
Division in the Plactic Monoid

Chris Monico

Department of Mathematics and Statistics
Texas Tech University

e-mail: c.monico@ttu.edu

Draft of December 2, 2022

Abstract

In [1], a novel cryptographic key exchange technique was proposed using the plactic

monoid, based on the apparent difficulty of solving division problems in that monoid.

Specifically, given elements c, b in the plactic monoid, the problem is to find q for which

qb = c, given that such a q exists. In this paper, we introduce a metric on the plactic

monoid and use it to give a probabilistic algorithm for solving that problem which is

fast for parameter values in the range of interest.

1 Introduction

For two parties, Alice and Bob, wishing to communicate securely over an insecure channel,
the principal difficulty is agreeing on a shared secret key to be used in a cipher. In the mid-
to-late 1970’s, several potential solutions to this problem were given which have given rise
to the primary solutions that are still in use today. However, in 1994 Peter Shor [6] gave a
quantum algorithm capable of rendering those cryptosystems insecure on a sufficiently robust
quantum computer. Since that time, some progress has been made toward building such a
quantum computer, and so it has become increasingly important to consider new potential
solutions, with the hope of finding one which would remain secure even against an adversary
with such a device.

The present paper is concerned with studying one such recent proposal. In [1], Daniel
Brown proposed a very interesting and novel key agreement method which may be considered
as an instance of Rabi and Sherman’s key agreement protocol [4], but using the associative
operation provided by the plactic monoid, PN . There is substantial literature on the plactic
monoid, but we will give a brief description in the next section. For the time being, it is
enough to know that PN is a monoid, or semigroup with identity. That is, PN is a set with
an associative operation and an identity element. The proposed method in [1] is as follows:

1. Alice and Bob agree on an element g ∈ PN .

2. Alice privately chooses a ∈ PN , computes α = ag, and sends α to Bob.

3. Bob privately chooses b ∈ PN , computes β = gb, and sends β to Alice.

4. Since the operation in PN is associative, both Alice and Bob can compute the shared
secret key κ = agb = aβ = αb.

In this case, an eavesdropper Eve would know PN , g, α, and β. If she could determine an
element a′ ∈ PN for which a′g = α, she could compute a′β = a′(gb) = (a′g)b = αb = κ. Or,
she could similarly recover κ if she could find an element b′ ∈ PN for which gb′ = β. So the
security of this system rests on the apparent difficulty of this problem.

The proposal above is very clever, and the eavesdropper’s problem does at first appear
to be very formidable. Brown himself considered many possible approaches in [1], all of
which seem to require a number of operations which is exponential in the sizes of a, g, and
b. We also considered several other approaches very different from those in [1], all of which
apparently required an exponential number of operations, before discovering the technique
described in this paper.

The algorithm we will propose here is probabilistic and we have been thus far unable
to rigorously analyze the runtime, though it is plausibly polynomial-time for each fixed N .
Even if it is not polynomial-time, the algorithm would still seem to be of interest since it was
able to solve the challenge problem in [1]. Our estimate is that the previously best known
method would have required around 1020 CPU-years with current technology, whereas the
present method recovered a solution in around 10 CPU-minutes.

In Section 2, we will give the necessary background on the plactic monoid, before in-
troducing a metric on PN in Section 3. Section 4 describes a first approach to solve the
eavesdropper’s problem, which forms the basis for the apparently faster method given in
Section 5.

2 Background on the Plactic Monoid

Let N be a positive integer, and AN be a set of N symbols together with an ordering. For
convenience, we will assume that AN = {1, 2, . . . , N}, but the elements are formal symbols,
not to be interpreted as integers. That is, we are considering AN as an ordered alphabet.
The free monoid A∗N generated by AN is the collection of all finite-length words in the
alphabet AN , including the empty word, with the operation of concatenation. For a word
w ∈ A∗N we let |w| denote its length, and wj ∈ AN the j-th symbol in the word w, so that
w = w1w2 . . . w|w|.

