr ← γr + µr

τ⃗m, τr, τr

10 : check τ⃗m ∈ [0, (B⃗C + 1)L]

11 : check ΩF + γF = τrH

12 : check ΩC + γC⃗ = τ⃗mH + τrG⃗

13 : check Ωc · (c)γ = hτr ·
ℓ∏

i=1

g
(τm)i
i mod N

Fig. 3. Description of Σint, an efficient Σ-protocol for opening CRInt. Here, x = (pp, C⃗, F, crs) and w = (m⃗, r).
Also, crs = (N,h, g⃗, πgen) for g⃗ = (g1, · · · , gℓ). If a check fails, the party aborts.

Correctness. Note that a single run succeeds with probability 1− (1− 1
L )

ℓ. Thus, proof generation
runs in time O((1 − (1 − 1

L )
ℓ)−1) in expectation. In case of no abort, the verification equations

verify by construction.

Subversion zero-knowledge. This follows with standard arguments. We give a sketch and omit
details. Observe that for any srs ∈ SRS, the commitment c is hiding (under soundness of Πgen).
Also, τ⃗m leaks no information about m⃗ due to rejection sampling (cf. Appendix A.2) and τr, τr are
distributed as random vectors over Zp. Further, ΩF , Ω⃗C , Ωc is determined by γ, c and τ⃗m, τr, τr
(due to the verification equations). Thus, a proof leaks no information about the witness w except
with negligible probability.

Adaptive knowledge soundness. For soundness, we obtain two valid transcripts tr = (α, γ, ω),
tr ′ = (α, γ′, ω′) with shared α = (c,ΩF , Ω⃗C , Ωc) but distinct challenges γ ≠ γ′ via the forking
lemma (cf. Appendix A.2). Parse ω = (τ⃗m, τr, τr) and ω′ = (τ⃗m′ , τr′ , τr′). Let us denote ∆m⃗ =
τ⃗m − τ⃗m′ , ∆r = τr − τr′ , ∆r = τr − τr′ , and ∆γ = γ − γ′ ≠ 0. Without loss of generality, we have
∆γ ∈ [0, C]. Since both transcripts are valid (with shared α = α′), we have

ΩF = τrH − γF = τr′H − γ′F
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Rearranging both terms yields

τrH − τr′H = −γ′F + γF

=⇒ ∆γF = ∆rH

=⇒ F =
∆r

∆γ
H

Similarly, we obtain

C⃗ =
∆m⃗

∆γ
H +

∆r

∆γ
G⃗

Thus, m⃗ := ∆m⃗
∆γ and r = ∆r

∆γ form a valid opening for c if m⃗ ∈ [−B⃗T, B⃗T ]. For this, we use the
properties of c. As above, we obtain

hτr ·
ℓ∏

i=1

g
(τm)i
i · (c)−γ = hτ

r′ ·
ℓ∏

i=1

g
(τm′ )i
i · (c)−γ′

mod N

=⇒ h∆r ·
ℓ∏

i=1

g
(∆m)i
i = (c)∆γ mod N

Recall that ∆γ ∈ [0, C] with C = 2λ − 1. Under Lemma 5, we have ∆r/∆γ, (∆m)i/∆γ ∈ Z. Also,
since (τm)i, (τm′)i ∈ [0, (BiC+1)L] we have that |(∆m)i/∆γ| ≤ 2(BiC+1)L. Since 2(BiC+1)L ≤
2λ+1BiL = TiL, we have m⃗ ∈ [−B⃗T, B⃗T ] as desired.

Efficient Proof of Opening for CGrp. A commitment of CGrp consists of a Pedersen commitment
(in Ĝ) and a CRInt commitment. If CRInt is instantiated as in Section 4.2, it is straightforward to
obtain a NIZK for opening CGrp in zero-knowledge using the techniques from Appendix C.2 (since
the decomposition of s is linear). We omit details.

D Deferred content from Section 5

D.1 Number of primes in [25λ, 25λ + 23λ]

We prove that there are Ω(22λ) in the interval [25λ, 25λ + 23λ]. In the following we denote by π(x)
the number of primes at most x, for any x ∈ R is a function of λ. In the following we use ∼ to write
the limit as λ→∞. We want to estimate

π(25λ + 23λ)− π(25λ) (7)

which is the number of primes in [25λ, 25λ + 23λ]. First, from a recent result [54], which refines the
celebrated Huxley’s bound [56, 53], we have

π(x+ y)− π(x) ∼ y/ log x

for Huxley’s range x7/12 ≤ y ≤ x. Setting x = 25λ and y = 23λ, while noticing that 7/12 < 3/5
yields

π(25λ + 23λ)− π(25λ) ∼ 23λ

5λ
. (8)

The approximation Equation (8) means that for any ϵ > 0, there exists λ0 ∈ R>0 such that for
sufficiently large λ > λ0, the number of primes between 25λ and 25λ + 23λ satisfies∣∣∣∣π(25λ + 23λ)− π(25λ)− 23λ

5λ

∣∣∣∣ ≤ ϵ . (9)
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We choose ϵ := 1
5 > 0 and (9) implies: for sufficiently large λ∣∣∣∣π(25λ + 23λ)− π(25λ)− 23λ

5λ

∣∣∣∣ ≤ 1

5
⇒ 23λ

5
− 1

5
≤ π(25λ + 23λ)− π(25λ)

⇒ 23λ − λ

5λ
≤ π(25λ + 23λ)− π(25λ) .

In other words, we have

π(25λ + 23λ)− π(25λ) = Ω

(
23λ − λ

λ

)
= Ω

(
22λ
)

and the claim is proved.

D.2 Proof of Lemma 1

Proof. We write N =
∏k

i=1 p
νi
i for some k ∈ N and pi ∈ Se where pi > 2 as N is odd. We denote

by ℓ(λ) : N→ N a polynomial dictating the bit length of N . Then, since 3 < N it holds that

2ℓ(λ) > N > ϕ(N) =

k∏
i=1

pνi−1
i (pi − 1)

>

k∏
i=1

2 > 2k (10)

and thus k < ℓ(λ), i.e. the number of distinct prime factors of ϕ(N) is at most ℓ(λ).
Moreover, we have ⟨ge⟩ ⊊ ⟨g⟩ if and only if e | ord(g). Because G = ⟨g⟩ ⊆ Z∗

N , we have
ord(g) | ϕ(N) and from (10) it follows that the number of distinct prime factors of ord(g) is also at
most ℓ(λ). Consequently, this implies

Pr [⟨ge⟩ ⊊ ⟨g⟩ : e← Se] ≤ Pr [e | ord(g) : e← Se]

≤ k

|Se|
= O

(
ℓ(λ)

2λ

)
= negl(λ)

by the fact that k < ℓ(λ), Se contains at least Ω(2λ), as well as ℓ(λ) is a polynomial in λ18. The
proof is completed. ⊓⊔

D.3 Blindness Proof of BSfis

Proof. We proceed by a sequence of hybrids. We denote by AdvblindA,Game i(λ) to be the probability
that a PPT adversary A outputs 1 in Game i. Without loss of generality, we assume that all the
check steps are passed during the execution.

Game 1: We start with the game following Definition 12 where coin = 0.

Game 2: This hybrid is the same as Game 1, except that we use the subversion zero-knowledge
simulator Simfis = (SimH,fis,Simπ,fis) of Πfis to simulate πfis in the derived signature σ = (πfis, cI).
Game 2 differs from Game 1 in the following details. We program the unstructured reference string
ursfis in (ursped, ursfis, ursgen, urssub)← Hurs(0) together with honest ursped, ursgen, urssub ∈ URS. The
blindness adversary A also sets up srszkp for zkp ∈ {ped, fis, gen, sub}. The common reference strings
are defined, in particular crsfis = (srsfis, ursfis) along with crsped, crsgen, crssub in bvk. We program
Hfis by SimH,fis for further RO queries. Then, run πfis ← Simπ,fis(crsfis, xfis). The following Lemma 6
argues that Game 2 and Game 1 are indistinguishable. In particular, for any blindness adversary A,
there exist PPT B1,B2,B3 so that

|AdvblindA,Game 2(λ)− AdvblindA,Game 1(λ)| ≤ AdvsndB1,Πsub
(λ) + AdvsndB2,Πgen

(λ) + Advsub-zk
B3,Πfis

(λ)

and is negligible in λ.
18 In our blind signature scheme BSfis (Figure 1) we set ℓ(λ) := 2λ.
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Lemma 6. Under the subversion zero-knowledge of Πfis as well as the adaptive soundness of Πsub

and Πgen, the games Game 2 and Game 1 are indistinguishable. for any blindness adversary A,
there exist PPT B1,B2,B3 so that

|AdvblindA,Game 2(λ)− AdvblindA,Game 1(λ)| ≤ AdvsndB1,Πsub
(λ) + AdvsndB2,Πgen

(λ) + Advsub-zkB3,Πfis
(λ) .

Proof. By construction, with respect to the relation Rfis, the values e, (cI , dI), rI determined by the
user satisfy: 

e ≡ 1 mod 2

(cI , dI) = CRInt.Commit(ppI , (a, e− E); rI) = 1,

e ∈ Se
.

