XPIR : Private Information Retrieval for Everyone

Carlos Aguilar-Melchor, carlos.aguilar@polytechnique.org
INP ENSEEIHT, IRIT-CNRS, Toulouse University, France

Joris Barrier, joris.barrier@laas.fr
LAAS-CNRS laboratory, 7 Avenue du Colonel Roche 31077 Toulouse Cedex, France

Laurent Fousse, laurent@komite.net
Université de Grenoble, Laboratoire Jean-Kuntzmann, Grenoble, France

Marc-Olivier Killijian, marco.killijian@laas.fr
LAAS-CNRS laboratory, 7 Avenue du Colonel Roche 31077 Toulouse Cedex, France

NOTE: XPIR is free (GPLv3) software and available
at https://github.com/XPIR-team/XPIR.

Abstract

A Private Information Retrieval (PIR) scheme is
a protocol in which a wuser retrieves a record
from a database while hiding which from the
database administrators. PIR can be achieved us-
ing mutually-distrustful replicated databases, trusted
hardware, or cryptography. In this paper we fo-
cus on the later setting which is known as single-
database computationally-Private Information Re-
trieval (cPIR). Classic cPIR protocols require that
the database server executes an algorithm over all the
database content at very low speeds which impairs
their usage. In [I], given certain assumptions, realis-
tic at the time, Sion and Carbunar showed that cPIR
schemes were not practical and most likely would
never be. To this day, this conclusion is widely ac-
cepted by researchers and practitioners. Using the
paradigm shift introduced by lattice-based cryptog-
raphy, we show that the conclusion of Sion and Car-
bunar is not valid anymore: cPIR is of practical value.
This is achieved without compromising security, us-
ing standard crytosystems, and conservative param-
eter choices.

1 Introduction

Homomorphic encryption has followed a curious path
in the history of cryptography. Since the very begin-
ning of public key cryptography, it has been presented
as a holy grail able to provide the most incredible
and powerful applications. Yet, even with the recent
breakthroughs due to lattice based cryptography, ho-
momorphic encryption is almost never used in prac-
tice.

Among the potential applications of homomorphic
encryption, one of the oldest and most emblematic is
single-database computationally-Private Information
Retrieval. With such a protocol, a user can retrieve
a record out of n from a database, without having
to reveal which one to the database administrators
(security being derived from computational hardness
assumptions). A trivial way to obtain such privacy
is to simply download the whole database and to dis-
miss the elements the client is not interested in.

Private Information Retrieval (PIR) schemes aim
to provide the same confidentiality to the user (with
regard to the choice of the requested element) that
downloading the entire database does, with sub-
linear communication cost. PIR was introduced by
Chor, Goldreich, Kushilevitz, and Sudan in 1995 [2].
They proposed a set of schemes to implement PIR


https://github.com/XPIR-team/XPIR

through replicated databases that provide users with
information-theoretic security, so long as some of the
database replicas do not collude against the users.

Note, however, that PIR schemes do not ensure
database confidentiality: a user can retrieve more
than a database element using a PIR scheme with-
out the database being aware of it. A PIR scheme
ensuring that users retrieve a single database ele-
ment with each query is called a Symmetric PIR (or
SPIR) scheme. Generic transformations exist from
PIR to SPIR but this is beyond the scope of this
paper (see [3]).

In this paper, we focus on PIR schemes that do
not need the database to be replicated, and whose
security is based on the computational security of
a cryptographic algorithm, which are usually called
single-database computationally-Private Information
Retrieval (cPIR) schemes. This replaces the assump-
tion of having replicas which do not collude by a com-
putational security assumption. However, this comes
at a price.

1.1 Performance Issues in cPIR

A major issue with computationally-private informa-
tion retrieval schemes is that they are computation-
ally expensive. In order to answer a query, a database
must process all of its entries. If a protocol does not
process some entries, the database will learn that the
user is not interested in them. This would reveal to
the database partial information on which entry the
user is interested in, and therefore, it is not as private
as downloading the whole database and retrieving lo-
cally the desired entry. The computational cost for
a server replying to a cPIR query is therefore lineaIE
on the database size. Moreover, most of the schemes
have a very large cost per bit in the database, a mul-
tiplication over a large modulus. This restricts both
the database size and the throughput shared by the
users and thus, limits their usage for many databases
as well as for other applications such as private key-
word search [5].

In fact, in [], Lipmaa proves that using a particular
representation, this lower bound is slightly sub-linear (in
O(n/log(log(n))).

In NDSS’07, Sion and Carbunar presented a pa-
per on cPIR practicality [I]. They showed that the
existing, number theory based, cPIR protocols were
not practical and that it was always faster to send
the whole database than to compute a cPIR reply.
Indeed, basing the security of the underlying number
theoretic encryption schemes on the hardness to fac-
tor a 1024 bit RSA modulus, one could not expect a
cPIR scheme to process the database at more than a
megabit per second. Sending the whole database over
most of the current Internet connections is at least an
order of magnitude faster (and generally two orders of
magnitude in local area networks). They also argued
that this performance gap would continue as long as
usual laws on computational power and bandwidth
evolution do.

Focused issue. As in [I], we tackle the issue of
practical usage of cPIR. The main performance met-
ric we use is the time needed for a client to retrieve
an element privately, supposing one or more clients
are querying a server with a commodity-CPU and
can exchange data with the server at various speeds
(xDSL, FTTH, etc.). We consider that the client is
ready to pay a significant overhead for privacy, and
compare the time needed using different approaches
(trivial full database download, number-theory based
cPIR, lattice-based cPIR).

1.2 Related Work

As number theoretic approaches failed to provide
efficient cPIR schemes, some alternatives were ex-
plored [6] [7, §], but all of them were based on non-
standard problems and have been broken [9, [0} 1]
12, [13].

The (broken) schemes of Aguilar et al. [7] and Tros-
tle and Parrish [§] represent the state-of-the-art in ef-
ficient private information retrieval, allowing to reach
processing speeds of hundreds of megabits per second
on high-end CPUs and up to one gigabit per second
on GPUs [I4]. These works total about eighty cita-
tions, and have been used as a fundamental building
block (or as a benchmark) in major and recent venues
such as Usenix Security [15] (2011), NDSS [106] [17]
(2013, 2014), and PETs [I8| 19} 20} 21] (2010, 2012,



2014). This paper presents a potential replacement
for them with some additional features: security is
based on a standard problem, Ring-LWE [22], with
conservative parameters choices; multi-gigabit per
second processing throughput on an average CPU;
and an auto-optimizer to simplify its usage by non
specialists.

A noteworthy exception to this list of schemes is
the cPIR scheme of Gasarch and Yerukhimovich [23]
which relies on a lattice-based standard encryption
scheme [24]. However, this underlying encryption
scheme has an extremely large expansion factor (large
ciphertexts encoding only a few bits) that compro-
mises the efficiency of the cPIR scheme.

Alternatives to cPIR. Oblivious RAM (ORAM)
protocols, which are used to access (and write on) a
database privately, can handle efficiently databases of
many Terabits. However, ORAM and PIR protocols
are used for different applications and cannot be ex-
changed. Indeed, in the ORAM setting the database
content is encrypted data outsourced from the user.
ORAM cannot be used directly to privately download
elements from a public database (e.g. Netflix) which
is the paradigm of PIR.

It is possible to transform an ORAM protocol
into a PIR protocol using a hardware module (e.g.
see [25]). When using a trusted hardware module is
an acceptable constraint, such protocols allow clients
to send expressive queries (interpretable by the mod-
ule) to define the elements to be retrieved and have
very low overhead.

Instead of using a trusted hardware module, it is
also possible to build efficient PIR protocols using
replicated databases as shown by Olumofin and Gold-
berg [26]. If replicating a database and ensuring that
some of the replicas do not collude against the users is
an acceptable constraint, such protocols allow clients
to retrieve data privately with a very small compu-
tational and communication overhead.

A very interesting recent work by Devet and
Goldberg[21] has proposed using replicated-database
PIR and cPIR jointly to achieve high performance re-
sults without compromising security when databases
collude. This paper requires the database to be repli-
cated, and therefore it does not correspond to our

setting. The proposed protocol uses Aguilar et al.’s
cPIR (broken) scheme [7] as a building block, replac-
ing it with our protocol would result on a perfor-
mance boost and provide a secure instance of their
construction.

Works considering only computational or
communication costs. In the Oblivious Trans-
fer setting [27], the objective is to limit the com-
putational cost for the user and the database with-
out considering communication efficiency. The whole
database is sent encrypted to the client together with
some extra information, with the added benefit that
the server is guaranteed that the client can retrieve
information about one element only per query.

Some cPIR protocols focus only on communication
efficiency without considering computational costs.
In [28], a communication efficient ¢cPIR protocol,
from an asymptotic perspective, is built based on a
fully-homomorphic scheme. The underlying encryp-
tion scheme we use is just an additively-homomorphic
building block in [28] but our objective is to allow
users to retrieve elements faster than the trivial so-
lution of downloading the entire database in realistic
settings. This implies taking into account computa-
tional and communication constraints.

In [29], an implementation of a fully-homomorphic
encryption based scheme is given. The contribu-
tion of this scheme is on the communication over-
head, which they show to be very small in some
settings (when multiple database elements are re-
trieved). Computational costs are considered but
this paper does not give a contribution in this sense
that the database is at best processed at 20Kbits/s
which is below the processing throughput of clas-
sic, number-theory based, cPIR schemes. As already
noted, sending the whole database can be done at
a higher throughput in most settings allowing to re-
trieve an element privately much faster.

1.3 Contributions and Roadmap

First and foremost this paper shows that cPIR is a
usable primitive in a large variety of settings, with
standard security assumptions and conservative pa-
rameter choices. Section [4is dedicated to prove this



assertion. This contradicts the main result from Sion
and Carbunar [I], which was the reference on cPIR
usability. The analysis of Sion and Carbunar remains
correct, but one of their main assumptions (that cPIR
would be based on number-theoretic schemes) does
not need to be true any more, thanks to the arrival
of lattice-based homomorphic encryption schemes.

Second, we provide a highly efficient and usable
Ring-LWE cPIR implementation. From a funda-
mental point of view our contribution is to show
that Ring-LWE operations required for reply gen-
eration benefit extensively from pre-processing, us-
ing adequately known techniques (FFT-like represen-
tation) and introducing new ones (Newton quotient
pre-computation). From a practical point of view the
implementation we provide offers multi-gigabit pro-
cessing throughput on a commodity CPU, and an op-
timizer to automatically setup the system for a given
setup (hardware/network/application/security).

In Section [2| we present the basic tools a reader
should be comfortable with in order to understand
the rest of the paper: homomorphic encryption,
which allows to compute over encrypted data; the ob-
jectives and the classical approaches to obtain private
information retrieval protocols; and a special setting
of cPIR called private keyword searching, in which
instead of retrieving elements by their index as usu-
ally done in cPIR we retrieve elements based on the
keywords they are associated to. In Section [3| we
first present an overview of our protocol and describe
the optimization process, and then we present our
fast Ring-LWE based cPIR, the proposed algorithmic
optimizations and performance results for the basic
operations: query generation (encryption), database
importation, reply generation, and reply extraction
(decryption). In Section [4 we present a more high
level performance analysis of our library. The objec-
tive of this section is twofold: show how our library
behaves on a large variety of settings and prove that
cPIR is better than trivial PIR in most cases, contra-
dicting the main result from Sion and Carbunar [I].
The main part of the paper ends with a Conclusion.

