
Reconstructing with Less:
Leakage Abuse Attacks in Two-Dimensions

Evangelia Anna Markatou
∗

Brown University

markatou@brown.edu

Francesca Falzon
∗

University of Chicago

ffalzon@uchicago.edu

William Schor

Brown University

wschor@cs.brown.edu

Roberto Tamassia

Brown University

rt@cs.brown.edu

Abstract
Access and search pattern leakage from range queries are detrimen-

tal to the security of encrypted databases, as evidenced by a large

body of work on efficient attacks that reconstruct one-dimensional

databases. Recently, the first attack from 2D range queries showed

that higher-dimensional databases are also in danger. This attack

requires complete information for reconstruction. In this paper, we

develop reconstructions that require less information. We present

an order reconstruction attack that only depends on access pattern

leakage, and empirically show that the order allows the attacker to

infer the geometry of the underlying data. Notably, this attack also

achieves full database reconstruction when the 1D horizontal and

vertical projections of the points are dense. We also give an approx-

imate database reconstruction attack that is distribution-agnostic

and works with any subset of the possible search pattern, given the

order of the database. Finally, we show how knowledge of auxil-

iary information such as the centroid of a related dataset allows

to improve the reconstruction. We support our results with for-

mal analysis and experiments on real-world databases and queries

drawn from various distributions.

Keywords
Cryptography, Encrypted databases, Attacks

1 Introduction
The growing adoption of cloud computing and storage in the past

two decades has been accompanied by a corresponding increase

of data breaches. Encrypted cloud storage reduces the risk of such

breaches. Searchable encryption provides a practical solution for

processing range queries over encrypted data without the need

for decrypting the data or the queries (see, e.g., [7, 20, 21, 37] and

the survey by Fuller et al. [11]). These types of schemes have been

widely developed in both academic database research (e.g., [31,

33]) and in industry (e.g., [6, 29, 30]). For the sake of efficiency,

searchable encryption schemes sacrifice full security by leaking

some information about the queries and their responses. While

the security proofs of these schemes prove that nothing is leaked

beyond the given “leakage", the underlying data is still vulnerable to

inferences from this leakage (see, e.g., [9, 14–16, 22, 23, 25, 28, 32]).

The following standard types of leakage occur in searchable

encryption schemes. A scheme leaks the access pattern if the ad-

versary observes the encrypted records returned in response to

queries. A scheme leaks the search pattern if the adversary can

(a) (b)

Figure 1: Our reconstruction of a spatial dataset with 1,000
points. (a) Order reconstruction from only the access pat-
tern. (b) Approximate geometric reconstruction given the
order of the points and partial search pattern of 1M queries
drawn from a uniform distribution. We achieve an almost
exact reconstruction while prior work [9] needed 455M
queries on average for exact reconstruction.

distinguish if a query has been previously issued, i.e., can assign a

unique query identifier to each distinct query.

This work considers an encrypted database with two attributes,

referred to as a two-dimensional (2D) database to which range
queries are issued. We assume a passive persistent adversary who

observes the entire access pattern leakage, i.e., all possible responses

of queries, and a subset of the search pattern leakage. Our adversary

aims to reconstruct the order of the database records in the two

dimensions (attributes) using solely the access pattern, a problem

called order reconstruction (OR). The adversary then attempts to

perform an approximate reconstruction of the (attribute) values of

the database records by using the partial search pattern observed,

a problem called approximate database reconstruction (ADR).

1.1 Contributions
Previous work on reconstruction attacks from range queries on

2D databases [9] assumes that the adversary has knowledge of the

entire access and search pattern leakage, i.e., has seen all possible

queries and their responses. Both forms of leakage are used to

perform an attack that reconstructs the record values in polynomial

time, up to inherent information theoretic limitations. A natural

question left open is what information is recoverable from 2D range

queries when given less leakage. In this work, we make progress

on this question with the following contributions:

(1) We show that order reconstruction faces additional information

theoretic limitations when given only access pattern leakage.

∗
EAM and FF are co-first authors who contributed equally and are listed in reverse

alphabetical order.

We describe and prove a complete characterization of the

family of databases that have the same access pattern leakage.

(2) We present an order reconstruction attack that allows an

adversary with the entire access pattern to build a linear-space

representation of the family of databases in poly-time.

(3) We design a distribution-agnostic approximate database
reconstruction attack that reconstructs record values given

the order of the records and partial search pattern leakage from

queries issued according to an unknown distribution.

(4) We empirically evaluate the effectiveness of our attacks on
real-world datasets using a variety of range query distributions.

(5) We develop new combinatorial and geometric concepts and
algorithms related to point reconstruction from range queries

that may be of independent interest.

Our work provides the first order reconstruction attack in
2D from access pattern leakage and the first approximate re-
construction attack in 2D from partial search pattern leakage
and an unknown query distribution. This attack does not re-

quire knowledge of the domain size and, instead, gives us a lower

bound of the size of the domain. Our order reconstruction attack

is also a full database reconstruction attack for the case when

the 1D horizontal and vertical projections of the points are dense,
i.e., have a record for every domain value.

Our work improves over the full database reconstruction attack

of [9], where the adversary observes both access pattern and search

pattern from all possible queries on the database. This previous

attack fails when even a single query is missing. In contrast, we

demonstrate that an adversary can still infer much about the origi-

nal data with significantly less information. In particular,we achieve

order reconstruction given only the access pattern (Figure 1a) and

an effective approximate database reconstruction given the search

pattern from a small fraction of queries (Figure 1b).

Our approximate database reconstruction (ADR) attack can be

viewed as the 2D analogue of the work on attacks on 1D databases

reported in [23]. To apply previous approximation approaches that

assume knowledge of the order to 2D databases, we must com-

pletely characterize order reconstruction in 2D. However, much

like FDR does not trivially extend from the 1D to 2D setting, our

order reconstruction method demonstrates an exponential increase

in the number of indistinguishable point configurations in the 2D

setting. Thus, we cannot simply generalize 1D techniques to 2D. We

re-examine a number of support-size estimators to better suit our

problem. We emphasize that while our techniques are distribution

agnostic (i.e., they do not require knowledge of the query distri-

bution), certain distributions prevent the observation of a large

fraction of responses and records (i.e., a distribution where only a

few queries have nonzero probability) and thus place severe infor-

mation theoretic limits on the accuracy of any approximate recon-

struction method. In Section 6 we examine different non-parametric

estimators and their efficacy under different query distributions.

In Section 7 we build a complex nonlinear system of equations to

model the problem instead of the linear system of [23].

1.2 Encrypted databases and 2D Range Queries
There are a number of schemes that support two-dimensional range

queries over encrypted data. All existing schemes leak query access

pattern and many of these leak strictly more information than

access and search pattern. Our work is motivated by the need to

understand what can be learned from information leakage that

seems unavoidable without employing the use of oblivious RAMs

(ORAMs) [13] or fully homomorphic encryption [12], both of which

incur significant overhead.

Shi et al. [35] designed a scheme called Multidimensional Range

Query over Encrypted Data (MRQED) that leverages public key

encryption. Although their model is different, their scheme leaks

strictly more than access and search pattern. MRQED achieves

“match-revealing” security which reveals the attributes of the range

query when the query is successfully decrypted. The scheme builds

a binary tree on the values of each dimension, and releases public

keys corresponding to the nodes that “cover” the range of interest.

The server learns both search and access of the query, the plaintexts

of the matching records, and structural information about range

query issued. Maple is a tree-based public-key multi-dimensional

range searchable encryption scheme [43]. Its goal is to provide

single-dimensional privacy which mitigates one-dimensional data-

base reconstruction attacks. In addition to leaking access and search

pattern, they also leak the nodes accessed when traversing the

range tree and the values of each queried range. Recently, Kamara

et al. gave constructions for schemes that support conjunctive SQL

queries with a reduced leakage profile [18, 19].

One may also consider an index-based construction described

in [9] that is built on top of a multi-keyword searchable encryp-

tion scheme, like Cash et al. [4]. To mitigate 1D attacks and avoid

leaking information about individual columns, one can precompute

a joint index of all possible two-dimensional queries and encrypt

the resulting index. When a two-dimensional query is issued, only

records matching both dimensions will be returned and the leakage

is precisely the leakage of the underlying SSE scheme used.

1.3 Comparison with Prior and Related Work
In the following, we denote with 𝑁 the size of the domain of the

database points. We present the first order reconstruction and the

first approximate database reconstruction in 2D; our attacks only

require a strict subset of the leakage that previous 2D attacks require.

Our order reconstruction attack only takes as input the set of access

pattern leakage, which can be obtainedwith𝑂 (𝑁 2
log𝑁) uniformly

random queries. Our approximate database reconstruction attack

requires search and access pattern leakage, however, we are able

to recover information with small relative error with as few as 4%

of the possible queries. Table 1 compares our results with previous

work, where Dense1D denotes a 2D database whose horizontal and

vertical projections are each a dense 1D database.

Kellaris et al. [21] show that given a 1D database, one can recon-

struct the values of the database records from access pattern leakage

of range queries using𝑂 (𝑁 4
log𝑁) queries issued uniformly at ran-

dom. Since then, a number of works have explored the problem in

1D (e.g. [15, 22, 23, 25, 28]), and in 2D [9].

Order reconstruction was first introduced in [21], as the first

step of their FDR attack. Grubbs et al. [15] generalize the attack

to one that achieves sacrificial 𝜖-approximate order reconstruction

(𝜖-AOR); the goal of 𝜖-AOR is to recover the order of all records,

except for records that are either within 𝜖𝑁 of each other or within

𝜖𝑁 of the endpoints. Their attack achieves sacrificial 𝜖-AOR with

probability 1−𝛿 given𝑂 (𝜖−1 log 𝜖−1+𝜖−1 log𝛿−1) uniform queries.

2

Table 1: Comparison of our attack with related ones.
Queries Assumptions Leakage Attack

1D 2D Query Data- Search OR FDR ADR
range range distrib. base pattern

Kellaris+ [21] ✓ Uniform Any ✓ ✓ ✓
Lacharité+ [25] ✓ Unknown Dense ✓ ✓
Grubbs+ [15] ✓ Uniform Any ✓ ✓ ✓

Markatou+ [28] ✓ Unknown Any ✓
Markatou+ [28] ✓ Unknown Any ✓ ✓

Kornaropoulos+ [23] ✓ Unknown Any ✓ ✓

Falzon+ [9] ✓ Unknown Any ✓ ✓
Falzon+ [9] ✓ Known Any ✓

This Work ✓ Unknown Any ✓
This Work ✓ Unknown Any ✓ ✓
This Work ✓ Unknown Dense1D ✓ ✓

Approximate database reconstruction from access pattern of

range queries in 1D has been addressed in [15, 23, 25]. In [25],

Lacharité et al. introduce 𝜖-approximate database reconstruction

(𝜖-ADR) as the reconstruction of each record value up to 𝜖𝑁 error;

they then give an attack that achieves 𝜖-ADR with 𝑂 (𝑁 log 𝜖−1)
uniform queries. In [15], the authors further introduce sacrificial 𝜖-

ADR, whose goal is to recover all values up to and error of 𝜖𝑁 , while

“sacrificing" recovery of points within 𝜖𝑁 of the domain end points.

Concepts from statistical learning theory are applied to achieve a

scale-free attack that succeeds with 𝑂 (𝜖−2 log 𝜖−1) queries.
Kornaropoulos et al. [23] reconstruct a 1D database without

knowledge of the underlying query distribution and without all

possible queries by employing statistical estimators to approximate

the support size of the conditional distribution of search tokens

given a particular response. Their agnostic reconstruction attack

achieves reconstruction with good accuracy in a variety of settings

including and beyond the uniform query distribution.

Full database reconstruction in two-dimensions was first de-

scribed in [9]. In this work, Falzon et al. describe the symmetries

of databases in two dimensions, prove that the set of databases

compatible with a given access pattern leakage may be exponential,

and give a polynomial-time algorithm for computing a polynomial-

sized encoding of the (potentially exponential) solution set. Their

attack requires full knowledge of the set of queries and their re-

spective access pattern. As such, the attack uses either (1) search

and access pattern leakage or (2) 𝑂 (𝑁 4
log𝑁) uniformly random

queries where 𝑁 is the size of the 2D domain.

We also note that there are a number of reconstruction attacks

that use only volume pattern, or the number of records returned

upon each query [14, 16, 24, 32]. This setting is outside the scope

of this paper.

2 Preliminaries
We recall combinatorial and geometric concepts using the termi-

nology and notation introduced in [9].

Basic concepts. For a positive integer𝑁 , we define [𝑁] = {1, . . . , 𝑁 }.
Thee domain of a two-dimensional (2D) database to be D =

[𝑁0] × [𝑁1] for positive integers 𝑁0 and 𝑁1. We refer to the points

on the segment from (0, 0) to (𝑁0+1, 𝑁1+1) as themain diagonal.
Given a point𝑤 ∈ D, we denote its first coordinate as𝑤0 and its

second coordinate as𝑤1, i.e.,𝑤 = (𝑤0,𝑤1). A point𝑤 dominates
point 𝑥 , denoted 𝑥 ⪯ 𝑤 , if 𝑥0 ≤ 𝑤0 and 𝑥1 ≤ 𝑤1. Similarly, 𝑤

anti-dominates 𝑥 , denoted 𝑥 ⪯𝑎 𝑤 , if𝑤0 ≤ 𝑥0 and 𝑥1 ≤ 𝑤1. The

u2
u4

u1
u3

u5

u6 u7

u8
Figure 2: Dominance
graph (blue) and anti-
dominance graph
(red) for a database
with components
{𝑢1}, {𝑢2, 𝑢3}, {𝑢4},
{𝑢5, 𝑢6, 𝑢7}, and {𝑢8}.

dominance or anti-dominance is said to be strict if the above in-
equalities are strict. We say that𝑤 minimally (anti-) dominates
𝑥 if there is no point 𝑣 ≠ 𝑤, 𝑥 such that𝑤 (anti-) dominates 𝑣 and 𝑣

(anti-) dominates 𝑥 .

A 2D database, D, over a domain D with 𝑅 ≥ 1 records is an

𝑅-tuple of points in D i.e. D ∈ D𝑅
. A point of D is referred to as

a record and is associated with a unique identifier (or ID) in [𝑅]
that gives its index in the tuple. We let D[𝑗] for 𝑗 ∈ [𝑅] denote the
domain value associated with the record ID 𝑗 . When clear from

context, we may refer to records as points. We denote a digraph as

𝐺 = (𝑉 , 𝐸) such that 𝑉 is the vertex set and 𝐸 is the directed edge

set. For any two vertices 𝑢, 𝑣 ∈ 𝑉 we denote a directed edge from 𝑢

to 𝑣 as the pair (𝑢, 𝑣) (Figure 2).
The following definitions are illustrated in Figure 2.

