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Abstract

A notion of the graph of minimal distances of bent functions is introduced. It is an
undirected graph (V, E) where V is the set of all bent functions in 2k variables and (f,g) € E
if the Hamming distance between f and g is equal to 2% (it is the minimal possible distance
between two different bent functions). The maximum degree of the graph is obtained and
it is shown that all its vertices of maximum degree are quadratic. It is proven that a
subgraph of the graph induced by all functions affinely equivalent to Maiorana—McFarland
bent functions is connected.
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1 Introduction

Bent functions are Boolean functions in even number of variables that have maximal possible
nonlinearity. They were proposed by O. Rothaus [17]. Bent functions have a lot of applications
in algebra, combinatorics, coding theory, cryptography, see [19]. However, there are still many
open questions concerning bent function, for example, see [4].

This work is devoted to the minimal Hamming distance between two bent functions. It is
equal to 2¥ for bent functions in 2k variables. For the given bent function f in 2k variables any
bent function at the distance 2¥ from f can be obtained in the following way: we chose some
k-dimensional affine subspace L such that f is affine on it and just invert values of f on L, see
[14]. For the first time this approach to construct new bent functions by affine subspaces was
proposed in [2].

It seemed some properties can be formulated easier in terms of graph of minimal distances
GByg. It is an undirected graph (V, E) where V is the set of all bent functions in 2k variables
and (f,g) € E if the Hamming distance between f and g is equal to 2¥. For example, the
number of bent functions at the distance 2¥ from the given bent function f is the degree of
vertex f in GBy; an existence of bent functions hq, ..., h, for two bent functions f, g such that
dist(f, h1) = 2F, dist(hy, g) = 2¥ and dist(h;, hjr1) = 2¥ for i € {1,...,n — 1} is just existence
of a path between f and g in GBoy.

*The author was supported by the Russian Foundation for Basic Research (project no. 15-31-20635).



In this work the maximum degree of G Boy is obtained. It is equal to 2¥(2! +1)... (2% +1).
Moreover, it is proven that any vertex of maximum degree is a quadratic bent function. In
order to prove that, a notion of completely affinely decomposable Boolean function of order k
is introduced. Such function is either affine on each coset of a k-dimensional affine subspace or
not affine on any coset; and the function should be affine on at least one k-dimensional affine
subspace. It is obtained that completely affinely decomposable functions are either affine or
quadratic; their complete classification depending on & is done.

Next, a subgraph GMas;, of G By, induced by all bent functions affinely equivalent to Maiora-
na—DMcFarland bent functions is considered. A lower bound of a vertex degree in GMayy is
obtained and it is proven that GMsy is connected. As a consequence, GBy, GBy, GBg are
connected too. But in general G By is not connected due to existing isolated vertices (starting
with 2k = 14), such bent functions were found in [5].

Note that results of the work were announced in [19].

2 Definitions

2.1 Boolean functions

Let us give definitions. A Boolean function in n variables is a mapping f : Fy — F,. Denote
by Fp, the set of all Boolean functions in n variables. The Hamming distance dist(f, g) between
two Boolean functions f,g € F, is the number of x € F3 such that f(z) # g(z). Define by
(x,y) = 1y1 ® T2y2 @ ... ® xpYy, inner product of two vectors z,y € F. Denote by supp(f),
f € Fn, theset {z : f(x) =1,z € F§}. The weight wt(f) of Boolean function f € F, is equal
to [supp(f)|. The restriction of a Boolean function f € F, on the set S C F% is a mapping
fls + S = F,, where f|s(z) = f(z) for all x € S. A subfunction ﬁ{f_;i’“ of function f is a
restriction of f on the face {z € Fy | xj;, = b1,..., 2, = by}

A Boolean function f € F, is called balanced if wt(f) = 2"~!. Balancedness is generalized
to the restriction of a Boolean function: f|g is called balanced, where S C F% and |S| is even, if

{z €S| fls(x) =1} = |S]/2.

2.2 Algebraic normal form

Representation of f € F,, in the form

f(xl,...,xn):ao@@ @ Qiy.igTig - - Ly

n
k=1 1<ii<..<ip<n

where ag, a;,..i, € Fy, is called algebraic normal form (ANF), x;, ...z, is called a monomial of
degree k, a;, i, ,ao are coefficients. The degree deg f is the length of the longest monomial with
nonzero coefficient (and —oo if all coefficients are zero). There is the only way to represent f in
such form.
A Boolean function is called affine if its degree is not more than 1, in other words, it is a
function of the form
loc(x) = (a,z) @ c for some a € Fy, c € IFy,.

Denote by A, the set of all affine functions in n variables.
A Boolean function is called quadratic if its degree is equal to 2.



Derivative function D, f of f € F,, in the direction a € FY is the function f(z) ® f(z & «).
Note that if deg f > 0, then deg D, f < deg f for any direction o € 3.

2.3 Affine equivalence

Two Boolean functions f, g € F,, are called affinely equivalent if there exist an invertible n-by-n
binary matrix A, vector b € Fy and affine function ¢ € A,, such that

flx) =g(xA@b) @ L(z) for all z € Fy.