2 Basic Tools

2.1 Homomorphic Encryption

Additively homomorphic encryption schemes are de-
fined by four algorithms: KeyGen, to generate keys;
Enc the encryption function; Dec the decryption
function; Sum which takes as input a set of ci-
phertexts a1, --,a, with corresponding plaintexts
ai,...,a, and outputs a ciphertext a with corre-
sponding plaintext a; + ...+ a,; and Absorb which
takes as input some data m and a ciphertext of i and
outputs a ciphertext of i *x m. If ¢ = 0, m is erased,
and if ¢ = 1 it is effectively absorbed.

From the security point-of-view, one must achieve
indistinguishability against chosen-plaintext attacks
which corresponds to the highest security an homo-
morphic encryption scheme can achieve (see e.g. [30]).
This property offers strong guaranties on ciphertext
secrecy as proved by Goldwasser and Micali [31].

We use the Ring-LWE based homomorphic encryp-
tion scheme presented in [28]. We describe it below,
in order to justify some of our performance results.
As in [28] we present the symmetric version and then
explain how an asymmetric scheme can be derived.

Notations: Z, denotes the set of relative integers
modulo ¢. If S is a set x < S represents a uniform
sample from S, for a distribution x, x < x represents
a sample following that distribution. R, = Z,[X]/ <
XY 4+ 1 > represents the polynomials with coeffi-
cients over Z, such that after each operation they
are reduced by division modulo X~ + 1. Note that
we use uppercase N for the polynomial degree (which
is an unusual notation) to distinguish the polynomial
degree from the number of elements in the database
we will be dealing with in the cPIR protocol. Unless
specified otherwise, all scalar operations are mod gq.
For two polynomials a, b € Ry, a+b is the polynomial
obtained by adding their coefficients, a*b is the usual
polynomial multiplication reduced modulo X%V + 1,
and a ® b is the polynomial obtained by multiplying
their coefficients coordinate-wise.

A symmetric Ring-LWE encryption scheme

SKE.ParamGen(1%, h):
Input: A security parameter k; A number of additions h,



Output: A modulus ¢; A polynomial degree n; A distribution
X

SKE.KeyGen(g, N):
Input: A modulus g; A polynomial degree N
Output: A polynomial in Rqy = Zg[X]/ < XN +1 >
1. Output: s« x
SKE.Encrypt(s,m):
Input: A secret key s in the polynomial ring Rq; A message m

in the polynomial ring Rq with coefficients in [0..t[
Output: A ciphertext (a,b) € Rg

1. a+ Ry, e+ x
2. ¢/ = e®ty +m where t, € Rq has its coeflicients set to ¢
3. b=(ax*xs)+¢€
4. Output: (a,b)
SKE.Decrypt(s, (a,b)):

Input: A secret key s € Ry; A ciphertext (a,b) € RZ
Output: A plaintext m € Z}

1. e=b—(axs)
2. Output: m =e mod ¢
SKE.Add((a1,b1), (a2,b2)):

Input: Two ciphertexts, encryptions of m1 and mg
Output: A ciphertext that decrypts to mi + mg mod ¢

1. Output: (a1 + a2,b1 + b2)
SKE.Absorb(p, (a,b)):
Input: A polynomial p € Ry with coefficients in {0..t — 1}; A
ciphertext (a,b) € Rg, encryption of a polynomial m
Output: A ciphertext which decrypts to m x p
1. Output: (p*a,px*b)

SKE.ParamGen takes as an input a security pa-
rameter £ and a maximum number of additions h,
and outputs a set of parameters. For performance
reasons we force among the outputs of this function
N € {1024, 2048,4096} and ¢ to be a multiple of 60-
bit or 30-bit primes such that each prime is congruent
to 1 modulo 2N in order to be able to use the NTT
(see Section [3.2.2). This function generates parame-
ters following the approach of [32].

Our Ring-LWE public key encryption scheme

ParamGen(1%,h,) = ParamGen(1%,h,)
SKE.Decrypt(sk, (a,b)) = SKE.Decrypt(sk, (a,b))
Add((a1,b1), (az, ba)) = SKE.Add((a1,b1), (a2, b2))
Absorb(p, (a,b)) = SKE.Absorb(p, (a,b))

KeyGen(q, N):
Input: A modulus ¢; A polynomial degree N
Output: Three polynomials in Rq = Zq[X]/ < XN +1 >

1. sk + SKE.KeyGen(q, N)

2. pk = (pkl, pk2) < SKE.Encrypt(s,0)
3. Output: ((pkl,pk2), sk)

Encrypt(pk = (pkl,pk2),m):

Input: A public key pk = (pk1, pk2) with pkl, pk2 in the poly-
nomial ring R4; A message m in the polynomial ring R, with
coefficients in [0..¢]

Output: A ciphertext (a,b) € R2

1. Define x’ as x with a variance multiplied by N log N
2. u,e+x, e «—x

3. Define t, € Ry with all its coefficients set to ¢

4. a=pklxu+e®ty,

5. b=pk2xu+e @ty +m

6. Output: (a,b)

Based on the analysis of [28], this scheme ensures
indistinguishability if the standard lattice problem
Ring-LWE is hard. The hardness of Ring-LWE is one
of the major assumptions used to build lattice-based
cryptosystems, and since it was presented at Euro-
crypt’10, it has become probably the most standard
and used one.

As the scheme is randomized, ciphertexts must be
larger than plaintexts. We note F' > 1 the associated
expansion factor (ciphertext bitsize divided by plain-
text bitsize). As a reference, Figure |1/ below presents
some plaintext and ciphertext sizes for different pa-
rameters of our Ring-LWE based encryption scheme.

Parameters Max Sec Plaintext Ciphertext F

(1024,60) 97 < 20Kbits 128Kbits >6.4
(2048,120) 91 < 100Kbits 512Kbits >5.12
(4096,120) 335 < 192Kbits 1Mbit >5.3

Figure 1: Parameter sets for our Ring-LWE encryption
scheme. Ciphertexts are made of two polynomials. The
first parameter defines the number of coefficients per poly-
nomial and the second the number of bits per coefficient
(stored in 64bit registers). From these values, ciphertext
sizes can be easily deduced. Maximum theoretical secu-
rity is only attained if enough noise is included in the
ciphertexts and the noise generator matches this secu-
rity. Plaintext size is slowly (logarithmically) reduced if
we want to do a lot of Sum operations. Similarly, the
expansion factor stays very close to its optimum.



2.2 Private Information Retrieval

In this paper, we use a simple cPIR protocol based
on [33], described hereafter. It can be used with
any additively homomorphic encryption scheme. The
protocol can be formally described as follows:

Basic ¢cPIR Protocol
Setup (user):

1. Set up an instance of the cryptosystem with k security
bits
Query Generation to retrieve element ig:

1. For ¢ from 1 to n generate the i-th query element g; as
- A random encryption of zero if i # ig
- A random encryption of one if i = ig

2. Send the ordered set {qi1,--- ,gn} to the database
Reply Generation:
1. Note £p the bits that can be absorbed in a ciphertext

2. For i from 1 to n
- Split m; in chunks of /gy bits noted m;; for j €
[1..ceil(£/4o)]

3. For j from 1 to ceil(£/4o)
- Compute R; := Sum]_; Absorb(m; j,q;)
4. Return R = (Ry,...

Reply extraction:

) Rceil((/én))

1. Decrypt the coordinates of the reply vector R and recover
m;, as the concatenation of the decrypted chunks

Security is defined with an indistinguishability
game: no attacker can in practice distinguish queries
for any two database elements. When used for a
cPIR protocol, an encryption scheme with indistin-
guishability against plaintext attacks ensures that
two queries for two different elements of a database
are indistinguishable, using a standard hybrid argu-
ment (see [33] for a formal definition and proof).

With this simple approach, query size is n times the
size of a ciphertext and reply is roughly ¢ x F', F being
the expansion factor of the encryption scheme used.
To reduce query size it is possible to aggregate them
by groups of size « and obtain a database with [n/«a/]
elements of size £ x a. It is also possible to use this
protocol recursively. Due to space restrictions the
recursive version of this algorithm is presented in the
Appendix. In practice, recursion takes as parameter
an integer d called dimension and results in a scheme
in which the client only needs to send d x n'/¢ query
elements (ciphertexts) and the reply will be of size

(roughly) F¢ x £. For example if F' = 2 and we have
a database with one million elements, it is possible to:
send a query of 10° ciphertexts and get the database
element with an expansion factor of 2 (d = 1, no
recursion); send a query of 2 x 1000 ciphertexts and
get the database element with an expansion factor of
4 (d = 2); send a query of 3 x 100 ciphertexts and
get the database element with an expansion factor of
8 (d = 3); etc.

The reader is referred to [33] for a more elaborated
description of these techniques and a justification of
correctness. It is possible to make different choices
on how the database is split and to change the cryp-
tographic parameters used on each level to improve
the performance of recursion. For a complete descrip-
tion, generalization and optimization of this process,
the reader is referred to [34] which proposes many in-
teresting variants. In our library, we have decided to
stick to the basic approach for recursion although it
would be interesting to develop other optimizations,
such as those proposed in [34].

2.3 Private Searching

The basic idea of private keyword search [35] is that
the database can arrange its elements by grouping
them using keywords. With this technique, users can
get, using a cPIR protocol, all the database elements
that match a given keyword. In this case, the query
size is proportional to the amount of possible key-
words D (Dictionary size) and the computational cost
for the server may change as a database entry that is
associated to multiple keywords will be copied once in
front of each keyword. Thus, the computational cost
will be the database size times the average amount
of keywords a database element matches.

It is also possible to use this to filter streamed data
based on private criteria [36]. The idea is to build
ephemeral keyword-based databases for each message
passing. These databases have null elements every-
where except in front of the keywords that the passing
message matches. The computational cost to process
a packet is therefore its size times the number of key-
words it matches (null elements cost nothing to pro-
cess). With such an approach it is possible to build
a filter that outputs for every passing message an en-



cryption of zero when the message does not match
the keyword and an encryption of the message when
it does.

We use this approach to build a sniffer over a giga-

bit link in Section[d]that is only interested in messages
corresponding to a given IP address. In this sniffer,
the streamed messages are the packets on the net-
work, the keywords are the set of IP addresses used
in a local area network, and a packet matches the IP-
keyword corresponding to its source and destination
address. The sniffer’s code includes a cPIR query se-
lecting the IP that is being observed and thus even
analyzing the code of the sniffer it is not possible to
learn which is the TP address as the chosen keyword
is hidden in the cPIR query.
Important note: After processing an input, the filter
always outputs a ciphertext and it is not possible to
distinguish useful outputs from encryptions of zero.
If we store all these results we will do not better than
a trivial PIR based equivalent (which would store un-
encrypted all the input data). The main interest of
using cPIR, is that it is possible to compress the out-
put so that encryptions of zero are packed and useful
outputs preserved, even if it is not known which of
the outputs are useful. These techniques are beyond
the scope of this paper (see [37] for the most recent
proposal on the subject), but it is possible to have ef-
ficient filters which have only a small overhead with
respect to an unencrypted filter that would store only
the keyword-matching data.

