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Abstract

Random and pseudorandom number generators (RNG and PRNG) are

used for many purposes including cryptographic, modeling and simulation

applications. For such applications a generated bit sequence should mimic

true random, i.e., by definition, such a sequence could be interpreted as

the result of the flips of a fair coin with sides that are labeled 0 and 1. It

is known that the Shannon entropy of this process is 1 per letter, whereas

for any other stationary process with binary alphabet the Shannon entopy

is stricly less than 1. On the other hand, the entropy of the PRNG output

should be much less than 1 bit (per letter), but the output sequence should

look like truly random. We describe random processes for which those, in

a first glance contradictory properties, are valid.

More precisely, it is shown that there exist binary-alphabet random

processes whose entropy is less than 1 bit (per letter), but a frequency of

occurrences of any word |u| goes to 2−|u|, where |u| is the length of u. In

turn, it gives a possibility to construct RNG and PRNG which possess

theoretical guarantees. This, in turn, is important for applications such
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as those in cryptography.

keywords: random number generator, pseudorandom number generator,

Shannon entropy, random process, true randomness

1 Introduction

Random numbers are widely used in cryptographic, simulation (e.g., in Monte

Carlo methods) and modeling (e.g., computer games) applications. A genera-

tor of truly random binary digits generates such sequences x1x2... that, with

probability one, for any binary word u the following property is valid:

lim
t→∞

νt(u)/(t− |u|) = 2−|u| (1)

where νt(u) is a number of occurrences of the word u in the sequence x1...x|u|,

x2...x|u|+1, ..., xt−|u|+1...xt. (As in most studies in this field, for brevity, we

will consider the case when processes generate letters fro the binary alphabet

{0, 1}, but the results can be extended to the case of any finite alphabet.) The

RNG and PRNG attract attention of many researchers due to its importance

to practice and interest of theory, because, in a certain sense, this problem is

close to foundations of probability theory, see, for example, [2, 5].

There are two types of methods for generating sequences of random digits: so

called RNG and PRNG. The RNGs are based on digitizing of physical processes

(like noises in electrical circuits), whereas PRNGs can be considered as computer

programs whose input is a (short) word (called a seed) and the output is a long

sequence (compared to the input). As a rule, the seed is a truly random sequence

and the PRNG can be viewed as an expander of randomness which stretches a

short truly random seed into a long sequence that is supposed to appear and

behave as a true random sequence [4]. So, the purpose of RNG and PRNG is
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to use low-entropy sources for generating sequences which look truly random.

Note that the Shannon entropy of the truly random process (i.e., the Bernoulli

with p(0) = p(1) = 1/2) is 1 per letter, whereas for any other stationary process

the entropy is strictly less then 1; see [3]. That is why, the properties of truly

randomness and low entropy are, in a certain sense, contradictory.

There are a lot of papers devoted to RNG and PRNG, because they are

widely used in cryptography and other fields. For example, the National Insti-

tute of Standards and Technology (NIST, USA) published a recommendation

specifying mechanisms for the generation of random bits using deterministic

methods [1]. Nowadays, quality of almost all practically used RNG and PRNG

is estimated by statistical tests intended to find deviations from true randomness

(see, for ex., NIST Statistical Test Suite [6]). Nevertheless, researchers look for

RNG and PRNG with provable guarantees on their randomness because meth-

ods with proven properties are of great interest in cryptography.

In this paper we describe several kinds of random processes whose entropy

can be much less than one, but, in a certain sense, they generate sequences for

which the property of true randomness (1) is valid either for any integer k or for

ks from a certain interval (i.e. 1 < k < K, where K is an integer). It shows the

existence of low-entropy RNGs and PRNGs which generate sequences satisfying

the property (1). Besides, the description of the suggested processes show how

they can be used to construct RNGs and PRNGs for which the property (1)

is valid. Note that so-called two-faced processes, for which the property (1) is

valid for a given k were described in [8, 7]. Here those processes are generalized

and some new results concerning their properties are established.