We also recall that c = hm
2 · gre mod N in the first message to the blindness adversary A and

y ← z · g−r mod N during the signature derivation are both computed by the user. Moreover, we
note that since all the check steps are passed during the execution, it holds a ∈ Sa as a part in the
relation Rfis. Now, using the simulation as described in Game 2, there are three cases to treat as
follows:

Case 1: Suppose that xfis /∈ LRfis
and ye ̸≡ h · ha

1 · ha+m
2 mod N . This implies

ye ̸≡ h · ha
1 · ha+m

2 mod N

⇒ ze · g−re ̸≡ h · ha
1 · ha+m

2 mod N

⇒ ze ̸≡ h · ha
1 · hm

2 · gre · ha
2 mod N

⇒ ze ̸≡ h · ha
1 · c · ha

2 mod N

⇒ z ̸≡ (h · ha
1 · c · ha

2)
d mod N

Therefore, we can define z′ := h · ha
1 · c · ha

2 mod N to obtain an instance xsub = (z,N, z′) that
breaks the soundness of Πsub. We recall that the check Πsub.Verify

Hsub(crssub, xsub, πsub) = 1 is
supposed to hold when the user derives the signature, without loss of generality. We provide a
PPT adversary B1 agaisnt the soundness of Πsub that outputs xsub = (z,N, z′) as follows:
– B1 simulates Game 2 by programming the unstructured reference string ursfis in Hurs(0)

together with honest ursped, ursgen ∈ URS. Then B1 receives urssub from its soundness
challenger.

– The blindness adversary A sets up srszkp for zkp ∈ {ped, fis, gen, sub}. The common reference
strings are defined, in particular crsfis = (srsfis, ursfis) along with crsped, crsgen, crssub in bvk.

– B1 simulates the rest of Game 2 to A: computes then sends (c, cZ , πped), simulates Hfis and
queries the RO for other Hsub,Hped queries.

– As soon as A outputs (z, a, πsub), B1 defines z′ := h · ha
1 · c · ha

2 mod N and outputs the
instance xsub = (z,N, z′) to its challenger against the soundness of Πsub.

The probability of this case is bounded by AdvsndB1,Πsub
(λ) for some PPT B1 against the soundness

of Πsub.
Case 2: Suppose that xfis /∈ LRfis

and ye ≡ h ·ha
1 ·ha+m

2 mod N but y /∈ ⟨h1⟩. Due to the hypotheses
that ye ≡ h · ha

1 · ha+m
2 mod N and y /∈ ⟨h1⟩, we have ⟨h1⟩ ̸= ⟨h⟩ or ⟨h1⟩ ̸= ⟨h2⟩. Recalling

that without loss of generality we are supposing all the check steps are passed during the
execution, in particular Πgen.Verify

Hgen(crsgen, xgen, πgen) = 1. This means we obtain an instance
(N, 3, g, (h, h1, h2)) that breaks the soundness of Πgen.
We provide a PPt adversary B2 breaking the soundness of Πgen as follows:
– B2 simulates Game 2 by programming the unstructured reference string ursfis in Hurs(0)

together with honest ursped, urssub ∈ URS. Then B2 receives ursgen from its soundness
challenger.

– The blindness adversary A sets up srszkp for zkp ∈ {ped, fis, gen, sub}. The common reference
strings are defined, in particular crsfis = (srsfis, ursfis) along with crsped, crsgen, crssub in bvk.

– Specifically, as soon as A outputs

bvk = (crsfis, crsped, crsgen, crssub, N, h, h1, h2, g, πgen)

B2 outputs the instance (N, 3, g, (h, h1, h2)) to its challenger against the soundness of Πgen.
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Hence, the probability of this case is bounded by AdvsndB2,Πgen
(λ) for some PPT B2 against the

soundness of Πgen.
Case 3: Finally, suppose that xfis ∈ LRfis

. The adversary A can be used to construct a PPT B3
against the subversion zero-knowledge (S-ZK) game of Πfis as below:
– B3 receives ursfis from the S-ZK challenger and program ursfis intp the output of Hurs(0),

together with honest ursped, ursgen, urssub ∈ URS.
– The blindness adversary A sets up crsfis as part of bvk. B3 parses crsfis = (srsfis, ursfis) and

outputs srsfis to the S-ZK challenger for Πfis.
– The blindness game for A is simulated by B3: computes then sends (c, cZ , πped) to A,

simulates Hfis and queries the RO for other Hsub,Hped queries, receives (z, a, πsub) from A.
At the step of derived signature, B3 queries its S-ZK challenger on

xfis = (ppI , N, h1, h2, h,m, cI), wfis = (e, a, y, rI , dI)

to get πfis. We note that B3 possesses the witness wfis throughout the signing session that is
simulated to A (see Figure 1). Then B3 outputs (πfis, cI) as the derived signature.

– B3 outputs what A outputs.
We argue that B3 is breaking S-ZK of Πfis:
– Following Definition 20, Game 2 corresponds to the simulated case in the S-ZK game for

Πfis, where B3 receives ursfis and outputs a possibly subverted srsfis, then interacts with
SimH,fis. The proofs in the derived signatures by B3 during signing sessions with A are
simulated by πfis ← Simπ,fis(crsfis, xfis), where crsfis = (srsfis, ursfis).

– On the other hand Game 1 correspond to the real case in Definition 20, where the adversary
receives ursfis and output a possibly subverted srsfis, then interacts with H. The proofs in the
derived signatures by B3 during signing sessions with A are computed by ProveH(crs, x, w)
where crsfis = (srsfis, ursfis).

Conditioned on the foregoing case, the advantage that A can distinguish Game 2 from Game 1
is bounded by Advsub-zk

B3,Πfis
(λ) against the subversion zero-knowledge property of Πfis.

Totally, the probability that A can distinguish Game 2 from Game 1 is bounded by

AdvsndB1,Πsub
(λ) + AdvsndB2,Πgen

(λ) + Advsub-zk
B3,Πfis

(λ)

for PPT adversaries B1,B2,B3 as described above. Assuming the subversion zero-knowledge of Πfis

as well as the adaptive soundness of Πsub and Πgen against all such PPT B1,B2,B3, Game 2 are
indistinguishable from Game 1. ⊓⊔

Game 3: This hybrid is the same as Game 2, except that we make cI independent of the blind-
ness adversary’s response (z, a, πsub). More specifically, we change the computation (cI , dI) ←
CRInt.Commit(ppI , (0, 0), rI) for rI ← CRInt.Crnd. We argue that this change is indistinguishable using
the fact that rI is information theoretically hidden thanks to the simulation of πfis from Game 2 as
well as the hiding property of CRInt. Indeed, we construct a simulator B against the hiding game of
CRInt that simulates Game 3. At the time of computing cI , B outputs two messages (a, e− E) and
(0, 0) when interacting with the hiding game’s challenger, to receive cI . Finally, B uses cI in the
derived signature σ = (πfis, cI) to the blindness adversary A and outputs what A outputs. We have

|AdvblindA,Game 3(λ)− AdvblindA,Game 2(λ)| ≤ AdvhideB,CRInt
(λ)

and is negligible in λ.

Game 4: This hybrid is the same as Game 3, except that we use the subversion zero-knowledge
simulator Simped = (SimH,ped,Simπ,ped) of Πped to simulate πped in the first message (c, cZ , πped).
Game 4 differs from Game 3 in the following details. We program the unstructured reference string
ursped in (ursped, ursfis, ursgen, urssub)← Hurs(0) together with honest ursfis, ursgen, urssub ∈ URS. The
blindness adversary A also sets up srszkp for zkp ∈ {ped, fis, gen, sub}. The common reference
strings are defined, in particular crsped = (srsped, ursped) along with crsfis, crsgen, crssub in bvk. We also
program Hped by SimH,ped for further RO queries. We afterwards run πped ← Simπ,ped(crsped, xped).
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The following Lemma 7 argues that this simulation of πped is indistinguishable from the real proofs.
The following Lemma 7 argues that Game 4 and Game 3 are indistinguishable. In particular, for
any blindness adversary A, there exist PPT B1,B2 so that

|AdvblindA,Game 4(λ)− AdvblindA,Game 3(λ)| ≤ AdvsndB1,Πgen
(λ) + Advsub-zk

B2,Πped
(λ)

and is negligible in λ.

Lemma 7. Under the subversion zero-knowledge of Πped as well as the adaptive soundness of
Πgen, the games Game 4 and Game 3 are indistinguishable. For any blindness adversary A, there
exist PPT B1,B2 so that

|AdvblindA,Game 4(λ)− AdvblindA,Game 3(λ)| ≤ AdvsndB1,Πgen
(λ) + Advsub-zkB2,Πped

(λ) .

Proof. By construction, with respect to the relation Rped, the values m, r, (cZ , dZ) determined by
the user satisfy: 

CZ.Verify(pp, cZ , (m, r), dZ) = 1

m ∈ [0, 2λ − 1]

r ∈ [0, S]

.

We recall that c = hm
2 · gre mod N is computed by the user in this Game 4, as part of the first

message that is sent to the adversarial signer. Now, using the simluation as described in Game 2,
there are three cases to treat as follows:

Case 1 Suppose xped /∈ LRped
and c /∈ ⟨g⟩. This implies ⟨g⟩ ̸= ⟨h2⟩. As we are supposing

Πgen.Verify
Hgen(crsgen, xgen, πgen) = 1, without loss of generality so that all check pass, the

instance (N, 3, g, (h, h1, h2)) breaks the soundness of Πgen. We provide a PPT adversary B1
breaking the soundness of Πgen as follows:
– B1 simulates Game 4 by programming the unstructured reference string ursped in Hurs(0)

together with honest ursfis, urssub ∈ URS. Then B1 receives ursgen from its soundness
challenger.

– The blindness adversary A sets up srszkp for zkp ∈ {ped, fis, gen, sub}. The common reference
strings are defined, in particular crsped = (srsped, ursped) along with crsped, crsgen, crssub in
bvk.

– Specifically, as soon as A outputs

bvk = (crsfis, crsped, crsgen, crssub, N, h, h1, h2, g, πgen)

B1 outputs the instance (N, 3, g, (h, h1, h2)) to its challenger against the soundness of Πgen.
Hence, the probability of this case is bounded by AdvsndB1,Πgen

(λ) for some PPT B1 against the
soundness of Πgen.