Definition 2.1. The dominance graph, 𝐺 = (𝑉 , 𝐸), of a set of
points 𝑆 , is the digraph where 𝑉 = 𝑆 and (𝑎, 𝑏) ∈ 𝐸 if 𝑏 minimally

dominates 𝑎 and 𝑎, 𝑏 ∈ 𝑉 .

Definition 2.2. The anti-dominance graph, 𝐺 ′ = (𝑉 ′, 𝐸 ′), of a
set of points 𝑆 , is the digraph where 𝑉 ′ = 𝑆 and (𝑎, 𝑏) ∈ 𝐸 ′ if 𝑏
minimally anti-dominates 𝑎 and 𝑎, 𝑏 ∈ 𝑉 ′

.

Definition 2.3 ([9]). A component,𝐶 , of database D is a minimal

non-empty subset of D such that for any points 𝑝 ∈ 𝐶 and 𝑞 ∉ 𝐶 ,

both 𝑝 and its reflection along the main diagonal either dominate 𝑞

or are dominated by 𝑞.

Range queries and leakage. A range query is defined by a pair

of domain points 𝑞 = (𝑐, 𝑑) ∈ D2
such that 𝑐 ⪯ 𝑑 . The response or

access pattern of a range query is the set of identifiers of records

with values that fall within the range of the query. The response of

a query 𝑞 = (𝑐, 𝑑) is defined to be

Resp(D, 𝑞) = { 𝑗 ∈ [𝑅] : 𝑐 ⪯ 𝐷 [𝑗] ⪯ 𝑑}. (1)

We similarly define the response multiset of a database D, de-
noted RM(𝐷), as themultiset of all access pattern of D:

RM(D) = {{Resp(D, 𝑞) : 𝑞 = (𝑐, 𝑑) ∈ D2, 𝑐 ⪯ 𝑑}}.
We use the double bracket notation to emphasise that this is a mul-

tiset since distinct queries 𝑞, 𝑞′ may produce the same response,

Resp(D, 𝑞) = Resp(D, 𝑞′). We define the response set of D, denoted
RS(D), to be the corresponding set in which each response appears

exactly once. The search pattern of a query 𝑞 = (𝑐, 𝑑) is defined to
be a query-specific token SP(D, 𝑞) = 𝑡 , where 𝑡 ∈

[(𝑁0+1
2

) (𝑁1+1
2

)]
.

We assume a one-to-one correspondence between queries and to-

kens, a characteristic satisfied by all structured encryption schemes

proposed in the literature, to our knowledge.

Threatmodel.We study the security of encrypted database schemes

that support two-dimensional range queries and which leak the

access pattern and search pattern of each query. We consider an

honest-but-curious, persistent adversary that has compromised

3

the database management system or the client-server communica-

tion channel, and can observe the leakage over an extended period

of time. Our order reconstruction attack considers an adversary

that takes RS(D) as input and wishes to compute the order of all

records. Our other attack considers an adversary that knows the

order and some subset of the possible search tokens and wishes to

approximate the domain value of each record.

Assumptions and reconstruction attacks. We explore recon-

struction under a few different assumptions. In Section 5 we assume

the adversary knows the full response set RS(D). In Section 7 we

assume the adversary knows the domain, but we make no assump-

tion about the number of queries that it may have observed or the

distribution from which queries are drawn; the adversary has no

knowledge of the distribution.

We define the Order Reconstruction (OR) problem as follows:

Definition 2.4. OR: Given a set RS(D) of some database D, com-

pute all pairs of dominance and anti-dominance graphs (𝐺,𝐺 ′)
such that any database D′

with record relationships defined by

(𝐺,𝐺 ′) is equivalent to D with respect to the response set, i.e.

RS(D) = RS(D′).

Computing (𝐺,𝐺 ′) is the information theoretic best that an

adversary can do without additional information (e.g. without the

multiplicities of each response, or the distribution of the data).

In Section 7 we give a method for estimating the values of the

database given only partial access pattern leakage. In particular,

given the order of points in D and a subset of RM(D), we demon-

strate how to (i) estimate the number of unique queries that each

record appears in and then (ii) use this information to construct a

system of non-linear equations that can be solved to give approxi-

mate values of the records. We refer to this problem as Approxi-
mate Database Reconstruction (ADR).

2.1 Query Densities
We use the generalized notion of query densities of points and

point sets in two-dimensions presented in [9], which extends the

methods in [21] for computing the number of unique queries whose

responses contain a given set of points. By observing sufficiently

many query responses of uniformly random queries, one can re-

cover the value of a point 𝑥 by computing the proportion of re-

sponses that the identifier of 𝑥 appears in.

Definition 2.5 ([9]). Let D = [𝑁0] × [𝑁1]. The query density of

a point 𝑥 ∈ D is defined as

𝜌𝑥 =
��{(𝑐, 𝑑) ∈ D2

: 𝑐 ⪯ 𝑥 ⪯ 𝑑}
�� .

The query density a set of points 𝑆 ⊆ D defined as

𝜌𝑆 =
��{(𝑐, 𝑑) ∈ D2

: ∀𝑥 ∈ 𝑆, 𝑐 ⪯ 𝑥 ⪯ 𝑑}
�� .

Thus, these are the number of queries that contain 𝑥 or all points

in 𝑆 , respectively.

Given a point 𝑥 = (𝑥0, 𝑥1) ∈ D, the formula for computing 𝜌𝑥 is

𝜌𝑥 = 𝑥0 · 𝑥1 · (𝑁0 + 1 − 𝑥0) · (𝑁1 + 1 − 𝑥1) . (2)

More generally, the query density 𝜌𝑆 of a set of points 𝑆 ⊆ D is

𝜌𝑆 = (min

𝑥 ∈𝑆
𝑥0) (min

𝑦∈𝑆
𝑦1) (𝑁0 + 1 −max

𝑧∈𝑆
𝑧0) (𝑁1 + 1 −max

𝑤∈𝑆
𝑤1) . (3)

3 Order and Equivalent Databases
Before developing our attacks, we present our results on the information-

theoretic limitations of order reconstruction.

3.1 Equivalent Databases
Definition 3.1. Databases D and D′

are equivalent with respect
to the response multiset if RM(D) = RM(D′) and equivalent
with respect to the response set if RS(D) = RS(D′).

As shown in [9], given some database D we can generate a

database D′
that is equivalent with respect to the response multiset

by rotating/reflecting D according to the symmetries of the square

and by independently flipping the reflectable components across

the main diagonal.

Proposition 1. [9] Let D be a two-dimensional database that con-
tains components𝐶1 and𝐶2. Let D′ be a database such that |D′ | = |D |,
which contains 𝐶1 and 𝐶 ′

2
, where each point 𝑝 ∈ 𝐶 ′

2
is the reflection

of some point 𝑝 ′ ∈ 𝐶2 along the diagonal. Then databases D and D′

are equivalent with respect to the response set, i.e., RS(D) = RS(D′).

Note that if D and D′
are equivalent with respect to the response

multiset, then they are equivalent with respect to the response set.

However, the converse is not necessarily true. We show in Proposi-

tions 2 and 3 (Figure 3) that there are two additional symmetries

that produce equivalent databases with respect to the response set.

Definition 3.2. Apair of points (𝑝, 𝑞) of a databaseD is an antipo-
dal pair if for every point 𝑟 ∈ D − {𝑝, 𝑞} we have (1) 𝑞1 < 𝑟1 < 𝑝1
and (2) either 𝑟0 < min(𝑝0, 𝑞0) or 𝑟0 > max(𝑝0, 𝑞0). See Figure 3b.

Definition 3.3. A pair (𝑝, 𝑞) of points of a database D are said to

be a close pair if𝑞minimally dominates 𝑝 , and there exists no point

𝑟 ∈ D − {𝑝, 𝑞} such that 𝑟 anti-dominates 𝑝 or 𝑟 is anti-dominated

by 𝑞 or 𝑟 is between 𝑝 and 𝑞. See Figure 3c.

The following proposition, illustrated in Figure 3b, shows that

one cannot infer the horizontal ordering of an antipodal pair from

the response set.

Proposition 2. Let D be a database from domainD that contains
an antipodal pair (𝑝, 𝑞). Let 𝑉 be the widest vertical strip of points of
D that contains 𝑝 and𝑞, and let 𝑃 and𝑄 be the tallest horizontal strips
of𝑉 containing 𝑝 and 𝑞, respectively, but no other point of D. Let D′ be
the database obtained from D by replacing 𝑝 with another point, 𝑝 ′, of
𝑃 and 𝑞 with another point, 𝑞′, of𝑄 . We have that databases D and D′

are equivalent with respect to the response set, i.e., RS(D) = RS(D′).
[Proof in Appendix C]

By Proposition 2, the two points of the antipodal pair (𝑝, 𝑞) of
D and of the corresponding antipodal pair (𝑝 ′, 𝑞′) of D′

can be

ordered, reverse ordered, or collinear in the horizontal dimension

and these three orderings cannot be distinguished using RS(D).

Proposition 3. Let D be a database from domain D that has a
close pair (𝑝, 𝑞). Let D′ be the database obtained fromD by replacing𝑞
with any point 𝑞′ such that 𝑞′

0
= 𝑞0 and 𝑝1 ≤ 𝑞′

1
≤ 𝑞1. Then D and D′

are equivalent with respect to the response set, i.e., RS(D) = RS(D′).
[Proof in Appendix C]

Definition 3.4. Let D be a database and let 𝐺 and 𝐺 ′
be the dom-

inance and anti-dominance graphs of D, respectively. We define

4

′

(a) Illustration of Definition 2.3 and Proposition 1.
𝐶1 and𝐶2 are components ofD. Flipping𝐶2 along
the diagonal yields an equivalent database with
respect to the response multi-set.

R

Q

P

L

p
p′

q
q′

(b) Illustration ofDefinition 3.2 andProposition 2.
Points 𝑝 and𝑞 are an antipodal pair. Each remain-
ing point is in 𝐿 or𝑅. Replacing 𝑝 with 𝑝′ ∈ 𝑃 and
𝑞 with 𝑞′ ∈ 𝑄 gives an equivalent database with
respect to the response set.

q′

X
2

p

X
1

X
3

q

Q

(c) Illustration of Definition 3.3 and Proposition 3.
Points𝑝 and𝑞 are a close pair. There are no points
in regions𝑋1,𝑋2 or𝑋3. Replacing𝑞 with any𝑞′ ∈
𝑄 yields an equivalent database with respect to
the response set.

Figure 3: Examples of transformations that yield equivalent databases with respect to the response set (Definition 3.1).

Eo (D) as the set of all possible point orderings of databases equiva-
lent to D with respect to response set, RS(D).

Combining Propositions 1, 2 and 3, we capture all the information-

theoretic limitations of order reconstruction.

Theorem 3.5. Let D be a two-dimensional database. The set of
point orderings Eo (D) can be obtained from the dominance graph 𝐺 ,
the anti-dominance graph𝐺 ′, the antipodal pair (if it exists), and the
set of close pairs of D by means of the following transformations:

(1) Flipping the direction of 𝐺 and/or a subset of components of 𝐺 ′

according to Proposition 1.
(2) If D contains an antipodal pair, add or remove one or two edges

from𝐺 or𝐺 ′ to make the pair collinear or switch their relationship
from strict dominance to strict anti-dominance or vice versa.

(3) For each close pair in D, add or remove one or two edges from 𝐺

or 𝐺 ′ to make them collinear or put them in a strict dominance
relationship.

We prove Theorem 3.5 in Section 4.1. The equivalent configura-

tions of Propositions 2 and 3 arise only with respect to the response

set. The multiplicity information from the response multiset pro-

vided by the search pattern resolves them. Indeed, Theorem 3.5

adds transformations (2) and (3) to transformation (1) given in [9].

3.2 Chains and Antichains
Our order reconstruction algorithm uses the concepts of chains

and antichains of the dominance and anti-dominance relations for

points in the plane [10, 41]. A set of points 𝑆 ⊆ D is a chain if any

two points 𝑥,𝑤 ∈ 𝑆 are in a dominance relationship i.e. 𝑥 ⪯ 𝑤 or

𝑤 ⪯ 𝑥 . A subset of points 𝐴 ⊆ D is an antichain if for any two

points 𝑥,𝑤 ∈ 𝐴 neither 𝑥 ⪯ 𝑤 nor 𝑤 ⪯ 𝑥 . Let D ⊆ D be a set of

points. The height of a point 𝑥 ∈ D is the length of the longest

chain in D with 𝑥 as the maximal element. Note that two points of

the same height cannot have a dominance relation. Thus, the set

of all points in D with the same height yields a partition A of D
into antichains, namely the canonical antichain partition. We

denote the canonical antichain partition by (𝐴0, 𝐴1, . . . , 𝐴𝐿) where
𝐴𝑖 is the set of points at height 𝑖 .

Let D be a database and let (𝐺,𝐺 ′) be the dominance and anti-

dominance graphs of D. Now note that the paths in the dominance

graph correspond to chains in D. Formally, if (𝑢1, 𝑢2, . . . , 𝑢ℓ) is a
path of record IDs in 𝐺 , then D[𝑢1] ⪯ D[𝑢2] ⪯ · · · ⪯ D[𝑢ℓ] and
{D[𝑢1],D[𝑢2], . . . ,D[𝑢ℓ]} forms a chain in D. By definition the

edges of𝐺 represent the minimal dominance relations of the points

Figure 4: Example of a
dominance graph and
its associated canoni-
cal antichain partition
comprising antichains
𝐴0 = {𝑠}, 𝐴1 = {𝑢1, · · ·𝑢6},
and 𝐴2 = {𝑣1, · · · 𝑣4}.

in D and thus determining the length of a longest possible path

in 𝐺 from a source to 𝑢 ∈ [𝑅] is equivalent to determining the

height of point D[𝑢] in the database. This gives us a nice way

of partitioning the IDs such that the partition corresponds to the

canonical antichain partition. Formally, if 𝑠 is a source of 𝐺 then

D[𝑠] has height 0. And if 𝑆𝑖 ⊆ [𝑅] is the set of IDs in𝐺 that have a

maximum distance of 𝑖 from any sink, then the canonical antichain

partition of D is given by 𝐴𝑖 = {D[𝑎] : 𝑎 ∈ 𝑆𝑖 }.
For an example, see Figure 4. Since 𝐺 is acyclic we can compute

these longest paths efficiently. For convenience we may use 𝐴𝑖

to instead refer to the IDs of points within each partition of the

canonical antichain.