3 Proposed protocol

3.1 Overview and auto-optimization

An overview of the proposed protocol is described
below. We say we are in server-driven mode if the
server enforces a given set of PIR parameters (aggre-
gation and recursion depth) and encryption parame-
ters. In this case, only steps 1 (conditional jump on
server-driven mode), 4 (choice of the element) and 5
(retrieval) of the protocol are executed. By opposi-
tion, if we are in client-driven mode, the client will
make an optimization to determine the best possible
parameters given the setting and input constraints

(steps 2-3), and use them (steps 4-5). By default we
suppose that optimal parameters have already been
found and we are in server-driven mode.

PIR client-server protocol (overview)

Input: Recursion range (di,ds2), Aggregation range (o, a2),
encryption parameters list EncParams, upload/download us-
able bandwidth (U, D), target optimization function ftarget,
index of the element to retrieve ¢ (pot. undefined), boolean
serverDriven

Output: Chosen database element

1. If serverDriven is true
- Server: Send mandatory parameters to the client
- Client: Check if the parameters give enough security
- Jump to step [4]

2. If performance results do not exist for all parameters in
EncParams
- Client and Server: Run the Performance cache algo-
rithm
— Performance results

3. If multiple PIR and encryption parameters are possible
given the input constraints
- Client and Server: Run the Optimization algorithm
Else use the only possible choice
— Optimal parameters for this setting given the con-
straints

4. If i is undefined
- Client and Server: Run the Choice algorithm
— Chosen index @

5. If the chosen encryption algorithm is no cryptography

- Client: Download database, keep element of index
Else

- Client: Run the Query gen. algorithm and send re-
sult

- Server: Run the Reply gen. algorithm and send re-
sult

- Client: Run the Reply extraction algorithm and re-
turn result
— Chosen database element

The algorithms run in this protocol have self ex-
planatory names but for completeness they are infor-
mally described in the appendix.

In XPIR there is a set of predefined encryption
schemes: no cryptography (trivial PIR with a full
database download), Paillier [38], and Ring-LWE (see
Section . Each of the encryption schemes has
a predefined list of possible parameters for security
varying from 80 to 256 bits (following NIST rec-
ommendations for factoring-based cryptography for
Paillier and [32] for lattice-based schemes).



By default, the target function for optimization
is the round-trip time of the retrieval which, us-
ing self-explanatory variable names, is given by the
function MAX (queryGenerationTime, querySend-
ingTime) + MAX (replyGenerationTime, replySend-
ingTime, replyDecrypti onTime). This is due to the
fact that query generation and sending are pipelined,
then the server waits until it has the complete query
and reply generation, sending and decryption are
pipelined. We have pre-defined some other target
functions such as minimum ressources (which takes
the sum of all the values) and a weighted equivalent
called cloud cost (which gives a dollar value to each
CPU millisecond and a to each bit transmitted and
gives the cost of the operation). The target function
can be chosen on the command-line.

3.2 Fast Ring-LWE based cPIR

Our contribution on performance is focused on two
points: an efficient NTT-CRT (see Section rep-
resentation and associated transforms; and the us-
age of Newton quotients for query elements (see Sec-
tion .

The idea is that most of the computational costs
in query generation, reply generation, and reply ex-
traction come from polynomial multiplications. For
example, for reply generation, computational costs
are overwhelmingly concentrated on the absorption
phase of the basic cPIR protocol described in Sec-
tion With our Ring-LWE scheme this phase can
be written as follows.

For j from 1 to ceil(£/ly)
Compute R; = (7 My * qi1, 9 iy M j *
i,2)

noting ¢; 1,2 the two polynomials forming the
query elements and all sums and products being in R,
(polynomials reduced modulo X™ +1 and coefficients
modulo g).

In NTT-CRT representation, the computational
cost of multiplying two polynomials passes from
O(n? x log? q) to O(n x log q). Such a representation
is not new and our contribution is on performance as
the time required to get the NTT-CRT representa-
tion is divided by a factor 10 and the time required

to compute the polynomial products once in that rep-
resentation is divided by a factor 2 to 3.

We are not aware of the usage of pre-computed
Newton coefficients in lattice-based cryptography.
The idea is that when multiplying two polynomi-
als, the associated scalar products must be reduced
mod g which increases the computational cost of
these basic operations considerably. In the reply gen-
eration algorithm the products are always of the form
“some data transformed into a polynomial” times “a
query element”. Thus, query elements are used in
many multiplications. Pre-computed Newton quo-
tients for re-used multiplicands (such as the query
scalars) allows to replace the usual “multiply and di-
vide by the modulus” by a specific modular multi-
plication algorithm with two integer multiplications
and a conditional subtraction (eliminating thus the
costly division).

3.2.1 The NTT-CRT
transforms

representation and

In XPIR we use a mixed NTT-CRT representation
to reduce computational costs: Number-Theoretic
Transform (NTT) for polynomials [39] and Chinese
Remainder Theorem (CRT) for integers. We call the
part of XPIR allowing to apply the transforms and
compute efficiently on this representation NTTTools.
The homomorphic encryption library of Halevi and
Shoup [40] implements the encryption scheme of
Brakerski, Gentry and Vaikuntanathan [41]. They
provide an object they called Double-CRT which pro-
vides NTT and CRT representation of polynomials as
NTTTools does. We will compare to this work in this
section.

Using the NTT and the CRT to accelerate poly-
nomial multiplications is not new and will not be
described in detail in this paper, we will just focus
on the impact of their usage. The reader is for ex-
ample referred to [40]. Using an NTT representation
allows to compute polynomial multiplications with
a linear cost in N instead of quadratic for the triv-
ial algorithm. Transforming a polynomial into NTT
form and back can be done in quasi-linear speed (in
O(NlogN)). The CRT representation ensures that
the multiplication cost is also linear in log p, instead



Parameters (1024,60) (2048, 120) (4096, 120)
Input size (per poly) 20Kbits  100Kbits 192Kbits
Pre-processing (per poly) 4.2us 19us 38us
Pre-processing (PIR tput) 4.8Gbps 5.2Gbps 5Gbps
Processing (per poly) 0.57us 2.3us 4.8us

Processing (PIR tput) 18Gbits/s 22Gbits/s 20Gbits/s

Figure 2: PIR pre-processing and processing time and
throughput on a MSI GT60 laptop with a Core i7-
3630QM 2.67GHz, for different crypto parameters. Input
sizes are the maximum plaintext sizes given in Figure
Pre-processing of a polynomial corresponds to NTT and
CRT transforms, the main operation during database im-
portation. Inverse transforms give similar results. Pro-
cessing corresponds to a fused multiply and add (FMA),
the main operation during reply generation. This oper-
ation’s throughput will vary a lot depending on mem-
ory saturation: in this setting, if all operands and re-
sult change on each operation, processing time is multi-
plied by three with respect to the given values. Here we
used the same memory transfers as in our PIR scheme:
for a given thread only one operand varies most of the
time. Throughput is given with respect to input data: in
pre-processing for each polynomial (Input size) bits are
treated; in processing two polynomials must be processed
to deal with (Input size) bits.

of quadratic for a trivial algorithm. Transforming
an integer into CRT representation and back has a
quadratic cost in log p.

Figure illustrates pre-processing performance,
which corresponds to importing data into NTT-CRT
form polynomials, and processing, which correspond
to fused multiply and add (FMA) operations. The
data splitting and CRT (if done) operations are
pretty fast, and the main performance bottleneck in
pre-processing is computing the NTT in our polyno-
mial ring. Tests correspond to the same laptop that
will be used in Section [ using all of its cores with
multi-threading.

Implications on cPIR performance These val-
ues have an impact in cPIR reply generation. Pre-
processing corresponds to database element impor-
tation and processing to reply generation. When
launching a server, database elements can be im-
ported into RAM in NTT-CRT form at roughly

5Gbits/s. After importation, the database is pro-
cessed during the reply generation phase at roughly
20Gbits/s. If data is quickly obsolete (e.g. IPTV
streams) the main bottleneck is getting the data into
NTT-CRT form and processing is limited by the im-
portation phase to roughly 5 Gbits/s. For compar-
ison purposes, using a Paillier based cPIR the same
computer is able to process the database at 1Mbit /s
(for a modulus of 2048 bits giving 112 bits of se-
curity). Again, for comparison purposes, in triv-
ial PIR (i.e. full database download) processing a
bit corresponds to sending it to the client and thus
the database is processed at the available download
throughput (e.g. a 100Mbit/s FTTH line). Thus
trivial PIR will generally be faster than Paillier based
cPIR but slower than our Ring-LWE implementation.

Comparison with [40] The Double-CRT object
proposed in [40] is much more elaborated than NTT-
Tools and has many functions needed for fully-
homomorphic encryption that we have not imple-
mented. It is also more flexible as polynomial degrees
can be arbitrary whereas in NTTTools polynomial
degrees must be a power of two.

On the other side, the simplicity of our setting has
allowed us to do some interesting choices. First we
use Harvey’s NTT algorithm [42] which is very fast
but only works for some polynomials degrees (pow-
ers of two). We also define statically the primes po-
tentially forming the moduli which leads to various
compile-time optimizations. And last but not least,
we have built our library without using any external
library (Double-CRT is built over NTL which in turn
is built over GMP) which results in a big performance
improvement.

HEIib supposes that the user defines the homomor-
phic computations he needs to do and then a routine
defines a complete FHE context for him. In partic-
ular the user cannot choose to just use one or two
primes, so we had to tweak the code to do compara-
ble tests.

Performance for polynomial multiplications is no-
ticeably improved (between x2 and x3) with NTT-
Tools, as Figure [3| shows. The gap is larger for pre-
computation (x10). The reason for this is our choice
to restrict polynomial degrees to powers of two, which



(2048,120]|138)on in usual 64-bit instruction but has a reasonable

Parameters (1024, 60(|44)
Pre-processing (Double-CRT) 178us 1100us
Pre-processing (NTTTools) 16us 78us
Processing (Double-CRT) 5us 27us
Processing (NTTTools) 2.3us 9.6us

Figure 3: Pre-processing (NTT and CRT) and process-
ing (multiply and add) times with Double-CRT and NTT-
Tools. Modulus size must be a multiple of 44 in Double-
CRT (this allows them to do double precision floating
point operations for modular reductions). We chose mod-
uli sizes to be the closest possible. Tests are on a
single-core (as Double-CRT gave a segmentation fault
with openmp) of a MSI GT60 laptop with a Core i7-
3630QM 2.67GHz. Pre-processing is much faster with
NTTTools (x10), mainly due to Harvey’s NTT algorithm
(which is usable as we restricted ourselves to powers of
two for polynomial degrees). In processing the gap is
smaller (between x2 and x3) but NTTTools still performs
better.

opens up the usage of nice algorithms such as the one
in [42].