More precisely, in this paper we describe the following two processes. First,

we describe so-called two-faced process of order k, k ≥ 1, which is the k-order

Markov chain and, with probability 1, for any sequence x1...xt and any binary
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word u ∈ {0, 1}k the frequency of occurrence of the word u in the sequence

x1...x|u|, x2...x|u|+1, ..., xt−|u|+1...xt goes to 2−|u|, where t grows. Second, we

describe so-called twice two-faced processes for which this property is valid for

any integer k. Besides, we show how such processes can be used to construct

RNG and PRNG for which the property (1) is valid.

The paper is organized as follows: the next part contains descriptions of

two-faced processes and transformations. The third part gives definitions of the

so-called twice two-faced processes for which the property (1) valid for every

integer k. In the conclusion we briefly discuss possible application of two-faced

processes to RNG and PRNG.

2 Two-faced processes

First, we describe two families of random processes Tk,π and T̄k,π, where k =

1, 2, . . . , and π ∈ (0, 1) are parameters. The processes Tk,π and T̄k,π are Markov

chains of the connectivity (memory) k, which generate letters from {0, 1}. It is

convenient to define their transitional matrices inductively. The process matrix

of Tk,π is defined by conditional probabilities PT1,π (0/0) = π, PT1,π (0/1) = 1−π

(obviously, PT1,π
(1/0) = 1− π, PT1,π

(1/1) = π). The process T̄1,π is defined by

PT̄1,π
(0/0) = 1− π, PT̄1,π

(0/1) = π. Assume that transitional matrices Tk,π and

T̄k,π are defined and describe Tk+1,π and T̄k+1,π as follows

PTk+1,π
(0/0u) = PTk,π (0/u),

PTk+1,π
(1/0u) = PT (k,π)(1/u),

PT (k+1,π)(0/1u) = PT̄ (k,π)(0/u),

PT (k+1,π)(1/1u) = PT̄ (k,π)(1/u), (2)
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and, vice versa,

PT̄ (k+1,π)(0/0u) = PT̄ (k,π)(0/u),

PT̄ (k+1,π)(1/0u) = PT̄ (k,π)(1/u),

PT̄ (k+1,π)(0/1u) = PT (k,π)(0/u),

PT̄ (k+1,π)(1/1u) = PT (k,π)(1/u) (3)

for each u ∈ {0, 1}k (here vu is a concatenation of the words v and u). For

example,

PT (2,π)(0/00) = π, PT (2,π)(0/01) = 1− π, (4)

PT (2,π)(0/10) = 1− π, PT (2,π)(0/11) = π.

To define a process x1x2... the initial probability distribution needs to be

specified. We define the initial distribution of the processes T (k, π) and T̄ (k, π),

k = 1, 2, . . . , , to be uniform on {0, 1}k, i.e. P{x1...xk = u} = 2−k for any u ∈

{0, 1}k. On the other hand, sometimes processes with a different (or unknown)

initial distribution will be considered; that is why, in both cases the initial state

will be mentioned in order to avoid misunderstanding.

Let us define the Shannon entropy of a stationary process µ. The conditional

entropy of order m, m = 1, 2, ..., is defined by

hm = −
∑

u∈{0,1}m−1

µ(u)
∑

v∈{0,1}

µ(v/u) logµ(v/u) (5)

and the limit Shannon entropy is defined by

h∞ = lim
m→∞

hm , (6)

see [3].
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The following theorem describes the main properties of the processes defined

above.

Theorem 1. Let a sequence x1x2... be generated by the process T (k, π) (or

T̄ (k, π)), k ≥ 1 and u be a binary word of length k. Then,

i) If the initial state obeys the uniform distribution over {0, 1}k, then for any

j ≥ 0

P (xj+1...xj+k = u) = 2−|u|. (7)

ii) for any initial state of the Markov chain T (k, π) (or T̄ (k, π))

lim
j→∞

P (xj+1...xj+k = u) = 2−|u|. (8)

iii) For each π ∈ (0, 1) the k-order Shannon entropy (hk) of the processes

T (k, π) and T̄ (k, π) equals 1 bit per letter whereas the limit Shannon entropy

(h∞) equals −(π log2 π + (1− π) log2(1− π)).