These observations are crucial in the design of our OR algorithm.

E.g., we construct the dominance graph starting at the IDs of points

with height 0. We then compute the partition on IDs that corre-

spond to the canonical antichain partition and use the partition to

construct the anti-dominance graph.

4 Overview of Order Reconstruction
A high-level intuitive explanation for our order reconstruction al-

gorithm is schematically illustrated in Figure 5, where we show a

database that has distinct extreme points left, right, top and bottom.

We assume, without loss of generality, that left ⪯ right. The two
parts of the figure distinguish the cases where top is to the left or

right of bottom, respectively. By symmetry, these two cases cover

all the possible configurations of the extreme points. For simplicity,

we assume that none of the remaining points are horizontally or

vertically aligned with each other or the extreme points. Thus, only

the four extreme points are on the boundary of the rectangle occu-

pied by the database points. The OR algorithm presented in the next

section will remove these simplifying assumptions and reconstruct

an arbitrary database. A first building block of our OR algorithm

finds such extreme points from the response set. We leverage an

5

(a) top to the left of bottom (b) top to the right of bottom
Figure 5: Partition of the database points into nine regions
induced by the four extreme points.

algorithm from [9] to find these extreme points, however our tech-

niques diverge considerably from [9] after this. Whereas they solve

a system of degree four polynomials with full knowledge of RM(D),
our OR algorithm determines the relationships between pairs of

records using only set containment observed in RS(D).
Partition of the Database into Regions. By drawing horizon-

tal and vertical lines through the extreme points, we partition the

database points into nine regions labeled XY for X ∈ {T,M,B} and
Y ∈ {L,M,R}, where T, B, L, R, and M stand for top, bottom, left,

right, and middle, respectively. Note that some of these regions

may be empty. We can compute the points in each region from

the response set by finding minimal responses that contain certain

pairs and triplets of extreme points and performing intersections

and differences of such responses with each other and the entire

database. We show how to compute the rows and columns, from

which a region can be computed by intersecting its row with its

column. The middle row and column are the minimal response

containing left and bottom and the minimal response containing

top and bottom, respectively. The other rows and columns are ob-

tained by computing the minimal response containing the triplet

of extreme points opposite to the column and subtracting this re-

sponse from the database. For example, the left column is obtained

by subtracting from the database the minimal response containing

top, right, and bottom.

(Anti-)Dominance with a Corner. Consider a subset 𝑆 of the

database containing a dominance corner, 𝑠 , defined as a point that

dominates or is dominated by all other points of 𝑆 . For example,

point left is a dominance corner for the points in region ML in

Figure 5a. Another building block of our algorithm is a method

that given 𝑆 and 𝑠 , computes all pairs of points of 𝑆 that have a

dominance relation. By symmetry, the same methods compute the

anti-dominance relation pairs for a subset of points that admits

a similarly defined anti-dominance corner. Let 𝑠 be a dominance

corner for 𝑆 and assume 𝑠 is dominated by all the other points.

The method considers for each point 𝑣 of 𝑆 , the smallest response

containing points 𝑠 and 𝑣 . We have the the points of 𝑆 in this

response are the points of 𝑆 dominated by 𝑣 . For example, in the

point set of Figure 4, we have that point 𝑠 is a dominance corner.

Also, the smallest response containing 𝑠 and 𝑣3 is {𝑠,𝑢3, 𝑢4, 𝑣3},
which implies that the points dominated by 𝑣3 are 𝑠 , 𝑢3 and 𝑢4.

Points in Different Rows and Columns. Consider two points,

𝑝 , and 𝑞. For some placement of these points into regions, namely

when they are in regions in different rows and columns, we can

immediately decide their horizontal and vertical order and thus

whether they are in a dominance or anti-dominance relation. For

example, if 𝑝 is in BL and 𝑞 is inMM,MR, TM, or TR, then we have

that 𝑞 is above and to the right of 𝑝 and thus dominates 𝑝 . Also, if 𝑝

is in BM and 𝑞 isML or TL, then we have that 𝑞 is above and to the

left of 𝑝 and thus 𝑞 anti-dominates 𝑝 . Similar considerations hold

for other placements of 𝑝 and 𝑞 in different rows and columns.

Points in Different Regions in Same Row or Column. Con-
sider now the case when 𝑝 and 𝑞 are in different regions that share

the same row or column. In this case, we know one of the horizontal

or vertical ordering of the points, but not the other. Let 𝑝 be in TL
and 𝑞 be in TR. We have that 𝑝 is to the left of 𝑞. We can use our

building block method applied to the points in the top row and

their anti-dominance corner right to determine whether 𝑝 and 𝑞

are in anti-dominance relation. If they are not, given that 𝑝 is to the

left of 𝑞, we conclude that 𝑞 dominates 𝑝 . The same reasoning holds

when 𝑝 is in TL and 𝑞 is in TM and, more generally, by symmetry,

for 𝑝 and 𝑞 in contiguous regions of the same row or column.

Points in Same Region. We now turn to the case when 𝑝 and

𝑞 are in the same region. Here, we need to take into account the

configurations of the extreme points. We distinguish the cases when

top is to the left bottom (Figure 5a) and top is to the right of bottom
(Figure 5b). It is worth noting that we can distinguish these two

cases from the response set only if there is at least a point in the

middle column. Otherwise, top and bottom are an antipodal pair

(Definition 3.2 and Proposition 2).

In the case of Figure 5a, each region is included in a group of

regions that has a dominance corner and another group of regions

that has an anti-dominance corner. For example, suppose 𝑝 and 𝑞

are in TL, TM,ML, orMM. We have that left is a dominance corner

for the top two rows and bottom in an anti-dominance corner for

the left two rows. Applying our building block method to these two

groups of regions, we determine whether 𝑝 and 𝑞 are in dominance

or anti-dominance relation. In the case of Figure 5a, we can use the

same approach for all regions exceptMM.

To deal with the remaining case of 𝑝 and 𝑞 within region MM
in the configuration of Figure 5b, we observe that using dominance

corner top or bottom, we can determine if 𝑝 and 𝑞 are in dominance

relation. If so, we are done, else, we find the extreme points ofMM
and apply the order reconstruction algorithm recursively to the

points within this region.

4.1 Proof of Theorem 3.5
Proof. Let D be a database and let left, right, top, and bottom

be its four extreme points. Without loss of generality, these points

must take one of the two configurations pictured in Figure 5. Note,

any point’s relative order can be determined if it is in a dominance

relation with one point and in an anti-dominance relation with

another point. If a point is not in such a relation, then we argue

that the three transformations yield all databases equivalent to D
with respect to the response set.

Case 1: If top and bottom are antipodal, we have the configuration

of Figure 5a or Figure 5b with an empty middle column and the

ordering of all pairs of points is determined with the exception of

the antipodal pair (Transformation 2).

Case 2: If top and bottom are not antipodal, we have two subcases.

6

Case 2a: If top anti-dominates bottom, we have the configuration

of Figure 5a where the ordering of all pairs of points is determined.

Case 2b: Else, top dominates bottom and we have the configuration

of Figure 5b, where the ordering of all pairs of points is determined

except for pairs in MM. If MM = ∅ or has a single point, we are

done. Else, let 𝐶 be the subset of points of MM are not in anti-

dominance relation with a point of D not in MM. We have that all

the remaining points of MM have their ordering determined. Also,

𝐶 comprises one or more components and/or close pairs whose

ordering can be changed by means of Transformations 1 and 3.

Now, let us show that there are no other possible transformations

that change the order of some pair of points 𝑎, 𝑏 in 𝐶 , while leav-

ing RS(D) the same. If 𝑏 minimally dominates 𝑎, there exists no

response in RS(D) that contains right and 𝑎 without 𝑏. Any such

transformation would result in one of the following changes: (i) 𝑎

dominates 𝑏, (ii) 𝑎 anti-dominates 𝑏, (iii) 𝑏 anti-dominates 𝑎 and

(iv) 𝑎 and 𝑏 are collinear. In (i), (ii) or (iii), then there would exist a

response in RS(D) that contains right and 𝑎, but not 𝑏, which would
result in a different response set. Thus, the transformation would

make 𝑎 and 𝑏 be collinear. This is possible only if the corresponding

sets 𝑋1, 𝑋2 and 𝑋3 shown in Figure 3c are empty. As 𝑏 minimally

dominates 𝑎,𝑋3 must be empty. Suppose there is some point 𝑐 ∈ 𝑋1,

then there is a response that contains 𝑎 and 𝑐 without 𝑏 and a re-

sponse that contains 𝑏 and 𝑐 without 𝑎. If 𝑎 and 𝑏 were collinear,

one of those responses becomes impossible, modifying the response

set. A similar argument can be made about 𝑋2. We conclude 𝑎 and

𝑏 are a close pair and that we are applying Transformation 3 to

make them collinear.

Alternatively, if 𝑏 minimally strictly anti-dominates 𝑎, there ex-

ists a response 𝑟1 that contains right and 𝑎 without 𝑏 and a response

𝑟2 that contains right and 𝑏 without 𝑎. The transformations would

result in one of the following: (i) 𝑎 dominates 𝑏, (ii) 𝑏 dominates 𝑎,

(iii) 𝑎 anti-dominates 𝑏 and (iv) 𝑎 and 𝑏 are collinear. In (i), (ii), or

(iv) one of 𝑟1 or 𝑟2 would not exist, resulting in a different response

set. What is left is case (iii), which implies that the anti-dominance

relationship is flipped by applying Transformation 1. □

5 Order Reconstruction
The adversary using the response set can reconstruct the order

of all records in the database (up to equivalent orders). The order

reconstruction algorithm has the following steps:

(1) Find the extreme points of the database. (Algorithm 9)

(2) Find the first antichain of the database, which contains all points

that do not dominate any point and generate the dominance

graph of the database. (Algorithm 1)

(3) Find all antichains in the dominance graph. (Algorithm 2)

(4) Generate the anti-dominance graph. (Algorithm 3)

(5) Use the dominance and anti-dominance graphs to find any

antipodal pairs (Proposition 2), close pairs (Proposition 3) and

reflectable components. (Proposition 1). (Algorithm 4)

Note that this attack achieves also FDR when the horizontal and

vertical projections of the points are dense.

5.1 Preliminaries
Given a point 𝑎 in the minimal antichain 𝐴0, our order reconstruc-

tion attack requires computing the IDs of all points that dominate

D[𝑎]. Algorithm 8 (DominanceID), shown in Appendix A, takes

as input the response set RS(D) of a database D and an ID 𝑎 of

some point with height 0, and outputs the set of identifiers in [𝑅]
of points that dominate D[𝑎].
5.2 Find Extreme Points
The first step is to identify at most four identifiers of points with

extreme coordinate values. Specifically, we wish to find identifiers

of points left, right, top and bottom such that for all 𝑝 ∈ D the

following hold: (1) left0 ≤ 𝑝0 ≤ right
0
and bottom1 ≤ 𝑝1 ≤ top

1
,

and (2) 𝑝 ⪯̸ left, bottom and top, right ⪯̸ 𝑝 . Note that since no

points in D are dominated by left and bottom, then their height is

0 and are thus a subset of 𝐴0 in the canonical antichain partition of

D. These points give a starting point for computing the rest of 𝐴0.

We recover these extremal points by calling Algorithm 7.

Our approach for finding such a subset of identifiers is as follows.

Let 𝐿 and 𝑆1 be the first and second largest responses in RS(D),
respectively. Then 𝐸1 = 𝐿−𝑆1 must correspond to the IDs of points

that are extreme in some coordinate. To find the IDs of points

that are extreme in some other coordinate, find the second largest

response 𝑆2 that contains 𝐸1, and then compute 𝐸2 = 𝐿 − 𝑆2. By

extending this process, we find all points with extremal coordinates.

It remains to find the correct point within each set 𝐸𝑖 . Suppose 𝐸1
and 𝐸2 are the left and bottom edges, respectively. By finding 𝑎, 𝑏 ∈
[𝑅] such that the smallest response containing 𝑎 and 𝑏 contains no

other edge points, then D[𝑎] and D[𝑏] must not be dominating any

other points in D. Hence left = D[𝑎] and bottom = D[𝑏]. Similarly

for the identifiers of top and right.
Without loss of generality, we assume that right dominates left.

If not, simply reflect the database to achieve this orientation. Algo-

rithm 9, shown in Appendix B, is inspired by [9].

Lemma 5.1. Let D be a database with 𝑅 records and let RS(D) be
its response set. Algorithm 9 (FindExtremePairs) returns all configu-
rations of extreme points (left, right, top, bottom) such that no points
are dominated by left and bottom, and no points dominate right and
top in 𝑂 (𝑅2 |RS(D) |) time. [Proof in Appendix C]

5.3 Generate Dominance Graph
This step takes as input the response set RS(D) and some configu-

ration config given by running Algorithm 9 on RS(D), and outputs

a dominance graph 𝐺 of D. We first compute all IDs of points with

height 0. These are the sinks of 𝐺 . Let left, right, and bottom be

given by config. All points not dominated by left and bottom must

be contained in the minimal query containing them.

Then for each 𝑎 ∈ 𝐴0 we build a subgraph of the dominance

graph on 𝑎 and all IDs that dominate 𝑎. We use Algorithm 8, de-

scribed in Appendix A, to compute this set of IDs. We initialize

subgraph 𝐺𝑎 = {𝑎} and then extend the graph by finding the next

smallest response resp containing 𝑎, that also contains some ID

𝑣 not yet added to the graph. Since resp is minimal, then 𝑣 must

dominate everything in the response. Moreover, 𝑣 must minimally

dominate all IDs that are sinks in the current𝐺𝑎 and are contained

in resp. We add (𝑡, 𝑣) to 𝐺𝑎 for all sinks 𝑡 of 𝐺𝑎 contained in resp.
Once graphs𝐺𝑎 for 𝑎 ∈ 𝐴0 have been computed, we take their

union, 𝐺 = ∪𝑎𝐺𝑎 , as the dominance graph and return 𝐺 and 𝐴0.