Finally, memory usage is much lower with NTT-
Tools, which is not surprising given that we are in
a simpler setting. For polynomials of degree 1024
and 60-bit coefficients, the memory footprint in NTT-
Tools is of 8 Kbytes by default and twice that with
pre-computed quotients. Using Double-CRT it is
harder to evaluate the footprint as some data (such as
the FHE context) is shared, but for large amounts of
Double-CRT objects memory usage increases linearly
at 40Kbytes per object.

NTTTools and the schemes we developed over it
will thus be an interesting replacement of Double-
CRT for those looking for fast basic polynomial com-
putation on the ideal setting or simple homomorphic
operations. Those looking for more advanced opera-
tions should use Double-CRT.

3.2.2 Pre-computing Newton Coefficients

The basic scalar operations in XPIR are done mod-
ulo a 60-bit integer. To multiply modulo a given p
two 60-bit integers, one option is to use a 64 x 64
to 128-bit multiplication (which is not a basic opera-

10

cost) and then retrieve the remainder of the division
by p. As the product is in a 128 bit variable, this
integer division is pretty costly. In [42], David Har-
vey attributes to Shoup a very interesting approach
to modular multiplications when the same multiplier
is used many times.

The idea is to pre-compute Newton quotients for
specific operands that are used many times. Thus, we
compute for a given y a scaled approximation to y/p.
This is done in our setting by putting y in a 128 bit
variable, multiplying it by 264 (with the shift operator
<<) and doing a costly integer division by p. This
will give us 3/, the first 64 bits of y/p (multiplied by
204). The idea is that the costly operation from the
multiplication (the integer division) is pre-computed
once and then, when we need to do a multiplication
zy mod p we will use a special algorithm taking as
input z,y,y’ which gives us the result at a lesser cost.
The algorithm is pretty simple.

1. q =y’ /2%
2.7 =2xy—gp mod 254
.ifr>p:r=r—p

This algorithm requires just two integer multipli-
cations a shift and a conditional subtraction which
is extremely fast when compared to the usual integer
division required. Of course if y is used only once
there is no gain as one more integer multiplication
than in the trivial algorithm is done and an integer
division is done during the pre-computation. How-
ever if y is used in many multiplications the speedup
is considerable. Correctness is proven in [42].

NTTTools provides functions to pre-compute the
data needed for this algorithm for a polynomial.
When such data is available, polynomial multiplica-
tions are done in 2n (normal) integer multiplications
instead of n modular multiplications. Of course the
performance of an application depends on how often
the same operands are used. The encryption scheme
we built over NTTTools, only needs to do two polyno-
mial multiplications to encrypt, and a single polyno-
mial multiplication to decrypt, always using the same
multipliers: the secret and public keys. In the cPIR
protocol, the reply is generated by constantly multi-
plying database element chunks with query elements.



Parameters (1024, 60(|144)  (2048,120]|132)
Double-CRT 3.4us 20.2us
NTTTools-noQuotients 29us 115us
NTTTools 1.8us 7.3us

Figure 4: Multiplication times in seconds for different
parameters (see Figure , on a single-core of a MSI
GT60 laptop with a Core i7-3630QM 2.67GHz. Note that
Double-CRT has much better performance without quo-
tient pre-computation. This is due to the choice of 44-bit
moduli which allows floating point and rounding based
modular multiplications. With quotient pre-computation
we have x2 to x3 better performance with NTTTools.
Without quotient pre-computation performance would
very bad as we cannot use floating point operations as
DoubleCRT can do for 44 bit moduli, but in our protocol
we always manage to have such quotients.

In most settings, each query element is multiplied
many times by different chunks. Both the secret key
and the queries use the pre-computation mechanism.
In practice, there is not a single multiplication in our
code which does not pass through this process and in
almost every case pre-computation is amortized tens
or hundreds of times.

3.2.3 Encryption and Decryption Perfor-
mance

Note that the homomorphic encryption scheme re-
sulting from the modifications we propose in this sec-
tion is, from a security point of view, equivalent to
the scheme described in Section 2.1] as all the modi-
fications are public and reversible for attackers.

The basic idea is that the polynomials that usu-
ally describe the inputs (secret key, randomness, mes-
sages) are pre-processed by transforming them into
NTT-CRT representation. With such a transforma-
tion, encryption and decryption operations can be
done by coordinate-wise multiplication and additions
which leads to very high performance results.

Describing how each algorithm is transformed by
the usage of the NTT-CRT representation is of lit-
tle interest and pretty straightforward. There are
only two important points. The first is that each
time there is an uniform polynomial in the encryption

11

scheme algorithms we do not need to do change the
representation. Indeed the NTT, CRT and inverse
NTT, inverse CRT are one-to-one functions that map
a finite space to itself and thus are permutations of
their domain. Thus taking a uniform element and
changing the representation to NTT-CRT is exactly
the same as just taking a uniform element. The sec-
ond is that each time there is a product to compute,
one of the two terms is long-lived (the secret key,
the public key, or a constant). It is therefore always
possible to use rapid modular multiplications using
pre-computed Newton quotients.

Having these two ideas in mind it is easy to see that
encryption requires only the computation of three
NTT-CRT transformations and some basic opera-
tions. This is specially true as all the arithmetic oper-
ations we do are coordinate-wise and use a CRT rep-
resentation allowing to handle numbers through the
basic instruction set. This is not true for decryption.
At first sight, the most costly operation in decryption
will be the inverse NTT. It is, if we use a modulus of
60 bits, but not for larger moduli. Indeed, it is impor-
tant to notice that all the arithmetic operations use
the basic instruction set except the separation of the
noise and the message in the decryption function. If
we are using more than one modulus, in order to sep-
arate the noise and the message, we need to get the
value of each coordinate in non CRT representation
(in CRT representation there is no simple euclidean
division). This is done by multiplying the elements
of the CRT tuple by what we call lifting coefficients.
This operation is done without modulus reduction
and requires a few multiplications of log, ¢ bits ele-
ments. For this operation we need to use a multi-
precision library. In practice the decryption cost is
multiplied by a factor 10 as soon as we start using
such a library. Figure |5|shows this evolution.

This is the only point in which we use GMP on
the NTTLWE object (by using the poly2mpz func-
tion of NTTTools). In practice this results in a very
significant performance drop. Note however that for
a modulus of 60 bits, performance is surprisingly
high. We are able to generate a query at 700Mbits/s
and decrypt an incoming reply at 5Gbits/s. This is
quite independent of the polynomial degree as the
costs of encryption and decryption increase linearly



2500

Enc
Dec o

2000

1500

Time (us)

1000

500

231
102

60

120 180
Modulus bitsize

Figure 5: Encryption and decryption times for polyno-
mial degree 4096 and varying modulus size, on a MSI
GT60 laptop with a Core i7-3630QM 2.67GHz. Note that
encryption costs increase linearly in the modulus size but
also the size of the associated ciphertexts and plaintexts.
The large jump in decryption costs comes from the usage
of GMP for moduli strictly above 60 bits.

in it but ciphertext and plaintext size too. In prac-
tice, a laptop can send queries and receive and de-
crypt at max available bandwidths in all settings, us-
ing a single core. With a modulus of 120 bits, en-
cryption scales well as it is possible to generate a
query at 850Mbits/s, but decryption suffers from the
CRT lifting and the reply can ”only” be decrypted at
710Mbits/s.

In practice, decryption is only the bottleneck for
very large moduli (e.g. 480 bits) or if we are on spe-
cial settings such as connected through a Gigabit line.
Small moduli (at most 120 bits) are however gener-
ally chosen by the optimizer because of query size.
Indeed, for moduli beyond 120 bits the increase in
query size (that must be sent on a limited bandwidth
line), adds more time to the round-trip time (or total
ressources spent) than what is gained in reply expan-
sion factor or cPIR reply generation throughput.

4 Performance and Use-Cases

In this section, we analyze the performance of
XPIR using two metrics: latency and user-perceived

12

throughput. The latency measurement is the round-
trip time from the moment the client starts generat-
ing the cPIR query to the moment it has finished to
decrypt the reply. User-perceived throughput is the
throughput (measured in bits per second) at which
the user is able to get the requested element after
decryption.

We will consider two types of settings for our
databases: static databases in which pre-processing
of the database elements can be done; and dy-
namic databases whose contents are ephemeral (TV
Streams, sensor data, etc.) and which cannot be
pre-processed ahead of time. Pre-processing is inde-
pendently executed for each element at speeds that
vary from 5Gbps (for a high-end laptop) to 10Gbps
(for a high end server) as shown in Section A
database is thus considered static if the life-time of
an element is well larger than its conversion time (e.g.
1-2 seconds for a 10Gbit movie) and the elements are
known early enough with respect to the first cPIR
transaction in which they will be used.

Use-cases To illustrate the versatility of our li-
brary, we highlight performance values with four
use-cases combining dynamic/static settings and
throughput/latency goals. For high throughput ap-
plications we use a Netflix-like server (relatively static
data) and a sniffer that obfuscates what he is inter-
ested in (dynamic data). For low latency applica-
tions we use a Match.com-like online dating database
server (relatively static data) and a stock-market in-
formation service (dynamic data). Note that find-
ing the best application for a fast cPIR proto-
col is beyond the scope of this paper. The pre-
sented use-cases are chosen because they give stress-
ful settings for cPIR, not because cPIR is the only
or the best choice to solve privacy issues in these
settings. Our goal is to show that cPIR is better
than trivial PIR and that using it is feasible in huge
databases with strong constraints on client obtained
throughput.

Experimental setting To show that our library
is usable by everyone for many applications we use
commodity hardware in almost all the settings. Our
cPIR Server runs on a MSI GT60 laptop with a Core
i7-3630QM 2.67GHz (mobile), and 8GB of DDR3



RAM. As our library is able to process database
content very fast, the data storage medium consid-
erably influences performance, specially if this data
is pre-processed. In our evaluation, we use two me-
dia: RAM (100Gbit/s access), or an OCZ Vertex 460
SSD (4Gbit/s access). The contiguous read speed of
our SSD is sufficient to feed the server in all of the
dynamic data settings. If data is static, we are able
to process it quite faster than what a usual SSD disk
can offer. If the database is in RAM this is of course
not an issue, but in some applications such as the
Netflix-like server, the database is huge and does not
fit in RAM. We discuss this issue in the associated
Section. FTTH and ADSL lines were simulated by
introducing appropriated waiting timers in the client
and server which are in fact connected by a gigabit
line.

Security In most of our performance results, the op-
timizer found that the best parameters for the Ring-
LWE scheme were (2048,120) or (1024, 60). Accord-
ing to the parameter generation presented in Sec-
tion [2:1] the former set of parameters is able to pro-
vide 91 bits of security, and the latter 97. To generate
randomness for our scheme, we use Salsa20/20 [43]
(Salsa20/20 is able to provide up to 256 bits of secu-
rity), and thus even if a set of parameters for Ring-
LWE is able to provide theoretically more security,
256 is thus an upper bound (this is the standard max-
imum security usually considered).