A semistandard Young tableau over AN is a finite sequence T = (R1, R2, . . . , RN) of
(possibly empty) words in A∗N subject to the following constraints:

(i) |R1| ≥ |R2| ≥ · · · ≥ |RN |,

(ii) the symbols of each nonempty word Ri appear in non-decreasing order,

(iii) if 1 ≤ i < N and 1 ≤ j ≤ |Ri+1|, then (Ri+1)j > (Ri)j; that is, the j-th symbol of Ri+1

is strictly greater than the j-th symbol of Ri.

2

This is most easily understood visually, with the sequence R1, . . . , RN of words represented
in a left-aligned grid, as in Figure 1. In this paper, we use the so-called ‘French notation’,
with R1 written at the bottom, R2 above R1, and so on.

4 4 5

2 3 4

1 1 1 2 3

Figure 1: A semistandard Young tableau overA5 with rows R1 = 11123, R2 = 234, R3 = 445,
and R4, R5 empty.

In terms of this visual representation, the three conditions above assert that (i) the rows
are of non-decreasing length, from top to bottom, (ii) the entries in each row form a non-
decreasing sequence, from left to right, and (iii) the entries in each column form a strictly
decreasing sequence, from top to bottom.

In this paper, all tableaux under consideration are semistandard Young tableaux, so we
will refer to them simply as tableaux. The row reading of a tableau T = (R1, . . . , RN),
denoted ρ(T), is the word in A∗N obtained by concatenation of RN , RN−1, . . . , R1,

ρ(T) = RNRN−1 . . . R1.

For example, if T is the tableau in Figure 1 then ρ(T) = 44523411123.
For w ∈ A∗N , Schensted’s Insertion Algorithm [5] constructs a tableau corresponding to

w. If w is the empty word, then P (w) is the empty tableau, and the construction then
proceeds inductively. Given the tableau P (w) and a symbol s ∈ AN , the tableau P (ws) is
found as follows:

1. Set r ← 1, T ← P (w), and x← s.

2. If appending x to row r of T would yield a sorted row, then do so and goto Step 4.

3. Find the leftmost entry of row r of T which is greater or equal x; set y to be the value
of that entry, replace the entry with x, then set x← y, r ← r + 1 and goto Step 2 (x
‘bumps’ the entry y up to the next row).

4. T is the tableau P (ws) of the word ws.

For example, consider w = 44523411123 which has the tableau P (w) given in Figure 1,
and let s = 2. To determine the tableau P (ws), we follow the procedure described above.
First set r ← 1 and x ← s = 2. Iterating as described above, we obtain the sequence of
values for T, r and x shown in Figure 2 just before each execution of Step 2.

The map P from A∗N to the set of all semistandard young tableau is not injective. But
Knuth [2] precisely characterized the words having the same image under P . Define the
Knuth relations as follows: for all a, b, z ∈ AN we define

zab ∼ zba, if min{a, b} < z ≤ max{a, b},
abz ∼ baz, if min{a, b} ≤ z < max{a, b}.

3

4 4 5

2 3 4

1 1 1 2 3

r = 1, x = 2

4 4 5

2 3 4

1 1 1 2 2

r = 2, x = 3

4 4 5

2 3 3

1 1 1 2 2

r = 3, x = 4

4 4 4

2 3 3

1 1 1 1 3

r = 4, x = 5

5

4 4 4

2 3 3

1 1 1 1 3

Complete.

Figure 2: Computing the tableau P (445234111232) from P (44523411123). Shown is the
sequence of values of T, r and x immediately before each execution of Step 2.

These relations generate a congruence relation ∼ on A∗N , and the plactic monoid on AN
is defined to be the quotient PN = A∗N/ ∼. For a word w ∈ A∗N , we let [w] denote the
equivalence class of w in PN . Knuth showed [2, Theorem 6] that P (u) = P (v) if and
only if [u] = [v]. Moreover, it’s not hard to see that P (ρ(T)) = T for every tableaux T .
This provides a mechanism for efficiently determining a canonical representative for each
equivalence class [u] ∈ PN : one may take ρ(P (u)) as the canonical representative of [u].