Lemma 5.2. Let D be a database with 𝑅 records, RS(D) be its re-
sponse set, and config the correct configuration output by Algorithm 9

7

Algorithm 1: DomGraph(RS(D), config)
Input: Response set RS(D) of database D; a dictionary config mapping

left, right, top, bottom to IDs.

1: // Find antichain-0. We assume right dominates left.

2: Let small be the smallest response containing left and bottom.

3: Let 𝐴0 = small
4: for 𝑝 ∈ small do
5: Let 𝑆 be the smallest response that contains right and 𝑝 .
6: 𝑄 = (𝑆 ∩ small) − {𝑝 }
7: 𝐴0 = 𝐴0 −𝑄

8: // Find dominance graph.

9: Let𝐺 be an empty graph

10: for each 𝑎 ∈ 𝐴0 do
11: 𝐺𝑎 = (𝑉 , 𝐸) such that𝑉𝑎 = {𝑎} and 𝐸𝑎 = ∅.
12: 𝑆 = DominanceID(𝑎, top, left, right,RS(D))
13: Let 𝑅𝑆 ⊆ RS(D) comprise the responses of size at least 2 that

contain 𝑎 and only other IDs in 𝑆 .

14: for resp ∈ 𝑅𝑆 by increasing size do
15: if ∃𝑣 ∈ resp such that 𝑣 ∉ 𝐺𝑎 then
16: Add vertex 𝑣 to𝐺𝑎

17: for each 𝑡 of resp such that 𝑡 is a sink of subgraph of𝐺𝑎 that

contains only points in resp do
18: Add edge (𝑡, 𝑣) to𝐺𝑎 .

19: 𝐺 = ∪𝑎∈𝐴0
𝐺𝑎 , and remove any transitive edges

20: return𝐺 , 𝐴0

on RS(D). Given RS(D) and config, Algorithm 1 (DomGraph) re-
turns the dominance graph of the points in D in 𝑂 (𝑅3 |RS(D) |) time.
[Proof in Appendix C]

5.4 Construct Antichains
Given 𝐴0, we now wish to compute the entire canonical antichain

partition of D. Here, we explain how to find the partition A =

(𝐴0, . . . , 𝐴𝐿) such that 𝐿 is the maximum height of any element in

D. Computing each 𝐴𝑖 is equivalent to finding the set of elements

whose maximum length path in 𝐺 from any 𝑎 ∈ 𝐴0 has length 𝑖 .

Thus, for each 𝑝 ∈ 𝐺 we compute the longest path in 𝐺 from any

𝑎 ∈ 𝐴0 to 𝑝 and then add 𝑝 to the correct partition in A. Lastly,

order the elements in each antichain 𝐴 ∈ A such that, without loss

of generality, for any pair of ordered elements 𝑐 and 𝑐 ′, 𝑐 ⪯𝑎 𝑐 ′. If
|𝐴| ≤ 2 we are done. Else we compute all responses that contain

exactly two elements in 𝐴. If such a response exists for a pair

𝑐, 𝑐 ′ ∈ 𝐴 then we can infer that there exists no 𝑐 ′′ ∈ 𝐴 such that

𝑐 ⪯𝑎 𝑐 ′′ ⪯ 𝑐 ′. Thus we may use these responses to determine the

ordering of the elements in 𝐴 such that any element must anti-

dominate all previous elements in the ordering.

Lemma 5.3. Let D be a database and RS(D) be its response set.
Given RS(D), a dominance graph𝐺 of D, and the minimal antichain
𝐴0, Algorithm 2 (FindAntichains) returns a dictionary Antichains
such that Antichains[𝑖] contains an ordered list of all IDs at height 𝑖
in 𝑂 (𝑅2 |RS(D) |) time. [Proof in Appendix C]

5.5 Generate Anti-Dominance Graph
The next step is to take the response set RS(D), the dominance

graph𝐺 , and the canonical antichain partition Antichains and con-

struct the corresponding anti-dominance graph. There are three

major steps that we must take: (1) fix the antichain orientations so

that they are lined up correctly, (2) add any edges between IDs of

Algorithm 2: FindAntichains(RS(D),𝐺,𝐴0)
1: // Find antichains.

2: (𝑉 , 𝐸) = 𝐺 , Antichains = {}, Antichains[0] = 𝐴0

3: Compute longest paths∈ 𝐺 from all 𝑎 ∈ 𝐴0 to all points in D.
4: 𝐿 = 0

5: for each 𝑝 ∈ 𝑉 do
6: Let ℓ be the length of the longest path to 𝑝 from any 𝑎 ∈ 𝐴0.

7: Add 𝑝 to Antichains[ℓ]
8: 𝐿 = max(𝐿, ℓ)
9: // Order the points of Antichains[𝑖].
10: for 𝑖 = 0, · · · , 𝐿 do
11: if |Antichains[𝑖] | > 3 then
12: Let 𝑆 be all responses in RS(D) that contain exactly two elements

of Antichains[𝑖] (and perhaps other points)

13: Remove all 𝑝 ∉ Antichains[𝑖] from 𝑆 and make 𝑆 a set.

14: Order Antichains[𝑖] such that pairs of consecutive points are

responses in 𝑆 .

15: return Antichains

different antichains that are in an anti-dominance relationship, and

(3) identify all colinearities.

First we iterate through Antichains; At iteration 𝑖 , we look at

Antichains[𝑗] for all 𝑗 < 𝑖 until we find an edge (𝑐1, 𝑐2) in 𝐺

such that 𝑐1 ∈ Antichains[𝑗] and 𝑐2 ∈ Antichains[𝑖]. If there
is another edge (𝑐 ′

1
, 𝑐 ′
2
) in 𝐺 with 𝑐 ′

1
∈ Antichains[𝑗] and 𝑐 ′

2
∈

Antichains[𝑖], then we check if the edges in the antichains 𝑖 and

𝑗 are consistent. For example, if the orderings are (𝑐1, 𝑐 ′
1
) and

(𝑐 ′
2
, 𝑐2) in Antichains[𝑗] and Antichains[𝑖], respectively, then we

flip Antichains[𝑖].
Once the chains are fixed, we add edges for anti-dominance re-

lationships. We iterate through Antichains[𝑖] and Antichains[𝑗]
for 𝑖 < 𝑗 and look at each pair of elements 𝑎𝑖 , 𝑎 𝑗 such that 𝑎𝑖 ∈
Antichains[𝑖] and 𝑎 𝑗 ∈ Antichains[𝑗]. For each 𝑎𝑖 and 𝑎 𝑗 we com-

pute all their successors and all predecessors in 𝐺 . If there exists

a path from some successor of 𝑎 𝑗 to some predecessor of 𝑎𝑖 , then

we add (𝑎 𝑗 , 𝑎𝑖) to 𝐺 ′
. Similarly, if there exists a path from some

predecessor of 𝑎 𝑗 to some successor of 𝑎𝑖 , we add (𝑎𝑖 , 𝑎 𝑗) to 𝐺 ′
.

The last thing that remains is to identify colinearities. For each

edge (𝑞, 𝑝) in𝐺 ′
find the smallest response 𝑆 containing 𝑞 and 𝑝 . If

there exists some 𝑘 ∈ 𝑆 such that 𝑘 and 𝑝 are not connected in 𝐺 ′
,

then they must be colinear and so we add (𝑘, 𝑝) to𝐺 ′
. We similarly

check if there exists a colinearity between 𝑘 and 𝑞 and add those

edges to𝐺 ′
. The final step is to remove all transitive edges in𝐺 ′

(if

they exist) to keep only minimal anti-dominance relationship and

return the anti-dominance graph 𝐺 ′
.

Lemma 5.4. Let D be a database and RS(D) be its response set.
Given RS(D), the dominance graph 𝐺 of D, and the ordered an-
tichains of D Algorithm 3 returns the anti-dominance graph of D
in 𝑂 (𝑅3 |RS(D) |). [Proof in Appendix C]

5.6 Order Reconstruction
We have already given algorithms for computing the extreme

points, the dominance graph, the antichains, and the anti-dominance

graph.We now put these pieces together to achieve OR of a database

D given its response set RS(D). Algorithm 4 performs OR by taking

the following steps. First it runs Algorithm 9 (FindExtremePairs) to
compute all candidate configurations of the extreme points. There

is a constant number of such configurations and at least one of them

8

Algorithm 3: AntiDomGraph(RS(D),𝐺,Antichains)
1: Initialize empty graph𝐺′

2: // Fix chain orientation

3: for 𝑖 ∈ [1, |Antichains |] do
4: Add an edge in𝐺′

between consecutive points in Antichains[𝑖 − 1]
5: Find (𝑐1, 𝑐2) ∈ 𝐺 , where 𝑐1 is the first point in Antichains[𝑘], 𝑘 < 𝑖

in an edge with a point from Antichains[𝑖]. If there are multiple

options for 𝑐2, pick the smallest one in order.

6: if ∃(𝑐′
1
, 𝑐′

2
) ∈ 𝐺 , for a point 𝑐′

1
∈ Antichains[𝑘], 𝑘 < 𝑖 , which is

after 𝑐1 in order, and 𝑐′
2
∈ Antichains[𝑖], which is before 𝑐2 in order,

and there is no path from 𝑐′
1
to 𝑐2 in𝐺 then

7: Flip the order of Antichains[𝑖]
8: Add an edge in𝐺′

between consecutive points in the last antichain

9: // All chains are fixed; Now add edges between them.

10: for 𝐴𝑖 = Antichains[𝑖] and 𝐴𝑗 = Antichains[𝑗], such that

𝑖, 𝑗 ∈ [|Antichains |] and 𝑖 < 𝑗 do
11: for 𝑎𝑖 ∈ 𝐴𝑖 and 𝑎 𝑗 ∈ 𝐴𝑗 do
12: if 𝑎𝑖 and 𝑎 𝑗 not connected in𝐺 then
13: Find successors of 𝑎 𝑗 , 𝑆 𝑗 ⊆ 𝐴𝑗 , and all predecessors of 𝑎 𝑗 ,

𝑃 𝑗 ⊆ 𝐴𝑗 . Add 𝑎 𝑗 to 𝑆 𝑗 , 𝑃 𝑗 .

14: Find successors of 𝑎𝑖 , 𝑆𝑖 ⊆ 𝐴𝑖 , and all predecessors of 𝑎𝑖 ,

𝑃𝑖 ⊆ 𝐴𝑖 . Add 𝑎𝑖 to 𝑆𝑖 , 𝑃𝑖 .

15: if ∃ path from 𝑝 to 𝑞 in𝐺 , s.t. 𝑝 ∈ 𝑆 𝑗 , 𝑞 ∈ 𝑃𝑖 then
16: Add edge (𝑎 𝑗 , 𝑎𝑖) to𝐺′

17: else if ∃ path from 𝑝 to 𝑎 𝑗 in𝐺 , s.t. 𝑝 ∈ 𝑃𝑖 then
18: Add edge (𝑎 𝑗 , 𝑎𝑖) to𝐺′

19: else if ∃ path from 𝑝 to 𝑞 in𝐺 , s.t. 𝑝 ∈ 𝑃 𝑗 , 𝑞 ∈ 𝑆𝑖 then
20: Add edge (𝑎𝑖 , 𝑎 𝑗) to𝐺′

21: else if ∃ path from 𝑝 to 𝑎 𝑗 in𝐺 , s.t. 𝑝 ∈ 𝑃𝑖 then
22: Add edge (𝑎 𝑗 , 𝑎𝑖) to𝐺′

23: // Find any collinearities.

24: Let 𝐸 be an empty list.

25: for (𝑞, 𝑝) ∈ 𝐺′ do
26: 𝑃𝑞,𝑝 , 𝑆𝑝,𝑞, 𝑃𝑝,𝑞 = Boxes(𝑝,𝑞)
27: Let 𝑆 = ∪𝑃𝑞,𝑝 ∪ 𝑆𝑝,𝑞 ∪ 𝑃𝑝,𝑞

28: if ∃𝑘 ∈ 𝑆 , where there is no path from 𝑘 to 𝑝 in𝐺′ then
29: Add an appropriate edge between 𝑘 and 𝑝 to𝐺′

30: if ∃𝑘 ∈ 𝑆 , where there is no path from 𝑘 to 𝑞 to 𝐸 then
31: Add an appropriate edge between 𝑘 and 𝑞 to 𝐸

32: Add all edges in 𝐸 to𝐺′

33: Remove transitive edges from𝐺′

34: Return𝐺′

Algorithm 4: OrderReconstruction(RS(D))
1: PossibleConfigs = FindExtremePairs(RS(D))
2: for config ∈ PossibleConfigs do
3: 𝐺 = DomGraph(RS(D), config)
4: 𝐺′ = AntiDomGraph(RS(D),𝐺,Antichains(RS(D),𝐺))
5: Let closePairs and antipodalPairs be empty lists.

6: Find the smallest response that contains top and bottom. If it

contains no other points, then add (top, bottom) to antipodalPairs.
7: Find the smallest response that contains left and right. If it contains

no other points, then add (left, right) to antipodalPairs.
8: for each edge (𝑏, 𝑎) ∈ 𝐺 do
9: if (𝑏, 𝑎) satisfy Definition 3.3 then
10: Add (𝑏, 𝑎) to closePairs
11: if response set of points with orders (𝐺,𝐺′) is RS(D) then
12: Return (𝐺,𝐺′, antipodalPairs, closePairs)

corresponds to a correct arrangement of the extreme points in D
(up to rotation/reflection). For each candidate configuration, it then

computes the dominance graph using Algorithm 1 (DomGraph)
and the anti-dominance graph using Algorithm 3 (AntiDomGraph).
Incorrect configurations result in graphs that are either of an in-

correct form or result in a pair of dominance and anti-dominance

graphs (𝐺,𝐺 ′) such that databases with orders described by (𝐺,𝐺 ′)
are not compatible with RS(D). Algorithm 4 continues to iterate

through the configurations until a correct pair of graphs (𝐺,𝐺 ′) is
found and returned. Given a response set RS(D) of some database

D as input, Algorithm 4 (OrderReconstruction) is guaranteed to

terminate and output a correct graph pair.

Theorem 5.5. Given the response set RS(D) of a 2D database D
with 𝑅 records, Algorithm 4 (OrderReconstruction) returns an𝑂 (𝑅)-
space representation of the set Eo (D) of all possible orderings of the
points of databases equivalent to D with respect to the response set.
The algorithm runs in time 𝑂 (𝑅3 |RS(D) |), which is 𝑂 (𝑅7).