Security scales extremely well in lattice-based cryp-
tography. For a constant moduli, security (in at-
tacker operations) increases exponentially with the
polynomial degree and computational costs increase
only (almost) linearly. For example, if we use param-
eters (4096, 120) (instead of (2048,120)), the theo-
retical security can go up to 335 bits. Again, in our
implementation security is bounded to 256 bits. In
such a high security setting, query generation, reply
pre-computation, reply generation, and reply decryp-
tion have a cost that is just increased by a factor 2
(more precisely 2.18 for pre-computation and 2 for
the rest). With such parameters, each ciphertext can
contain more data (almost twice), and thus the secu-
rity increase comes at very little cost. We will present
the costs with the high security (4096, 120) parame-

13

ter set in the first figure, and then let the optimizer
choose the best parameters, with a minimum security
set to 91 bits to be able to use the (2048, 120) parame-
ters which are a good compromise between ciphertext
size, reply generation throughput and security.

Paillier The results presented in this section corre-
spond to ¢PIR with Ring-LWE and trivial PIR (to
show the interest of cPIR over full database down-
load). Using Paillier’s encryption scheme always gave
worse performance, and therefore it does not appear
on the different figures.

4.1 High Throughput Static

Databases

on

High-throughput applications (i.e. applications re-
quiring a high user-perceived reception throughput)
only make sense if the database elements are big
enough, if they are very small and quickly sent we
consider the essential issue is latency which will be
studied in Section B3l We therefore consider here
only databases with files going from 10Mbit and
up. Our experimental results showed user-perceived
throughput is independent of file sizes when they were
in that range, henceforth the lines in this Figure are
valid for any file size greater or equal to 10Mbit.
Figure [6] shows the user-perceived throughput
achieved using our library on the experimental set-
ting laptop. The red line shows performance when no
recursion is done (i.e. when query size is proportional
to n). This line was obtained using the best param-
eters for throughput (which were given by the opti-
mizer): no recursion, no aggregation, and Ring-LWE
cryptography with parameters (2048,120). With
these parameters, ciphertext size (and thus query el-
ement size) is 500Kbits and the expansion factor of
encryption is F' ~ 5. Therefore, in order to get an el-
ement at a user-perceived throughput of 2Mbits/s ac-
tually 10Mbits/s of bandwidth will be used. This set-
ting is the most favorable from a throughput point of
view, but query size can be a problem when the num-
ber of elements n grows, as we will see in Figure
Note that this line is pretty close to the straight line
defined by 15/n Gbps (more precisely values slowly
drift from 19/n Gbps to 14/n Gbps for large n val-



1le+10 ¢

T
d=1 ——

1e+09 B> S d=2 - -]
@ - \ d=1 256-bit sec. ~ -~ ]
s : Trivial FTTH PIR e
E  1e+08 | N :
El T i
3 1e+07 p e — \ -
E 0 =~ B
[ TN
1e+06 S
\\
I ~
100000 E
10 100 1000 10000 100000

n number of files in the db

Figure 6: User-perceived throughput of XPIR stream-
ing static data on a MSI GT60 laptop with a Core i7-
3630QM 2.67GHz. Trivial PIR over a 100Mbits/s FTTH
line (thick black line) is between ten and two hundred
times slower than cPIR. The red filled (91 bits security)
and green dash-and-dotted (256 bits security) lines give
throughput when no recursion is done (i.e. database is
processed as a one dimension array) and the blue dashed
line with one level of recursion (i.e. database is pro-
cessed as a two dimension array). The horizontal lines
correspond to the needed throughput to see a movie in
1024p (2Mbps), 720p 60Hz (800Kbps) and 720p 30Hz
(400Kbps), or to listen to a 128Kbps audio file. Perfor-
mance on a server with a better processor (e.g. ten-core
Xeon E7-4870) roughly doubles and caps at that level as
RAM bandwidth is saturated.

ues).

The green line shows the same results as the red
line in a higher security setting (256 bits security). As
noted previously this has almost no impact on pro-
cessing but doubles the size of each ciphertext and
query size (as we will see in Figure . Note that
the scale is logarithmic, and thus even if the differ-
ence with the red line is very small, in this setting
performance is roughly 10% worse.

The blue line shows performance with one level of
recursion (i.e. when the database is seen as a two-
dimensional y/n x \/n array and query size is pro-
portional to 2/n). Recursion results in a significant
computational overhead for small databases as the
database is processed a first time resulting in an in-
termediate database of size F\/n, that we have to
process again before getting the final reply. In our
implementation the cost of processing this database

14

1e+06 T
ADSL 1/20 Mbps - d=1 ——
ADSL 1/20 Mbps - d=2 - - -

ADSL - d=1 256-bit sec. —-—
FTTH 100/100Mbps - d=1 s
FTTH 100/100Mbps - d=2 = = =

FTTH - d=1 256-bit sec. ==

100000

10000

1000

Latency (s)

100 =T

10 =

1 =

0.1 [ iZem
0.01

10 100 1000

n number of files in the db

10000 100000

Figure 7: Initial latency before the user starts to re-
ceive streaming data (mainly due to query generation and
transmission time to the server). There is no initial la-
tency for trivial PIR. Thin lines are for ADSL and thick
lines for FTTH. Colors and line styles are associated to
the same settings as in Figure @ The results highlight
that latency grows linearly in n in dimension 1 and in
/1 in dimension 2, and that the main bottleneck is the
available upload bandwidth.

is roughly ten times the usual cost. If \/n >> 10F
computation over this intermediate database is neg-
ligible as it is small enough with respect to the initial
database. Indeed, the Figure shows that the overhead
of a level of recursion fades out as n grows.

Initial latency: FEven if obtaining the best user-
perceived throughput is the goal of an application,
an important parameter is how much the user will
have to wait until he starts receiving the requested
stream. Figure [7] highlights the benefit of using a
level of recursion for databases with many elements.
This is specially true when n > 1000 as we have seen
that this implies almost no computational overhead
in this case. On a FTTH line, latency will be be-
low ten seconds (if we use d=2 for n > 1000). An
ADSL line has limited upload bandwidth, henceforth
latency ranges from 5 to 500 seconds. Therefore, in
such a case, one level of recursion should definitely
be used, even if it implies a significant overhead for
the reply generation. The strange behaviour of the
FTTH lines for a small number of elements comes
from the fact that we use TCP sockets to transmit
the queries and for very small time values, buffering
and windowing gets in the way. It is possible to tune



the low level sockets or to use UDP to have a more
linear behaviour if needed.

The Netflix Use-case The Netflix movie database
is composedﬂ of 100.000 movies that are stored as
static files and can thus be pre-processed for per-
formance improvement. H.265 - High Efficiency
Video Coding (HEVC) is the forthcoming standard
for video-streams compression[44], 45]. The attained
compression levels with this codec enable to watch
720p streams at bit-rates between 400Kb/s for 30fps
and 800Kb/s for 60fps and 1024p at 2Mb/s. A typ-
ical bit-rate for audio streams is 128Kbps for qual-
ity MP3s. These levels (128, 400Kbps, 800Kbps and
2Mb/s are represented by horizontal lines on Fig-
ure @

Note: In [46] Gupta et al. present Popcorn, a scal-
able and private media consumption prototype which
considers a similar setting (with 8.000 movies in-
stead of 100.000). The proposed approach, combin-
ing replicated-database based PIR and cPIR is prob-
ably better than using cPIR directly. We are also
conscious that the use of cPIR in the Netflix sce-
nario, while certainly good for privacy may prove to
be a problem regarding both copyright management
and accounting. As stated before, we essentially used
this use-case as an illustration of the excellent per-
formance attained by XPIR, at a massive scale, and
not to discuss the fact that Netflix should use cPIR
to stream its clients or another more elaborated ap-
proach, or that it would be commercially possible.
Finally, Popcorn uses Trostle and Parrish’s broken
cPIR scheme. Replacing it with XPIR would bring
security and a x100 performance boost on the cPIR
subroutine.

Given the results of Figure [0 a Netflix-like server
based on XPIR allows a user to privately receive a
streamed movie with different trade-offs between pri-
vacy and quality. If the user is willing to re-
ceive a 720p-30fps video stream he can hide
his choice among 35K movies from the server.
He can get better video quality at the expense of some
privacy, hiding his choice among just 8K movies (as
in [46]) he can get a stream at 1024p-60fps. Of course

2or was composed in 2009 according to the Wikipedia page
for Netflix.

15

a computational trade-off is also possible, with 8K
movies and 720p-30fps eight percent of the server’s
CPU is used and thus it is possible to handle 12 users
per processor.

Medium Access Issues: Obtaining experimental re-
sults with databases of up to 10 Gbits was simple as
they fit in RAM. To obtain performance results with
the largest databases, we processed them in large
chunks that did fit in our RAM removing the disk
transfer times for each chunk. If we use our SSD
disk to access the data and take into account the
transfer times, disk access is the bottleneck and thus
we obtain as performance result a straight line at
2/n Gbps (our disk allows 4 Gbps access and pre-
computed data is twice larger than the initial data).
In the use-case described, this would mean that the
maximum amount of movies among which the choice
is hidden would be reduced by a factor seven for a
given resolution. We consider though that in applica-
tions requiring large databases and throughput, such
as the Netflix use-case, the provider has high perfor-
mance disks. In order to match the computational
performance of our library it is possible to use for
example two OCZ Vertex RevoDrive PCle SSD in
RAID 0 which delivers 30Gbps read throughput, at
roughly a cost of 1000$.

Multiple Users: Note that if data is accessed
synchronously for concurrent users, disk ac-
cess costs do not increase, so scalability is not
an issue. Thus, if for example if 12 users hide as
in [46] their choice among 8K movies with quality
720p-30fps the server can access the database at just
eight percent of its processing speed 15 % 8/100 =
1.2Gbits/s so a commodity hard disk is enough.

4.2 High Throughput on Dynamic
Databases

At first sight, dynamic databases are similar to static
ones apart that data is dynamic and cannot be pre-
processed offline, such as it is the case with IPTV
for example. However, they can have a large span
of shapes and contents and are not always a simple
extension of static databases to ”infinite size” files.
An exhaustive analysis of dynamic databases is be-



1e+09 ¢ ; -
s d=1 —— ]
1e+08 L d=2 - - -- -
0 [==o. Trivial FTTH PIR s |
S le+07 S 7
g i el N 1
o i)
£ 1e+06 O —
‘§a s - -\._\ ]
£ 100000 F S
[= i T
10000 F .
1000 L y
10 100 1000 10000 100000

n number of files in the db

Figure 8: User-perceived throughput of XPIR streaming
dynamic data on a MSI GT60 laptop with a Core i7-
3630QM 2.67GHz. Trivial PIR over a 100Mbits/s FTTH
connection (thick black line) is between five and fifty
times slower than cPIR. The red line gives throughput
when no recursion is done (i.e. database is processed as a
one dimension array) and the blue line with one level of
recursion (i.e. database is processed as a two dimension
array). The horizontal lines correspond to the needed
throughput to see a movie in 1024p (2Mbps), 720p-60fps
(800Kbps) and 720p-30fps (400Kbps), or to listen to a
128 Kbps audio file. Performance on a server with a bet-
ter processor (e.g. ten-core Xeon E7-4870) can be two to
three times higher.

yond the scope of this paper, but show two different
settings : IPTV and a private sniffer.

