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Abstract

We revisit the notions of cryptographic anonymity and share unpredictabil-
ity in secret sharing, introducing more systematic and fine grained defini-
tions. We derive tight negative and positive results characterizing access
structures with respect to the generalized definitions.
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1. Introduction

Secret sharing is a cryptographic primitive that allows a secret to be
shared among a set P of parties such that qualified subsets succeed, while
unqualified subsets fail secret reconstruction. Sometimes reconstruction is
questionable, so the parties that agree reconstruction want their identities
to remain private; such a scheme is called cryptographically anonymous1 [2].

1.1. Previous work

Guillermo et al. laid out the definitional framework for cryptographic
anonymity [2]. They study the case where the adversary is given the share
vector ST held by a set T of parties (coupled with their identities) and needs
to distinguish between sets of pairs of parties T1, T2 disjoint from T given
the unordered set of Ti’s shares. They also consider the enhanced setting of
strong cryptographic anonymity where the adversary is also given the shared

1Cryptographic anonymity strengthens anonymity, which only states that identities are
not needed at reconstruction, but not necessarily hidden [1].
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secret. Given a sharing scheme, every set T induces a partition of 2P\T

into equivalence classes where all Ti’s in every equivalence class are indistin-
guishable. Clearly, every such class contains sets of equal size; in particular,
participant anonymity only considers Ti’s of size 1. For this framework, they
give several positive results with respect to various T ’s and access struc-
tures f . Another interesting setting considered in [2] extends cryptographic
anonymity such that the size of Ti is unknown to the adversary. Non-trivial
schemes here exist in a relaxed setting where parties in Ti may locally mod-
ify their shares (the interaction pattern relaxed so that upon reconstruction
each participant is aware of the other reconstructing parties, but is not al-
lowed to communicate with them). They provide strong positive results in
this setting.

1.2. Our contribution

First, we naturally generalize the definition in [2] to include statisti-
cal and computational cryptographic anonymity (share-indistinguishability
based). Additionally, we refine it to account for various a-priori distribu-
tions of secrets rather than require anonymity to hold for all initial distribu-
tions. For simplicity, our definitions and results are restricted to participant
anonymity, but generalization to larger sets Ti is not hard.

Second, we make a simple observation (first made in [3]) that extends
applicability by preserving cryptographically anonymity (at least computa-
tionally) against a coalition that may include the dealer: the dealer does
not have to know the shares, but it could rather contribute the secret to a
MPC (Multi-Party Protocol) that evaluates the sharing functionality. To
achieve statistical anonymity (even against semi-honest parties), one should
account both for bounds on MPC with statistical security, and the existence
of a sharing functionality satisfying the anonymity requirement.

Finally, we revise unpredictability of shares, a notion introduced in [4]
along with some positive results, but only used as a property of a sub-
protocol and not elucidated as an abstract concept. Although this is incom-
parable to anonymity, the notions are somehow related to the same use-case
scenario (so we sometimes call both anonymity notions).

Negative and positive results. We derive tight negative results on statistical
share-indistinguishable and share-unpredictability secret sharing. Establish-
ing impossibility results (even for statistical, rather than perfect schemes,
as considered before) is one of our main contribution over previous work.
Another main contribution in terms of feasibility results is that indistin-
guishability of sets T1, T2 may hold relatively to some T even if they are not
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isomorphic (in the sense that there exists a permutation of P mapping T1
onto T2 such that the access structure remains unchanged), as in all positive
results of [2]. As example, consider f a weighted leveled threshold func-
tion over a set of 10 employees and 5 managers, where an employee share
weights 1 and a manager share weights 3. For threshold equals 10, every
pair of external sets of size 1 (either containing an employee or a manager)
is indistinguishable to T that includes 3 managers. Such indistinguishabil-
ity is satisfied in our settings, while it fails in the settings of [2] under the
strong isomorphism requirement (which is independent of the choice of T ).
The positive results (derived by construction), along with the negative re-
sults characterize the access structures with respect to both our generalized
definitions.

2. Preliminaries

Let [n] = {1, . . . , n}. We consider distributions D over finite sets and
denote sampling a value x according to D by x← D. We use PPT (Proba-
bilistic Polynomial Time) and negligible functions in the usual sense.

2.1. Secret Sharing

Let P = {P0, P1, . . . , Pn} be a set of n players, where P0 is a distinguished
party called the dealer and T ⊆ P a subset of players. Let f be a finite
function defining an access structure on P such that f(T ) = 1 if T is qualified
and f(T ) = 0 if T is unqualified. We assume f is monotone and denote by
a minterm of f a minimal qualified set.2 For T ⊂ P and S = (S0, . . . , Sn),
ST denotes the set {Si}i∈T . A secret sharing functionality for f Shf takes
an input s ∈ F (for a finite domain F) from P0 and distributes shares to the
players such that it satisfies the standard requirements of secret sharing:

1. Privacy. For all T ⊆ P such that f(T ) = 0 (T is unqualified), all
secrets s1, s2 ∈ F such that s1 6= s2 and all distinguishers DT , the
following holds for a negligible function ε:

|Pr[DT (ST1 ) = 1]− Pr[DT (ST2 ) = 1]| ≤ ε(k)

Here and elsewhere, Si denotes the random variable resulting from ap-
plying Shf (si). Shf is perfectly private if ε(k) = 0, and computationally
private if DT is PPT.