Proof. By Lemma 5.1, PossibleConfigs has all possible config-
urations of a given set of extreme points. Thus, at some point we

pick the correct config. By Lemmas 5.2 and 5.4, we know that𝐺 and

𝐺 ′
return correct weak dominance and anti-dominance graphs. By

Proposition 2, we know that if the smallest response that contains

top and bottom is empty, then they are an antipodal pair. Similarly

for left and right. We find all such pairs. We iterate though pairs of

points and find any that satisfy the close pair requirements from

Definition 3.3, constructing the closePairs set. The anti-dominance

graph encodes the components as the connected components of

the anti-dominance graph form the flippable components.

By Theorem 3.5, given (𝐺,𝐺 ′, antipodalPairs, closePairs) out-
put by the algorithm, we can construct all members of set Eo (D).
The first graph we return is sufficient as any other extreme point

configurations whose response set matches RS(D) are either rota-
tions/reflections or contain antipodal pairs. This Algorithm takes

𝑂 (𝑅3 |RS(D) |) time, as it takes 𝑂 (𝑅3 |RS(D) |) time to run Algo-

rithms 9, 1, 2 and 3. Finding antipodal pairs takes 𝑂 (|RS(D) |) and
finding close pairs 𝑂 (𝑅3). Finally, it takes 𝑂 (𝑅4) time to generate

and compare the leakage. We can encode graphs 𝐺 and 𝐺 ′
by their

linear extensions in linear space, and the sets antipodalPairs and
closePairs contain at most 𝑂 (𝑅) points. □

5.7 Experiments
In the previous subsections, we discussed the limitations of OR

and described an algorithm that succeeds at OR when given the

response set of a database. We now support our theoretical results

with experimental results. We have deployed our OR attack on

real-world databases (Table 2): California, Spitz and HCUP datasets.

The California Road Network dataset [27] comprises 21, 047 road

network intersections indexed by longitude and latitude. Our Cali-
fornia dataset is a random sample of 1000 points with coordinates

truncated to one decimal place and scaled by a factor of 10. The

resulting domain is [102] × [102]. We generated the response set

for this dataset and then ran our OR attack (Algorithm 4) on it.

In Figure 1a, we depict our resulting reconstruction. Although,

in theory, we only recover the relative orders of all the points, the

actual reconstruction leaks additional information about the overall

“shape” of the data. For our reconstruction, after finding the order

9

Figure 6: Dominance (right) and anti-dominance (left)
graphs of the (top) California and (bottom) Spitz datasets.

of the points, each point is assigned coordinates corresponding

to its index in each dimension’s ordering. The figure shows each

antichain in a different color, illustrating the height increase, as well

as an 𝛼-shape [8] of the point-set, illustrating the overall shape.

Malte Spitz is a German politician who published six months

of his phone location data between 8/31/2009 and 2/21/2010 [38].

We generated our Spitz dataset by taking longitude and latitude

information from the first day, truncating it to one decimal place,

and scaling it by a factor of 10.

We also ran our order reconstruction attack on the Healthcare

Cost and Utilization Project (HCUP) Nationwide Inpatient Sam-
ple (NIS) 2008 and 2009 medical datasets [1], but we are unable
to share images of the reconstructions, per the HCUP data us-

age agreement. The HCUP dataset is commonly used in literature

[9, 24, 25]. The reconstructed dominance graph and anti-dominance

graph of the California and Spitz datasets are shown in Figure 6.

Order reconstruction in two-dimensions is significantly more

enlightening than in one-dimension. We conjectured that the geom-

etry of the data is more observable when data is more dense in one

or both of the domains. Our results from the California dataset sup-

port this: we can clearly see that this location data comes from the

state of California. In the Spitz case, we can still recover the shape

of the dataset and see that it’s a deeply diagonal database with a

number of collinearities and reflectable components (Figure 6).

6 Estimating the Query Density Functions

Recall that the query density, 𝜌𝑆 , of a set of records 𝑆 corresponds

to the number of unique range queries that contain all records

in 𝑆 . One of the challenges of reconstructing a database D with

partial knowledge of RM(D), is that the adversary can no longer

compute the exact 𝜌 values by looking at RM(D). Thus, the two-
dimensional FDR attack [9] no longer applies. To reconstruct with

missing queries, we draw inspiration from [23] and use statistical

estimators to estimate the 𝜌 values.

In Section 7 we show how these 𝜌 estimates can be used to con-

struct a system of non-linear equations whose solution corresponds

to an approximate reconstruction of the target database.

Formally, let D be a database of 𝑅 records and let𝑀 = {{(𝑡1, 𝐴1),
. . . , (𝑡𝑚, 𝐴𝑚) : 𝐴𝑖 ∈ RS(D)}} be a sample (i.e. multiset) of𝑚 token-

response pairs that are leaked when queries are issued according

to an arbitrary distribution. Let 𝐿 ⊆ 𝑀 be a subsample of𝑀 of size

Uniform Gaussian(1/2, 1/5) Beta(2, 1)

(a)

(b)

Figure 7: MSE of the estimators on the (a) Spitz and (b) 2008
NIS AGE ≤ 18 & NPR datasets over the query ratio.

𝑛. Given a sample (multiset)𝑀 of𝑚 token-response pairs, we show

how one may compute the appropriate (sub)multisets 𝐿 ⊆ 𝑀 that

correspond to the 𝜌 functions of interest. Each of these multisets is

used to approximate the value of its respective 𝜌 value.

6.1 Non-parametric Estimators
Sampling-based estimators have been used in various domains

ranging from databases [17] to ecology (e.g. [2, 3]). Non-parametric

estimators do not require prior knowledge of the query distribution,

yet their success hinges upon the underlying distribution from

which queries are drawn. Indeed, for skewed distributions, it may be

information theoretically impossible to obtain a reasonable estimate.

Recently, non-parametric estimators have been used for database

reconstruction to estimate the support size of the given conditional

probability distribution of a particular record identifier [23].

For our reconstruction attack, we have considered the estima-

tors by Chao and Lee [5] and by Shlosser [36], and the jackknife

estimators described in [2, 3].

For more details about the above estimators, see Appendix D.

We initially considered also the Valiant-Valiant estimator [40] as it

was used in [23]. However, it did not perform as well in our case.

6.2 Experiments
We ran our estimators against two datasets with domain sizes 25×25
and 18 × 33. The first is the first day of the Spitz dataset (described

in Section 5.7), a dataset deeply diagonal exhibiting numerous

collinearities and reflectable components. The second database

is the NIS 2008 AGE ≤ 18 & NPR database, a fairly dense medical

database. They were chosen as they represent two fairly different

real-world data distributions. For more information, see Table 2.

We tested the robustness of each estimator under the (i) uniform

distribution, (ii) Beta(2,1) distribution and (iii) Gaussian(1/2,1/5)

distribution of the queries. Recall that our goal is to estimate the

query densities 𝜌𝑖 for each ID 𝑖 and 𝜌𝑖, 𝑗 for each pair of IDs. Thus,

we obtained estimates 𝜌𝑖 and 𝜌𝑖, 𝑗 from the three estimators under

the three query distributions and computed the mean squared error

(MSE) of such estimates. We plot the MSE against the query ratio,
which we define as the ratio of the number of queries observed

and the total number of possible queries. I.e., if we have observed 𝑎

queries (including any potential duplicate) and there are a total of 𝑏

possible queries, the query ratio is
𝑎
𝑏
. Note that even when this ratio

is 1, the adversary most likely has not observed all possible queries.

Our results are shown in Figure 7, where missing values in the plots

are due to failure by the estimators to produce an answer in some

10

cases. Overall, we found that the Chao-Lee estimator consistently

performed best, especially for a small query ratio.

7 Approximate Database Reconstruction

Our distribution-agnostic attack for ADR assumes the ordering

of the points and consists of two parts. As we saw in Section 6,

non-parametric estimators may perform differently under different

query distributions. In our experiments, the Chao-Lee estimator

performed the best under all three distributions and we use it to

estimate how many query responses contain a point or a set of

points. We use these estimates to construct a system of equations,

whose solution gives an approximate reconstruction.

7.1 Algorithm
We assume knowledge of the ordering of the database (e.g., as

given by Algorithm 4). The first step of ADR is to build a system

of equations. We know that point 𝑝 with coordinates 𝑝0, 𝑝1 will be

included in 𝜌𝑝 = 𝑝0𝑝1 (𝑁0 − 𝑝0) (𝑁1 − 𝑝1) unique responses. The
Chao-Lee estimator will give us an estimate, 𝜌𝑝 , of 𝜌𝑝 . We then

construct an equation with unknowns 𝑥𝑝 , 𝑦𝑝 .

𝑥𝑝𝑦𝑝 (𝑁0 − 𝑥𝑝) (𝑁1 − 𝑦𝑝) = 𝜌𝑝 (4)

Given a pair of points 𝑝, 𝑞, where 𝑝 dominates 𝑞, we know that

both points are included in 𝜌𝑝,𝑞 = 𝑞0𝑞1 (𝑁0 − 𝑝0) (𝑁1 − 𝑝1) unique
responses. We estimate 𝜌𝑝,𝑞 as 𝜌𝑝,𝑞 , and construct an equation with

unknowns 𝑥𝑝 , 𝑦𝑝 , 𝑥𝑞, 𝑦𝑞 .

𝑥𝑞𝑦𝑞 (𝑁0 − 𝑥𝑝) (𝑁1 − 𝑦𝑝) = 𝜌𝑝,𝑞 (5)

We build a similar equation from any ordering of 𝑝 and 𝑞. If

two points are in both a dominance and anti-dominance relation-

ship, then they must be collinear. We add this constraint to our

system. We use the Chao-Lee estimator to approximate the 𝜌 values

(𝜌𝑝 , 𝜌𝑝,𝑞) from the subset of responses we have seen. We then con-

struct a first guess for the values of the points using their ordering.

Each point 𝑝 is given coordinates corresponding to its indexes in

the first and second dimension. Finally, we find an approximation

of the database’s point values using a least-squares approach.

Our ADR attack is summarized in Algorithm 5, which takes as

input a subset 𝑆 of the response multiset RM(𝐷), the ordering𝐺,𝐺 ′

and the domain size (𝑁0, 𝑁1). It returns a reconstructed point set.

Algorithm 5: ADR(𝑆 ⊆ RM(𝐷),𝐺,𝐺 ′, 𝑁0, 𝑁1)
1: Let 𝑔 be a reconstruction of the point values using𝐺 and𝐺′

2: Create a system of 𝜌 equations for all single points and pairs, including

any collinearities.

3: Using the subset of responses we have observed 𝑆 and the Chao-Lee

estimator approximate the 𝜌 value of each equation.

4: return the least-squares solution to the system of equations

initializing at 𝑔

7.2 Experiments
We have tested our ADR attack (Algorithm 5) on real world datasets:

the California [26] and Spitz [38] location datasets and the HCUP

NIS medical datasets [1]. Table 2 provides more information on

these datasets, where # Queries denotes the total number of possible

unique queries (i.e., the denominator of the query ratio). We per-

formed experiments by sampling queries according to the uniform,

Beta(2,1), and Gaussian(1/2, 1/5) distributions.

Uniform Gaussian(1/2, 1/5) Beta(2, 1)

(a)

(b)

(c)

Figure 8: Reconstructions generated by our algorithm.
Empty blue circles denote original points and filled green
circles denote reconstructed points. (a) Spitz dataset with
7% query ratio. (b) California dataset with 4% query ratio.
(c) Postprocessing adjustment.

We measure the accuracy of the reconstruction with the follow-

ing four metrics to take into account different characteristics. The

mean error is the average distance of a reconstructed point to the

original point. We use the normalized mean error , which is ob-

tained by dividing the mean error by 𝑁0 + 𝑁1, where [𝑁0] × [𝑁1]
is the domain of the database. The mean squared error is the

average squared distance of a reconstructed point to the original

point. This widely used error metric (e.g., [23]) gives greater weight

to larger errors. The Hausdorff distance of point sets 𝑃 and 𝑄 ,

denoted 𝐻 (𝑃,𝑄), is a common measure of how far 𝑃 and 𝑄 are

from each other. It is defined as 𝐻 (𝑃,𝑄) = max(ℎ(𝑃,𝑄), ℎ(𝑄, 𝑃),
where ℎ(𝑃,𝑄) = max𝑝∈𝑃 (min𝑞∈𝑄 dist (𝑝, 𝑞)). We obtain the pair-
wise relative distance error by computing all distances between

pairs of original points and between pairs of reconstructed points,

calculating the absolute values of the differences of such distances,

normalizing by the original distances, and taking the mean. This

measure captures the accuracy of the shape of the reconstructed

points. For the Hausdorff distance, we use SciPy’s [42] implementa-

tion of the algorithm in [39]. The other metrics are easily computed.

Figure 8 shows our reconstructions of the Spitz and California

datasets. We cannot present reconstructions of the NIS datasets per

Table 2: Real-world datasets used in our experiments.
Dataset Attributes # Queries #Points Domain

California [26] LAT & LONG 26532800 1000 102 × 102

Spitz [38] LAT & LONG 130500 28 25 × 25

NIS 2008 [1]

AGE<18 & NPR 80784 355 18 × 33

NCH & NDX 663300 529 25 × 67

NCH & NPR 158400 574 25 × 33

NIS 2009 [1]

NCH & NDX 621270 528 27 × 60

NCH & NPR 246753 566 27 × 38

NDX & NPR 1244310 862 60 × 38

11

the HCUP data usage agreement. In Figures 9 and 12 (Appendix E),

we give the accuracy metrics for all databases under the different

distributions. On the 𝑥-axis we show the query ratio, i.e., the num-

ber of (potentially duplicate) queries observed by the adversary

over the total number of possible queries. Our attack performs con-

sistently well on both the location and medical datasets under all

four metrics and all three query distributions. The four accuracy

metrics follow similar trends. As expected, the accuracy of our re-

construction generally improves with the query ratio. In particular,

for the uniform distribution, we already achieve near perfect re-

construction with query ratio around 10%, while for the Beta and

Gaussian distributions, there are still errors even at 80% query ratio.

Note that the smaller the query ratio is, the higher the variation

of accuracy across experiments is, since different query samples

vary in usefulness. This is partially due our estimator performing

worse under non-uniform distributions and small query ratios (see

Figure 7).