Case 2 Suppose xped ∈ LRped
. The adversary A can be used to construct a PPT B2 against the

subversion zero-knowledge (S-ZK) game of Πped aas follows:
– B2 receives ursped from the S-ZK challenger and program ursped intp the output of Hurs(0),

together with honest ursfis, ursgen, urssub ∈ URS.
– The blindness adversary A sets up crsped as part of bvk. B2 parses crsped = (srsped, ursped)

and outputs srsped to the S-ZK challenger for Πped.
– The blindness game for A is simulated by B2. First of all B2 queries its S-ZK challenger on

xped = (pp, N, e, h2, g, c, cZ), wped = (m0, r, dZ)

to get πped. We note that B2 possesses the witness wped, where m0 := H(m0), throughout
the signing session that is simulated to A (see Figure 1). Then B2 sends (c, cZ , πped) to A,
queries the RO for other Hsub,Hfis queries, receives (z, a, πsub) from A. Finally, B2 derives
and outputs (πfis, cI) as the derived signature.

– B2 outputs what A outputs.
We argue that B2 is breaking S-ZK of Πped:
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– Following Definition 20, Game 4 corresponds to the simulated case, where the adversary
receives ursped and outputs a possibly subverted srsped, then interacts with SimH,ped. The
proofs in the derived signatures by B2 during signing sessions with A are simulated by
πped ← Simπ,ped(crsped, xped), where crsped = (srsped, ursped).

– On the other hand Game 3 correspond to the real case in Definition 20, where the adversary
receives ursped and output a possibly subverted srsped, then interacts with H. The proofs in the
derived signatures by B2 during signing sessions with A are computed by ProveH(crs, x, w)
where crsped = (srsped, ursped).

Conditioned on the foregoing case, the advantage that A can distinguish Game 4 from Game 3
is bounded by Advsub-zk

B2,Πped
(λ) against the subversion zero-knowledge property of Πped.

Totally, the probability that A can distinguish Game 4 from Game 3 is bounded by

AdvsndB1,Πgen
(λ) + Advsub-zk

B2,Πped
(λ)

for some PPT B1,B2. Assuming the subversion zero-knowledge of Πped as well as the adaptive
soundness of Πgen against all such PPT B1,B2, Game 4 are indistinguishable from Game 3. ⊓⊔

Game 5: This hybrid is the same as Game 4, except that we replace c in the first user’s message by
c← ⟨g⟩. This transition is statistical. By the union bound, the advantage of any possibly unbounded
adversary A to distinguish between this Game 5 and the previous Game 4 can be bounded by
considering two cases:

Case 1 The replacement c← ⟨g⟩ is distinguishable from the previous computation

c = hm
2 · gre mod N

in Game 4 because ⟨g⟩ ≠ {hx
2 ·gy mod N | x, y ∈ N}. This implies that ⟨h2⟩ ≠ ⟨g⟩ and under our

hypothesis that Πgen.Verify
Hgen(crsgen, xgen, πgen) = 1, this implies the adversary A can output

(N, 3, g, (h, h1, h2)) that breaks the soundness of Πgen. We provide a PPT adversaary B1 breaking
the soundness of Πgen in the same manner as Case 1 in Game 4. The probability of this case is
bounded by AdvsndB1,Πgen

(λ) for some PPT B1 against the soundness of Πgen.
Case 2 Else, suppose that ⟨h2⟩ = ⟨g⟩. By Lemma 1 under the fact that HP is uniform over Se

where |Se| = Ω(22λ), with overwhelming probability we have ⟨gre⟩ = ⟨g⟩. This means we can
write c = hm

2 · ḡr mod N for some generator ḡ := ge of ⟨g⟩ = ⟨h2⟩, thus has the form of a
Pedersen commitment over ⟨g⟩. Therefore, because r ← [0, S], where S = N · 2λ is exponentially
large in λ, Remark 2 implies the statistical hiding of the commitment c = hm

2 · ḡr mod N that
encures the advantage of distinguishing of A in this case is negl(λ).

By combining the two cases, we conclude that the probability a blindness adversary A can distinguish
Game 5 from Game 4 is bounded by AdvsndB1,Πgen

(λ) + negl(λ), for some PPT B1, and thus negligible
under the soundness of Πgen.

Game 6: This hybrid is the same as Game 5, except that we makes cZ independent of the adversary’s
response. More specifically, we change the computation (cZ , dZ) ← CRInt.Commit(ppZ , (0, r)) for
r ← [0, S]. We argue that this change is indistinguishable by constructing a simulator B against the
hiding game of CRInt that simulates Game 6. At the time of computing cZ , B outputs two messages
(m0, r) and (0, 0) when interacting with the hiding game’s challenger, to receive cZ . We are using
the fact that r is information theoretically hidden thanks to the simulation of πfis from Game 2, the
simulation of πped from Game 4, and the replacement of the commitment c← ⟨g⟩ from Game 5.
Finally, B uses cZ in the first message (c, cZ , πped) to the blindness adversary A and outputs what
A outputs. We have

|AdvblindA,Game 6(λ)− AdvblindA,Game 5(λ)| ≤ AdvhideB,CRInt
(λ)

and is negligible in λ.
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Game 7: We note that after hopping to Game 6, the first message (c, cZ , πped) as well as the derived
signature (πfis, cI) do not depend on m0 anymore. We then apply a similar sequence of hoppings,
but symmetrically in a reverse order to go to the game following Definition 12 where coin = 1, i.e.
m1 is used in the first message and the derived signature. The above arguments still apply so that
the transitions stay indistinguishable. In total, we have proved that

2 · AdvblindA,BSfis
(λ) =

∣∣∣AdvblindA,Game 1(λ)− AdvblindA,Game 7(λ)
∣∣∣

is neglgible in λ and the proof is completed. ⊓⊔

D.4 One-More Unforgeability Proof of BSfis

Proof. We prove this using a series of games to rule out some cases in which the reduction won’t
work.

Game 1: This is the one-more-unforgeability game.

Game 2: In this game we introduce an abort condition. Namely, the game aborts if there is a
collision in the hash oracle H, i.e. if the adversary during the game makes two queries ζ, ζ ′ to H
such that H(ζ) = H(ζ ′), but ζ ̸= ζ ′.

Claim. AdvA,Game 1(λ)− AdvA,Game 2(λ) ≤ Q2
H/2 · 22λ

Proof. Birthday bound.

Game 3: In this game we introduce an abort condition. Namely, the game aborts if there is a
collision in the hash oracle HP, i.e. if the adversary during the game makes two queries ζ, ζ ′ to HP
such that HP(ζ) = HP(ζ

′), but ζ ̸= ζ ′.

Claim. AdvA,Game 1(λ)− AdvA,Game 2(λ) ≤ negl(λ)

Proof. Birthday bound.

Game 4: In this game, we alter how the parameters for CZ are set up. Namely, we use the algorithm
Πped.Ext1 to set up the parameters for CZ as (x0, td)← Πped.Ext1(1

λ) and we program the random
oracle Hpp so that it returns x0 as ppZ . Apart from this, Game 4 behaves identically to Game 3. As
the parameters ppZ are chosen uniformly at random by Ext1, this game is identically distributed to
the previous one and we get AdvA,Game4(λ) = AdvA,Game3(λ).

Game 5: In this game, we introduce another abort condition, namely the game aborts if there exists
a signing session where no witness can be extracted from πped. The game now extracts the values
m, r for every signing session. This game hop can be bounded by the Partial Online-Extractability
of Πped. We formalize this in the following claim:

Claim. There exists a PPT adversary B1 against the online-extractability of Πped such that
AdvA,Game 5(λ) ≥ AdvA,Game 4(λ)−negl(λ)

pP(λ,QH) where we plugged in AdvA,Game4(λ) as µ(λ) from Def-
inition 22 and negl, pP are as in Definition 22.

Proof. We provide an adversary B1 against the online-extractability of Πped to bound the distance
between the two games. The adversary receives the simulated CRS crs for Πped. It then simulates
Game 4 to the adversary A by sampling all the other parts of vk as in Game 4 and answering the
signing queries using the secret key. It outputs the proofs of Πped that the adversary sent when
opening a new signing session. The online-extractability of Πped yields the claim.

Remark 4. We note that as the commitment scheme CZ is perfectly binding, and the above online
extraction property guarantees the existence of a full witness, there cannot be two sessions using
the same commitment cZ with different messages m,m′ and different r, r′. Thus, it follows that if
m ̸= m′, also cZ ̸= c′Z and HP(cZ) ̸= HP(c

′
Z) due to the abort condition introduced in Game 3.
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Game 6: This game aborts if among the message-signature pair in the adversary’s output there is
a message for which the adversary has never queried H(m).

Claim. AdvA,Game5 − AdvA,Game6(λ) ≤ 1
22λ

.

Proof. This boils down to the adversary having to guess the hash value m = H(m). As H is a
random oracle mapping into {0, 1}2λ, the probability of guessing a uniformly random value from
this space is 22λ

Game 7: In this game, the PRF is replaced by a truly random function that is sampled via
lazy-evaluation. This game hop is justified by the pseudo-randomness of the PRF. More formally:

Claim. There exists a PPT adversary B2 such that AdvA,Game 7(λ)−AdvA,Game 6(λ) ≤ AdvPRFB2
(λ).

Proof. We provide the reduction B2.
The reduction has access to the PRF real-or-random oracle. It samples all keys like in Game 6

except for sampling a PRF key. Whenever the adversary makes a signing query, instead of evaluating
the PRF, the reduction B2 queries the PRF oracle. If the adversary wins the game it outputs 1,
otherwise 0. It is easy to see that this reduction has the advantage as in the claim.