The proof of the theorem is given in the Appendix, but here we consider ex-

amples of “typical” sequences of the processes T (1, π) and T̄ (1, π) for π, say, 1/5.

Such sequences could be as follows: 010101101010100101... and 000011111000111111000.....

We can see that each sequence contains approximately one half of 1’s and one

half of 0’s. (That is why the first order Shannon entropy is 1 per a letter.) On

the other hand, both sequences do not look like truly random, because they,

obviously, have too long subwords like either 101010.. or 000..11111... (In other

words, the second order Shannon entropy is much less than 1 per letter.) So,

informally, we can say that those sequences mimic truly random, if one takes

into account only frequencies of words of the length one.

Due to Theorem 1, we give the following

Definition 1. A random process is called asymptotically two-faced of order k,

if the equation (8) is valid for all u ∈ {0, 1}k. If the equation (7) is valid, the
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process is called two-faced of order k.

Theorem 1 shows that the processes T (k, π) and T̄ (k, π) are two-faced. The

statements i) and ii) show that the processes look like truly random if we consider

blocks whose length is less than the process order k. On the other hand, if we

take into consideration blocks whose length is grater, the statement iii) shows

that their distribution is far form uniform (if π is either small or large). Those

properties explain the name “two-faced”.

The following theorem shows that, in a certain sense, there exist quite many

two-faced processes.

Theorem 2. Let X = x1x2... and Y = y1y2... be random processes. We define

the process Z = z1z2... by equations z1 = x1 ⊕ y1, z2 = x2 ⊕ y2, ... where x1x2...

and y1y2... are distributed according to X and Y and a ⊕ b = (a + b)mod 2.

Then, if X is a k-order two-faced process (k ≥ 1), then Z is a k-order two-

faced process. If X is an asymptotically k-order two-faced process then Z is

asymptotically k-order two-faced, too.

3 Two-faced transformation

Earlier we described two-faced processes which, in a certain sense, mimic truly

random. In this section we show how any Bernoulli process can be converted to

a two-faced process. Informally, any sequence X = x1x2... created by Bernoulli

process with P (xi = 0) = π, P (xi = 1) = 1 − π, will be transformed into

a sequence y1y2... of “letters” π and (1 − π) by a map 0 → π, 1 → (1 − π).

Then this sequence can be considered as an input of the transition matrix Tk,π

and a new sequence Y = y1y2... can be generated according to k-order two-

faced process, if we have an initial state, i.e. a binary word of length k. For

example, let k = 2, the initial state be 01 and x1x2...x5 = 10010. Then, y1...y5
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= (1 − π)ππ(1 − π)π and, according to (4), we obtain a new sequence 01110.

In fact, the output sequence is generated by the transition matrix Tk,π; that is

why the output process is 2-order two-faced.

Now we formally describe a family of transformations which, in a certain

sense, convert random processes into two-faced ones. For this purpose we first

define two families of matrices Mk and M̄k, k ≥ 1, which are connected with

transition matrices Tk,π and T̄k,π.

Definition 2. For any k ≥ 1, v ∈ {0, 1}k, w ∈ {0, 1}, the matrix Mk is defined

as follows:

Mk(w, v) =

 0, if Tk,π(w, v) = π

1, if Tk,π(w, v) = 1− π
(9)

M̄k is obtained from T̄k,π analogously.

Informally, these matrices combine the two steps from the previous example.

Namely, a transition from x1x2... to a sequence of symbols π, 1−π and, second,

transition from it to the new sequence of zeros and ones.

Definition 3. Let X = x1x2... be an infinite binary word, k > 0 be an integer

and v ∈ {0, 1}k. The two-faced conversion τk maps a pair (X, v) into an infinite

binary sequence Y as follows:

y−k+1yk+2...y0 = v ,

yi = Mk(xi, yi−kyi−k+1 ... yi−1) if 1 ≤ i (10)

where i = 1, 2, ....