7.3 Post-processing Adjustment
In a number of datasets, our solution is topologically very close to

the original data, yet translated. We now explore how to further

reduce reconstruction error. In Figure 8b, the shape of California

is clear, yet in the Gaussian and Beta cases, the points are shifted

towards the bottom right. If we were given the centroid of the orig-

inal points, we could compare it with the centroid of our solution,

and translate all points by their difference, as shown in Figure 8c.

We ran this adjustment technique on the reconstructions of the

California dataset and NIS 2009 NCH & NDX and NCH & NPR

datasets. For the latter, we used the centroids of the corresponding

2008 NIS datasets as proxies for the original centroids. This choice

is motivated by fact that the adversary might have access to the

statistics of a related dataset that is expected to have a similar cen-

troid. We applied the adjustment only to the Beta and Gaussian

distributions since our reconstructions under the uniform distribu-

tion are already very good. We report in Figure 10 the variation of

the normalized mean error (NME), mean squared error (MSE), and

Hausdorff distance (HD) due to our post-processing adjustment.

Note that since we are only translating the points, the pairwise

relative distance error does not change. The experiments show that

this simple adjustment method often significantly reduces the error

of our reconstruction.

12

Figure 9: Accuracy of our reconstructions of the California, Spitz and NIS 2008 datasets as a function of the query ratio.
Dataset Attributes Normalized Mean Error Mean Squared Error Hausdorff Distance Pairwise Relative Distance Error

California LAT & LONG

Spitz LAT & LONG

NIS 2008

AGE<18 & NPR

NCH & NDX

NCH & NPR

Figure 10: Impact of the adjustment on the reconstructions
of the California and NIS 2009 NCH&NDX and NCH&NPR
datasets for the Beta (B) and Gaussian (G) distributions.

13

References
[1] Agency for Healthcare Research and Quality. 2008, 2009. Healthcare Cost and

Utilization Project (HCUP). Nationwide Inpatient Sample (NIS) datasets NIS 2008

and 2009, https://www.hcup-us.ahrq.gov/.

[2] K. P. Burnham and W. S. Overton. 1978. Estimation of the Size of a Closed

Population when Capture Probabilities vary Among Animals. Biometrika 65, 3
(1978), 625–633.

[3] K. P. Burnham and W. S. Overton. 1979. Robust Estimation of Population Size

When Capture Probabilities Vary Among Animals. Ecology 60, 5 (1979), 927–936.

[4] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin

Roşu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-

tion with Support for Boolean Queries. In Advances in Cryptology (CRYPTO).
[5] Anne Chao and Shen-Ming Lee. 1992. Estimating the Number of Classes via

Sample Coverage. J. Amer. Statist. Assoc. 87, 417 (1992), 210–217.
[6] Ciphercloud. 2021. CipherCloud: Cloud Data Security Company. http://www.

ciphercloud.com Accessed on April 26, 2021.

[7] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2011. Searchable

Symmetric Encryption: Improved Definitions and Efficient Constructions. Journal
of Computer Security 19, 5 (2011), 895–934.

[8] Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. 1983. On the

shape of a set of points in the plane. IEEE Transactions on Information Theory 29,

4 (1983), 551–559.

[9] Francesca Falzon, Evangelia AnnaMarkatou, Akshima, David Cash, Adam Rivkin,

Jesse Stern, and Roberto Tamassia. 2020. Full Database Reconstruction in Two

Dimensions. In Proc. ACMConf. on Computer and Communications Security (CCS).
[10] Stefan Felsner and Lorenz Wernisch. 1998. Maximum k-Chains in Planar Point

Sets: Combinatorial Structure and Algorithms. SIAM J. Comput. 28, 1 (1998),

192–209.

[11] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen, Ariel Ham-

lin, Vijay Gadepally, Richard Shay, John D. Mitchell, and Robert K. Cunningham.

2017. SoK: Cryptographically Protected Database Search. In Proc. IEEE Symposium
on Security and Privacy 2017 (S&P 2017).

[12] Craig Gentry and Dan Boneh. 2009. A fully homomorphic encryption scheme.
Vol. 20:09. Stanford university Stanford.

[13] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation

on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.
[14] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson.

2018. Pump up the Volume: Practical Database Reconstruction from Volume

Leakage on Range Queries. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFengWang

(Eds.). ACM, 315–331. https://doi.org/10.1145/3243734.3243864

[15] Paul Grubbs, Marie-Sarah Lacharité, BriceMinaud, and Kenneth G. Paterson. 2019.

Learning to Reconstruct: Statistical Learning Theory and Encrypted Database

Attacks. In Proc. IEEE Symp. on Security and Privacy 2019 (S&P 2019).
[16] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. 2019. Encrypted Databases:

New Volume Attacks against Range Queries. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, London,
UK, November 11-15, 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,

and Jonathan Katz (Eds.). ACM, 361–378. https://doi.org/10.1145/3319535.3363210

[17] P. Haas, J. Naughton, S. Seshadri, and L. Stokes. 1995. Sampling-Based Estimation

of the Number of Distinct Values of an Attribute. In VLDB.
[18] Seny Kamara and Tarik Moataz. 2018. SQL on Structurally-Encrypted Databases.

In Advances in Cryptology – ASIACRYPT 2018.
[19] Seny Kamara, Tarik Moataz, Stan Zdonik, and Zheguang Zhao. 2020. An Optimal

Relational Database Encryption Scheme. Cryptology ePrint Archive, Report

2020/274. https://eprint.iacr.org/2020/274.

[20] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic

Searchable Symmetric Encryption. In Proc. ACM Conf. on Computer and Commu-
nications Security (CCS). ACM.

[21] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic

Attacks on Secure Outsourced Databases. In Proc. ACM Conf. on Computer and
Communications Security 2016 (CCS 2016).

[22] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.

2019. Data Recovery on Encrypted Databases With 𝑘-Nearest Neighbor Query

Leakage. In Proc. IEEE Symp. on Security and Privacy 2019 (S&P 2019).
[23] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.

2020. The State of the Uniform: Attacks on Encrypted Databases Beyond the

Uniform Query Distribution. In Proc. IEEE Symp.on Security and Privacy 2020
(S&P 2020).

[24] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.

2021. Response-Hiding Encrypted Ranges: Revisiting Security via Parametrized

Leakage-Abuse Attacks. In Proc. IEEE Symp. on Security and Privacy (S&P).
[25] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2018. Improved

reconstruction attacks on encrypted data using range query leakage. In Proc.
IEEE Symp. on Security and Privacy 2018 (S&P 2018).

[26] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-

Hua Teng. 2005. California Road Network Dataset. Downloaded from http:

//www.cs.utah.edu/~lifeifei/SpatialDataset.htm.

[27] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua

Teng. 2005. On Trip Planning Queries in Spatial Databases. In Advances in Spatial
and Temporal Databases, Claudia Bauzer Medeiros, Max J. Egenhofer, and Elisa

Bertino (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 273–290.

[28] Evangelia Anna Markatou and Roberto Tamassia. 2019. Full Database Reconstruc-

tion with Access and Search Pattern Leakage. In Proc. Int. Conf on Information
Security 2019 (ISC 2019).

[29] McAfee. 2021. McAfee. https://www.mcafee.com/enterprise/en-us/home.html

accessed on April 26, 2021.

[30] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran

Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna

Badrinarayanan. 2016. Big Data Analytics over Encrypted Datasets with Seabed.

In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). USENIX Association, Savannah, GA, 587–602.

[31] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2019. Arx: An Encrypted

Database Using Semantically Secure Encryption. 12, 11 (July 2019), 1664–1678.

[32] Rishabh Poddar, Stephanie Wang, Jianan Lu, and Raluca Ada Popa. 2020. Practical

Volume-Based Attacks on Encrypted Databases. In IEEE European Symposium
on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020. IEEE,
354–369. https://doi.org/10.1109/EuroSP48549.2020.00030

[33] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrish-

nan. 2011. CryptDB: protecting confidentiality with encrypted query processing.

In Proceedings of the 23rd ACM Symposium on Operating Systems Principles 2011,
SOSP 2011, Cascais, Portugal, October 23-26, 2011, Ted Wobber and Peter Druschel

(Eds.). ACM, 85–100. https://doi.org/10.1145/2043556.2043566

[34] M. H. Quenouille. 1949. Approximate Tests of Correlation in Time-Series. Journal
of the Royal Statistical Society. Series B (Methodological) 11, 1 (1949), 68–84.

[35] Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian Per-

rig. 2007. Multi-Dimensional Range Query over Encrypted Data (SP ’07). IEEE
Computer Society, USA, 350–364.

[36] A. Shlosser. 1981. On estimation of the size of the dictionary of a long text on

the basis of a sample. Engineering Cybernetics 19 (1981), 97–102.
[37] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. 2000. Practical tech-

niques for searches on encrypted data. In Proc. IEEE Symp. on Security and Privacy
(SP).

[38] Malte Spitz. 2011. CRAWDAD dataset spitz/cellular (v. 2011-05-04). Downloaded

from https://crawdad.org/spitz/cellular/20110504.

[39] Abdel Aziz Taha and Allan Hanbury. 2015. An Efficient Algorithm for Calculating

the Exact Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine
Intelligence 37, 11 (2015), 2153–2163. https://doi.org/10.1109/TPAMI.2015.2408351

[40] Paul Valiant and Gregory Valiant. 2013. Estimating the Unseen: Improved Es-

timators for Entropy and other Properties. In Advances in Neural Information
Processing Systems, Vol. 26. 2157–2165.

[41] Gérard Viennot. 1984. Chain and Antichain Families Grids and Young Tableaux.

In Orders: Description and Roles Ordres: Description et Rôles, Maurice Pouzet and

Denis Richard (Eds.). North-Holland Mathematics Studies, Vol. 99. North-Holland,

409 – 463.

[42] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,

Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-

rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,

Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,

Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,

Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,

Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-

gorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

[43] Boyang Wang, Yantian Hou, Ming Li, Haitao Wang, and Hui Li. 2014. Maple:

Scalable Multi-Dimensional Range Search over Encrypted Cloud Data with Tree-

Based Index. In Proc. of the 9th ACM Symposium on Information, Computer and
Communications Security (ASIA CCS ’14).

14

https://www.hcup-us.ahrq.gov/
http://www.ciphercloud.com
http://www.ciphercloud.com
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1145/3319535.3363210
https://eprint.iacr.org/2020/274
http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
https://www.mcafee.com/enterprise/en-us/home.html
https://doi.org/10.1109/EuroSP48549.2020.00030
https://doi.org/10.1145/2043556.2043566
https://crawdad.org/spitz/cellular/20110504
https://doi.org/10.1109/TPAMI.2015.2408351
https://doi.org/10.1038/s41592-019-0686-2

A Algorithm 8 (DominanceID)
In this section we describe in full detail how given the response set

RS(D) and the ID 𝑎 of a point with height 0, one can compute the

full set of IDs of points that dominate D[𝑎]. We start by describing

a helper function called Boxes.
Let 𝑎, 𝑏 ∈ [𝑅] be the IDs of two points in D. Algorithm Boxes,

takes as input a pair (𝑎, 𝑏) and returns the following responses of

RS(D) (see Figure 11):

• 𝑆𝑎,𝑏 : minimal response containing 𝑎 and 𝑏.

• 𝑃𝑎,𝑏 : D minus the maximal responses containing 𝑏 but not 𝑎;

i.e., set of points 𝑝 such that every response containing 𝑏

and 𝑝 contains also 𝑎.

• 𝑃𝑏,𝑎 : D minus the maximal responses containing 𝑎 but not 𝑏;

i.e., set of points 𝑝 such that every response containing 𝑎

and 𝑝 contains also 𝑏.

Algorithm 6: Boxes(𝑎, 𝑏)
1: Let 𝑆𝑎,𝑏 be the smallest response in RS(D) containing 𝑎 and 𝑏

2: Let 𝐿 = D
3: Let 𝑃𝑏,𝑎 and 𝑃𝑎,𝑏 be empty lists

4: for 𝑝 ∈ 𝐿 do
5: if ∄𝑟 ∈ RS(D) , s.t. 𝑝,𝑏 ∈ 𝑟 and 𝑎 ∉ 𝑟 then
6: Add 𝑝 to 𝑃𝑎,𝑏
7: if ∄𝑟 ∈ RS(D) , s.t. 𝑝, 𝑎 ∈ 𝑟 and 𝑏 ∉ 𝑟 then
8: Add 𝑝 to 𝑃𝑏,𝑎
9: return 𝑃𝑏,𝑎 , 𝑆𝑎,𝑏 and 𝑃𝑎,𝑏

b

Pa,b

Sa,b

Pb,a

a

b

Pa,b

Sa,b

Pb,a

a

Figure 11: Illustrating the sets output by Algorithm 6 for
points 𝑎 and 𝑏, when 𝑏 strictly anti-dominates 𝑎 (left) and
when 𝑏 and 𝑎 are collinear (right).

Note that given a pair of IDs (𝑎, 𝑏), there are at most two distinct

maximal responses containing 𝑎 but not 𝑏 (or 𝑏 but not 𝑎). These re-

sponses comprise the points in the maximal horizontal and vertical

strips of the domain that contain 𝑎 but not 𝑏 (or 𝑏 but not 𝑎). Note

that if 𝑎 and 𝑏 share the same horizontal or vertical coordinate, only

one of the above strips is nonempty.

Algorithm 8 (DominanceID) leverages Boxes to determine if top
dominates 𝑎. If yes, then we return the minimal response containing

𝑎, top and right. Else top must strictly antidominate 𝑎. Let 𝑆 be

the smallest response containing 𝑎, top and right and let𝑀 be the

smallest response containing𝑎 and top. It is clear that 𝑆−𝑀 contains

all IDs of points that strictly dominate 𝑎. To find the IDs of points

that are colinear with 𝑎, we run Edges with𝑀 − {𝑎} as input; the
IDs of points that are colinear with 𝑎 must be one of the edges in

the output. In particular, the colinear points must be 𝑝 ∈ 𝐸 such

that 𝐸 is the edge not containing top, left, or any element of 𝐴0.

And so the algorithm outputs (𝑆 −𝑀) ∪ 𝐸.

Algorithm 7: Edges(𝑆,RS(D))
1: Let 𝑅𝑆′ be the set of responses that contain only points in 𝑆

2: Let L be the largest response in 𝑅𝑆′

3: Let 𝑆1 be the 2
𝑛𝑑

largest response in 𝑅𝑆′. 𝐸1 = 𝐿 − 𝑆1.

4: Let 𝑆2 be the 2
𝑛𝑑

largest response containing 𝐸1. 𝐸2 = 𝐿 − 𝑆2.