Game 8: In this game, the game samples all random choices that the signer and the random oracle
make at the beginning of the game. As this change is purely conceptual, it holds that

AdvA,Game8(λ) = AdvA,Game7(λ)

Game 9: In this game, we change how the CRS for Πfis is generated. Namely, we instead of
generating crsfis using GenCRS, we switch to generating crsfis using SimCRS. This game hop can be
bounded by the CRS indistinguishability property of Πfis.

Claim. There exists a reduction B3 such that AdvA,Game9 − AdvA,Game8 ≤ AdvcrsB3
(λ)

Proof. The reduction A3 receives a CRS from the CRS indistinguishability challenger.
It samples all other parts of the verification key as in Game 8 and outputs them to the adversary.

It answers signing queries as in Game 8. If the adversary wins the game it outputs that the CRS
was honest, otherwise that it was simulated. It is easy to see that the claim follows.

Game 10: In this game, we switch from generating proofs for Πsub honestly using Hsub and P to
using SimHsub

and Simπ. This game hops can be bounded by the subversion zero-knowledge property
of Πsub. Thus, by Definition 20, we obtain that AdvA,Game10 − AdvA,Game9 ≤ negl(λ).

Game 11: In Game 11 we change how the values aj are sampled during signature generation. In
particular, the game samples bits b, b′ ← {0, 1} and j ← {1, . . . , QHP}.

If b = 1, b′ = 0, instead of sampling aj ← {0, 1}2λ, it first samples β ← {0, 1}3λ and then
sets aj = β. If b = 1 and b′ = 1, it samples β ← {0, 1}3λ and sets aj = β − H(mj). A simple
argument shows that the distribution of aj in Game 11 has statistical distance at most 1/2λ from
the distribution of a in Game 10.

Thus, we get that |Pr[Game 11 = 1]− Pr[Game 10 = 1]| ≤ 1
2λ

.

Game 12: In Game 12, we change how we set up the key vk Namely, instead of using Sfis.KeyGen,
we use the alternate algorithm Sfis.KeyGenb,b′ using N generated as before and z ← ZN and it
programs the random oracle HP to return primes from e1, . . . eQHP

Everything else we do as in Game
11. As the keys are distributed the same, it holds that

AdvA,Game12(λ) = AdvA,Game11(λ).
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Game 13: In Game 13, we change how signatures are created. In particular, the game uses the
alternate signing algorithms Sfis.Signb,b′ as follows. As we introduced extraction of m, r in Game 5,
the game has access to these two values. It therefore applies Sfis.Signb,b′(skb,b′ ,m) to obtain a
signature σ = (e, a, y). It then computes y′ = y · gr and πsub using Πsub.Simπ. It then outputs y′, a
and πsub to the adversary.

As the signatures produced by this game are identically distributed to the ones output by Game
12, we obtain that

AdvA,Game13(λ) = AdvA,Game12(λ).

Game 14: In this game, we use the knowledge soundness property of the NIZK Πfis. Namely, after
the adversary has submitted its signatures, we extract a witness from πfis. In particular, due to
the changes made in Game 6, for each message that the adversary outputs a signature for, it has
to have made a hash query. Further, as we introduced online-extraction of all witnesses of πped

submitted during signing queries, the game can identify the hashes m that it has signed and which
messages they belong to. As Game 2 aborts if there are collisions in H, there are no collisions in H
in Game 14, and therefore, the game can efficiently identify which of the messages submitted as
part of the final message-signature pairs it has not signed. It picks the first such message-signature
pair (denoted by (m∗, π∗

fis)) and applies the extractor Πfis.Ext to the proof π∗
fis to obtain a signature

σ∗. It aborts if this extraction fails.

Claim. AdvA,Game14 ≥ AdvA,Game13(λ)−negl(λ)
pP(λ,QHfis

) where negl, pP are as in Definition 21.

Proof. We describe an algorithm B4 to extract from. The algorithm B4 takes as input the CRS
and generates all other parts of the verification key as Game 13. It then runs A and answers
signing queries as Game 13. Once the adversary outputs its message signature pairs, it identifies
the message-signature pair (m∗, (c∗I , π

∗
fis)) as described in Game 14 and outputs them.

If A won the game, πfis is a valid proof and thus Πfis.Ext will extract a signature σ∗ with
probability as in Definition 21.

Remark 5. We note that as cI is perfectly binding, the Sfis-signature contained cI is already
determined after one run of the game and will not be affected by the adversary being rewound.

Game 15: In Game 15 we introduce some abort conditions where the reduction would not be able
to solve the sRSA problem.

Namely, if b = 0, the game aborts if e∗ ∈ {e1, . . . , eQHP
}. If b = 1, the game aborts if e∗ /∈

{e1, . . . , eQHP
}. The game aborts if e∗ ̸= ej where j is the index j from skb,b′ . Furthermore, if b = 1

it identifies the first signing session where e∗ was used if such a session exists.
We denote the component a being derived in this session by aj . If no such session exists, sample

aj ← Sa. The game aborts if b′ = 0 and a∗ = aj and if b′ = 1 and a∗ +m∗ = aj +mj .
We get that

AdvA,Game15(λ) =
1

4QHP

AdvA,Game14(λ).

Reduction simulating Game 15 We describe a reduction B5 that simulates Game 15 amd solves the
strong RSA problem.

Setup. The reduction receives a strong RSA challenge N, z from its challenger. The reduction
samples b, b′ ← {0, 1} and then runs Sfis.KeyGenb,b′(1

λ, N, z) to generate the verification key
parts of Sfis. It sets up the NIZK and commitment parameters as in Game 15.

Online Phase. The reduction interacts with the adversary as follows:
Simulation of H This is done via lazy sampling from {0, 1}2λ
Simulation of HP on the i-th fresh query to HP, return ei from skb,b′ .
Simulation of other hash oracles Lazy Sampling apart from whatever is defined through

the setup of the NIZKs
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Answering Signing Queries The reduction extracts the values (m, r) from the proof πped

using Πped.Ext. It then derives e using HP. By the programming of HP, it identifies the index
k such that e = ek ∈ {e1, . . . , eQHP

}. It then uses Sfis.Signb,b′(skb,b′ , k,m) to generate the
signature σ = (e, a, y). It then re-blinds the signature as z = y · gr and generates the proof
πsub using the simulator Πsub.Sim of Πsub and outputs z, a, πsub.

Output Determination When the adversary A outputs its message-signature pairs, the reduction
identifies the first message m∗ that it has not signed before (as in Game 14). It then uses the
extractor Πfis.Ext to obtain a signature σ∗ = (e∗, a∗, y∗) The reduction then solves for z

1
e∗ using

the same techniques as in Section 3.

It is easy to see that B5 simulates Game 15 perfectly.
We briefly describe why solving sRSA works as in Section 3. First of all, Πfis guarantees that

a ∈ Sa and e ∈ Se. Thus a < e and in the case of b = 1, we know e∗ is prime and thus co-prime to
aj − a∗. In the case of b = 0 we cannot guarantee primality of e∗ as it is chosen by the adversary,
however, Πfis still guarantees that e∗ is odd and thus the same strategy as in Section 3 can be
applied.

E Instantiations of NIZKs

In this section, we instantiate the remaining NIZKs required for BSfis.

E.1 Instantiation of Πsub

For this NIZK, we use the same techniques as for Πgen. To this end, let Hsub : {0, 1}∗ → {0, 1}λ be a
hash function modelled as a random oracle. We describe the algorithms:

– Πsub.GenCRS(1
λ): Outputs ⊥.

– Πsub.Prove
Hsub(x = (z,N, h), w = d): Samples µ⃗ ← [0, N · 2λ]λ. Computes Ω⃗ := hµ⃗ and

γ⃗ := Hsub(x, Ω⃗). Then, computes τ⃗ := µ⃗ + d · γ⃗. Outputs πsub = (Ω⃗, γ⃗, τ⃗).
– Πsub.Verify

Hsub(x = (z,N, h), πsub = (Ω⃗, γ⃗, τ⃗)): Checks that γ⃗ = Hsub(x, Ω⃗) and Ω⃗ ◦ zγ⃗ = hτ⃗

where ◦ denotes the Hadamard product.

The correctness, subversion statistical adaptive soundness, as well as zero-knowledge properties
follow using the same arguments as in Appendix C.2.

Efficiency. It is well-known that Ω⃗ can be omitted from the proof (as it can be recomputed given γ⃗
and τ⃗). For an RSA modulus N of 3072 bits, a proof is of size 51.216 KB.

E.2 Instantiation of Πped

We instantiate the online-extractable NIZK Rped. We follow the well-known blueprint of combining
an extractable commitment (e.g., ElGamal) with an adaptively knowledge sound NIZK for the
relation to obtain online-extraction (see, e.g., [61]). Roughly, we decompose the witnesses into
short values committed in ElGamal commitments and show that the relation holds with respect to
these values. A range proof (i.e., a variant of Bulletproofs [21, 8]) guarantees that the committed
values are short to enable online-extraction via a discrete logarithm computation. (The trapdoor is
the ElGamal decryption key.) These ElGamal commitments function as the integer commitment
CZ. The commitment and its public parameters pp are part of the statement, but since these are
sampled uniform, we can embed a trapdoor into pp (cf. Definition 22).

Integer Commitment. Recall that we want to show that c ≡ hm
2 ·gre mod N , where m ∈ [0, 2λ−1]

and r ∈ [0, S] are committed in some integer commitment (cZ , dZ)← CZ.Commit(pp, (m, r)) with
bounded range. Let B = poly(λ) be a power of two. Let Gp be a group with prime order p ≥ 22λ.
To instantiate CZ, we essentially decompose m, r into values (mi)i, (ri)i ∈ [0, B − 1] via a B-ary
decomposition, respectively, and commit to the values via ElGamal commitments over Gp. Let
ℓm = ⌈λ/B⌉ and ℓr = ⌈logB(S + 1)⌉. The scheme CZ is defined below.
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– CZ.Setup(1
λ): Samples G,H ← Gp and outputs pp← G,H.