2Unlike traditionally in secret sharing, we decouple the share distribution from the
dealer, as this would limit achievable anonymity levels. We view P0 as one of the partici-
pants, which constitutes a qualified set.
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2. (Statistical) Correctness. There exists a function Recf and a negligible
function ε(k), such that the following holds for all T ⊆ P such that
f(T ) = 1 (T is qualified) and all s ∈ F:

Pr[Recf (ST ) = s] ≥ 1− ε(k)

Correctness is perfect if ε(k) = 0.3

We refer to (Shf ,Recf ) where Shf and Recf as above as a secret sharing
scheme for an access structure f .

3. Definitional framework and settings

In addition to the standard requirements in the previous section, we are
interested in various notions of hiding shares of players from a coalition T
of other parties (that might be a qualified subset and possibly include P0).

Definition 1 (Share-Indistinguishability). Consider a set T ⊆ P and a
distribution D supported on F and RT some equivalence relation on P \ T .
We say Shf is (T,D,RT )-share-indistinguishable if for all (Pi, Pj) ∈ RT and
all distinguishers DT there exists a negligible function ε(k) such that:

|Prs←D[DT (ST , S[i]) = 1]− Prs←D[DT (ST , S[j]) = 1]| ≤ ε(k).

. Here DT receives ST as an ordered sequence (in the sense that unlike Recf
it also knows the index i of each Si). Share-indistinguishability is perfect if
ε(k) = 0 and computational if DT is PPT. Shf is T -share-indistinguishable
if it is (T,D, {(i, j)|i 6= j ∈ P \ T})-share-indistinguishable for all T ∈ T .

Definition 1 models cryptographic anonymity from [2], with D general-
izing the (binary) concept of strong cryptographic anonymity.

Definition 2 (Decisional Share-Unpredictability). Consider a set T ⊆ P, Pi /∈
T and a distribution D supported on F. We say Shf is decisional (T,D, i)-
share-unpredictable if for all distinguishers DT there exists a negligible func-
tion ε(k) such that:

|Prs←D[DT (ST , i, S[i]) = 1)− Prs←D,s′←D[DT (ST , i, S′[i]) = 1)| ≤ ε(k)

Secrets s and s′ are independently sampled. Share-unpredictability is perfect
if ε(k) = 0 and computational if DT is PPT.

3Unlike in standard secret sharing schemes, the set T is not an input to Recf (that is,
Shf is anonymous [2]).
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Definition 2 extends unpredictability from [4] in several ways: it is de-
cisional rather than computational (which makes it stronger) and considers
any T rather than unqualified sets only.

3.1. The full secure computation setting and a concrete application

Besides of the appealing theoretical study of schemes that fulfill the
above properties, they should be useful in real-life scenarios (where no
trusted parties exist). A possible use case is as follows. A company holds a
secret algorithm developed by P0, which is stored in a shared manner on the
computers of employees P1, . . . , Pn. Whenever the employees need to use
the algorithm, they perform recovery of the secret. There is disagreement
on whether it should be kept private or released as open source and hence
the employees that wish to make it public want to remain anonymous. It
is decided to resolve the problem by running the following 2-step “voting”
functionality: (1) The sharing phase (where P0 supplies s) is implemented
via MPC (implementation may be interactive); (2) Each voter for release
puts its share in a public directory (non-interactive). If a qualified subset
votes for release, the secret can be recovered by anyone, otherwise it remain
private. We assume that the parties are honest (but curious) and do not
disrupt the sharing protocol in any way (step 1 is implemented by a pro-
gram running on each computer and nobody tinkers with their software). In
the aftermath, we want to ensure that even if a subset T of employees who
put their shares in the public repository choose to identify their shares, (re-
gardless of whether the secret is revealed or not), the identities of the other
participants can not be deduced by inspection of the submitted set (we also
assume those deciding to vote for release do not coordinate it among them
to preserve anonymity, so, wlog. everyone just submits their share as is).

Claim 1. Let Shf be (statistically) T -share-indistinguishable. Then there
exists an implementation of a voting protocol as above, such that for all T ∈
T and submitting sets T∪{Pi} where Pi /∈ T , the distributions (V iew(T ),ST , S[i])
and (V iew(T ),ST , S[j]) ((V iew(T ) are the views in the MPC protocol eval-
uating Shf ) are computationally indistinguishable. Furthermore, if T is a
Q2 set, the indistinguishability is statistical [5].