3 A metric on PN
For w ∈ A∗N , and a positive integer r, let Pr(w) ∈ A∗N be the r-th row of the tableau P (w);
and for s ∈ AN , let |w|s be the number of copies of the symbol s appearing in w. Then for
u, v ∈ A∗N we define

d(u, v) =
1

2

∑
r

∑
s

∣∣∣|Pr(u)|s − |Pr(v)|s
∣∣∣.

Proposition 3.1. Let N be a positive integer. The function d defined above is a pseudometric
on A∗N . Moreover, for words u, v ∈ A∗N of the same length, d(u, v) is integer-valued.

Proof. It’s clear that d is non-negative, and d(u, u) = 0.
Since ||Pr(u)|s − |Pr(v)|s| = ||Pr(v)|s − |Pr(u)|s| for all r, s, we have that d(u, v) = d(v, u).

A standard application of the triangle inequality for the absolute value shows that d satisfies
the triangle inequality as well.

For the final claim, let u, v ∈ A∗N with |u| = |v|. Certainly 2d(u, v) ∈ Z, so it suffices to

4

show that 2d(u, v) is an even integer. We have that

2d(u, v) =
∑
r

∑
s

||Pr(u)|s − |Pr(v)|s|

≡
∑
r

∑
s

(|Pr(u)|s − |Pr(v)|s) (mod 2)

≡
∑
r

∑
s

|Pr(u)|s −
∑
r

∑
s

|Pr(v)|s

≡ |u| − |v| ≡ 0 (mod 2) .

If [u] = [v], then P (u) = P (v), and so Pr(u) = Pr(v) for every positive integer r. It
follows that d(u, x) = d(v, x) for all x ∈ A∗N , and so d is well-defined on PN via

d([u], [w]) = d(u,w),

and it is easy to see that d is a metric on PN . It is a fairly natural metric, as it essentially
counts the number of symbols in which the tableaux of [u] and [w] differ, so it seems possible
that it has been used previously, but we were unable to find any reference.

For w ∈ A∗N with n = |w| and a permutation σ ∈ Sn, we let σ(w) be the word obtained
by permuting the symbols of w accordingly,

σ(w) = wσ(1)wσ(2) . . . wσ(n).

Proposition 3.2. Let [w] ∈ PN . The number of [x] ∈ PN for which x = σ(w) for some

σ ∈ SN and d(w, x) = 1 is at most
N∑
s=1

(s− 1) min{s, |w|s}.

Proof. Consider the tableau P (w). Notice that x = σ(w) for some σ ∈ SN and d(w, x) = 1 if
and only if the tableau P (x) is obtained by moving a single symbol from P (w) to a different
row. The symbol s ∈ AN might appear in rows 1, 2, . . . , s of P (w), but may not appear in
rows s + 1, . . . , N and |w|s is the number of copies of s in P (w). So there are min{s, |w|s}
ways in which one could choose a copy of s to move, and it could be moved to at most s− 1
possible destinations to yield a tableau of distance 1 away from P (w).

The bound given by the proposition above will play a role in the algorithm described
in the next section. A small improvement is useful, though. If w is a word which does
not contain all of the symbols in AN , it could be embedded into AM for some M < N , in
which case the result could be strengthened. For w ∈ A∗N , let supp (w) be the set of distinct
symbols appearing in w and fs(w) = |supp (w) ∩ {1, 2, . . . , s}|. Setting

D(w) =
N∑
s=1

(fs(w)− 1) min{fs(w), |w|s}, (3.1)

we obtain a more general bound on the number of such [x] with d(w, x) = 1.

5

4 First approach

In this section, we will sketch a first approach to solving the following computational problem.
It forms the basis for the apparently faster modified version with lifting in the next section.