The first setting is pretty simple : usual data
streams that cannot be pre-processed such as for
IPTV. Figure [§] presents the same results as [6] but
with dynamic data. As one can see, the user-
perceived throughput is roughly divided by six. For
an [PTV like application, a single processor can han-
dle one hundred 720p-30fps streams for 50 simulta-
neous clients (e.g. classical TV), or five thousand
such streams for a single client (e.g. a large set of
distant IP web cameras). The second setting is more
tricky, as the dynamic data elements are most of the
time null, and the non nulls can be very small. We
describe this setting in our second use-case.

The Private Sniffer Use-Case In this use-case
we suppose someone creates a sniffer that stores all
the packets that have a given source IP address, but
wants to ensure that nobody that would find the snif-
fer and analyze its code could learn which IP the snif-

16

fer is interested in. Of course, it is possible to store
every message (which corresponds to trivial PIR) but,
as described in Section 2.3 using ¢PIR the storage
can be much more compact.

With this approach, a cPIR query is generated and
each query element is associated to a given source IP.
The first question we can ask is: how large can be
the IP range? Suppose we use either (1024, 60) pa-
rameters or (2048, 120) parameters with Ring-LWE
encryption. Each query element is 128Kbit long in
the former case and 512Kbit in the latter. If we aim
to cover a class B network range (65535 addresses)
the query size will be 1Gbyte in the former case and
4Gbytes in the latterEI It is important to note that
this query size is not something that must be sent reg-
ularly, for most sniffers it will define how it behaves
(it is an encrypted part of the sniffing program) and
used to store large amounts of results in a local hard
drive before being retrieved (of course results can also
be sent through the network). This size does not af-
fect performance either, as our results on processing
throughput have proven to be independent of how
many elements the query has, as long is it fits in
RAM, which we assumed to be true.

For every packet the sniffer intercepts, he builds a
database such that each query element is associated
to a null element, except the query element corre-
sponding to the source IP of the intercepted packet
which is associated to the packet. Then the sniffer
generates a cPIR reply storing the reply in the disk
using the compression techniques described in Sec-
tion[2:3] The dynamic database is thus pretty special
as it is almost null and the element to process will be
often much smaller (between 320 bits and 12Kbits)
than what can be absorbed in a ciphertext (roughly
20Kbits for the smaller parameters and 90Kbits for
the larger ones). A trivial implementation will thus
not use all the power our library can provide in other
settings.

The red line in Figure [J] gives the throughput at
which the sniffer is able to process the intercepted

3In fact, the IP range can be arbitrarily large if we associate
multiple IPs, or a hash of the IP to each query element. In that
case we will obtain packets from different IP sources and the
size of the query will determine the efficiency of the filtering
done.



packets. As packets are much smaller than classical
plaintext size, we choose the smallest cryptographic
parameters possible, i.e. (1024,60). We consider that
after absorption the ciphertext can undergo up to one
thousand sums (for operations such as insertion on a
bloom filter, etc.). Given the internal structure of
our cryptosystem, this implies that plaintext size is
15Kbits. If we generate a cPIR reply for each 40
byte incoming packet, most of the space available in
the resulting ciphertext will be lost, but the cPIR
reply generation operation will not cost less (for null
elements the operation is free, but for small elements
the operation costs as much as for elements of the size
of a plaintext). Thus, if we deal with packets of 400
bytes instead of 40, the cPIR reply generation costs
the same, but we process ten times more information.
As even for the largest sizes (we consider usual packet
sizes, up to the classic Maximum Transmission Unit
-MTU- of 1500 bytes), a packet always fits in the
plaintext, the processing throughput is linear on the
packet size.

If we consider a classic bi-modal distribu-
tion (40% very small packets, 40% close to MTU
packets, 20% in-between packets) such as those de-
scribed in [47], the sniffer is able process a link at
600Mbps (purple line). If we consider the sniffer
is not interested in very small packets (ACKs
mostly), it can process a link at slightly over
1Gbps (green line). If we buffer packets and do
not generate a cPIR reply until we have enough data
from a given source IP address to fill a plaintext,
we can do much better. In this case we can choose
parameters giving better processing speeds such as
(2048,120). In such a setting we can process a
link at roughly 3Gbps (blue line), for parameters
(2048, 120) if we buffer 90Kbits of data for a given
IP source before generating a cPIR reply (using the
higher security parameters we get almost the same
performance but with a query twice larger).

Of course, implementing a complete private search-
ing prototype would imply looking into other con-
cerns, such as making sure that other aspects (packet
interception, compression function such as Bloom fil-
ters on the output, etc.) are able to cope with this
throughput, but this is beyond the scope of this pa-
per.

17

10G
g 1G —
< —
E 100
<
[=2]
3 Buffered - - - -
£ 10 paper distribution (no ACK) —-----
paper distribution —--—-:-
Fixed packet sizes
1 |
40 300 600 900 1500
Packet size

Figure 9: Packet processing throughput for the sniffer
use-case using XPIR on a MSI GT60 laptop with a Core
i7-3630QM 2.67GHz. Trivial PIR performance does not
make sense in this setting. The red line, measures per-
formance each packet size, in bytes in the x-axis, inde-
pendently (i.e. measuring performance just processing
40 bytes packets, then measure performance for 80 bytes
packets etc.). The green line gives the processing through-
put when the traffic follows a classic bi-modal distribution
such as found in [47]. The purple line gives throughput
for a traffic for which we ignore packets of size below 60
bytes (basically ACKs). The blue line gives performance
if we wait for traffic to fill buffers and only generate cPIR
replies when enough information has been collected to fill
a ciphertext.

4.3 Latency on

Databases

Static/Dynamic

In this Section, we want to evaluate XPIR latency,
i.e. round trip time (RTT), in settings where data is
static or dynamic. Figure[I0]shows the RT'T achieved
using our library on with static data and Figure
with dynamic data. The x-axis represents the size of
the database ranging from 1Mb to 1Th. The green
line shows the request processing time (RP), the red
line shows the RTT with no network (i.e. the client
on the same machine as the server), and the various
blue lines represent the RTT with a FTTH network
for different values for n. While, when considering
throughput, the request processing and data impor-
tation were the most striving parameters, when look-
ing at RTT, performance results of a balance between
reply processing time and upload/download times.
It is very important to note that usual techniques



100000 ¢
10000 F
1000 F
100 F - ——
Z 10k _ -~
2 [ I RP e
S 1e _ T T no network = = =« 3
01— = el RTT FTTH n=1 3
F—l.. Lt RTTFTTHN=10 - - - - ]
0.01 p==""* RTT FTTH n=100 E
L RTT FTTH n=1000 —-—-- 1
0.001 F Trivial FTTH PIR
0.0001 ! !
M 10M 100M 1G 10G 100G 1T

n.| size of the db

Figure 10: Round-trip (RTT) and request processing
(RP) times of XPIR serving static data on a MSI GT60
laptop with a Core i7-3630QM 2.67GHz on a FTTH net-
work (database sizes are in bits). Trivial PIR (from top
to bottom the second filled line) is faster than cPIR for
databases with less than ten elements, which is natural
as cPIR has an reply expansion factor around five. For
databases with more elements cPIR can be up to fifty
times faster. When the client is local RTT (red thick
dashed line) matches RP (green thick filled line), specially
for large databases. Each thin blue line gives RT'T for a
fixed n and varying database sizes. For large databases
reply size is the limiting factor, which explains why per-
formance is closer and closer to ideal RTT as n grows
(when n grows for a fixed database size ¢ shrinks). For
small databases, query size is the limiting factor. RTT
does not grow as n grows because the optimizer uses ag-
gregation to reach the best RTT.

in cPIR such as aggregation and recursion (see Sec-
tion [2.2)) are mandatory to keep RTT low. In Fig-
ure e used parameters (1024, 60) for the Ring-
LWE cryptosystem and thus query element size is
128Kb and F' ~ 6. For n = 10000 and [ = 1Mb,
if no aggregation and no recursion is used, sending
the query (10000 % 128 Kb) over the FTTH link takes
12.8 seconds and sending the reply (6*1Mb) takes
0.06 seconds while generating the query (at 2.2 Gbps)
takes 0.05 second, processing it (at 10 Gbps) takes 0.1
second and decrypting the reply (at 5.6Gbps) takes
about 1lms. Using recursion divides query sending
time by a factor 50 and has little impact on the other
times so it is clearly beneficial.

Using aggregation and recursion, when beneficial,
the optimizer can set the cPIR parameters in order to

18

100000 ¢
10000 .
1000 £ =
100 S -
F P //
z 10 [ = : /
£ 1L PR ey 3
= F PR RP e
01— oo s RTT no network = = = = ]
e P > RTT FTTH n=1
0.01 F<~= RTTFTTHN=10 - - - - 5
0001 b RTT FTTH n=100 E
e RTT FTTH n=1000 —-—--
0.0001 L L
M 10M 100M 16 10G 100G T

n.| size of the db

Figure 11: Round-trip (RTT) and request processing
(RP) times of XPIR serving dynamic data on a MSI GT60
laptop with a Core i7-3630QM 2.67GHz on a FTTH net-
work (database sizes are in bits). Trivial PIR has been
masked for clarity as the same remarks as most com-
ments on Figure also apply. As data is not already
pre-processed, request processing time is higher, but up-
load/download times do not change. This explains why
blue lines are almost identical except for the fact that the
gap to reach ideal RT'T is smaller. In practice this implies
that RTT is not affected much by pre-processing except
for very large databases.

transform the shape of a database with a high n value
into a database with a smaller n. This is why, on both
Figures, the higher is n the lower is the RTT. Indeed,
the shape of the database is transformed in order to
lower this parameter if a smaller n is more favorable.
As one can observe, the high n lines tend to approach
the RTT limit which is the RP line. The only differ-
ence between static and dynamic databases lies in the
request processing speed that is impacted by the need
to pre-process the data in the dynamic case. One can
observe the different values of request processing (red
dashed lines on both Figures). Henceforth, with dy-
namic databases, the high n lines will tend towards
the RP line later, i.e. with larger databases. This
implies that in most networked situations RTT will
be similar for static and dynamic databases, except
for the largest ones.

Match.com Use-Case In this use-case we consider
that an online dating database server wants to pro-
vide a paying private keyword search mechanism to
its clients. When using this system, users can define



some public criteria, such as the city in which they
would like to meet people (which is anyways proba-
bly revealed by their IP). This set of public parame-
ters will reduce the database size over which a second
search, based on private criteria, will be done. The
users can then do a cPIR-based keyword search (see
Section to get the profiles matching a set of pri-
vate keywords. If we suppose the database has one
million profiles, each of one megabit, the complete
database will be of one Terabit. We must also take
into account that each profile may match a set of key-
words and that reply generation costs are multiplied
by the average number of matching keywords in a
private keyword search. If we suppose that the aver-
age profile has five keywords, using the RT'T given in
Figure [10| a user would have to wait for ten minutes
before having a reply which is probably too much
for a web experience. Using the public keyword pre-
filtering we described we can hope to divide the size
of the database by a factor 10 to 100 (if users are
distributed in various cities and public keywords are
specific enough) which would lower the waiting time
to 6-60 seconds, a much more reasonable time for a
search. Of course if we consider Match.com 5 Millions
users (according to Wikipedia’s page which cites 2014
sources) and profiles of multiple megabytes, public fil-
tering will have to be much more efficient. But the
fact that we are able to grasp having usable cPIR pro-
tocols in such large social networks was unthinkable
not that long ago.