Note that dist(f,g) = dist(f(zxA® b) @ £(x),g(xA D b) D L(x)).

The notion of affine equivalence is used with addition of an affine function instead of classic
definition f(z) = g(zA @ b) since considered transformations form the group of automorphisms
of the set of bent functions, see [18]. In these terms some results of the work can be formulated
shorter.

It holds Dickson’s theorem for a quadratic Boolean function: any quadratic f € F,, can be
reduced by transformation of the form f(zA), where A is an invertible n-by-n binary matrix, to
the form

T1T2 Px3Tgs B ... B To_1T2t P 5(1})
for some £ € A, and t, 1 <t < n/2.

Thus, any quadratic f € F,, is affinely equivalent to the function g¢(x1,...,z,) = 122 ®
T3T4 D ... D x_179 for some t, 1 <t < n/2.

2.4 Affine subspaces

Nonempty set L C 5 is called linear subspace of Fy if for any a,b € L it is true a @ b € Lj its
dimension dim L is equal to logs | L|.

Denote by s@® D, where s € F§ and D C F3, a shift of the set D, i.e. s&D = {s®z | x € D}.

The set L C F% is called affine subspace of Fy (or briefly subspace) if it is a shift of some
linear subspace of Fy; the dimension dim L is the dimension of corresponding linear subspace.
A shift of an affine subspace is also called its coset.

Denote by ASP¥ the set of all k-dimensional affine subspaces of F§ and by LSPX the set of
all k-dimensional linear subspaces. An affine(linear) subspace L is a subspace of an affine(linear)
subspace U if L C U (both L, U C F%); let

ASPE(U) = {L € ASPF | L C U},

LSPHU)={Le LSPF | L CU}.

A Boolean function f € F, is affine on an affine subspace L C Fy if f|;, = £4|r for some
a € F}, ¢ € F,. Denote that by f|r(z) = (a,z) & c.

2.5 Walsh—Hadamard transform
Walsh—Hadamard transform of f € F, is the mapping W; : Fy — Z such that

Wi(y) = Y (—1)f@o,

z€FY



the numbers Wy(y) are called Walsh—Hadamard coefficients. Walsh—Hadamard transform
uniquely determines f. It is true Parseval’s equality:

S Wy) =22,
yelry

For a function f € F,, a linear subspace L C F} and a,b € I} it is right the following
formula:

S (-pfEsa) ptmbon( et 57 y(y)(-1)en, 1)

r€adL yebDLL

2.6 Bent functions

A bent function is a Boolean function f € Foj, such that [Wy(y)| = 2" for all y € F3*. Denote
by Boi the set of all bent functions in 2k variables. Note that for f € 29 it holds

wt(f), dist(f, £oc) € {2271 £ 2811 for any a € F3* ¢ € T,

The dual function f can be defined by f in the following way
7 1
(—1)7® = i Wi(y) for all y € F2*.

Function f is a bent function too. For a bent function f formula (1) can be simplified:

Z (—1)f @& ba) — gdimL—k(_7yabd) Z (—1)f @y, (2)
r€adL yebDLL
where L is a linear subspace of F3*, a,b € F3*. It can be found in [2].
Denote by Indp, where D C [, the Boolean function in n variables that takes value 1 only
on the set D.
For a bent function the following construction is right. Let f € Boy, L € ASng and f be
affine on L. Then
f @ Indy, is a bent function too. (3)

The construction was proposed by C. Carlet [2].
For f,g € Boy, f # g, it holds dist(f, g) > 2¥. In [12] was proven the following criterion.

Proposition 1. Let f € Byy,. Then all bent functions at the distance 2 from f have the form
f ® Indy, where L € .,4873'2“,C and f is affine on L.

The following functions form Maiorana—McFarland [16] class of bent functions May:
f(z,y) = (z,7(y)) © p(y), where

o z,yc Tk

e 7 is a permutation on F% and

e ¢ is an arbitrary Boolean function in k variables.

Denote by Mgk the set of all bent functions affinely equivalent to functions from Msy. This
class is also called completed Maiorana—McFarland class.

More information concerning bent functions can be found in [19], [8], [10], [15] and [7]
(Chapters 8 and 9 by C. Carlet).



3 The graph of minimal distances of bent functions

An undirected graph GBsy, = (V, E) is called the graph of minimal distances of bent functions if
e V is the set of all bent functions in 2k variables and

e (f,9) € E if and only if dist(f, g) = 2*.

Denote by G My, a subgraph of G By, induced by all vertices from Mvgk. Summarize known facts
in terms of GBy, and GMoyy,.

e The maximum degree of G By, and GMy is equal to 2F(21 + 1)(22 +1)...(2¥ + 1), any
vertex of maximum degree is a quadratic bent function, see section 7.

e Degree of a vertex of GMyy, is not less than 225+ — 2% see proposition 13.
e (GMyy, is connected, see section 9.