Problem 4.1 (Division Problem in PN). For [b], [c] ∈ PN , find [q] ∈ PN such that [q][b] = [c],
given that such a [q] exists.

Suppose that [b], [c] ∈ PN and that [q][b] = [c] for some q. Let q0 ∈ A∗N be an arbitrary
word for which |q0|s = |c|s − |b|s for each s ∈ AN . By assumption, there is at least one
permutation σ ∈ S|q0| for which [σ(q0)][b] = [σ(q0)b] = [c]. In general, since PN is non-
cancellative, there may be several such σ. Simply enumerating them and testing one at a
time is out of the question, of course, since there are |q0|! such permutations. Instead, we
adopt what Daniel Brown has observed is essentially a hill-climbing approach, by trying to
find a sequence σ1, σ2, . . . , σk of permutations for which

qj = σj(qj−1), and d(qjb, c) < d(qj−1b, c).

Since d(qjb, c) is integer-valued, we would have d(qjb, c) ≤ d(qj−1b, c)− 1 ≤ d(q0b, c)− j, so
that we would obtain a solution d(qtb, c) = 0 for some t ≤ d(q0b, c) ≤ |c|. The central idea
here is trying to efficiently find such a sequence of permutations.

A first attempt at solving the division problem might proceed as follows. Let Σn ⊂ Sn
be a relatively small collection of permutations σ for which d(σ(q), q) is typically small and
positive. For some such permutations, d(σ(q)b, qb) might be large, but hopefully it will often
be small and positive. Then proceed as follows.

1. Set q0 to be a randomly chosen word with |q0|s = |c|s − |b|s for all s ∈ AN . Set k ← 0
and n← |q0|.

2. While d(qkb, c) > 0 do the following:

(i) Randomly choose a permutation σ ∈ Σn.

(ii) If d(σ(qk)b, c) < d(qkb, c), then set qk+1 ← σ(qk) and k ← k + 1.

The collection Σn of permutations we will use is as follows. For distinct integers i, j ∈
{1, 2, . . . n} with i < j, let σij be the cycle (j, j−1, j−2, . . . , i+1, i) ∈ Sn, and let σji = σ−1ij .
Let Σn = {σij : i, j ∈ {1, 2, . . . , n}}. A permutation σij of this form applied to a word
w of length n essentially deletes the symbol at position i and re-inserts it at position j; in
other words, it ‘slides’ the symbol at position i to position j. It’s easy to see that every
permutation in Sn can be obtained as a composition of at most n such permutations in Σn.

This idea forms the basis for our approach, but the technique described above will often
not converge to a solution. The principal obstruction is that it can happen that d(qb, c) > 0
and d(σ(q)b, c) ≥ d(qb, c) for all σ ∈ Σn. In order to overcome this obstruction, we make two
small modifications to the idea above.

The first modification is that at Step 2(ii), we relax the inequality and set qk+1 ← σ(qk)
if d(σ(qk)b, c) ≤ d(qkb, c). For some values of q with d(qb, c) = δ, the probability of finding

6

a σ which improves the distance may be much smaller than the same probability for other
values of q′ with d(q′b, c) = δ. The idea is to let the sequence ‘wander’ around on the sphere
of radius δ until it finds a permutation which strictly improves the distance.

The second modification is as follows. For some values of q it appears that the ‘wandering’
above may be limited to a subset of the sphere of radius δ for which the probabilities of
improving distance are all unusually small (or perhaps even zero). If too much time is spent
on a sphere of a given radius δ, we will take a ‘jump’ which might worsen the distance. The
criterion we employ is that if we have likely visited most of the equivalence classes [σ(qk)b]
with σ ∈ Σn for which d(σ(qk)b, qkb) = 1, then we will take such a ‘jump’. The number of
such equivalence classes is not more than D(qkb); in fact, it is probably considerably less,
since we use a restricted set of permutations and only permute half of the word qkb.