NYSE Use-Case In this last use-case, we are in-
terested in using XPIR on dynamic streams with
the lowest latency possible. The New-York Stock
Exchange (NYSE) Secure Financial Transaction In-
frastructure (SFTI) high-end service serves 5-10Gbps
of data concerning various worldwide stock markets.
The Bloomberg “snooping” scandal is a good illus-
tration of why one would want to keep private the
financial information one is interested in. One can
see two different type of usages with this application:
oriented towards throughput or towards latency. In
the first case, a client may want to register to a given
set of streams of information, and get served with
all the information concerning the associated compa-
nies coming from stock markets, analysts, etc. with
a constant stream of up to date information. In such

a case, the application is very similar to an IPTV
service where the data-stream concerns financial in-
formation instead of a TV stream. Refer to Section
2] for performance results.

In the second case, a client wants to retrieve as fast
as possible the last bunch of information concerning
a company. In this case, the stock market service
can be seen as collecting data generated by remote
sensors and giving access to this dynamic data to
its clients on a per request basis. The most striving
question is thus how long does it take for the client to
retrieve the information on a given company, in other
words, how fresh is the data? For example, suppose
a user wants to grab some information from the last
100ms (we cannot expect to get much more recent
data given the underlying network RTTs). In the
SFTI 5Gbit stream the amount of data correspond-
ing to 100ms should be 500Mbits. As such data is
composed of many elements we can expect that la-
tency will be close to the optimal line in Figure[TI]and
thus the user should get the information in roughly
100ms, which is a reasonable waiting time for infor-
mation that already is old of 100ms.

4.4 Other cryptosystems

As noted before, in almost all situations the Ring-
LWE based cPIR is chosen by the optimizer, as it
gives the best results. In some extreme cases how-
ever, the optimizer chooses to do a Paillier based
cPIR or a trivial (full-database download) PIR. The
Paillier based cPIR will be chosen for extremely small
bandwidths in which case the cPIR reply generation
throughput is not important as most of time is spent
sending the reply and reply expansion factor is the
most important parameter. On the opposite side,
trivial PIR will be of course the natural choice when
available bandwidth is higher than our database pro-
cessing throughput. The limit should therefore be not
very far of 20Gbps for static pre-processed databases,
and 5Gbps for dynamic databases. Other extreme
settings in which trivial PIR will be the natural choice
exist. An example is for database with two to four el-
ements. In this case a cPIR reply with our Ring-LWE
scheme will be larger than the database itself due to
our encryption scheme’s expansion factor. Another

19



example is for very small databases in which query
size may be larger than database size. For example,
using an ADSL connection (1Mbps upload / 20Mbps
download) on a 10Mbit database with ten elements,
sending a Ring-LWE query will take at least 1 sec-
ond, whereas the full database download only needs
half a second (note that using aggregation to reduce
query size does not solve the issue). Of course, such
settings may in some situation correspond to real life
situations, but only scarcely.

5 Conclusion

Lattice based cryptography brought groundbreaking
advances on worst-case to average-case reductions
and on fully-homomorphic encryption. However it
has been for a long time seen as impractical, de-
spite its excellent asymptotic results. This field of
research has matured a lot. The arrival of the ideal
lattice setting, and the development of many perfor-
mance tweaks has changed completely the attainable
performance in a non-asymptotic sense. cPIR has of-
ten been considered as a protocol that would never
be practical [I]. Lattice-based cryptography brings a
real overhaul on this, as cPIR becomes feasible even
for people that don’t own a high-end server. We have
shown that our protocol can be used to process a wide
range of databases in a few seconds, even for 100Gb
databases. This would have taken thousands of sec-
onds with a number theory cryptosystem as Paillier,
which would have processed the database at 1Mbit /s.
Sending the database, even over a 100Mbit/s link
would have increased by a factor one hundred the
times we presented in our experiments. These results
are on a commodity laptop, using a high end server
in a multi-core setting can only increase this differ-
ence further. However this is not our purpose, what
we wanted to highlight is that lattice-based cryptog-
raphy has transformed the utterly impractical into
something feasible by everyone. As we want to show
that it is feasible by everyone, we have included the
auto-optimize tools that will allow anybody to use
our library without being an expert on cryptography.
We are eager to hear from these people’s experiences.

20

References

[1] R. Sion and B. Carbunar, “On the Computa-
tional Practicality of Private Information Re-
trieval,” in 14th ISOC Network and Distributed
Systems Security Symposium (NDSS’07), San
Diego, CA, USA, 2007.

[2] B. Chor, O. Goldreich, E. Kushilevitz, and
M. Sudan, “Private Information Retrieval,” in
46th IEEE Symposium on Foundations of Com-
puter Science (FOCS’95), Pittsburgh, PA, USA,
pp. 41-50, IEEE Computer Society Press, 1995.

[3] W. Gasarch, “A Survey on Private Information
Retrieval,” Bulletin of the European Associa-
tion for Theoretical Computer Science, vol. 82,
pp- 72-107, Feb. 2004. Columns: Computational
Complexity.

[4] H. Lipmaa, “First cpir protocol with data-
dependent computation,” in Proceedings of the
12th International Conference on Information
Security and Cryptology, ICISC’09, (Berlin, Hei-
delberg), pp. 193-210, Springer-Verlag, 2010.

[5] R. Ostrovsky and W. E. Skeith III, “Private
Searching on Streaming Data,” in Advances in
Cryptology - CRYPTO 2005: 25th Annual In-
ternational Cryptology Conference, Santa Bar-
bara, California, USA, August 14-18, 2005, Pro-
ceedings, vol. 3621 of Lecture Notes in Computer
Science, pp. 223240, Springer, 2005.

[6] A. Kiayias and M. Yung, “Secure Games with
Polynomial Expressions,” in ICALP: Annual In-
ternational Colloquium on Automata, Languages
and Programming, 2001.

[7] C. Aguilar Melchor and P. Gaborit, “A Fast
Private Information Retrieval Protocol,” in The
2008 IEEE International Symposium on Infor-
mation Theory (ISIT’08), Toronto, Ontario,
Canada, pp. 1848-1852, IEEE Computer Soci-
ety Press, 2008.

[8] J. T. Trostle and A. Parrish, “Efficient
computationally private information retrieval



[10]

[11]

[12]

from anonymity or trapdoor groups,” in ISC
(M. Burmester, G. Tsudik, S. S. Magliveras, and
1. Tlic, eds.), vol. 6531 of Lecture Notes in Com-
puter Science, pp. 114-128, Springer, 2010.

D. Bleichenbacher, A. Kiayias, and M. Yung,
“Decoding of Interleaved Reed Solomon Codes
over Noisy Data,” in Automata, Languages
and Programming, 30th International Collo-
quium, ICALP 2003, Eindhoven, The Nether-
lands, June 30 - July 4, 2003. Proceedings
(J. C. M. Baeten, J. K. Lenstra, J. Parrow,
and G. J. Woeginger, eds.), vol. 2719 of Lec-
ture Notes in Computer Science, pp. 97-108,
Springer, 2003.

D. Coppersmith and M. Sudan, “Reconstructing
curves in three (and higher) dimensional space
from noisy data,” in Proceedings of the 35th An-
nual ACM Symposium on Theory of Computing,
STOC’2003 (San Diego, California, USA, June
9-11, 2003), (New York), pp. 136-142, ACM
Press, 2003.

S. Arora and R. Ge, “New algorithms for
learning in presence of errors,” in Automata,
Languages and Programming, 30th Interna-
tional Colloquium, ICALP 2003, Findhoven,
The Netherlands, June 30 - July 4, 2003. Pro-
ceedings, pp- 403—415, Springer, 2011.

J. Bi, M. Liu, and X. Wangi, “Cryptanaly-
sis of a homomorphic encryption scheme from
isit 2008,” in Information Theory Proceedings
(ISIT), 2012 IEEE International Symposium on,
pp. 2152-2156, 2012.

T. Lepoint and M. Tibouchi, “Cryptanalysis of a
(somewhat) additively homomorphic encryption
scheme used in pir,” in WAHC’15 - 3rd Work-
shop on Encrypted Computing and Applied Ho-
momorphic Cryptography, 2015.

C. Aguilar Melchor, B. Crespin, P. Gaborit,
V. Jolivet, and P. Rousseau, “High-speed Pri-
vate Information Retrieval Computation on
GPU,” in Second International Conference on
Emerging Security Information, Systems and

21

[16]

[17]

Technologies (SECURWARE’08), Cap Esterel,
France, pp. 263-272, IEEE Computer Society
Press, 2008.

P. Mittal, F. G. Olumofin, C. Troncoso,
N. Borisov, and I. Goldberg, “Pir-tor: Scalable
anonymous communication using private infor-
mation retrieval.,” in USENIX Security Sympo-
sium, 2011.

R. Henry, Y. Huang, and I. Goldberg, “One
(block) size fits all: Pir and spir with variable-
length records via multi-block queries,” Proceed-
ings of NDSS, 2013.

T. Mayberry, E.-O. Blass, and A. H. Chan, “Ef-
ficient private file retrieval by combining oram
and pir,” in Proceedings of Annual Network &
Distributed System Security Symposium, pp. 1—
11, Citeseer, 2014.

E.-O. Blass, R. Di Pietro, R. Molva, and
M. Onen, “Prism — privacy-preserving search
in mapreduce,” in Privacy Enhancing Technolo-
gies (S. Fischer-Hiibner and M. Wright, eds.),
vol. 7384 of Lecture Notes in Computer Science,
pp. 180-200, Springer Berlin Heidelberg, 2012.

F. Olumofin, P. Tysowski, 1. Goldberg, and
U. Hengartner, “Achieving efficient query pri-
vacy for location based services,” in Privacy En-
hancing Technologies (M. Atallah and N. Hop-
per, eds.), vol. 6205 of Lecture Notes in Com-
puter Science, pp. 93-110, Springer Berlin Hei-
delberg, 2010.

F. Olumofin and I. Goldberg, “Privacy-
preserving queries over relational databases,”
in Privacy Enhancing Technologies (M. Atallah
and N. Hopper, eds.), vol. 6205 of Lecture Notes
in Computer Science, pp. 75-92, Springer Berlin
Heidelberg, 2010.

C. Devet and I. Goldberg, “The best of
both worlds: Combining information-theoretic
and computational pir for communication ef-
ficiency,” in Privacy Enhancing Technologies,
pp- 63-82, Springer, 2014.



[22]

[23]

[27]

[29]

[30]

V. Lyubashevsky, C. Peikert, and O. Regev,
“On ideal lattices and learning with errors over
rings,” in FEUROCRYPT’2010, vol. 6110 of
Lecture Notes in Computer Science, pp. 1-23,
Springer, 2010.