Describe the structure of the work. In sections 4 and 5 auxiliary results concerning affinity
of Boolean functions will be obtained. Section 6 is devoted to a notion of completely affinely
decomposable Boolean function. Complete classification of such functions will be done. Then,
in section 7 the maximum degree of G By will be obtained; due to results of section 6, it will be
also proven that all vertices of maximum degree are quadratic. Next, the last two sections are
devoted to connectivity of some subgraphs of GBsy. In section 8 a subgraph of G By induced
by all vertices from My will be considered. Finally, in section 9 connectivity of G My, will be
proven.

4 Affinity of a Boolean function on an affine subspace

There are the following notions concerning affinity of a Boolean function on an affine subspace.
A Boolean function f € F,, is called k-normal (weakly k-normal) if it is constant (affine) on some
k-dimensional affine subspace of F5. And function f is called normal (weakly normal) if it is
[n/2]-normal (weakly [n/2]-normal). The notion of normality was introduced for even number
of variables by H. Dobbertin [9]. Later it was generalized by C. Charpin [6]. There are also
notions of affinity level and generalized affinity level connected with the maximum dimension of
a subspace such that f is affine on it [1], [15].

An idea of affinity on an affine subspaces was applied to construct bent function. For example,
big class of normal bent functions was introduced by H. Dobbertin [9]; bent functions that are
affine on some ¢-dimensional affine subspace (face) and on each its coset were considered in [20],
[3].

Next, prove auxiliary propositions concerning affinity of a Boolean function on an affine
subspace. First of all, prove the main lemma of this section.

Lemma 1. Let f € F, and U € ASPE, where k > 0. Then f is affine on U if and only if there

n’

exists L € ASP*~1(U) such that both f|r and flapr are constants, where a € U\L.

Proof. Without loss of generality it can be supposed that both U and L are linear subspaces,
i.e. Uc LSPE, L € LSP*Y(U) (otherwise function f(x @ b) for b € U can be considered
instead of f).



(=) Let f be affine on U. It means that f|y(z) = (w,z) & ¢ for some w € F} and ¢ € F,.
Solve the equation
(w,z) =0, x € U.

Since U is a linear subspace, the set of all solutions will be either U or some L € 537)’5—1. For
the second case the set of all solutions of the equation (w,z) =1, € U will be a & L, where
acU\L.

Thus, for both cases there exists L € ESPk_I(U) such that both f|; and f|,e1 are constants.

(<) Let f|r = &1 and flaer = c2, c1,¢c2 € Fo. Prove that f is affine on U. Note that
U=LU(a®L). If ¢; = co, the statement is obvious. Let ¢; # co, i. e. ¢ = ¢; ® 1. Consider
L*. For some w € Lt it is true that (w,a) = 1 since if (w,a) = 0 Yw € L*, then a € L= L,
but a ¢ L. Therefore, (w,z)|;, =0 and (w,x)|ser = 1. Thus, fly(z) = (w,z) & 1. O
Consider corollaries of the lemma.

Proposition 2. Let f € F, be affine on L € ASP}. Then f|, is either constant or balanced.
Its proof is obvious.

Proposition 3. Let f € F,, and f|L be constant, where L € ASPE. Then f is affine on a
subspace LU (a ® L), a € F%, if and only if flaer is constant too.

The proof obviously follows from lemma 1 and proposition 2.

Proposition 4. Let f € F,, be affine on L € ASPX, k> 0, and f|y = ¢ for some U € ASP(L),
¢ € By, where t < k. Then there exists an affine subspace T € ASP* Y(L) such that f|r = ¢
and U CT.

Proof. If f|; = ¢, any T € ASP*"1(L) containing U can be chosen. Otherwise, by lemma 1
there exists T € ASP*~!(L) such that both f|r and f|eer are constants, where a € L\T.
Without loss of generality we can suppose that f|p = ¢. Since f|r, is not constant, f|,gr = c®1.
Thus, U CT. O

Proposition 5. Let f € F,,, L be an affine subspace of Fy and f|p(x) = (w,x) & ¢ for some
w € FY and c € Fy. Then f is affine on LU(a® L), a € FY, if and only if fleer(x) = (w,z) &
for some ¢’ € F,.

Proof. Consider function f/(z) = f(z)® (w,z) ®c. It holds f’|, = 0. Next, the proof is obvious
by proposition 3. ]

Proposition 6. Let f € F,, n > 2 and L = {a,b,c,d} be a 2-dimensional affine subspace of
F2. Then f is affine on L if and only if f(a) ® f(b) ® f(c) ® f(d) = 0.

The proof is obvious.

5 Affinity of a quadratic Boolean function on an affine subspace

In this section we give auxiliary results concerning affinity of a quadratic Boolean function on
an affine subspace.

Proposition 7. Let f € F;,, deg f <2 and f be affine on an affine subspace L of F5. Then f
is affine on each coset of L.