– CZ.Commit(pp, (m, r)): Takes as input public parameters pp and message (m, r), where m ∈
[0, 2λ − 1] and r ∈ [0, S]. Decomposes m =

∑ℓm
i=1 miB

i−1 and r =
∑ℓr

i=1 riB
i−1. Let e⃗ =

(m1, . . . ,mℓm , r1, . . . , rℓr ) ∈ [0, B−1]ℓm+ℓr . Samples si ← Zp and sets Ei = eiG+siH,Si = siG.
Outputs cZ = (Ei, Si)

ℓm+ℓr
i=1 and dZ = (s1, . . . , sℓm+ℓr ).

– CZ.Verify(pp, cZ , (m, r), dZ): Parses cZ and dZ as above. Decomposes m and r into mi and ri,
respectively, and defines e⃗ as above. Checks that Ei = eiG+ siH,Si = siG and ei ∈ [0, B] for
all i ∈ [ℓm + ℓr].

Lemma 8. The integer commitment scheme with bounded range CZ with message space CZ.Cmsg =
[0, 2λ − 1]× [0, S] is correct, hiding under DDH in Gp and perfectly binding (cf. Definition 2).

Proof. Correctness and hiding are straightforward. We sketch binding. Observe that (Ei, Si) fixes
ei mod p perfectly. As ei ∈ [0, B] and poly(λ) = B < 2λ ≤ p, the values ei are fixed over the integers.
These values determine the message (m, r) uniquely within [0, 2λ − 1]× [0, S].

Online-Extractable NIZK. We are now ready to instantiate Πped. For the above CZ, we can
rewrite the relation Rped as follows.

Rped =
{
(x,w) | c ≡ hm

2 · gre mod N,Ei = eiG+ siH,Si = siG, ei ∈ [0, B − 1],

m =

ℓm∑
i=1

eiB
i−1, r =

ℓr∑
i=1

eℓm+iB
i−1
}
,

for x = (B,G,H,N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ) and w = (m, r, (si)i∈[ℓm+ℓr]). Note that the above

relation implies that m ∈ [0, 2λ − 1] and that r ∈ [0, S]. (Also, ei is uniquely determined by m and
r via B-ary decomposition.)

To instantiate Πped, we construct a standard Σ-protocol Σped to show that Rped holds, except
for the statement ei ∈ [0, B − 1]. For the latter, we later use a range proof Πrp from [8]. Then, we
compile Σped into an NIZK Πped via Fiat-Shamir and combine both NIZKs Πped and Πrp into an
NIZK for the full relation Rped as in [61], Section 6. This approach was shown to be secure in [61].

There is one difficulty that arises during the construction of Σ-protocol: the relations for m
and r have to hold over the integers. For example, notice that it is not sufficient to show that
r =

∑ℓr
i=1 eℓm+iB

i−1 mod p over Gp since the commitment CZ is (perfectly) binding only if this
relation holds over Z. To ensure that soundness guarantees that the relations hold over Z, we add
an additional MPed commitment c̃ over QRÑ for a fresh RSA modulus Ñ . If we commit to all
witnesses (except si since these are defined over Zp) in c̃ and open it in ZK, the extracted values are
integers under sRSA (cf. Lemma 5). We can also use MPed commitments to show the statements
over the integers (leveraging the binding property of MPed). To ensure subversion zero-knowledge,
we add a Πgen proof (cf. Appendix C.2) which ensures that the public parameters of MPed are setup
in a manner that ensures hiding.

Below, we provide the protocols Σped and Πrp, and then combine them to construct Πped.

Step 1: the Σ-protocol. Let C = 2λ (which determines the challenge space). Let Ñ ∈ N with
p̃p = (h̃, g̃1, . . . , g̃ℓm+ℓr ) ∈ (Z∗

Ñ
)1+ℓm+ℓr . Denote by R the relation

R =
{
(x,w) : c ≡ hm

2 · gre mod N,Ei = eiG+ siH,Si = siG

m =

ℓm∑
i=1

eiB
i−1, r =

ℓr∑
i=1

eℓm+iB
i−1
}
,

where x = (Ñ , p̃p, B,G,H,N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ) and w = ((ei, si)

ℓm+ℓr
i=1 ,m, r). The protocol

Σped for relation

RΣped
=
{
(x,w) : (x,w) ∈ R and ei ∈ [0, B − 1] and ⟨h̃⟩ = ⟨g̃i⟩

}
,
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is given in Figure 4. We include the statements ei ∈ [0, B − 1] and ⟨h̃⟩ = ⟨g̃i⟩ in the relation RΣped

because this is required for correctness and HVZK 19. For soundness, we use standard Σ-protocol
techniques combined with integer commitments to show the statements. Notably, we relax the
soundness relation and omit ei ∈ [0, B − 1] and ⟨h̃⟩ = ⟨g̃i⟩ (since these statements are shown via a
separate NIZK within Πped later). We remark that to show the decompositions, we use a standard
technique that is often used in lattices to show multiplicative relations (e.g., [14]). That is, we
let the verifier recompute the statements with the masked witness τei instead of ei. This yields
a polynomials fm and fr (if we interpret the challenge γ as variable). If fm and fr are constant
(i.e., the term multiplied with γ is 0), then the relation holds. This can be efficiently verified if the
prover commits to the constant terms fm,0 of fr,0 in a separate MPed commitment and the verifier
checks that fm,0 = fm and fr,0 = fr using the commitment’s linearity. Then, we can show 2-special
soundness for the relation

R̃Σped
= {(x,w) : (x,w) ∈ R or (p̃p, w) ∈ RC,ℓ̃(p̃p) or (p̃p, w) ∈ Rdlog},

where RC,ℓ̃(p̃p) is defined in Definition 3 and Rdlog denotes the relation that contains all non-trivial
DLOG relations in p̃p (see [8] for more details). Note that under the factoring assumption, it is hard
to find a witness for Rdlog if the statement p̃p are random generators of QRÑ . For zero-Knowledge,
we mask the witnesses via noise flooding to improve readability. Instead, we could use rejection
sampling and compile Σped with Fiat-Shamir with aborts for better efficiency.

Lemma 9. The Σ-protocol Σped for relation RΣped
is correct, HVZK if the elements in p̃p generate

the same subgroup, and 2-special sound for relation R̃Σped
.

Proof. For correctness, observe that

fm = (
∑ℓm

i=1 τeiB
i−1)− τm

= (
∑ℓm

i=1(γei + µei)B
i−1)− (γm+ µm)

= γ
(
(
∑ℓm

i=1 B
i−1ei)−m

)︸ ︷︷ ︸
=0

+(
∑ℓm

i=1 B
i−1µei)− µm = fm,0

Similarly, we have that fr,0 = fr. Thus, the last check succeeds. The other checks pass due to
linearity and since we mask all values (except si) over Z. (Note that si is masked over Zp but is
used exclusively within equations over Zp within Gp.)

Also, HZVK follows from the observations that (1) the first flow (except c̃) is determined by the
verification equations, the challenge and the third flow, (2) the masks ensure that the third flow
is distributed statistically close to uniform over [0, CB · 2λ]ℓm+ℓr × Zℓm+ℓr

p × [0, C · 23λ]× [0, CS ·
2λ]× [0, CÑ · 22λ]× [0, Ñ · 2λ] and (3) the c̃ commitment is statistically hiding (since all generators
in Z∗

Ñ
generate the same subgroup).

For soundness, given two related transcripts tr , tr ′ with γ ̸= γ′, set ei = ∆ei/∆γ, si =
∆si/∆γ mod p,m = ∆m/∆γ, r = ∆r/∆r, t̃∆t̃/∆γ and tq = ∆tq/∆γ. Note that due to the
check in line 22, we either find a relaxed DLOG relation or we have that ei,m, r, t̃, tq ∈ Z. From
line 23, we obtain two openings for Ωq. Thus, we know that fm = f ′

m and fr = f ′
r, else we find a

non-trivial DLOG relation in p̃p as in [32], Section 5.1. By definition, we have

fm = (
∑ℓm

i=1 B
i−1τei)− τm = (

∑ℓm
i=1 B

i−1τei
′)− τm

′ = f ′
m

=⇒ (
∑ℓm

i=1 B
i−1ei)−m = 0

=⇒
∑ℓm

i=1 B
i−1ei = m.

Similarly, we obtain r =
∑ℓr

i=1 eℓm+iB
i−1. The other equalities follow as usual.

19 We commit to ei via an MPed commitment over Ñ to ensure that the statements hold over the integers.
Thus, we need that the public parameters p̃p is setup such that MPed is hiding. This is guaranteed by
⟨h̃⟩ = ⟨g̃i⟩. Further, if we know that ei ∈ [0, B − 1] we can use smaller masks.
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Step 2: the range proof. Next, let Πrp be the NIZK with random oracle Hrp from [61] (cf. Section
6.2). Note that Πrp is obtained by compiling Bulletproofs [21, 8] via Fiat-Shamir. The correctness
and zero-knowledge relation is

Rrp = {(x,w) : Ei = eiG+ siH, ei ∈ [0, B − 1] for i ∈ [ℓm + ℓr]},

with x = (G,H,B, (Ei)i∈[ℓm+ℓr]) and w = ((ei, si)i∈[ℓm+ℓr]), where B is a power of two 20. Note

that srs = ⊥ and ursrp = ((ĝi)i∈[ℓrp]) ∈ Gℓrp
p define the crs = ursrp of Πrp, where ℓrp ∈ N is chosen

appropriately. The soundness relation is

R̃rp := {(x,w) : (x,w) ∈ Rrp or ((G,H, ursrp), w) ∈ Rdlog},

where Rdlog = {((G,H, ursrp), w)} denotes the relation that contains all non-trivial DLOG relations
w for (G,H, ursrp) (see [8] for more details). Note that for uniform statement, it is hard to find a
witness for Rdlog under the DLOG assumption.