5: Let 𝑆3 be the 2
𝑛𝑑

largest response containing 𝐸1 and 𝐸2. If 𝑆3 exists,

𝐸3 = 𝐿 − 𝑆3.

6: Let 𝑆4 be the 2
𝑛𝑑

largest set containing 𝐸1, 𝐸2, and 𝐸3. If 𝑆4 exists,

𝐸4 = 𝐿 − 𝑆4.

7: return 𝐸1, 𝐸2, 𝐸3, 𝐸4

Algorithm 8: DominanceID(𝑎, top, left, right,RS(D))
1: Let 𝑆1 be the smallest response that contains left, top and right.
2: Let 𝑆2 be the smallest response that contains 𝑠1, top and right.
3: Let𝑀 be the smallest response that includes 𝑠1 and top
4: for 𝑝 ∈ 𝑀 do
5: if 𝑝 ∈ 𝑀 − 𝑆2 then
6: 𝑃𝑝,top, 𝑆𝑝,top, 𝑃top,𝑝 = Boxes(top, 𝑝)
7: 𝑆 = 𝑃𝑝,top ∪ 𝑆𝑝,top ∪ 𝑃top,𝑝
8: if left, right ∈ 𝑆 then
9: // 𝑎 and top are collinear

10: return 𝑆2

11: else if left ∈ 𝑆 then
12: // top dominates 𝑎

13: return 𝑆2

14: else if right ∈ 𝑆 then
15: // top anti-dominates 𝑎

16: 𝐸 = Edges(𝑀 − {𝑎},RS(D))
17: 𝑆2 = 𝑆2 −𝑀

18: Add all 𝑝 in an edge in 𝐸 not containing top or 𝑎′ ∈ 𝐴0 to 𝑆2.

19: return 𝑆2

20: else if 𝑝 ∈ 𝑀 − 𝑆1 then
21: 𝑃𝑝,𝑎, 𝑆𝑎,𝑝 , 𝑃𝑎,𝑝Boxes(𝑎, 𝑝)
22: 𝑆 = 𝑃𝑝,𝑎 ∪ 𝑆𝑎,𝑝 ∪ 𝑃𝑎,𝑝

23: if left, right ∈ 𝑆 then
24: // 𝑎 and top are collinear

25: return 𝑆2

26: else if right ∈ 𝑆 then
27: // top dominates 𝑎

28: return 𝑆2

29: else if left ∈ 𝑆 then
30: // top anti-dominates 𝑎

31: 𝐸 = Edges(𝑀 − {𝑎},RS(D))
32: 𝑆2 = 𝑆2 −𝑀

33: Add all 𝑝 in an edge in 𝐸 not containing top or 𝑎′ ∈ 𝐴0 to 𝑆2.

34: return 𝑆2

35: return 𝑆2

B Algorithm 9 (FindExtremePairs)
Let D be a database with 𝑅 records and let RS(D) be its response
set. Algorithm 9 (FindExtremePairs) returns all configurations of
extreme points (left, right, top, bottom) such that no points are dom-

inated by left and bottom, and no points dominate right and top.

15

Algorithm 9: FindExtremePairs(RS(D))
Input: Response set RS(D) of database D
1: 𝐸1, 𝐸2, 𝐸3, 𝐸4 = Edges(D,RS(D))
2: Let PossibleConfigs be all possible combinations of 𝐸1, 𝐸2, 𝐸3 and 𝐸4

into LeftE,RightE, TopE,BottomE.
3: Initialize empty dictionary config.
4: for LeftE,RightE, TopE,BottomE in PossibleConfigs do
5: for 𝐸1, 𝐸2 ∈ {LeftE,BottomE}, {RightE, TopE} do
6: for 𝑎,𝑏 ∈ 𝐸1 × 𝐸2 do
7: if the smallest response in RS(D) that contains 𝑎 and 𝑏 does not

contain any other element of 𝐸1 or 𝐸2 then
8: Add 𝑎,𝑏 to config under their corresponding key left, right,

top, or bottom.

9: Return to line 5.

10: Add config to PosExtremes.
11: Return PosExtremes

C Proofs

C.1 Proof of Proposition 2
Proof. Let D[𝑖] = 𝑝 , D[𝑗] = 𝑞, D′[𝑖] = 𝑝 ′, and D′[𝑗] = 𝑞′.

We first show that RS(D) ⊆ RS(D′). Consider a response 𝐴 in

RS(D) that contains 𝑖 and not 𝑗 . We will exemplify a query to

D′
with response 𝐴. Consider the set 𝐵 = (𝐴 − {𝑖}). Since D[𝑖]

has a unique maximal value in the second coordinate the set 𝐵

must be an element of RS(𝐷). By assumption, RS(D − {𝑝, 𝑞}) =

RS(D′−{𝑝 ′, 𝑞′}) and sowe have that𝐵 ∈ RS(D′). Let (𝑐, 𝑑) ∈ D2
be

a query that generates the response 𝐵 inD′
. Now consider the query

((𝑚𝑖𝑛0, 1), (𝑚𝑎𝑥0, 𝑑1)) where 𝑚𝑖𝑛0 = min(𝑐0, 𝑝0, 𝑝 ′
0
) and 𝑚𝑎𝑥0 =

max(𝑑0, 𝑝0, 𝑝 ′
0
). Since the only additional identifier contained in this

region is 𝑖 , then the response generated by this query is𝐴 = 𝐵∪ {𝑖}
which implies 𝐴 ∈ RS(D′).

A similar argument holds for queries that contain 𝑗 and not 𝑖 ,

as well as queries that contain both 𝑖 and 𝑗 , which concludes the

forward direction of the proof. One can also extend this reasoning

to show that RS(D′) ⊆ RS(D). □

C.2 Proof of Proposition 3
Proof. Let D[𝑖] = 𝑞 and D′[𝑖] = 𝑞′. By assumption RS(D −

{𝑞}) = RS(D′ − {𝑞′}). We first show that RS(D) ⊆ RS(D′). We

claim that for any response𝐴∪{𝑖} in RS(D) there exists a response
𝐴 ∪ {𝑖} ∈ RS(D′). Let 𝐴 ∪ {𝑖} be a response in RS(D) and let

(𝑐, 𝑑) ∈ D2
be a query to D that produces such a response. We will

consider two possible cases and in each case explicitly give a query

to D′
that must result in the response 𝐴 ∪ {𝑖}.

Case 1: 𝑝0 < 𝑐0. Consider the query ((𝑐0,𝑚𝑖𝑛1), 𝑑) issued to D′

such that𝑚𝑖𝑛1 = min(𝑞′
1
, 𝑐1). If𝑚𝑖𝑛1 = 𝑐1 then

Resp(D′, ((𝑐0,𝑚𝑖𝑛1), 𝑑)) = Resp(D′, (𝑐, 𝑑)) = 𝐴 ∪ {𝑖}
since all points 𝑟 ∈ 𝐴 are identical in both D and D′

and 𝑞′ is
contained in this query. Else if 𝑚𝑖𝑛1 = 𝑞′

1
then by definition of

close pair, 𝑞, 𝑞′ must minimally dominate 𝑝 . So no additional points

beside 𝑞′ are contained in the response generated by ((𝑐0,𝑚𝑖𝑛1), 𝑑)
thus Resp(D′, ((𝑐0,𝑚𝑖𝑛1), 𝑑)) = 𝐴 ∪ {𝑖}.

Case 2: 𝑐0 ≤ 𝑝0. Since the query (𝑐, 𝑑) contains 𝑞 then we

have 𝑐 ⪯ 𝑝 and 𝑞 ⪯ 𝑑 . Moreover 𝑝 ⪯ 𝑞′ ⪯ 𝑞 and so we have

Resp(D′, (𝑐, 𝑑)) = 𝐴 ∪ {𝑖}.

That proves the forward direction of the proof. A similar ar-

gument holds for the backward direction and we conclude that

RS(D) = RS(D′). □

C.3 Proof of Lemma 5.1
Proof. We first show that Algorithm 7 returns the correct edges

i.e. the sets 𝐸𝑖 for 𝑖 ≤ 4 contain IDs of all points with an extreme

coordinate value. Note that the second largest response in RS(D)
must exclude the ID of some extreme point 𝑝 . For a contradiction,

suppose 𝑝 is not extreme. Then we could minimally extend the

query to include 𝑝 and the resulting query would have a response

strictly larger than the original query and strictly smaller than [𝑅]
since it is not extreme, hence a contradiction. Now consider the

second largest response containing the ID of 𝑝 . The remaining ID(s)

must correspond to points with an extreme coordinate value in

another direction, else we could minimally extend the query to

include the non-extreme point(s). By extending this reasoning, we

recover the IDs of all points with an extreme coordinate.

In Algorithm 9, line 2 stores the at most 4! assignments of the

𝐸𝑖 to LeftE,RightE, TopE, and BottomE. The for loop on line 4 then

iterates through each possible assignment to identify the correct

IDs within each edge set. We want to find the IDs for the left-

most point, 𝑎, and bottom-most point, 𝑏, such that no points are

dominated by D[𝑎] or D[𝑏]. This corresponds to finding 𝑎 ∈ LeftE
and 𝑏 ∈ BottomE such that the minimal response containing them

contains no other extreme points. Suppose for a contradiction that

some edge point 𝑐 was dominated by either 𝑎 or 𝑏, then the minimal

query must also contain 𝑐 . A similar argument holds for the top-

most and right-most points.

The algorithm terminates in 𝑂 (𝑅 |RS(D) |) time. It takes 𝑂 (𝑅2 ·
|RS(D) |) time to find the edges. Then, we iterate through pairs of

edges and look through RS(D) to find a smallest response. □

C.4 Proof of Lemma 5.2
Proof. Let left, right, top and bottom be the points defined by

config. Without loss of generality, assume that right dominates left
and bottom. We first show that lines 2 to 7 find a set of IDs of points

that are not dominating any point in D (i.e. a minimal antichain

𝐴0 of D up to rotation/reflection). By correctness of Algorithm 9,

no point is dominated by either left or bottom. Let 𝑆 be the small-

est response in RS(D) containing left and bottom. All points not
dominated by left and bottom must be in 𝑆 , and thus we initialize

𝐴0 = 𝑆 .

By assumption, right must dominate all points with IDs in 𝑆 . Let

𝑝 be a point with ID in 𝑆 and consider the response 𝑇 of query

(𝑝, right). If there is a point 𝑞 with ID in 𝑆 such that 𝑝 ⪯ 𝑞, then

its ID must also be in response 𝑇 . In line 6 we find the set 𝑄 of all

such IDs and delete 𝑄 from 𝐴0. Since the for loop on line 4 iterates

through all IDs in 𝑆 , and deletes the IDs of all points that must

dominate at least one other point in 𝑆 , then at the end of the loop

𝐴0 must be the set of all points not dominating any other point.

On lines 10 to 18, we construct the dominance graph. Let 𝑆 be the

IDs output by DominanceID(RS(D), 𝑎) for some 𝑎 ∈ 𝐴0. Note that

𝑆 − {𝑎} corresponds to the IDs of all records that dominate D[𝑎].
The for loop starting on line 14 correctly builds the dominance

subgraph on all IDs in 𝑆 . We show that the following loop invariant

is maintained: at the end of iteration ℓ (1) no point with ID in

16

𝑆 \𝑉 (𝐺𝑎) is dominated by a point with a vertex in 𝐺𝑎 and (2) if 𝑖

and 𝑗 are in 𝑉 (𝐺𝑎) and D[𝑗] minimally dominates D[𝑗], then edge

(𝑖, 𝑗) is in𝐺𝑎 . At the start𝐺𝑎 = {𝑎}; this is correct since 𝑎 ∈ 𝐴0 and

𝐴0 is the set of IDs of points that do not dominate any other point.

Assume that at iteration ℓ the invariant holds. Find the next smallest

response 𝑇 that contains 𝑎 and only other IDs in 𝑆 . If 𝑇 contains 𝑣

not in 𝐺𝑎 then add it to 𝐺𝑎 . (1) holds since no point in 𝑆 \𝑉 (𝐺𝑎)
dominates D[𝑣], otherwise it would be contained in𝑇 and we could

form a strictly smaller response contradicting the minimality of 𝑇 .

For each sink 𝑡 ∈ 𝐺𝑎 such that 𝑡 ∈ 𝑇 we add (𝑡, 𝑣) to 𝐺𝑎 . (2) holds

since D[𝑣] must dominate all points with IDs in 𝑇 ∩ 𝑉 (𝐺𝑎) and
must minimally dominate all sinks 𝑡 in 𝐺𝑎 that are contained in 𝑇 .

Suppose there is some ID 𝑗 in 𝑉 (𝐺𝑎) that is minimally dominated

by 𝑣 but is not a sink. Then this would violate the correctness of

𝐺𝑎 at the end of iteration ℓ and hence this cannot happen.

Putting it all together, we want to show that taking the union of

all 𝐺𝑎 gives us the complete dominance graph 𝐺 . Let 𝑝, 𝑞 ∈ D be

any points such that 𝑝 ⪯ 𝑞. By correctness of 𝐴0, there exists some

𝑎 ∈ 𝐴0 such that D[𝑎] ⪯ 𝑝, 𝑞, and thus 𝑝 and 𝑞 are contained in the

minimal query of 𝑎, right, and top. By the correctness of 𝐺𝑎 , then

an edge from the IDs of 𝑝 to 𝑞 must be added when constructing

𝐺𝑎 . Since every dominance edge is added to a graph 𝐺𝑎 of some 𝑎,

then taking the union over all 𝐺𝑎 gives the complete dominance

graph of D.
The Algorithm terminates in 𝑂 (𝑅3 |RS(D) |) time. It takes 𝑂 (𝑅 ·

|RS(D) |) time to find the first antichain. Then, Algorithm 8 takes

𝑂 (𝑅2 · |RS(D) |) and may be run 𝑅 times. □

C.5 Proof of Lemma 5.3
Proof. Let𝐴0 be the set of IDs of points with height 0. We argue

that the height of 𝑝 ∈ 𝑉 is given by the maximum length of a path

from 𝑎 to 𝑝 over all 𝑎 ∈ 𝐴0. Fix some 𝑝 ∈ 𝑉 and suppose that

the maximum length of any path from the vertices in 𝐴0 to 𝑝 is ℓ ,

and let there be such a maximal path from some 𝑎 ∈ 𝐴0 to 𝑝 . By

correctness of Algorithm 1, the path from 𝑎 to 𝑝 in 𝐺 corresponds

to a chain in database D. Thus the height of 𝑝 is ≥ ℓ . Suppose for a

contradiction that 𝑝 has height ℓ ′ > ℓ ; By definition of height there

must exist a chain 𝐶 ⊆ D of size ℓ ′ with 𝑝 as the maximal element.