Proof. Note that f(x @ a) = f(x) ® (f(x) ® f(z ® a)), a € F}. Since the degree of derivative
function f(x)® f(x@®a) is less than the degree of f (i.e. it is not more than 1), f(x @ a) is affine
on L and, therefore, f is affine on a @ L. O

Lemma 2. Let f € F,, f be quadratic and affine on L € ASP!, t < n/2. Then there eist
different affine subspaces (a1 ®L), ..., (agn-20B L) such that for some w € Fy and ¢y, ..., con-2t €
F, it is true

flasor(z) = (w,x) @ ey i € {1,...,2"2

Proof. Denote by S, the set of all cosets of L such that function f(z) @ (w,z) is constant
on it. Note that if fl,er(z) = (w,z) @ ¢, then for any w’ € w @ L* it holds fluer(z) =
(w',x) ® (wdw',a) ®c. Thus, Sy = Swau for u € Lt

According to proposition 7, f is affine on each of 2"~ different shifts of L. Therefore, it is
true

1 1 )
T D 18wl =5 D 1wl =277,

wely weky
that is why |S,,| > 2n7t2n=t /2" = 272 for some w € FY. O

Lemma 3. Let f € Foy,, f be quadratic and U € ASP?*~1(2k). Then there exists L € ASP*(U)
such that f is affine on L.

Proof. Since U is of dimension 2k — 1, it holds F2¥ = U U (c U U) for some ¢ € F2*. Prove by
induction that there exists L € ASP'(U), t < k, such that f is affine on L.

Base of the induction ¢ = 0 is obvious.

Suppose that the statement is true for ¢, ¢ < k. Prove that it is true for t+1. By the induction
there exists L € ASP!(U) such that f is affine on L. By lemma 2 for some w € F2* there exist
different a1 @ L, ..., ayr—2 ® L such that for some w € F3* it holds f|s,er(r) = (w,z) & ¢;,
¢i € F,y. Aslong as t < k, we have 22k=2t > 4 different affine subspaces.

Since L C U, there always exist different a ® L and b ® L, a,b € F%k, among (a1 &
L),...,(aynr—2: & L) such that either a® L,b& L C U or a® L,bd L C ¢® U. Next, by
proposition 5 function f is affine on L' = (a@® L) U (b @ L) of dimension t + 1. If L’ C U, the
lemma is proven. Otherwise L' C ¢ @ U. By proposition 7 function f is affine on ¢ & L’ and
chL CU. O

6 Completely affinely decomposable Boolean functions

In this section the notion of completely affinely decomposable Boolean function is introduced. It
will be showed that any such function is either quadratic or affine.

Definition 1. Boolean function f € F,, is called completely affinely decomposable of order k,
2 < k <n, if the following conditions hold:

e f is affine on some subspace from ASPE;

o if f is affine on a subspace L € ASPQ, then f is affine on each coset of L.



There is no sense to consider orders 0 and 1, since all Boolean functions would satisfy the
definition.

Denote by .ADZ the set of all completely affinely decomposable functions of order k£ in n
variables. It is simple to prove the following proposition.

Proposition 8. Let f,g € F,, be affinely equivalent. Then f € AD,’i if and only if g € .ADfL.
Show that Asz contains only affine and quadratic functions. Firstly, it holds

Proposition 9. ADX C ADF-1 C ... C AD2.

To prove the proposition it is sufficient to use the following lemma.

Lemma 4. Let f € ADY and f be affine on some linear subspace U € LSP!, t < k. Then
there exists linear subspace L € ESPf; such that U C L and f is affine on L.

Proof. Prove the lemma using induction by dimension of U. Base of induction dimU = 0
obviously follows from the lemma condition.

Suppose that for all linear subspaces of dimension less than ¢, ¢t < k — 1, the statement is
true. Prove that it is true for affine subspace U of dimension t + 1.

Represent U as U' U (a ® U’), where U’ € LSP'(U) and a € U. Then by induction there
exists L € ESPfL, U' C L and f is affine on L. Without loss of generality it can be supposed
that f|, = 0 thanks to transformations of the form f @ ¢, .. Next, by proposition 3 it is true
flagur = ¢ for some ¢ € Zy. Since by the lemma condition f is affine on a @ L, by proposition 4
there exists (a®T) € ASP*!(a® L) such that f|upr = c and a® U’ C a®T C a® L (therefore,
it holds U’ C T C L too). Aslong as f|p = 0 due to T' C L, by proposition 3 function f is affine
on k-dimensional linear subspace T'U (a @ T') that contains U. O
Next, show that AD? can contain only affine and quadratic functions.

Lemma 5. Let f € F,, n > 2. Then there exists L € ASP? such that f is affine on L.

Proof. Prove that f is affine on some L € ASP? when n = 3. It is sufficient for proving the
lemma. ANF of f can contain 4 monomials of degree 2 or 3: x1xox3, x122, x1x3 Tox3. Consider
two cases.

Case 1. Monomial xixex3 does not belong to the ANF. There are two subcases.

1. Monomials x1x9, 123 and xox3 belong to the ANF. Note that x1zo®z1x3D 2003 = 21 (22D
x3) @ xaxs3, that is why f is affine on 2-dimensional affine subspace D = {(z1,x2,x3) | 22 @
3 =1,21,29,23 € FQ}.