Lemma 10 ([61], Theorem 17). The NIZK Πrp for relation Rrp is correct, zero-knowledge and
adaptively knowledge sound for the relaxed relation R̃rp ⊇ Rrp.

Step 3: the online-extractable NIZK. Finally, we combine Σped and Πrp to construct Πped. The
construction is similar to the NIZK in Section 6.3 [61] except that our Σ-protocol has relaxed
soundness guarantees and requires that MPed with public parameters (Ñ , p̃p) is setup in a hiding
manner. (Note that we require a fresh modulus Ñ because we cannot reduce to assumption with
respect to the existing N as it is part of the statement.) These parameters are part of the srs and
are used to argue over the integers. As in Appendix C.2, we add a NIZK to prove that shows that
p̃p is setup in a hiding manner and set

SRS =
{
(Ñ , p̃p, πgen) | Ñ ∈ N, p̃p = (h̃, g̃1, · · · , g̃ℓm+ℓr ) ∈ (Z∗

N )1+ℓm+ℓr ,

Πgen.Verify
Hgen(xgen, πgen) = 1, xgen = (Ñ , ℓm + ℓr, h̃, (g̃1, · · · , g̃ℓm+ℓr ))

}
.

This NIZK ensures subversion zero-knowledge. We denote by Hped the random oracle of Πped and
by URS = Gℓrp

p the space for the urs of Πped. Below, we have urs ∈ URS and crs = (srs, urs) for
some srs ∈ SRS. Let Hβ be a random oracle mapping into [0, C]. The random oracle of Πped is
Hped = (Hrp,Hβ). Let x = (B,G,H,N, e, h2, g, c, (Ei, Si)

ℓm+ℓr
i=1 ) and w = (m, r, (si)i∈[ℓm+ℓr]). The

scheme is given below

– Πped.GenCRS(1
λ): Samples ppMPed = (Ñ , p̃p)← MPed.Setup(1λ) with p̃p = (h̃, g̃1, · · · , g̃ℓm+ℓr).

Then, sets πgen ← Πgen.Prove
Hgen(wgen, xgen) for xgen as above and appropriate wgen. Outputs

the structured reference string srs = (ppMPed, πgen).
– Πped.Prove

Hped(crs, x, w): Decomposes m and r into (mi)i and (ri)i, and set (ei)i = (m1, · · · ,mℓm , r1, · · · , rℓr )
and computes

π0 ← Πrp.Prove
Hrp(crs, x0, w0),

for x0 = (G,H,B, (Ei)i∈[ℓm+ℓr]) and w0 = ((ei, si)i∈[ℓm+ℓr]),

(ΩΣ , st)← Σped.Init(x1, w1),

γΣ ← Hβ(x1, ΩΣ),

τΣ ← Σped.Resp(x1, st, γΣ),

π1 ← (ΩΣ , γΣ , τΣ),

for statement x1 = (Ñ , p̃p, B,G,H,N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ) and witness w1 = ((ei, si)

ℓm+ℓr
i=1 ,m, r).

Outputs π = (π0, π1).

20 We moved the generators G and H to the statement from the uniform reference string ursrp. This is a
purely notational change and we adapted the soundness relation below accordingly.
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– Πped.Verify
Hped(crs, x, π): On input crs, x, and π = (π0, π1), checks

Πrp.Verify
Hrp(crs, x0, π0) = 1,

Hβ(x0, ΩΣ) = γΣ ,

Σped.Verify(x1, ΩΣ , γΣ , τΣ) = 1,

where π1 = (ΩΣ , γΣ , τΣ) and x0, x1 are defined as above, and outputs 1 iff all checks succeed.

We show that the scheme is sufficient to instantiate our framework BSfis in Section 5 (i.e., the
NIZK is correct, subversion zero-knowledge, and partially online-extractable). Correctness and
subversion zero-knowledge are straightforward. For partial online-extraction, recall that statement
x and witness w of relation Rped are split into x0 = (G,H), w0 = (s1, . . . , sℓm+ℓr) and x1 =

(B,N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ), w1 = (m, r). For the sake of simplicity, we sketch how the extractor

proceeds to extract from a single proof. Let A be an adversary (i.e., prover) for online-extraction.
Since the tuple x0 = (G,H) is drawn at random from X0 = G2

p, the extractor samples G← Gp and
td← Zp at random, then sets H = td ·G. Then, it outputs x0 = (G,H) and crs = (srs, urs) to A,
where srs← Πped.GenCRS(1

λ) and urs← URS. After obtaining (partial) statement x1 and proof π
from A, the extractor decrypts the ElGamal commitments (Ei, Si) via a brute-force computation of
the discrete logarithm ei = DLOGG(E

′
i) of E′

i ← Ei − td · Si. If ei /∈ [0, B − 1], the extractor aborts.
(Since B = poly(λ), the extractor remains efficient and the NIZKs guarantee that aborts happen
with low probability.) Using ei, the adversary recomputes m and r via B-ary decomposition and
checks that c ≡ hm

2 · gre mod N . Note that in that case, the existence of suitable ElGamal openings
w0 = (si)i is guaranteed. (These are the discrete logarithms si = DLOGG(Si) of Si.) A subtlety of
the proof is that we need to extract from both proofs π0 and π1 of π = (π0, π1) simultaneously in
the case that extraction fails. Fortunately, this was shown to be possible in [61]. In both extractions
succeed, we can reduce to either DLOG in Gp or sRSA.

Theorem 10. The NIZK Πped is correct, subversion zero-knowledge under the DDH assumption,
and partially online-extractable under the sRSA assumption and the DLOG assumption in Gp.

Proof. Correctness is straightforward. Subversion zero-knowledge is also immediate, as we can
simulate π0 using the zero-knowledge property of Πrp and π1 using standard Σ-protocol techniques.
Note that since πgen guarantees that c̃ is hiding, the simulation of π1 succeeds 21. The proof is
almost identical to the proof of Theorem 19 [61], and we omit details. Online-extraction requires
some care, but the proof is similar to the proof of Theorem 20, [61] (taking into account that we
embed the trapdoor into the statement x0 = (G,H) instead of the crs). The extractor Ext proceeds
as follows.

– Ext(1λ): Sets up G← Gp and H ← td ·G for td← Zp and outputs x0 = (G, hp)

– Ext(crs, td, x, π): Parses x = (x0, x1) with x0 = (G,H) and x1 = (B,N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ).

Note that H = td ·G. Decrypts the ElGamal commitments (Ei, Si) via a discrete logarithm
ei = DLOGG(E

′
i) computation of E′

i ← Ei − td · Si (but outputs ⊥ and aborts if there is no
such ei ∈ [0, B − 1]). Then, sets m =

∑ℓm
i=1 eiB

i−1 and r =
∑ℓr

i=1 eℓm+iB
i−1. Checks that

c ≡ hm
2 ·gre mod N . If the check succeeds, outputs partial witness w1 = (m, r), and ⊥ otherwise.

Note that Ext(1λ) outputs uniform (G,H) over G2

p = X0 and that Ext runs in polynomial time
(since the DLOG computation aborts in case ei is not short, i.e., of polynomial size). Also, if all
check succeed, then the output of Ext is sufficient, i.e., there is a w0 = (s1, . . . , sℓm+ℓr) such that
((w0, w1), x) ∈ Rped due to the following facts.

– We have that c ≡ hm
2 · gre mod N due to the last check.

– We have that Ei = eiG+ siH and Si = siG, ei ∈ [0, B − 1], where si = DLOGG(E
′
i) for some

si ∈ Zp. This holds by construction since for si = DLOGG(Si), we have that Ei = E′
i + td ·Si =

eiG+ siH.
21 In more detail, we need that x1 ∈ LRΣped

for the simulation but Ñ and p̃p might be setup in a non-hiding
manner. Soundness of πgen guarantees that no such malicious setup is possible.
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– We have that m =
∑ℓm

i=1 eiB
i−1, r =

∑ℓr
i=1 eℓm+iB

i−1 by construction.

Now let A be an adversary that on input (crs, x0) outputs QS pairs (x1,i, πi)i∈[QS ] that verify (i.e., we
have that Πped.Verify

Hped(crs, (x0, xi,1), πi) = 1) with probability at least µ(λ). Here, crs = (srs, ursrp)

is setup via srs ← Πped.Setup(1
λ) and ursrp ← Gℓrp

p . Denote with Faili the event that the proof
(x1,i, πi) verifies but extraction fails for i ∈ [QS ]. It remains to show Pr[Faili] = negl(λ). Then, we
can conclude that Pr[∃i : Faili] = negl(λ) via a union bound.

Assume that Faili occurs. Parse x1,i = (N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ) and πi = πi,0, πi,1 with πi,0 =

(ΩΣ , γΣ , τΣ). Set x = (x0, x1,i), xrp = (G,H,B, (Ei)i∈[ℓm+ℓr]) and xΣ = (Ñ , p̃p, B,G,H,N, e, h2, g, c,

(Ei, Si)
ℓm+ℓr
i=1 ). Let us assume we have a witness wrp such that (xrp, wrp) ∈ R̃rp ⊇ Rrp and two related

transcripts tr , tr ′ of Σped for the statement xΣ . (We refer to Theorem 20 [61] for a detailed extraction
strategy that runs in polynomial time and succeeds with probability close to Pr[Faili]). In that case,
we have ((G,H, ursrp), wrp) ∈ Rdlog with at most negligible probability under the DLOG assumption.
Thus, (xrp, wrp) ∈ Rrp which means that wrp = (e′i, s

′
i)i∈[ℓm+ℓr] and

Ei = e′iG+ s′iG
′ and e′i ∈ [0, B − 1]. (11)

Then, we invoke 2-special soundness of Σped on tr , tr ′ and obtain a witness wΣ with (xΣ , wΣ) ∈ RΣped
.