The jump will begin from a ‘best’ value of q discovered so far; that is, a value of q which
has so far resulted in the least value of d(qb, c). Then apply a variable number (but at least
two) randomly chosen permutations to q. The idea is to jump by at least two permutations,
to lessen the likelihood of quickly returning to the same point. But it can happen that the
sequence gets stuck at a local minimum, so as more jumps are taken the likelihood of farther
jumps being considered increases. This is an ad-hoc solution, but does seem to work in
practice. With these modifications, the approach is described below as Algorithm 1.

Algorithm 1 Plactic Division

Input: c, b, q0 ∈ A∗N such that [c] = [σ(q0)][b] for some permutation σ ∈ S|q0|.
Output: A value of q ∈ A∗N satisfying [c] = [q][b].

1. Set q ← q0, n ← |q|, m ← 0, and M = 2D(qb), the function D given by (3.1). Set
δglobal ← d(qb, c) and qglobal ← q.

2. While d(qb, c) > 0 do the following:

(i) Randomly choose a permutation σ ∈ Σn, and set δ ← d(σ(q)b, c).

(ii) If d(σ(q)b, qb) = 1 then set m← m+ 1. (count potential steps of distance 1)

(ii) If δ < d(qb, c) then set m← 0. (distance improved)

(iii) If δ ≤ d(qb, c), then set q ← σ(q). (take this step)

(iv) If δ ≤ δglobal, set δglobal ← δ and qglobal ← q.

(v) If δ > d(qb, c) and m > M then set m ← 0, q ← qglobal, and do the following:
(jump)

• Choose a random σ ∈ Σn and set q ← σ(q).

• do

– Choose a random σ ∈ Σn and set q ← σ(q),

– choose a random x ∈ [0, 1),

while x < 1/2.

3. return q.

7

The two most crucial factors determining the runtime of Algorithm 1 are

1. How often is d(σ(qk)b, qkb) = 1?

2. How often will the sequence ‘jump’ at Step 2(iii)?

Suppose that for randomly chosen q, b ∈ A∗N with n = |q| = |b| and randomly chosen
σ ∈ Σn, the probability that d(σ(q)b, qb) = 1 is p(N, n). And let J(N, n) denote the expected
number of total jumps for randomly chosen c, b, q0 satisfying the input conditions. Assuming
that all improvements [jumps] will improve [worsen] the distance by 1, the expected number

of times that Step 2(i) will be executed could be approximated as O
(

M
p(N,n)

(n+ 2J(N, n))
)

.

The cost of executing Steps 2(i) through 2(iv) is dominated by the distance calculations which
require computing the tableaux of σ(q)b, at a cost of O(n2). We also have that M = D(qb) =
O(N3). This gives a total number of operations of about O (N3n2(n+ 2J(N, n))/p(N, n)).

22 23 24 25 26 27 28 29 210

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

n

p
ro

b
ab

il
it

y

p(4, n)
p(5, n)
p(6, n)
p(7, n)
p(8, n)

22 23 24 25 26 27 28 29 210
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

n

p
ro

b
ab

il
it

y

p(4, n)
p(8, n)
p(16, n)
p(32, n)
p(64, n)

Figure 3: Left: functions p(N, n), for N = 4, 5, 6, 7, 8, illustrating similar ‘shapes’. Right:
functions p(N, n) for N = 4, 8, 16, 32, 64.

It is straightforward to experimentally approximate the function p(N, n) for various val-
ues of N and n. We have done this, and summarized the results in Figure 3. It seems
plausible that for each fixed value of N , the function p(N, n) decays at a rate proportional to
1/(N log n). It seems very likely, though, that p(N, n) > 1

Nn
, which is a sufficient estimate for

our purposes. The function J(N, n) is less straightforward to experimentally approximate by
means other than running the algorithm itself and counting the number of jumps. But the
experimental evidence obtained by doing so was inadequate to even formulate a conjecture.

Experimental results from this algorithm will be given in the next section, for comparison
with the technique given there.