2. Otherwise all monimials of degree 2 from the ANF contain common variable z;, 1 < i < 3.
Therefore, flo is affine.

Case 2. Monomial xixex3 belongs to the ANF. There are also two subcases.
1. There are no minomials of degree 2 in the ANF. Then it is obvious that f{ is affine.

2. Otherwise without loss of generality suppose that the ANF contains x1x2. Then f31 is
affine since x1x2x3, r1T9 cancel out and xiz3 and xoxg contains x3 = 1.

O



Lemma 6. Let f € AD2. Then f is either affine or quadratic.

Proof. Prove the lemma using induction by the variable number. It is obvious that any
Boolean function in 2 variables is either affine or quadratic. Suppose that if g € AD%, k < n,
then deg g < 2. Prove that deg f < 2.

Consider the linear subspace

L ={(0,0,0),(0,0,1),(0,1,0),(0,1,1)} C FF5.
Then any coset of L can be represented in the following way:
{(x,0,0), (x,0,1), (x,1,0), (x,1,1)}, x € F3~2.

Since f € AD2, function f is either affine on each coset of L or not affine on any coset of L at
all. That is why by proposition 6 for some constant c € I, it is true

£(%,0,0) @ £(x,0,1) @ f(x,1,0) & f(x,1,1) = ¢ Vx € Fy~2.
Decompose f by two last variables.

f&xy,2)=wael)(za1)f(x,0,0)® (yd 1)2f(x,0,1) ®
y(z@d1)f(x,1,0) ®yzf(x,1,1).

In other words,

f(x,y,2) = (f(%,0,0) ® f(x,0,1) ® f(x,1,0) ® f(x,1,1))yz P
(f(x,0,0) @ f(x,1,0))y ® (f(x,0,0) ® f(x,0,1))z & f(x,0,0).

Let f'(x,y) = f(x,9,0) and f"(x,y) = f(x,0,y), i. e. they are subfunctions of f; and a =
(0,1) € F4~1. Then

f(x,y,2) = c-yz ® yDaf'(x) ® 2Da f"(2) @ f(x,0,0). (4)

Let h be any of f/, f” or f(x,0,0); and let m be the number of variables of h, m < n. Prove
that degh < 2. If m < 3 it is obvious. Otherwise, by lemma 5 function A is affine on some
2-dimensional affine subspace. In view of h is a subfunction of f, it is right » € AD?,. Thus, by
the induction degh < 2.
Therefore,
deg f(x,0,0) <2 and deg D, f',deg Do f" < 1.

By equality (4) it is true deg f < 2. The lemma is proven. O
The next lemma can be also found in [2]. To completeness, prove it too.

Lemma 7. A bent function f € Boy can not be affine on an affine subspace of dimension more
than k.

Proof. Let f|(z) = (w,z) ® ¢, L € ASPL™. Then for bent function f'(z) = f(z) ® (w,z) ® ¢
it is true f’|;, = 0. Since the dimension of L more than k, there exist two different subspace U
and a® U such that U C L and (a®U) C L. Then g = f' @ Indy ® Ind.gy is also bent function
by construction (3), at the same time wt(g) = wt(f’) + 2**+1. It is a contradiction because the
weight of a bent function is equal to 22F—1 4 2k—1, O

The following theorem gives complete classification of completely affinely decomposable
Boolean functions.



Theorem 1. Let f € F,,. The following statements are right.
(i) Function f € AD" n where 2 < k < [n/2], if and only if f is either affine or quadratic.
(i) Function f € ADE, where [n/2] < k < n, and f ¢ ADEYL if and only if f is affinely
equivalent to the function

In—k(T1,- ., Tp) = 2172 © 1374 D ... © Top 2k 172, 2%k
(iii) Function f € AD} if and only if f is affine.

Proof. Note that if f € ADF, then it is either affine or quadratic: it follows from the proposi-
tion 9 and lemma 6.

As for affine and quadratic Boolean functions there is proposition 7, it is sufficient to prove
existence of an affine subspace such that the function is affine on it. Point (iii) is obvious.

By Dickson’s theorem any quadratic Boolean function is affine equivalent to g¢(z1,...,z,) =
X122 O T3x4 D ... B Tor_1we for some t, 1 < t < n/2. So, g; is affine on affine subspace
{r € F} | 29 = x4 = ... = 29 = 0} of dimension n—t, i. e. point (i) is proven. To prove the point
(ii) it is sufficient to use that function h(z1,...,Ton_ok) = T1T2 D x3T4 D ... D Top_2k—1Ton—2k 1N
2n — 2k variables is a bent function and by lemma 7 it can not be affine on an affine subspace of
dimension more than n — k: then function g can not be affine on an affine subspace of dimension
more than n — k + (n — (2n — 2k)) = k. O

Thus, among bent function only quadratic bent functions can be completely affinely decom-
posable.