We have that (xΣ , wΣ) ∈ R or (p̃p, wΣ) ∈ RC,ℓ̃(p̃p) or (p̃p, wΣ) ∈ Rdlog. Under sRSA, we have that
(p̃p, wΣ) ∈ RC,ℓ̃(g⃗) or (p̃p, wΣ) ∈ Rdlog with at most negligible probability. Thus, (xΣ , wΣ) ∈ R.
Parse wΣ = ((ei, si)

ℓm+ℓr
i=1 ,m, r). By definition, it holds that

c ≡ hm
2 · gre mod N

Ei = eiG+ siH,Si = siG

m =

ℓm∑
i=1

eiB
i−1, r =

ℓr∑
i=1

eℓm+iB
i−1

(12)

Notably, we have ei = e′i under DLOG as otherwise, we can compute a non-trivial DLOG relation
between H and G. But then, Equations (11) and (12) imply that extraction succeeds and thus,
Pr[Faili] = negl(λ).

Optimizations. We apply standard Σ-protocol optimizations for Σped. That is, we omit the first
flow of Σped (i.e., the values Ωc̃, Ωq, (ΩEi

)i, (ΩSi
)i, Ωc except c̃) from the proof π1. The verification

equations are then verified within the hash function Hβ .

Efficiency. We set B = 264. Then, the DLOG computation in extraction runs in time O(232).
Further, we use standard RSA moduli and groups for λ = 128 bit security, i.e., N and Ñ of size
3072 bit and group Gp with order 256 bit. With these parameters, we have ℓm + ℓr = 54 and an
integer commitment CZ is of size 3.46 KB. The online-extractable NIZK is of size 5.62 KB and the
range proof Πrp is of size 1088 Byte. In total, the proof size of Πped is 6.7 KB.

E.3 Instantiation of Πfis

Recall that Πfis allows to prove knowledge of a valid Sfis signature (e, a, y), where (e, a) are fixed
in a CRInt commitment cI . Note that we instantiate CRInt with CB⃗,T

RInt , where B⃗ = (23λ, 23λ) and
T = 2λ+1L for L ∈ N. As discussed in Section 5.1, we set E = 25λ. The public parameters are
ppI = (G1, G2, H) ∈ G for some group G of order p such that 23λT < p−1

2 . We can rewrite the
relation Rfis as follows

Rfis :=
{
(x,w) | ye ≡ h · ha

1 · ha+m
2 mod N, e ≡ 1 mod 2, y ∈ ⟨h1⟩,

(e− E, a) ∈ [0, B⃗], C⃗ = (e− E, a)H + rG⃗, F = rH
}
,

for x = (ppI , N, h1, h2, h,m, C⃗, F ), w = (e, a, y, r). The soundness relation can be written as R̃fis

Rfis :=
{
(x,w) | ye ≡ h · ha

1 · ha+m
2 mod N, e ≡ 1 mod 2,

(e− E, a) ∈ [B⃗T, B⃗T ], C⃗ = (e− E, a)H + rG⃗, F = rH
}
,
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We construct a Σ-protocol Σfis for the relation Rfis, and then compile it via Fiat-Shamir. Note that
the relation Rfis contains the equation

ye ≡ h · ha
1 · ha+m

2 mod N.

Since both y and e are part of the witness, this equation is non-trivial to prove, especially since y is
an element of a group ⟨h1⟩ that might be setup maliciously. We solve this by committing to y in an
additional CGrp commitment cN (cf. Section 4.3). Note that CGrp is an ElGamal commitment of
the form cN = y · hs

1, where the randomness s is fixed via an Πint commitment. Then, we show the
equivalent equation

ceN · h−ω
1 ≡ h · ha

1 · ha+m
2 mod N with ω = e · s

instead. For this equation, we can resort to techniques for quadratic equations over Z. In order
to use the same group G for the relaxed integer commitment of CGrp, we split the randomness s

of CGrp into ℓs values si ∈ [0, 23λ − 1]. In more detail, we set B⃗′ = (23λ, · · · , 23λ) ∈ Nℓs , where
ℓs = ⌈ log(N ·2λ)

3λ ⌉ and use second relaxed integer commitment C′
RInt = CB⃗′,T

RInt with public parameters
pp′I = (H ′, G′

1, · · · , G′
ℓs
) to commit to s⃗.

Step 1: the Σ-protocol. Set C = 2λ − 1. The Σ-protocol Σfis is given in Figure 5. Instead of using
witness e, we use e = e− E and adapt the relations accordingly. As e is shorter, this reduces the
proof size. We open CRInt commitments in zero-knowledge as in Appendix C.2 and CGrp commitments
as in Appendix C.2. To show that e ≡ 1 mod 2, we show that we can write e = 2e′+1 over Z. (Note
that since E is even, this is sufficient.) For this and the equality ω = e · s, we leverage the properties
of MPed commitments in a similar manner as Σped (cf. Appendix E.2). That is, we construct a
polynomial fe = fe,2γ

2 + fe,1γ + fe,0 and fω = fω,2γ
2 + fω,1γ + fω,0, where the challenge γ is

interpreted as variable, such that fω,2 = fe,2 = 0 implies that ω = e · s and e = 2e′ + 1. As before,
we show that fω,2 = fe,2 = 0 via the linearity of MPed 22. For this (and the commitment openings),
we use a separate modulus Ñ and parameters p̃p = (h̃, g̃1, · · · , g̃ℓ̃) ∈ Nℓ̃ with ℓ̃ = 4 + ℓs for MPed.
To keep the security proof modular, we define the relation

R :=
{
(x,w) | ce+E

N · h−ω
1 · h−s·E

1 ≡ h · ha
1 · ha+m

2 mod N,E = 2E
′
+ 1, ω = e · s,

C⃗ = (e− E, a)H + rG⃗, F = rH, C⃗ ′ = s⃗H ′ + r′G⃗′, F ′ = r′H,

s =
∑

i∈[ℓs]
si, cN ≡ y · hs

1 mod N
}

with xΣ = (cN , Ñ , p̃p, ppI , pp
′
I , c,N, h1, h2, h,m, C⃗, F, C⃗ ′, F ′) and wΣ = (e′, e, a, y, r, r′, ω, (s1, · · · , sℓs)).

Note that ce+E
N · h−ω

1 · h−s·E
1 ≡ ceN · h

−s·e
1 mod N . Then, we set

RΣ =
{
(x,w) | (x,w) ∈ R, y ∈ ⟨h1⟩, (e, a) ∈ [0, B⃗], (s1, . . . , sℓs) ∈ [0, B⃗′], ⟨h̃⟩ = ⟨g̃i⟩

}
for correctness and HVZK of Σfis and

R̃Σ =
{
(x,w) | (x,w) ∈ R, (e, a) ∈ [−B⃗T, B⃗T ], (s1, . . . , sℓs) ∈ [−B⃗′T, B⃗′T ],

(p̃p, w) ∈ RC,ℓ̃(p̃p) or (p̃p, w) ∈ Rdlog

}
,

for special soundness, where RC,ℓ̃(p̃p) is defined in Definition 3 and Rdlog denotes the relation that
contains all non-trivial DLOG relations in p̃p (cf. Appendix E.2). Note that under sRSA (with
respect to the setup of Ñ and p̃p), it is simple to obtain a witness for Rfis given a witness for R̃Σ for
appropriate statements.

Lemma 11. The Σ-protocol Σfis for relation RΣ is correct with abort probability 1− (1− 1
L )

ℓs+3,
HVZK and 3-special sound for R̃Σ.

Proof. We only give a brief sketch as this follows as similarly to security of previous Σ-protocols.
Correctness follows from a straightforward but tedious computation. The abort probability can be
computed as in Theorem 9.
22 Since the polynomial is of degree 2, we require 3 transcripts for extraction instead of 2 transcripts.
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For HVZK, observe that masking ensures that the third flow is distributed statistically close to
uniform. Also, c̃ and c̃q are close to uniform over Z∗

Ñ
due to the guarantee that ⟨h̃⟩ = ⟨g̃i⟩. The

remaining values Ω⃗C , ΩF , Ω⃗C′ , ΩF ′ , Ωc̃ and Ωq are determined by the verification equations, the
challenge γ and the third flow.

For 3-special soundness, it follows as in Theorem 9 and Lemma 9 that either we obtain a witness
for the relaxed DLOG relation or all extracted values are integers (except r and r′). As in Theorem 9,
the range checks guarantee relaxed range membership for s⃗, e′, e and a, and lines 22 and 23 allow
us to obtain openings for both CRInt commitments. Given 3 related transcripts, we obtain that
ω = e ·(

∑
i si) and e = 2e′+1 due to the check in line 26. This follows similarly to the equations over

Z in Lemma 9, else we find a a witness for the hard DLOG relation. (Note that we need 3 related
transcripts because the degree of f is 2 instead of 1 but the required adaptions to obtain the result
are straightforward). Finally, the check in line 21 ensures that ceN · h

−(ω+sE)
1 ≡ h · ha

1 · ha+m
2 mod N .

Note that there is no need to prove that cN ≡ y · hs
1 mod N explicitly since this equation and the

pair (cN , s) already determine y ≡ cN · h−s
1 mod N , where s =

∑
i∈[ℓs]

si.