It can be seen from definitions that the y1y2... is generated according to the

transition matrix Tk,π if x1x2.. generated by Bernoulli process with P (0) = π,

P (1) = (1− π). From this and Theorem 1 we obtain the following statement:

8



Claim 1. Let X = x1x2... be any Bernoulli process, k ≥ 1 be an integer and

τk be a two-faced transformation. If v is a word from {0, 1}k, then τk(X, v)

is asymptotically two-faced of order k. If, additionally, v obeys the uniform

distribution on {0, 1}k, then τk(X, v) is two-faced of order k.

4 Generalization

The k-order two-faced processes mimic true random ones for block lengths

1, 2, ..., k. Here we describe such processes that mimic true randomness for

blocks of every length. By analogy with so-called twice universal codes known

in information theory, we call such processes twice two-faced.

Definition 4. A random process is called (asymptotically) twice two-faced, if

the equation (7) ( (8) ) is valid for every integer k and u ∈ {0, 1}k.

Now we describe a family of such processes.

Let n∗ = n1, n2, .... be an infinite sequence of integers such that n1 < n2 <

n3.... and X1 = x1
1x

1
2..., X

2 = x2
1x

2
2..., X

3 = x3
1x

3
2..., ... be (asymptotically) two-

faced processes of order n1, n2, ..., correspondingly. Define a process W = w1w2

... by

wi =



x1
i i ≤ n1,

x1
i ⊕ x2

i n1 < i ≤ n2,

x1
i ⊕ x2

i ⊕ x3
i n2 < i ≤ n3,

.............................

(11)

and denote this process as
⊕∞

i=1X
i.

Theorem 3. If all Xi i = 1, 2, ... are two-faced then the process
⊕∞

i=1X
i is

twice two-faced, i.e. for any binary word u the equation (7) is valid. If all Xi

are asymptotically two faced, then the process
⊕∞

i=1X
i is asymptotically twice

two-faced, i.e. equation (8) is valid for any word u.
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It is worth noting that the total entropy of the processes X1, X2, ... can be

arbitrarily small, hence, the “input randomness” of the process
⊕∞

i=1X
i can be

very small, whereas, in a certain sense, the process looks like a truly random.

5 Conclusion

In this paper we focus on the existence of processes whose entropy can be arbi-

trary small, but they mimic truly randomness in the sense that the frequency of

occurrences of any word u asymptotically equals 2−|u|. In Conclusion we note

how such processes can be directly used in order to construct (or “improve ” )

RNGs and PRNGs. For example, Theorems 2 and 3 shows that output sequence

of any RNG and PRNG will, in a certain sense, looks like truly random, if it is

summed with a (low-entropy) two-faced (or twice two-faced) process.

The possibility to transform Bernoulli processes into two-faced ones gives a

possibility to create low-entropy two-faced processes. Indeed, schematically, it

can be done as follows: Imagine, that one has a short word v (it corresponds to

the seed of a PRNG) and wants to create a sequence V , |V | > |v|, which could be

considered as generated by a k-order two-faced process. Now denote h = |v|/|V |

and let π be a solution of the equation−(π log π+(1−π) log(1−π) = h. It is well-

known in information theory that there exists a lossless code ϕ which compresses

sequences generated by a Bernoulli process with probability (π, 1−π) in such a

way that the (average) length of output words is close to the Shannon entropy

h, see [3]. Denote the decoder by ϕ−1 and let the sequence U be ϕ−1(v).

Informally, this sequence will look like generated by a Bernoulli source with

probabilities (π, 1−π) and the final sequence V can be obtained from U by the

transformation as described in the Definition 3. (We did not consider the initial

k-bit words, which can be obtained, for example, as a part of the seed v. In

such a case h can be defined as (|v| − k)/|V |.
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6 Appendix

Proof of Theorem 1. We prove the theorem for the process Tk,π, but this proof

is valid for T̄k,π, too. First we show that

p∗(x1...xk) = 2−k, (12)

(x1...xk) ∈ {0, 1}k, is a stationary (or limit) distribution for the processes Tk,π.