A particular case of completely affinely decomposable functions was considered in [13]: it
was proven that f € F,, is completely affinely decomposable of order [n/2] if and only if it is
either affine or quadratic.

7 The maximum degree of G By,

Here we prove that the maximum degree of G By, is equal to 28(2! +1)(22+1)... (28 4+1). Note
that results of the section were published in [11] (in Russian). Now these results are formulated
in other terms, and, to completeness, they are given with proofs.

Recall that the number of bent functions at the distance 2¥ from f is equal to the number
of k-dimensional affine subspaces of F3* such that f is affine on each of them.

Since any U € ASPE, k > 0, can be represented as U = LU (a @ L), where L € ASP*1(U)
and a € U\L, proposition 5 gives us a condition that allows to increase subspace dimension by
1, keeping affinity of a function.

Next, appreciate the number of ways to increase subspace dimension by 1 using the condition.
In order to do that, recall the following notion. Let f € F,, S C F5. Incomplete Walsh—
Hadamard transform of function f|g is the mapping

Wis(y) =Y (1) @08wo) gy e Fp.
€S

It holds an analogue of Parseval’s equality:

Y i =3 YY) (-fwermeueey

y€eFy yeFY ueSves
Z Z 1)7 @@ (v) Z (—1)fuevy) — Z (—1)fWeflwgn — on|g|.
ueS veS yeFy u€eS
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More information concerning incomplete Walsh—Hadamard transform can be found in [15].

Lemma 8. Let f be bent function in 2k variables, L € ASng, t<kanda1®L,...,a, DL be
different cosets of L. Let for some w € F3* it hold

fla,en(z) = (w,x) ® ¢, ¢; € Fy for allie {1,...,n}.

Then n < 22572t Moreover, if n = 22#72t function (f(x) ® (w,x))|aer is balanced for any
a¢ (e ®L)U...U(a, ®L).

Proof. It is known that for bent function f, linear subspace L, a,w € F%k it holds formula (2):

Z (_1)f(x)®<w,z) _ 2dimL—k(_1)(a,w> Z (_1)f(y)69(a,y>. (5)
r€a®L yEwdL+

Let S = w @ L+, consider incomplete Walsh—Hadamard transform of f |s:
yeS
Next, according to equality (5)
Wy, () = 2 (=) 37 (e, (©
reudL

Let V=(a1®L)U...U(a,®L). Then by equality (6) and the lemma condition it follows that
for all w € Vit is true [Wp_ (u)| = 2k—t9t = 2% According to analogue of Parseval’s equality for

Fls, S| = 225t and V] = n2t, it is obtained

DoWE (=) Wi (w)+ Y W2 (u)=n22% + Y W3 (u) = 222",
u€lRzk ueV ugV ugV

Therefore, n < 22F—2¢,

If n = 22572 then W; (u) = 0 for any u ¢ V. In this case by equality (6) it is obtained
that >, ey (—1)f @@} = 0 for any u ¢ V. The lemma is proven. O
Formulate the case n = 2272 from the previous lemma separately.

Proposition 10. Let f € By, be constant on each of 22*=2 different cosets of L € ASPY,,
t < k. Then f is balanced on each of the other cosets of L.

It is a generalization of the proposition proven by C. Carlet.

Proposition 11 (C. Carlet, 1994, [2]). Let f € Boy, and f|1, be constant, where L € ASPS, .
Then f is balanced on each coset of L except L.

Next, formulate the main result of the section.

Theorem 2. The mazimum degree of GBoy is equal to 2F(21 + 1) -...- (28 +1). Any vertex of
mazimum degree is a quadratic bent function.

11



Proof. Denote by h an arbitrary quadratic bent function in 2k variables. Define the following
set:

D'(f)={L| L€ ASP., and f is affineon L}, 0 <t < k.

By proposition 1 the number of bent functions that are at the distance 2¥ from f is equal to
|D¥(f)|. Prove that |D*(f)| < |D*(h)|.

Show that |D!(f)| < |D!(h)| using induction by ¢, 0 < t < k. For t = 0 it is obvious that
DO(f)| = [DO(h)| = 2%

Let for ¢t < k it hold |D*(f)| < |D!(h)|. Prove that |[D'F'(f)] < |D**1(h)|. Let Ny(L) =
{U € D"(f) | L c U}, where L € D'(f). Note that any U € N¢(L) can be represented as
U=LU(a® L) for any a € U\L. Then

DN = gy > N, 7)

LeDt(f)

since |ASPY(U)| = 2(2!*! — 1). By proposition 5 and by lemmas 8 and 2 for any L € D!(f)
and L' € D!(h) it holds |Ny(L)| < |Ny(L')| = 22#72! — 1. Therefore, |D'TL(f)| < |D'FL(h)|.
Thus, |D*(f)| < |D*(h)|. Since |Ny(L')| = 22k=2dimL" _ 1 it is true

k 2kk71 22k—2t ] k ! kol k
D¥(h)| =2 _— =2 =2%(2 1)-...-(2 1).

Note that this formula for a quadratic bent function was calculated in [12].