Step 2: the NIZK. For the final NIZK, we compile Πfis into an NIZK via Fiat-Shamir with abort.
Again, we require public parameters for MPed in the srs, where SRS is defined as in Appendix E.2,
i.e.,

SRS =
{
(Ñ , p̃p, πgen) | Ñ ∈ N, p̃p = (h̃, g̃1, · · · , g̃3+ℓs) ∈ (Z∗

N )3+ℓs ,

Πgen.Verify
Hgen(xgen, πgen) = 1, xgen = (Ñ , 3 + ℓs, h̃, (g̃1, · · · , g̃ℓm+ℓr ))

}
.

Let URS = G1+ℓs . Note that urs = pp′I contains public parameters for another CRInt commitment.
We denote by Hfis the random oracle of Πfis. Below, we have urs ∈ URS and crs = (srs, urs) for some
srs ∈ SRS. Alos, let x = (ppI , N, h1, h2, h,m, C⃗, F ) and w = (e, a, y, r). The scheme is given below.

– Πfis.GenCRS(1
λ): Samples ppMPed = (Ñ , p̃p) ← MPed.Setup(1λ) with p̃p = (h̃, g̃1, · · · , g̃3+ℓs).

Then, sets πgen ← Πgen.Prove
Hgen(wgen, xgen) for xgen as above and appropriate wgen. Outputs

the structured reference string srs = (ppMPed, πgen).
– Πfis.Prove

Hfis(crs, x, w): Samples s← [N · 2λ], splits s into (si)i ∈ [0, 23λ]ℓs via 23λ-ary decom-
position and computes cN = y · hs

1 and C⃗ ′ = s⃗H ′ + r′G⃗′. Then, compiles Σfis into a proof π
via

(ΩΣ , st)← Σfis.Init(xΣ , wΣ),

γΣ ← Hβ(xΣ , ΩΣ),

τΣ ← Σped.Resp(xΣ , st, γΣ),

πΣ ← (ΩΣ , γΣ , τΣ),

for statement xΣ = (cN , Ñ , p̃p, ppI , pp
′
I , c,N, h1, h2, h,m, C⃗, F, C⃗ ′, F ′) and witness wΣ = (e′, e, a, y, r, r′,

ω, (s1, · · · , sℓs)). Outputs π = (πΣ , cN , C⃗ ′, F ′).
– Πfis.Verify

Hfis(crs, x, π): On input crs, x, and π = (πΣ , cN , C⃗ ′, F ′), checks

Hfis(xΣ , ΩΣ) = γΣ ,

Σfis.Verify(xΣ , ΩΣ , γΣ , τΣ) = 1,

where πΣ = (ΩΣ , γΣ , τΣ) and xΣ is defined as above, and outputs 1 iff all checks succeed.

Theorem 11. The NIZK Πfis is correct, subversion zero-knowledge under the DDH assumption,
and partially online-extractable under the sRSA assumption.

Proof. Correctness is clear. Subversion zero-knowledge follows in previous NIZKs. For soundness,
observe that (xΣ , wΣ) ∈ R̃Σ allows to obtain a valid witness w for R̃fis or obtain an sRSA solution.
We can rewind a prover twice to obtain 3 related transcripts 23, then we can apply 3-special
soundness of Σfis to obtain such a witness wΣ .
23 It is well-known that this is possible in polynomial time.
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Optimizations. Again, we omit the first flow of Σfis (i.e., the values Ω⃗C , ΩF , Ω⃗C′ , ΩF ′ , Ωc̃, Ωq except
c̃ and c̃q) from the proof πΣ . The verification equations are verified within the hash function Hfis.

Efficiency. We use standard RSA moduli and groups for λ = 128 bit security, i.e., N and Ñ of size
3072 bit. We set L = 210 and thus T = 2λ+11. Further, we assume that G is of order 4λ+12 (which
is required for CRInt). With these parameters, we have ℓs = 9. In total, a proof is of size 4.08 KB.
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Prover(x;w) Verifier(x)

1 : tq, t̃← [0, Ñ · 2λ]

2 : µt̃ ← [0, CÑ · 22λ], µm ← [0, C23λ], µr ← [0, CS · 2λ]
3 : for i ∈ [ℓm + ℓr] do

4 : µei ← [0, CB · 2λ], µsi ← Zp

5 : ΩEi ← µeiG+ µsiH,ΩSi ← µsiG

6 : Ωc ← hµm
2 · gµre mod N

7 : fm,0 ← (
∑

i∈[ℓm] B
i−1µei)− µm

8 : fr,0 ← (
∑

i∈[ℓr ]
Bi−1µei+ℓm

)− µr

9 : c̃← h̃t̃ ·
∏ℓm+ℓr

i=1 g̃eii mod Ñ

10 : Ωc̃ ← h̃µt̃ ·
∏ℓm+ℓr

i=1 g̃
µei
i mod Ñ

11 : Ωq ← h̃tq · g̃fm,0

1 · g̃fr,02 mod Ñ

c̃, Ωc̃, Ωq, (ΩEi)i, (ΩSi)i, Ωc

12 : γ ← [0, C]

γ

13 : τm ← γm+ µm, τr ← γr + µr, τt̃ ← γt̃+ µt̃

14 : for i ∈ [ℓm + ℓr] do

15 : τei ← γei + µei , τsi ← γsi + µsi

(τei)i, (τsi)i, τm, τr, τt̃, tq

16 : check c−γhτm
2 · gτre ≡ Ωc mod N

17 : for i ∈ [ℓm + ℓr] do

18 : check − γEi + τeiG+ τsiH = ΩEi

19 : check − γSi + τsiG = ΩSi

20 : fm ← (
∑ℓm

i=1 B
i−1τei)− τm,

21 : fr ← (
∑ℓr

i=1 B
i−1τeℓm+i)− τr

22 : check c̃−γ · h̃τt̃ ·
∏ℓm+ℓr

i=1 g̃
τei
i ≡ Ωc̃ mod Ñ

23 : check h̃tq · g̃fm1 · g̃fr2 ≡ Ωq mod Ñ

Fig. 4. Description of Σped for x = (Ñ , p̃p, N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ) and w = ((ei, si)

ℓm+ℓr
i=1 ,m, r).
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Prover(x;w) Verifier(x)

1 : t̃, tq ← [0, N · 2λ], µr, µr′ ← Zp, µt̃, µtq ← [0, CN · 22λ]

2 : (µe, µa)← [0, (B⃗C + 1)L], µe′ ← [0, (B1C + 1)L]

3 : µ⃗s ← [0, (B⃗′C + 1)L]

4 : ω ← e · (
∑

i∈[ℓs]
si), µω ← [CB1N · 22λ]

5 : Ωf ← c−µe
N · hµω

1 · h
∑

i∈[ℓs] µsi
E

1 · hµa
1 · h

µa
2 mod N,

6 : Ω⃗C = (µe, µa)H + µrG⃗, ΩF ← µrH,

7 : Ω⃗C′ = (µ⃗s)H + µr′G⃗, ΩF ′ ← µr′H,

8 : fω,0 ← −
∑

i∈[ℓs]
µsiµe, fω,1 ← µω − (

∑
i∈[ℓs]

µsie+ siµe)

9 : fe,0 ← 0, fe,1 ← −2µe′

10 : c̃← ht̃ · g̃e1 g̃a2 g̃e
′

3

∏
i∈[ℓs]

g̃si3+i, Ωc̃ ← hµt̃ · g̃µe
1 g̃µa

2 g̃
µe′
3

∏
i∈[ℓs]

g̃
µsi
3+i

11 : c̃q ← h̃tq · g̃fω,1

1 · g̃fe,12 , Ωq ← h̃µtq · g̃fω,0

1 · g̃fe,02

c̃, c̃q, Ω⃗C , ΩF , Ω⃗C′ , ΩF ′ , Ωc̃, Ωq

12 : γ ← [0, C]

γ

13 : τr ← γr + µr, τr′ ← γr′ + µr′

14 : τt̃ ← γt̃+ µt̃, τtq ← γtq + µtq

15 : τe ← γe+ µe, τa ← γa+ µa, τe′ ← γe′ + µe′

16 : τ⃗s ← γs⃗+ µ⃗s, τω ← γω + µω

17 : check (τe, τa) ∈ [B⃗C, (B⃗C + 1)L]

18 : check τ⃗s ∈ [B⃗′C, (B⃗′C + 1)L], τe′ ∈ [B1C, (B1C + 1)L]

τr, τr′ , τt̃, τtq , τe, τa, τe′ , τ⃗s, τω

19 : check (τe, τa) ∈ [0, (B⃗C + 1)L]

20 : check τ⃗s ∈ [0, (B⃗′C + 1)L], τe′ ∈ [0, (B1C + 1)L]

21 : check c−τe
N · hτω

1 · h
E

∑
i∈[ℓs] µsi

1 · hγ · hτa
1 · h

τa+γm
2 ≡ Ωf mod N

22 : check (τe, τa)H + τrG⃗− γC⃗ = Ω⃗C , τrH − γF = ΩF

23 : check τ⃗sH
′ + τr′G⃗′ − γC⃗′ = Ω⃗C′ , τr′H

′ − γF ′ = ΩF ′

24 : check c̃−γ
q · hτt̃ · g̃τe1 g̃τa2 g̃

τe′
3

∏
i∈[ℓs]

g̃
τsi
3+i ≡ Ωc̃ mod Ñ

25 : fω = γ · τω − ((
∑
i∈[ℓs]

τsi) · τe), fe = γ(τe − (2 · τe′ + γ))

26 : check c̃γq ·Ωq ≡ h̃τtq · g̃fω1 · g̃
fe
2

Fig. 5. Description of Σfis with x = (cN , Ñ , p̃p, ppI , pp
′
I , c,N, h1, h2, h,m, C⃗, F, C⃗′, F ′) and w = (e, a, y, r, r′,

ω, (s1, · · · , sℓs)).
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