5 Lifting

In this section, we present an approach which uses Algorithm 1 combined with an algebraic
observation which seems to improve the runtime for larger alphabet sizes; again, we have

8

only experimental evidence to suggest that it is so. The following lemma is easy to prove,
and can be found as Lemma 5.4.4 in [3].

Lemma 5.1. Let I ⊂ AN be an interval, and for w ∈ A∗N let πI(w) denote the word obtained
from w be removing symbols not in I. If w ∈ A∗N and [w] = [w′] then [πI(w)] = [πI(w

′)].

We will make use of this observation as follows: for each 1 ≤ k ≤ N , we have that Ak
is an interval in AN . To simplify notation, let πk = πAk

. Since [q][b] = [c] has a solution, it
follows that [πk(q)][πk(b)] = [πk(c)] has a solution for each 1 ≤ k ≤ N . We first find q(1) ∈ A1

such that [q(1)][π1(b)] = [π(c)], which amounts to setting q(1) to be the word with |c|1 − |b|1
copies of the symbol 1. Inductively, if k < N and [q(k)][πk(b)] = [πk(c)], we attempt to ’lift’
this to a solution over Ak+1 by inserting the correct number of copies of symbol k + 1 and
applying Algorithm 1. The resulting algorithm is summarized below.

Algorithm 2 Plactic Division with lifting

Input: c, b ∈ AN such that [c] = [q][b] for some q ∈ A∗N .
Output: A value of q ∈ AN satisfying [c] = [q][b].

1. Set q to be a word with |c|1 − |b|1 copies of symbol 1, and k ← 1.

2. While k < N do the following:

(i) Set k ← k + 1.

(ii) Pre-pend |c|k − |b|k copies of symbol k to the word q.

(iii) Set q ← Algorithm1(πk+1(c), πk+1(b), q0 = q).

There are several considerations that seem to contribute to a better runtime in this
approach. In Algorithm 1, all of the monoid operations are performed on words of ‘full
length’; but here, we replace many of those operations with operations on words of smaller
length. And here, each ‘lifting step’ begins from a q0 with d(q0πk+1(b), πk+1(c)) ≤ |c|k+1,
which is relatively small. Moreover, it seems to happen some good portion of the time
that a solution can be obtained by simply relocating copies of the symbol k + 1, which is
relatively easy as the distance to a solution can be decreased monotonically in that case,
reducing the number of ‘jumps’ that are needed. Every solution to [q][b] = [c] is a solution
to [πk(q)][πk(b)] = [πk(c)], but the latter generally has more solutions than the former; so
the lifting of some solutions does require permuting several different symbols.

We implemented Algorithms 1 and 2 in C, building on the code generously made available
by Daniel Brown in [1], and the source code is available on our web site. For each indicated
alphabet size N , and each indicated word size n = |a| = |b|, we performed the following
experiment 100 times: choose random words a, b ∈ A∗N of length n, set c = ab, then apply
Algorithm 1 to c, b. For each value of N and n, we found the median runtime required to find
a solution; in all cases, the solutions were verified to be correct. The experiments described
here were run on a single core of an Intel® CoreTM i7 running at 3.10GHz, and the resulting
wall-clock times are reported. These results are summarized in Figure 4.

The division challenge problem given in [1] was, given the following values of d, b ∈ A∗64
(with base64 binary-to-text encoding), find q ∈ A∗64 such that d = qb.

9

24 25 26 27 28 29

10−4

10−3

10−2

10−1

100

101

102

103

n

T
im

e

N = 4
N = 8
N = 16
N = 32

24 25 26 27 28 29

10−4

10−3

10−2

10−1

100

101

102

103

n

T
im

e

N = 4
N = 8
N = 16
N = 32
N = 64

Figure 4: Left: median timing results for Algorithm 1, with logarithmic n and t axes. Right:
median timing results for Algorithm 2, with logarithmic n and t axes. For reference, both
plots include the same curve t = 5 × 10−7n4, as a dashed line. Note that Algorithm 1 was
not run with N = 64 because relevant values of n would begin at n = 64, and it was deemed
impractical to obtain enough points for meaningful results.