Prove that the bound is reached only on quadratic bent functions. Let f be not quadratic
and |D¥(f)| # 0, note that in this case it holds & > 2. Then by theorem 1 function f is not
completely affinely decomposable of order k. It means that f is affine on some L € .ASP’;k and
not affine on some its coset.

Without loss of generality it can be supposed that L is a linear subspace and f|; = 0 thanks
to transformations of the form f(z @ a) @ (w,z) @ c¢. By proposition 10 function f is balanced
on each coset of L except L.

Let L' € LSP* (L), so, flrr = 0. Let Ny(L') > 1,i. e. f is affine on L' U (a ® L") for
some a ¢ L. Then by lemma 3 f|,p17 = ¢ for some ¢ € F,. Since f|sqr is balanced, it holds
flaer)\(aery = ¢ @ 1 and by lemma 3 function f is affine on a @ L.

At the same time if L', L € LSP* (L) are different, function f can not be affine on both
L'U(a® L) and L" U (a ® L") due to balancedness of f|,er. Note that |[CSPF1(L)| =2F -1
and |[{a ® L | a € F3F\L}| = 2¥ — 1. Thus, if Ny(L') > 1 for any L' € LSP* (L), then f is
affine on each coset of L. It is a contradiction, therefore, N;(L') = 1 for some L' € LSP*~!(L).
At the same time N, (U) = 3 for any U € D*~1(h), that is why D*(f) < D¥(h) by equality (7).
The theorem is proven. ]

8 Bent functions at the minimal distance from a Maiorana—
McFarland bent function

In this section bent functions at the minimal distance from a Maiorana—McFarland bent func-
tion are considered.

12



Lemma 9. Let f,g € Moy, i. e. f(z,y) = (z,7(y)) ® @(y), Let g(x,y) = (x,7'(y)) & ¢'(y).
Then dist(f, g) = 2* if and only if one of the following conditions holds

o 7 =1 and dist(p, ) = 1;
o ' =moT,y and ¢'(y) = ¢(y) for all y € F5\{a, b}, where 7, is a transposition that swaps

two different a,b € Fk.

Proof. Let S = {y € F§ | n(y) # 7'(y)}. Then

dist(f,9) =2" Y (p() @ ¢'(t) + Y dist(f(,5),9(,5)).

teFk\S seS

Consider the second part of the sum: dist(f(x,s), g(z, s)) is equal to the number of solutions
of
(z,m(s) &7 (s)) ® p(s) B ¢ (s) = 1.

Since 7(s) # 7'(s), there are exactly 28! different = € F§ on which f(x,s) # g(x, s). Thus,

dist(f,9) =2" D (p() @ /(1) +2*71]8].
teF5\S

It means that dist(f,g) = 2% if and only if either |S| = 0, dist(p,¢’) = 1 or |S| = 2,
¢'(y) = p(y) for all y € FE\S. O
Since the set of all transpositions generates any permutation, the following proposition holds.

Proposition 12. A subgraph of GBsy induced by wvertices from Moy is a reqular connected
graph.

Now the minimum degree of GMs; can be estimated.
Proposition 13. Let f € MVQk. Then the degree of vertex f in G Moy, is not less than 22F+1 — 2k,

Proof. Since an affine transform does not change distance between any two Boolean functions,
without loss of generality we can suppose that f € May,. By lemma 9 there are 4-2F(2%F —1)/2+
2k — 92k+1 _ 9k hent functions from Moy, that are at the distance 2% from f- ]

It is not difficult to prove the following statement that helps us to determine whether a bent
function is affinely equivalent to a Maiorana—McFarland bent function.

Proposition 14 (A. Canteaut et al. [5]). Let f € Bog. Then f € Mgk if and only if there
exists L € ASPSk such that f is affine on each coset of L.

9 Connectivity of GMyy;

The main idea of proving connectivity of GMyy is to prove that there exists a path in GMog
between any two quadratic bent functions, since there always exists a path between f € Moy
and some quadratic bent function by proposition 12. Describe a way to find a path in GMoy.

Lemma 10. Let f € By, [ be quadratic and g = f @& Indy, where U is an affine subspace
of F5. Let L € ASP*(U) and f be affine on L. Then g € Moy and there is a path in G My,
between f and g.
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Proof. Aslong as L € ASPk(U), it holds
U=(a®L)U(aea®L)U...U(ay ® L), m:2dimU—k’

where all a; ® L are different cosets of L. Function f is quadratic, that is why it is affine on
each coset of L. Next, let

fo=fand fi = fio1® Indg,ern, 1 <i<m.

It is obvious that f,,, = g and dist(f;, fir1) = 2¥. Since a1 ® L, ..., an © L are not intersected,
each f; is affine on each coset of L like f. Thus, each f; is a bent function by construction 3 and
fo,-- ., fm € Moy by proposition 14. O
It is not difficult to prove the following lemma.

Lemma 11. Let f € By, and [ be quadratic. Then there is a path in GMsy between f and
f@®Lae for any a € F%k and c € IF,.