The proof of the claim is rather straightforward, and follows from general
MPC protocols against semi-honest adversaries (e.g [5, 6]), along with the
anonymity properties of Shf .

Similarly, the property of (decisional) share unpredictability of Shf im-
plies the following application in the above scenario. Assume the distribu-
tion of a single S[i] appears like inconspicuous random noise. Then, even if
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some curious employee wants to check how Pi voted by going through his
outgoing communication, and even if all other submitted shares are known
(including identities), the submitted share S[i] still appears like a fresh S[i]
(thus, still inconspicuous, and does not indicate Pi submitted his share).

4. Results

4.1. Negative results

Theorem 1. Fix a sharing functionality Shf and let T = T ′ ∪ T ′′ where
1 = f(T ′ ∪ {Pi}) 6= f(T ′ ∪ {Pj}) = 0 for some Pi, Pj ∈ P \ T . Then, Shf is
not (T,D,RT )-share-indistinguishable for all RT containing (Pi, Pj) and all
but possibly a constant (O(n2)) number of distributions D.

Proof. We construct a distinguisherDT that in the share-indistinguishability
experiment is given ST

′ ∪ {S}, where S is either S[i] or S[j] and wins with
constant advantage for all but possibly a few distributions D.

DT (ST , S): Consider a distribution R = Recf (S0
T ′ ∪ {S0[j]}) (induced

by s0 ∈ F selected arbitrarily). Assume that limk→∞∆(D,R) > 0 (the
assumption fails only for D = limk→∞R). Let s1 denote a value such that
|PrD[s1] − PrR[s1]| = Ωk(1). Compute o = Recf (ST

′ ∪ {S}). Output 1 if
o = s1, and 0 otherwise.

Analysis: If S = S[i], by correctness of Shf DT recovers o = s (where
s is the sampled secret) with probability ≥ 1 − ε(k) = 1 − o(1). Thus, DT

outputs 1 with probability PrD(s1)±ok(1). If S = S[j], by privacy o satisfies
∆(o,R) = ok(1). Thus, DT outputs 1 with probability PrR[s1]±ok(1). Thus,
DT has Ωk(1) distinguishing advantage as limk→∞∆(D,R) > 0.

Theorem 2. Fix a sharing functionality Shf and let T = T ′ ∪ T ′′ where
f(T ′) = 0 and f(T ′ ∪ {Pi}) = 1 for some i ∈ P \ T . Assume further that at
least one of the following conditions holds: (1) f({Pi}) = 0. (2) f(T ) = 1.
Then, Shf is not (T,D, i)-share unpredicatble for all but a constant (poly(n))
number of distributions D.

Proof. We construct a distinguisher DT that in the share-unpredictability
experiment is given ST ∪ {S}, where S is either S[i] or S′[i] with advantage
Ω(1) for all but a few distributions D. First assume condition (1) holds.

DT (ST , S): Let R = Recf (ST
′ ∪ {S′[i]}) denote a distribution induced

by applying Shf (s0) for some s = s′ = s0 ∈ F (S,S′ sampled independently).
Let s1 denote a value such that |PrD[s1] − PrR[s1]| = Ωk(1) (exists for all
D 6= limk→∞R). Compute o = Recf (ST

′ ∪ {S}). Output 1 if o = s1, and 0
otherwise.
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Analysis. If S = S[i], then o = s holds with probability at least 1− ε1(k)
from correctness of Shf . Thus, it outputs 1 w.p PrD(s1)± ok(1).

If S = S′[i], since f({i}) = 0, f({T ′}) = 0, by privacy of Shf , the distri-
bution ST

′ ∪{S′[i]}, and thus Recf (ST
′ ∪{S′[i]}) is statistically independent

of s, s′ selected during the experiment and is statistically close to R. Thus,
in this case DT recovers o = s1 with probability PrR(s1) ± ok(1). Overall,
DT ’s advantage is |PrD(s1) − PrR(s1)| = Ωk(1). Finally, clearly this is the
case iff. D 6= limk→∞R.

Next, lets assume condition (2) holds, but condition (1) does not hold.
Then DT computes o1 = Recf (ST ) and o2 = Recf (S), and outputs 1 iff.
o1 = o2. As in this case f(T ) = f({Pi}) = 1, by correctness of Shf , we have
that if S = S[i], then DT outputs 1 w.p 1−ok(1), and otherwise it outputs 1
w.p

∑
s∈F(PrD[s])2±ok(1). Thus, DT it has distinguishing advantage Ωk(1)

for all but |F| distributions D (those with support of size 1).

4.2. Positive results

We propose a general scheme that has tight parameters for both notions.
The construction stems from similar ideas of the NIMPC construction in [7].