W. Gasarch and A. Yerukhimovich, “Computa-
tional inexpensive PIR,” 2006. Draft available
online at http://www.cs.umd.edu/~arkady/
pir/pirComp.pdf.

O. Regev, “New lattice based cryptographic con-
structions,” Journal of the ACM, vol. 51, no. 6,
pp- 899-942, 2004.

S. W. Smith and D. Safford, “Practical server
privacy with secure coprocessors,” IBM Systems
Journal, vol. 40, no. 3, pp. 683-695, 2001.

F. Olumofin and I. Goldberg, “Revisiting the
computational practicality of private informa-
tion retrieval,” in Financial Cryptography and
Data Security (G. Danezis, ed.), vol. 7035 of Lec-
ture Notes in Computer Science, pp. 158-172,
Springer Berlin Heidelberg, 2012.

Gilles Brassard and Claude Crépeau and Jean-
Marc Robert, “All-or-Nothing Disclosure of Se-
crets,” in CRYPTO (A. M. Odlyzko, ed.),
vol. 263 of Lecture Notes in Computer Science,
pp. 234-238, Springer, 1986.

Z. Brakerski and V. Vaikuntanathan, “Fully ho-
momorphic encryption from ring-lwe and secu-
rity for key dependent messages,” in Advances
in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, vol. 6841, p. 501, 2011.

Y. Doroz, B. Sunar, and G. Hammouri, “Band-
width efficient pir from ntru,” in 2nd Workshop
on Applied Homomorphic Cryptography and En-
crypted Computing - WAHC’14, pp. 195207,
Springer, 2014.

D. Pointcheval, “Le chiffrement asymétrique et
la sécurité prouvée,” Habilitation a diriger des
recherches, Université Paris VII, 2002.

22

[31]

[32]

[34]

[35]

S. Goldwasser and S. Micali, “Probabilistic en-
cryption,” Journal of Computer and System Sci-
ences, vol. 28, no. 2, pp. 270-299, 1984.

R. Lindner and C. Peikert, “Better key sizes
(and attacks) for lwe-based encryption,” in C'T-
RSA (A. Kiayias, ed.), vol. 6558 of Lecture Notes
in Computer Science, pp. 319-339, Springer,
2011.

J. P. Stern, “A New Efficient All-Or-Nothing
Disclosure of Secrets Protocol.,” in 18th Annual
International Conference on the Theory and Ap-
plication of Cryptology & Information Security
(ASIACRYPT’98), Beijing, China, vol. 1514 of
Lecture Notes in Computer Science, pp. 357—
371, Springer, 1998.

H. Lipmaa, “An oblivious transfer protocol with
log-squared communication,” in 8th Informa-
tion Security Conference (ISC’05), Singapore,
vol. 3650 of Lecture Notes in Computer Science,
pp- 314-328, Springer, 2005.

M. J. Freedman, Y. Ishai, B. Pinkas, and
O. Reingold, “Keyword Search and Oblivious
Pseudorandom Functions,” vol. 3378 of Lec-
ture Notes in Computer Science, pp. 303-324,
Springer, 2005.

R. Ostrovsky and W. E. Skeith III, “Private
searching on streaming data,” J. Cryptology,
vol. 20, no. 4, pp. 397-430, 2007.

M. Finiasz and K. Ramchandran, “Private
Stream Search at the same communication cost
as a regular search: Role of LDPC codes,” in
Information Theory Proceedings (ISIT), 2012
IEEE International Symposium on, pp. 2556—
2560, 2012.

P. Paillier, “Public-key cryptosystems based
on composite degree residuosity classes,” in
18th  Annual Eurocrypt Conference (EURO-
CRYPT’99), Prague, Czech Republic, vol. 1592
of Lecture Notes in Computer Science, pp. 223~
238, Springer, 1999.


http://www.cs.umd.edu/~arkady/pir/pirComp.pdf
http://www.cs.umd.edu/~arkady/pir/pirComp.pdf

[39]

[46]

N. Gottert, T. Feller, M. Schneider, J. Buch-
mann, and S. Huss, “On the design of hardware
building blocks for modern lattice-based encryp-
tion schemes,” in Cryptographic Hardware and
Embedded Systems — CHES 2012 (E. Prouff and
P. Schaumont, eds.), vol. 7428 of Lecture Notes
in Computer Science, pp. 512-529, Springer
Berlin Heidelberg, 2012.

S. Halevi and V. Shoup, “Design and implemen-
tation of a homomorphic-encryption library,”
2013.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan,
“(leveled) fully homomorphic encryption with-
out bootstrapping,” in Proceedings of the Srd
Innovations in Theoretical Computer Science
Conference, ITCS 12, (New York, NY, USA),
pp- 309-325, ACM, 2012.

“Faster arithmetic for number-
J. Symb. Comput.,

D. Harvey,
theoretic transforms,”
vol. 60, pp. 113-119, 2014.

T. Giineysu, T. Oder, T. Poppelmann, and
P. Schwabe, “Software speed records for lattice-
based signatures,” in Post-Quantum Cryptog-
raphy (P. Gaborit, ed.), vol. 7932 of Lecture
Notes in Computer Science, pp. 67-82, Springer-
Verlag Berlin Heidelberg, 2013. Document
ID: d67aa537a6de60813845a45505¢313, http://
cryptojedi.org/papers/#lattisignsl

ISO/IEC, “High efficiency coding and media
delivery in heterogeneous environments — part
2: High efficiency video coding,” Tech. Rep.
ISO/IEC 23008-2:2013, International Standards
Organization Publication, 2013.

J. Ohm, G. Sullivan, H. Schwarz, T. K. Tan,
and T. Wiegand, “Comparison of the coding ef-
ficiency of video coding standards;including high
efficiency video coding (hevc),” Circuits and
Systems for Video Technology, IEEE Transac-
tions on, vol. 22, pp. 1669-1684, Dec 2012.

T. Gupta, N. Crooks, S. Setty, L. Alvisi, and
M. Walfish, “Scalable and private media con-
sumption with popcorn.” Cryptology ePrint

23

Archive, Report 2015/489, 2015.
eprint.iacr.org/.

http://

R. Sinha, C. Papadopoulos, and J. Hei-
demann, “Internet packet size distributions:
Some observations,” Tech. Rep. ISI-TR-2007-
643, USC/Information Sciences Institute, May
2007.  Orignally released October 2005 as
web page http://netweb.usc.edu/~rsinha/
pkt-sizes/.

A Algorithms

Algorithms for the PIR client-server protocol

Performance cache generation (Client and Server):
Input: Set of parameters for encryption schemes
Output: Set of performance results for these parameters
1. Client:
scheme
- Evaluate encryption and decryption throughput
- Store the resulting values for this set of parameters

For each set of parameters of each encryption

2. Server: For each set of parameters of each encryption
scheme
- Evaluate precomputation and reply generation through-
put
- Store the resulting values for this set of parameters

Optimization (Client and Server):

Input: Recursion range (di,dz2), Aggregation range (ap,az),
potential encryption parameters list EncParams, up-
load/download usable bandwidth (U, D), target optimization
function frarget

Output: Best crypt and PIR parameters taking fiarget as a
measure

1. Server: Send optimization information
- The database shape (n and ¢)
- The server performance cache

2. Client: If U or D are null do a bandwidth test to redefine
them

3. Client: Optimize
For every encryption scheme parameters in EncParams
For every dimension d between d; and da
For every aggregation value a between o and asg

- Estimate queryGenerationTime with the perfor-
mance cache

- Estimate querySendingTime with the upload
bandwidth

- Estimate replyGenerationTime with the perfor-
mance cache

- Estimate replySendingTime with the download


http://cryptojedi.org/papers/#lattisigns
http://cryptojedi.org/papers/#lattisigns
http://eprint.iacr.org/
http://eprint.iacr.org/
http://netweb.usc.edu/~rsinha/pkt-sizes/
http://netweb.usc.edu/~rsinha/pkt-sizes/

bandwidth

- Estimate replyDecryptionTime with the perfor-
mance cache

- Give a performance measure applying ftarget to
these values

Client: Output the parameters with the best performance
measure

Choice (Client and Server):
Input: Database
Output: Index of the element chosen by the user

1. Server: For each file send a description and an associated

index or a global description of the set of files

Client: Present the catalog to the user, and return the
chosen index

Query generation (Client):

Input: PIR parameters (n, ¢, «, d), crypto parameters
Enc.Params, chosen index i

Output: Query

1. Redefine n = ceil(n/a) and note ni; = = ng =
ceil(nt/®)

2. Define (i1,...,4iq) the decomposition in base ceil(nl/d)
of ¢

3. For j in [l..d] generate a query Q; with the Basic

cPIR protocol for retrieving an element of index 4; in
a database of n; elements using an encryption scheme
based on Enc.Params

4. Return Q = (Q1,.--,Qa)
Reply generation (Server):

Input: PIR parameters (n, ¢, «, d), crypto parame-
ters Enc.Params, query (Qi,...,Q4), database elements
(m17 ceey mn)
Output: PIR reply
1. Redefine n = ceil(n/a) and note nqy = -+ = ng =
ceil(nt/®)
2. For j € [1..n] redefine m; as the aggregation of mjq 4k
for k € [1..a]
3. For j € [1..n]
- Note (ji,...,jq) the decomposition of j in base
ceil(nl/®)
- Define my;, .. ;) =m;
4. For j € [1..d]
For each tuple (ij41,...,%q) in [l.njy1] X -+ X [1.ng]
- Compute using the cPIR basic algorithm a PIR
reply using
(m(lyij+1,~~~,id)7 e m(nj,ij+1,.-.,id)) as a database
and Q;
- Define with this PIR reply m;, , ., ifj <dor
RESifj=d
5. Return RES

24

Reply extraction (Client):

Input: PIR parameters (n, ¢, «, d), crypto parameters
Enc.Params, chosen index i, PIR reply

Output: Element of index ¢ in the database

1. Decrypt the d encryption layers of the reply to get «
elements
2. Return the element corresponding to index ¢ and drop

the others

Remark (convexity): If a3 =1, ap = n and n is
large (say 10°) the optimizer may have to do a lot
of tests before reaching the best result. To lower the
amount of tests we used a convexity assumption to
do a dichotomy when looking for the best . When «
grows, query size is reduced and reply size increased.
Using this monotony it is reasonable to assume that
the target functions we use are close to convex. In
practice the optimizer always returned very reason-
able results and was able to run in a few milliseconds
for any database.



	Introduction
	Performance Issues in cPIR
	Related Work
	Contributions and Roadmap

	Basic Tools
	Homomorphic Encryption
	Private Information Retrieval
	Private Searching

	Proposed protocol
	Overview and auto-optimization
	Fast Ring-LWE based cPIR
	The NTT-CRT representation and transforms
	Pre-computing Newton Coefficients
	Encryption and Decryption Performance


	Performance and Use-Cases
	High Throughput on Static Databases
	High Throughput on Dynamic Databases
	Latency on Static/Dynamic Databases
	Other cryptosystems

	Conclusion
	Algorithms