Proof. Consider U = supp({,). It is obvious that either U € ASP%Ig_l or U = F% or U is
empty. For the third case the proof is obvious. Otherwise by lemma 3 there exists L € ASP*(U)
such that f is affine on L. Finally, by lemma 10 there exists a path between f and f® /.. O

The following lemma is the main step for proving existence of a path in G My between any
two quadratic bent functions.

Lemma 12. Let f € By, and [ be quadratic. Then there is a path in GMsg between f and
f(@1,. .o, 2ok—1, Tor D 21).

Proof. Since f is quadratic, represent it as the following:

f@r, .. mop) = fl(1, .. @op—1) @

(wlazl D... Dwok_1T2k_1 D d)x%,
where wy, ..., wok_1,d € Fy. Then for g(x1,...,zo) = f(z1,...,T2k—1, %2k ® x1) it holds
g(z) = f(x) ® (w121 B ... ® wok_1Tok—1 D d)x7.

Consider S = supp((wix] @ ... H wog_122x—1 O d)x1). Note that S is an affine subspace. Prove
that there exists L € ASP¥(S) such that f is affine on L.

Case wy = ... = wyk_1 = 0 is impossible, because of bent function f(z) @ dzy must depend
on each its variable. Therefore, there exists w; # 0 for some 1 <t < 2k — 1.

If only wy is nonzero, then S = supp(z1(z; @ d)). If d = 1, functions f and g are the same.
Otherwise S is an affine subspace of dimension 2k — 1 and by lemma 3 there exists required L.

If there exists other nonzero w;, without loss of generality suppose that ¢ = 2k — 1. Consider

Flaon_1=w121®... 0wk 279k _2@de1 D T2 Which is equal to
!/
[, zop—0, w121 @ ... O wop_2Top—2 D dD 1)

as a function in 2k — 2 variables. Let U = {z € F2*2 | 2; = 1} = supp(z;). Then by
lemma 3 there exists a (k — 1)-dimensional affine subspace L' of F2~2 that I/ C U and
fi (1, xop 0, w11 B ... B wop_oTop_o D d & 1) is affine on L.
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Therefore, f is affine on a k-dimensional affine subspace L C F2¥,
L={(y,wiy1 ® ... D wop_oyor—2®d®1,2) : ye L' zeF,},

and at the same time L C S, because of (wiz1 @ ... ® war_1225—1 @ d)z1 does not depend on
Tog, W1T1 D ... D wop_1Tox—1 ®d =1 for any z € L and x1 = 1 due to choosing L’. Required L
has been found.
Finally, thanks to S to be an affine subspace and L € ASP*(S), by lemma 10 there exists a
path between f and g. O
The next theorem is the main result concerning connectivity of subgraphs of G Byy.

Theorem 3. Graph GMsy is connected for all k > 1.

Proof. According to lemma 9, for any bent function fy € My there are fi,..., f, € My for
some n where dist(f;, fiz1) = 2F and f,(z, y/)v: T1Y1 D T2Y2 B ... D TpYk.

Therefore, for any bent function fo € My there are f1,..., f, € My for some n where
dist(fy, fir1) = 2% and f, is a quadratic bent function, i.e. there is a path in G My, between any
fo € Mgk and some quadratic bent function.

Thus, it is enough to prove that there is a path in GMy; between any two quadratic bent
functions.

According to Dickson’s theorem, for any two quadratic bent functions f, ¢ in 2k variables
there exist an invertible 2k x 2k binary matrix A and affine function ¢ € Ay such that g(z) =
f(zA) @ £(z) for any = € F3F.

At the same time by lemma 12 there is a path in GMs; between any quadratic f and
flx1,...,x95—1, T2k @ x1). On one hand, we can easily extend lemma 12 (using permutations
on variable numbers) to transformations of the form

r; = xzforallle{1,...,2k}\{i},
mg = ;Dxj

forany i,7 € {1,...,2k}, i # j. On the other hand, the set of all these transformations generates
any invertible transform xA. In view of lemma 11, the theorem is proven. O

Corollary 1. Graphs GBs, GB4 and G Bg are connected.

It follows from all bent functions in 2, 4 and 6 variables are affinely equivalent to Maiorana—
McFarland bent functions (according to affine classification of bent function in small number
of variables [17], B2 and B, consist of the only class of affine equivalence; B¢ consists of four
classes; all class representatives are affinely equivalent to Maiorana—McFarland bent functions).

10 Conclusion

Note that there are many open questions concerning G By, and GMsy. For example, the min-
imum degree of GMpyy, and an exact lower bound of a vertex degree in GGBgy, when the vertex
belongs to Moy, are still unknown.

There are also open questions concerning connectivity of GBsg. In general, GBy; is not
connected starting with £ = 7 due to existing isolated vertices, i.e. such bent functions that there
are no bent functions at the distance 2 from them. Such bent functions are called non-weakly
normal, they were constructed in [5]. At the same time it is an open question whether GBsg,
G B and GBjs are connected as well as whether G By, without isolated vertices is connected.
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