For any values of k, k ≥ 1, (12) will be proved if we show that the system of

equations

PT (k,π)(x1...xk) = PT (k,π)(0x1...xk−1)PT (k,π)(xk/0x1...xk−1)

+PT (k,π)(1x1...xk−1)PT (k,π)(xk/1x1...xk−1) ;

∑
v∈{0,1}k

p(v) = 1

has the solution p(x1...xk) = 2−k, (x1...xk) ∈ {0, 1}k. It can be easily seen, if we

take into account that, by definitions (2) and (3), the equality PT (k,π)(xk/0x1...xk−1)+

PT (k,π)(xk/1x1...xk−1) = 1 is valid for all (x1...xk) ∈ {0, 1}k. From this equal-

ity and the low of total probability we immediately obtain (12). Having taken

into account that the initial distribution matches the stationary (limit) one, we

obtain the the first claim of the theorem (7). From definitions (2), (3), we can

see that all transition probabilities are nonzero (they are either π or 1 − π).

Hence, the Markov chain T (k, π) is ergodic and the equations (7) are valid due

to ergodicity.

Let us prove the third claim of the theorem. From the definitions (2), (3)

we can see that either PT (k,π)(0/x1...xk) = π, PT (k,π)(1/x1...xk) = 1 − π or

PT (k,π)(0/x1...xk) = 1 − π, PT (k,π)(1/x1...xk) = π. From this and (5) we can
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see that hk+1 = −(π log2 π + (1− π) log2(1− π)) and, taking into account (6),

we obtain h∞ = −(π log2 π + (1− π) log2(1− π)). The theorem is proved.

Proof of Theorem 2. The following chain of equations proves the first claim

of the theorem:

P{zj+1...zj+k = u} =

∑
v∈{0,1}k

P{xj+1...xj+k = v}P{yj+1...yj+k = v ⊕ u} (13)

= 2−k
∑

v∈{0,1}k
P{yj+1...yj+k = u⊕ v} = 2−k × 1 = 2−k .

(Here we took into account (7) and the obvious equation v ⊕ u ⊕ v = u.) In

order to prove the second statement, we note that by definitions,

lim
j→∞

P (xj+1...xj+k = u) = 2−|u|

for any u ∈ {0, 1}k, see (8). Hence, for any δ, δ > 0, there exists J such that

|P (xj+1...xj+k = u)− 2−|u|| < δ u ∈ {0, 1}k

if j > J . From this inequality and the equation (13) we obtain

(2−k − δ)
∑

v∈{0,1}k
P{yj+1...yj+k = u⊕ v}

≤ P{zj+1...zj+k = u} ≤

(2−k + δ)
∑

v∈{0,1}k
P{yj+1...yj+k = u⊕ v} .

Taking into account that this sum equals 1, we obtain the following inequalities:

(2−k − δ) ≤ P{zj+1...zj+k = u} ≤ (2−k + δ) .
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It is true for any δ > 0, hence (7) is valid and the process Z is asymptotically

k-order two-faced. Theorem is proven.

Proof of Theorem 3. Let u be any binary word and |u| = k. Take such an

integer ni that k ≤ ni and consider the process S =
⊕i−1

j=1X
j ⊕

⊕∞
j=i+1X

j .

(Here U⊕V = {u1⊕v1 u2⊕v2 u3⊕v3 ... } . Obviously,
⊕∞

j=1X
j = Xi⊕S. The

process Xi is (asymptotically) ni-order two faced. Having taken into account

Theorem 2 we can see that
⊕∞

j=1X
j is ni-order two faced and, hence, k-order

(asymptotically) two-faced (because k ≤ ni, hence (7) ( (8) ) is valid. . Theorem

is proven.
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