d=

xvupnymwzktxyjsuxipsuxgopstekorrxzcjloqvybhkmntxaeikmqwyYbgilpvxyzVZdhkouvvxzUXbfhnqstvxzTWaeglp

rsstySVZbfhmoorsxxxzRRVZacjmmnruuwwPPTXZbejkmnttuvOOQVXabdjllmnquvwMNPTUXYchkkllltuvxLMOOSVXZbgi

jjkqqtvwxKLMNOSWYYbhiiioopuvwJKKMMRUWXabffghjltuuxIJJKLPTUWZacdefiiiksvHHIJKOQRUWXXbbccghjrtvwxG

GHHILLPSSUVVWZbegijosuwyFFGGHIKNOQTUUVXaaegiinqtxxxDEEFGGJMMOOSSTWYYbeggmnouuuxCDDDFFGJLLMNRRSTW

WZffgiknstvvwyABBCDEFHIKLMNOQRUVYbbdhijooootuz9AABBCEFFHJKLNOQTUVZaadfiklllmpqswx89999BCDDDHHKKL

MNSTTTYaacchhhjkoqtv788889BCCCFGIIJKKPRRRUUWZZbbffgjnooqqy67777888ABCFFFGHHMNNNQSVYYYabdfhiklooo

orx56666777999ABEFGGJJKLMPPQRUUYaddggiimnnoswwwy4455566678889BBDDDGHILLMOOQRSTUVXYdddllnnqrrss33

33344455778888BBEGGGIKLNNNNNQUVVVZccfhikmmmrsww22222233344677779AABBDDGJJJJJKLMNTTUUWdffggijknpu

w1111112222223445599AAAAABCCCDGHIJPQSTUUWYZbcghilmmpvvw0000000111111223333555788ABBCCDEIJLMNNQQR

Rabbbccdhhijkmrrsv//////////000000111333356666789ACGJJJKMMOOSTTVZZZaaaaglmpqrrvvwwxz++++++++++++

+++++++++++++/11333788BBBCDHJJJJJNNNNNOOOOOPPPTTWXYYYbcefkklpwzz

b=

gnxkOR2uN/j/sWwxNHcMKh1DaMaV4ifNUkJhjr9WWVAHVA5FNRdNYt1/bNGYuq5lZIjIiGtxjdVlT+shNNf5NnYWawpQPJZS

txH376j3JQgqwLLy0o5dq4vLeUJrSyoNUGfFB+dQawvYYRTQH+tJZQiAusuD+VTNYkqBoVnl0Vt2CDKGNhNCdiYzf7O6IhgM

JVmQxgmAGUPQwOinni6asO+sqodfogSB4B0Dg3UTUl5xnD0ALslyiSm3A7vO+8kOr8976RCTf19I+ZGWfihspGQUdcCwrcCm

YRow31AEWMwbKnPLD41maUNHsOBVtJJU58RZcjubTZqnga1f13Bsb/lLn0rXg73vDhCEpbr+yUi6ZOYc+mZW+hB2Cvih6vJ3

km3wxaMag86a2i+k1r9d0mcKTITJwjONvr1mDlpISCsmMwTbMcE7ddvbVjGw+TpP9xqQPaOTBMRkW2zP8zcc+8kAr1XClSeb

3LKBriZYkHY80P7zaDJh3JJNNgwY/lpf

In 503 seconds on a single core of an i7 @ 3.10GHz processor, the method above found
the solution

q=

DpveA9nksHV7BoR28kKx+7GYpxV8xO0Fpkx8gyKTwF9+uu7UCqbmloOsbX3jFh3/xXPjmMG1r+VumFPtObboyteGsHMikz7l

29TqOvJnZyiL8F2yzGI6ithFzhgJT+VWmPLsIhXSxjxztvhicasvxb28Mmu/BHvkviiKX1nbZJud6Wb8ai6r+M7MqK2L/8z2