Construction 1. Shf−gen: Let T1, . . . , Tl be the minters of f in some order.
To share a secret s ∈ F, generate a sequence of vectors in a large enough
vector space V (say over F2) as follows. There is a vector Si,s′,k for every
s′ ∈ F, i ∈ [n] and k ∈ [l]. The vectors are random in the distribution under
the following constraints: (1) ∀j ∈ [l],

∑
i∈Tj Si,s,j = 0. (2) otherwise, all

the vectors are independent (there are overall l linear dependencies). Pick a
random permutation π on [l]. S[i] is the matrix

Mi =

 Si,s1,π(1) . . . Si,s1,π(l)
...

. . .
...

Si,s|F|,π(1) . . . Si,s|F|,π(l)


.

Theorem 3. Fix a finite access structure f : P → {0, 1}. Then, Shf−gen in
Construction 1 is a secret sharing functionality for f satisfying also:

1. It is (T,D,RT )-share-indistinguishable for all T,RT for which (i, j) ∈
RT implies f(T ′ ∪ {i}) = f(T ′ ∪ {j}) for all T ′ ⊆ T and for all D
(alternatively, it can achieve 0-error with expected polynomial time
samplers).

2. It is (T,D, i)-share-unpredictable for all T, i for which the precondi-
tions of Theorem 2 do not hold and all D.
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Both properties hold perfectly.4

Proof. Correctness: Recf−gen(ST ) outputs s′ if there exists H ⊆ T, l′ such
that

∑
i∈H Ss′,i,l′ = 0. Otherwise outputs ⊥. Clearly, Recf−gen is always

correct if f(T ) = 1 unless Shf−gen failed to sample the vectors so that all
dependencies are as required, which results in a negligible error probability.

Privacy: Consider an unqualified H ⊆ [n]. The values Ss′,i,j held by
H are random independent field elements (for all s′ ∈ F, including s′ = s).
Note that this analysis would hold even without applying π (indeed these
are needed only for share-indistinguishability).

Share-indistinguishability. Let (Pi, Pj) ∈ RT . Thus f(T ′ ∪ {Pi}) =
f(T ′ ∪ {Pj}) for all T ′ ⊆ T . We conclude that the distributions of the
distinguishers’ view in both cases of the experiment are identical. In more
detail, for a given T ′, either T ′∪{Pi} is not a minterm, in which case neither
is T ′ ∪ {Pj}, or both are (follows by easy case analysis). Thus, Ta ⊆ T
contributes a sequence Mi[s, π(a)] summing up to 0 if Ta is a minterm, or
Mi[s, π(a)] and S sum up to 0 if Ta ∪ {Pi} (Ta ∪ {Pj}) is a minterm.

Share-unpredicatability. There are two cases. In one case, f(T ′∪{i}) = 0
for any T ′ ⊆ T . In the second case, f(T ) = 0 and f(Pi) = 1. In both cases,
it is easy to see that the adversary’s input distributions are the same for
both S = S′[i] and S = S[i], for all D.

Note that in Theorem 3, players Pi and Pj should only be isomorphic
relatively to T (f(T ′ ∪ {i}) = f(T ′ ∪ {j}) for all T ′ ⊆ T ). In the positive
result of [2], players Pi and Pj are required to be isomorphic in the stronger
sense: f(T ′ ∪ {i}) = f(T ′ ∪ {j}) for all T ′ ∈ P \ {Pi, Pj}.

5. Conclusions and open problems

We have obtained tight characterization of when an access structure
f is (participant-) anonymous relatively to a set T of parties according
to two types of anonymity we revisit (share-indistinguisability and share-
unpredictability). It is not hard to generalize our results to sets T1, T2 rather
than single parties.

An interesting generalization of this work is pushing (say general, ind.-
based) anonymity to the limit. Consider the scenario where reconstructing
parties are still not aware of each other, but the shares are further subdivided

4An implementation of Shf would need to run in expected polynomial time.
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into sub-shares, and it is only recorded by Recf which sub-shares where
submitted, but not which came from the same share. To what extent can
we hide the identity of T1 (say, starting with an adversary involving T = φ),
hiding all except for f(T1), including even the size of T1? We have work
under way providing general positive results, assuming we allow for large
(but still 1−Ωk(1)) distinguishing advantage. The full version of this paper
(to appear soon), includes our results in both directions.

A more practical direction is finding Shf which is linear (unlike our
scheme in Theorem 3). Then, using general MPC protocols for semi-honestly
computing linear functions against arbitrary adversaries would strengthen
Claim 1 to ensure statistical anonymity without the Q2 condition on T .

Finally, it is interesting to understand when efficient indistinguishability-
based anonymity is possible (even in the computational setting). Some
positive results (including threshold access structures) are given in [2] for
the perfect case.
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