Let 𝑐1 ⪯ 𝑐2 ⪯ · · · ⪯ 𝑐ℓ′ be the elements of 𝐶 . We have that 𝑐𝑖+1
must minimally dominate 𝑐𝑖 , otherwise we could could extend the

chain from 𝑎 to 𝑝 to have length greater than ℓ ′. By correctness of

𝐺 , each edge (𝑐𝑖 , 𝑐𝑖+1) must be in𝐺 . Hence the length of the longest

path from 𝑎 to 𝑝 in 𝐺 is ℓ ′ > ℓ , a contradiction. Thus the height

of 𝑝 is given by the length of the longest path from 𝑎 to 𝑝 over all

𝑎 ∈ 𝐴0.

Let 𝐿 be the number of partitions in the canonical antichain

partition of D. We have shown that Algorithm computes the par-

tition A = (𝐴0, . . . , 𝐴𝐿) correctly. Let 𝑎1, . . . , 𝑎𝑚 be elements of a

partition 𝐴 ∈ A. We show that Algorithm 2 correctly computes an

ordering of 𝑎1, . . . , 𝑎𝑚 i.e. a 𝑎𝛾1 , . . . , 𝑎𝛾𝑚 such that 𝛾𝑖 = 1, . . . ,𝑚 and

for all 𝑗 either 𝑎𝛾 𝑗 ⪯𝑎 𝑎𝛾 𝑗+1 or 𝑎𝛾 𝑗+1 ⪯𝑎 𝑎𝛾 𝑗 . If |𝐴| < 3 then we are

done. |𝐴| ≥ 3 then on line 12 we compute all responses in RS(D)
that contain exactly two elements in 𝐴 and denote this set as 𝑆 .

A response containing exactly two elements 𝑎, 𝑎′ ∈ 𝐴 exists only

if 𝑎 minimally anti-dominates 𝑎′ (or vice versa). Next we delete

all 𝑝 ∈ D − 𝐴 from responses in 𝑆 and make it a set. Let {𝑎, 𝑎′}
be an element of the resulting set 𝑆 . Without loss of generality,

suppose 𝑎′ minimally anti-dominates 𝑎. Suppose that there exists

another set {𝑎′, 𝑎′′} ∈ 𝑆 . Then by transitivity 𝑎′′ must minimally

anti-dominate 𝑎′. We can thus “order" the elements in 𝐴 by finding

consecutive pairs of points in the responses.

This Algorithm terminates in 𝑂 (𝑅2 |RS(D) |) time, as it takes

𝑂 (𝑅2) time to find the longest paths in 𝐺 and 𝑂 (𝑅2 |RS(D) |) to
order the antichains. □

C.6 Proof of Lemma 5.4
Proof. The antichains returned by Algorithm 2 may have in-

consistent direction. The first step of Algorithm 3 is to fix their

orientation. We assume that the first antichain, 𝐴0, has the cor-

rect orientation. Then, we find the first element of 𝐴0 that has a

dominance edge to a point in 𝐴1, the second antichain. Let that

edge be (𝑐1, 𝑐2), 𝑐1 ∈ 𝐴0, 𝑐2 ∈ 𝐴1. If there are multiple options for

𝑐2, we pick the smallest one in order. Note that each member 𝑝 of

antichain 𝑖 must have a dominance edge with some member 𝑞 of

antichain 𝑗 , 𝑗 < 𝑖 . Otherwise, 𝑝 would be part of some previous

antichain.

If the order of antichain 1 is wrong, then a point 𝑐 ′
1
∈ 𝐴0 in

order before 𝑐1 must have an edge with point 𝑐 ′
2
∈ 𝐴1, in order after

𝑐2. If the chains were correctly ordered that would be impossible

as 𝑐 ′
2
anti-dominates 𝑐1 and 𝑐1 anti-dominates 𝑐 ′

1
. Thus, 𝑐 ′

2
cannot

dominate 𝑐 ′
1
. Thus, Algorithm 2 can correctly orient the second

chain given the order of the previous antichains. Maintaining this

invariant, Algorithm 2 correctly orients all antichains.

We begin constructing the anti-dominance graph by adding

anti-dominance edges between consecutive pairs of points in each

antichain.

It remains to add anti-dominance edges between points in dif-

ferent antichains. The algorithm iterates through pairs of chains,

and finds points 𝑎𝑖 and 𝑎 𝑗 that are not connected in 𝐺 and 𝑎𝑖 ∈
𝐴𝑖 , 𝑎 𝑗 ∈ 𝐴 𝑗 , 𝑖 < 𝑗 . Point 𝑎𝑖 either anti-dominates 𝑎 𝑗 or 𝑎 𝑗 anti-

dominates 𝑎𝑖 . In order to determine their relationship, we look for

a dominance edge between the antichains. If 𝑎 𝑗 anti-dominates

𝑎𝑖 , then all predecessors of 𝑎𝑖 are also anti-dominated by 𝑎 𝑗 and

its successors. So, if a predecessor of 𝑎 𝑗 dominates a successor of

𝑎𝑖 . Then 𝑎 𝑗 must anti-dominate 𝑎𝑖 . Similarly, if a successor of 𝑎 𝑗
dominates a predecessor of 𝑎𝑖 , then 𝑎𝑖 anti-dominates 𝑎 𝑗 .

Note that this technique finds only strict anti-dominance edges. It

remains to find any collinear anti-dominance edges. Given a pair of

points 𝑝 and 𝑝 , such that 𝑞 anti-dominates 𝑝 , and a point 𝑘 that is in

Boxes(𝑝, 𝑞), 𝑘 must have an anti-dominance relationship with both.

If no such path exists in 𝐺 ′
, we add appropriate edges depending

on which of the Boxes 𝑘 is in. Note that in some cases, as explained

by Proposition 3, it’s impossible to determine all collinearities.

Our definition of the anti-dominance graph is that it contains

minimal anti-dominance edges. Thus, after we remove any transi-

tive edges, we have generated D’s anti-dominance graph.

The Algorithm terminates in 𝑂 (𝑅2 |RS(D) |) time, as it takes

𝑂 (𝑅2) to fix the antichains and add edges between them and𝑂 (𝑅3 ·
|RS(D) |) to run Boxes for any anti-dominance pair. □

17

D Estimators

We introduce definitions from prior work on estimators. To

remain consistent with prior estimator literature, in this section, 𝑁

and𝐷 do not refer to the domain or database, respectively. Formally,

let D be a database of 𝑅 records and let

𝑀 = {{(𝑡1, 𝐴1), . . . , (𝑡𝑚, 𝐴𝑚) : 𝐴𝑖 ∈ RS(D)}}
be a sample (i.e. multiset) of𝑚 token-response pairs that are leaked

when queries are issued according to an arbitrary distribution. Let

𝑀 be a sample and let 𝑛 denote the size of a subsample 𝐿 ⊆ 𝑀 .

Denote by 𝐷 the number of distinct tokens in𝑀 and 𝑑 the number

of distinct tokens in a sub-sample 𝐿 ⊆ 𝑀 .

Definition D.1. [40] Let 𝐿 be a (sub)sample and let 𝑓𝑖 be the num-

ber of search tokens that are observed 𝑖 times in 𝐿. The fingerprint of
a sample 𝐿 is the vector 𝐹 = (𝑓1, 𝑓2, ..., 𝑓𝑛), where |𝐿 | = 𝑛. We can ex-

press the total number of token-response pairs in 𝐿 as 𝑛 =
∑𝑛
𝑖=1 𝑖 𝑓𝑖

and the number of observed distinct search tokens as 𝑑 =
∑𝑛
𝑖=1 𝑓𝑖 .

To estimate 𝜌 ≈ 𝜌 , we let 𝐿 be a sub-multiset of𝑀 comprised of

all token-response pairs that contain the identifiers of the points

whose 𝜌 value we wish to compute. We then use an estimator to

estimate how many unique search tokens are associated with those

record identifiers. We describe three such estimators below.

Chao-Lee.Chao and Lee proposed an estimator that utilizes sample

coverage [5]. The sample coverage 𝐶 of a sample 𝐿 is the sum of

the probabilities of the the token-response pairs that appear in 𝐿.

Knowledge of 𝐶 can then be used to estimate 𝜌 . Chao and Lee use

this approximation in combination with an additive term to correct

estimates of data drawn from skew distributions.

Let 𝑝𝑖 be the probability that a query sampled from the distri-

bution matches the 𝑖-th token-response pair, of the possible 𝑄 =(𝑁0+1
2

) (𝑁1+1
2

)
token-response pairs. Let 1𝐿 (𝑖) be the following indi-

cator function: 1𝐿 (𝑖) equals 1 if the i-th token-response pair is in

𝐿 and 0 otherwise. The sample coverage𝐶 of a sample 𝐿 is the sum

of the probabilities of the the token-response pairs that appear in

𝐿: 𝐶 =
∑𝑄

𝑖=1
𝑝𝑖 · 1𝐿 (𝑖) . Note that 𝐶 = 1 − 𝑓1/𝑛 is a natural estimate

for 𝐶 , which can then be used to estimate 𝜌 ≈ 𝑑/𝐶 . Thus,

𝜌
ChaoLee

=
𝑑

𝐶
+ 𝑛(1 −𝐶)

𝐶
· 𝛾2,

where 𝛾 is an estimate of the coefficient of variation 𝛾 = (∑𝑖 (𝑝𝑖 −
𝑝𝑚𝑒𝑎𝑛)2/𝑄)1/2/𝑝𝑚𝑒𝑎𝑛 and 𝑝𝑚𝑒𝑎𝑛 is the mean of the probabilities

𝑝1, . . . , 𝑝𝑄 .

Shlosser. Shlosser derived an estimator that works well under the

assumption that the sample is large and the sampling fraction is non-

negligible [36]. We used an implementation of Shlosser Estimator

that used a Bernoulli Sampling scheme. This estimator is more

effective for skewed distributions.

Let 𝑞 be the probability with which a token-response pair is

included in the sample. In [36], Shlosser derived the estimator

𝜌
Shloss

= 𝑑 +
𝑓1
∑𝑛
𝑖=1 (1 − 𝑞)𝑖 · 𝑓𝑖∑𝑛

𝑖=1 𝑖 · (1 − 𝑞)𝑖−1 · 𝑓𝑖
.

This estimator rests on the assumption that 𝑞 = 𝑛/𝑄 . As [17]

notes, the Shlosser estimator further rests on the assumption that

E[𝑓𝑖]/E[𝑓1] ≈ 𝐹𝑖/𝐹1 where 𝐹𝑖 is the number of tokens that appear

𝑖 times in entire database; This assumption isn’t often satisfied in

our setting, but our experiments demonstrate that Shlosser did

comparable to Jackknife in various cases.

Jackknife. The jackknife method was introduced by Quenouille

as a technique for correcting the bias of an estimator [34]. We use

the jackknife estimators described in [2, 3], which have been used

for the problem of estimating the number of unique attributes in

a relational database [17], in database reconstruction [23], and in

biology for the related problem of species estimation. Given a biased

estimate, jackknife estimators use sampling with replacement to

estimate the bias 𝑏𝑖𝑎𝑠 𝑗𝑎𝑐𝑘 , and obtain 𝜌
jack

.

One can view 𝑑 as a biased estimate of the true 𝜌 . Given a biased

estimate 𝑑 , jackknife estimators use sampling with replacement to

estimate the bias 𝑏𝑖𝑎𝑠 𝑗𝑎𝑐𝑘 , and obtain 𝜌
jack

= 𝑑 − 𝑏𝑖𝑎𝑠 𝑗𝑎𝑐𝑘 . Let 𝑑𝑛
denote the number of unique tokens in 𝐿 and let 𝑑𝑛−1 (𝑘) denote
the number of unique tokens in 𝐿 when the 𝑘-th token-response

removed. Note that 𝑑𝑛−1 (𝑘) = 𝑑𝑛 − 1 if and only if the 𝑘-th pair

is unique in 𝐿. Let 𝑑𝑛−1 = (1/𝑛)∑𝑛
𝑘=1

𝑑 (𝑛−1) (𝑘). The first order

jackknife estimator is

𝜌
jack

= 𝑑 − (𝑛 − 1) (𝑑 (𝑛−1) − 𝑑) .
The second order jackknife considers all 𝑛 samples generated by

leaving one pair out, in addition to all

(𝑛
2

)
generated by leaving two

pairs out. This method can be extended to an 𝑘-th order jackknife

estimators that generates

∑𝑘
𝑖=1

(𝑛
𝑖

)
samples and has bias 𝑂 (𝑛−𝑘+1).

18

E Experimental Results
Figure 12: Accuracy of our reconstructions of the NIS 2009 datasets as a function of the query ratio.

Dataset Attributes Normalized Mean Error Mean Squared Error Hausdorff Distance Pairwise Relative Distance Error

NIS 2009

NCH & NDX

NCH & NPR

NCX & NPR

19

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Encrypted databases and 2D Range Queries
	1.3 Comparison with Prior and Related Work

	2 Preliminaries
	2.1 Query Densities

	3 Order and Equivalent Databases
	3.1 Equivalent Databases
	3.2 Chains and Antichains

	4 Overview of Order Reconstruction
	4.1 Proof of Theorem 3.5

	5 Order Reconstruction
	5.1 Preliminaries
	5.2 Find Extreme Points
	5.3 Generate Dominance Graph
	5.4 Construct Antichains
	5.5 Generate Anti-Dominance Graph
	5.6 Order Reconstruction
	5.7 Experiments

	6 Estimating the Query Density Functions
	6.1 Non-parametric Estimators
	6.2 Experiments

	7 Approximate Database Reconstruction
	7.1 Algorithm
	7.2 Experiments
	7.3 Post-processing Adjustment

	References
	A Algorithm 8 (DominanceID)
	B Algorithm 9 (FindExtremePairs)
	C Proofs
	C.1 Proof of Proposition 2
	C.2 Proof of Proposition 3
	C.3 Proof of Lemma 5.1
	C.4 Proof of Lemma 5.2
	C.5 Proof of Lemma 5.3
	C.6 Proof of Lemma 5.4

	D Estimators
	E Experimental Results