NK2/8XFS9xDIUuZEU9uScHBDWaSfYllXjelkoAfKJgNaROQ6H9SODXo3URMFZUopGbD8YGgNHXN1CLLTsTiKAjxJVvxZ0ooz

wCyPab1oaCF7vBT4tKx8nwotrf/C9bo7nwm2u10LBWuGY4o+jvp3U4cRuG+USHi8eibQwgxaIrBgvoL5H90V+OFTynBB7b1l

2d+ES48+3t5xiZ15+MgBI3NdM6ow7JuKQULGJtqmkqu3GE9uWgJD7vKYO4e3+Am5JRbCqkk6xUohtFAlc0B7fw/X0JbLJe8R

vKDvUNJolcTeO5ElwMkOf53BRhZPbAjf

10

5.1 Speculation

We have no reasonable explanation for why Algorithm 2 appears to be faster than Algorithm
1, but we can speculate. It appears that the number of jumps in Algorithm 1 might grow
like J(N, n) = O(nh(N)), for some function h. If the expected number of jumps needed
while lifting is much smaller, say O(n) for |πk(b)| = n, we can approximate the number
of operations needed by Algorithm 1 to perform the lift from Ak to Ak+1. The inputs b, q
over Ak+1 would have expected length n(k+ 1)/N , and the initial distance d(qb, c) would be
no more than n/N , corresponding to the expected number n/N of copies of symbol k + 1
just inserted. Thus, the distance d(qb, c) in Algorithm 1 would need to be improved about
n/N+2n(k+1)/N times. With those assumptions and the using the notations from Section
4, the number of times Step 2(i) of Algorithm 1 would be executed should be about

O

(
M

p(k + 1, n(k+1)
N

)

(
n

N
+
n(k + 1)

N

))
= O

(
(k + 1)6n2

N2

)
.

Again, the number of operations is dominated by the time required to compute the tableaux,
in this case O(n2(k + 1)2/N2). So the total number of operations needed to perform the
lift from Ak to Ak+1 would be about O ((k + 1)8n4/N4). Summing these from k = 1 to
k = N − 1 would give a total number of operations of about

N−1∑
k=1

O
(
(k + 1)8n4/N4

)
= O

(
n4N5

)
.

While this estimate appears to compare favorably with the experimental evidence with re-
spect to n, we again point out that it is purely speculation.

6 Remarks

Precisely analyzing the runtime of the algorithms here seems to be challenging. It might,
perhaps, be easier to produce a deterministic variant for which an analysis is more straight-
forward. But every attempt we made to do so seemed to have worsened the time to something
obviously exponential.

The variance of the runtimes for these algorithms seems to be quite high. Some pre-
liminary experiments suggest that this is due more to the sequence of random choices than
the particular inputs. This could potentially be leveraged, by producing a variant which
automatically restarts if too high a percentage of the total time has been spent without
obtaining any improvement.

7 Acknowledgements

We are very grateful to Daniel Brown for multiple email conversations and taking the time to
consider the ideas here and provide feedback. Several of his suggestions led to simplifications
of the overall presentation, as well as a simplification of Proposition 3.1 and its proof. We
are also very pleased to contribute this paper in honor of Joachim Rosenthal’s 60th birthday.

11

References

[1] Daniel R. L. Brown. Plactic key agreement (insecure?). Cryptology ePrint Archive,
Paper 2021/625, 2021. https://eprint.iacr.org/2021/625.

[2] Donald E. Knuth. Permutations, matrices, and generalized Young tableaux. Pacific
Journal of Mathematics, 34(3):709 – 727, 1970.

[3] M. Lothaire. Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 2002.

[4] Muhammad Rabi and Alan T. Sherman. Associative one-way functions: A new paradigm
for secret-key agreement and digital signatures. Technical report, USA, 1993.

[5] C. Schensted. Longest increasing and decreasing subsequences. Canadian Journal of
Mathematics, 13:179–191, 1961.

[6] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–
134, 1994.

12

