Breaking Another Quasigroup-Based
Cryptographic Scheme

Markus Dichtl, Pascale Boffgen

Siemens Corporate Technology

Abstract. In their paper “A Quasigroup Based Random Number Generator for Resource
Constrained Environments”, the authors Matthew Battey and Abhishek Parakh propose
the pseudo random number generator LOQG PRNG 256. We show several highly efficient
attacks on LOQG PRNG 256.

Keywords: quasigroup, pseudo random number generator, stream cipher

1 Introduction

In their paper “A Quasigroup Based Random Number Generator for Resource Constrained Envi-
ronments” [BP12], the authors Matthew Battey and Abhishek Parakh propose the pseudo random
number generator LOQG PRNG 256. They suggest to use LOQG PRNG 256 as a stream cipher
by XORing the output of the generator with the data to be encrypted.

As one of the authors of this paper here once found a quasigroup based algorithm for post-
processing biased random numbers ([MGKO5]) very easy to attack ([Dic07a]), he felt that LOQG
PRNG 256 could be easy prey for an attack as well. His hope was not in vain.

However, [MGKO05] was by no means the only quasigroup based broken cryptographic algo-
rithm. Another example is [DMO03], for which [BP12] gives very bad statistical test results. The
result from [BP12] about the compressability of the “random” bits generated by the generator
from [DMO3] is very impressive: The output can be compressed by a factor of about 1000; so,
there seems to be very little (pseudo)entropy in these sequences.

A broken quasigroup based algorithm which received considerable attention in the cryptologic
community was EDON-R ([GOM™08]). EDON-R was submitted to the SHA-3 contest. [K1i08]
and [KNWO08] demonstrate that EDON-R has severe shortcomings.

2 Quasigroups

It will turn out that LOQG PRNG 256 does not use the general concept of a quasigroup, so we
could skip the definition of a quasigroup, but we give it anyway:

A quasigroup is a set () with a binary operation * : @ x @ — @ such that for all values a and
b of @), each of the two equations a * x = b and y * a = b has a unique solution. In other words,
the function table of * forms a Latin square, that is each element of () is contained exactly once
in each row and column.

3 The Simplified Quasigroup

In order to avoid the storage requirements of general quasigroups, the authors of LOQG PRNG
256 suggest the following construction: Instead of explicitly storing a function table, they apply
addition modulo 256 as binary operation. Indeed, addition modulo 256 forms a group, and hence
a quasigroup. However, in LOQG PRNG 256 addition modulo 256 is not used directly, but in a
disguised form: Before adding two elements a and b, their values are used as indices into two tables
r and ¢, and the elements found there are added modulo 256. Note that the indices of the arrays
run from 0 to 255. The result of a % b is (r[a] + ¢[b]) mod 256. The tables r and ¢ each contain
a permutation of the integers 0 through 255. To make things seem even more complicated, these
permutations are not constant, but vary with time.

4 The Pseudo Random Number Generator to Be Attacked

The pseudo random number generator LOQG PRNG 256 specified in [BP12] works as follows:
In the initialisation phase, the tables r and c are filled with random permutations of the integers
0 through 255.
The values s; and ss are initialised to random values modulo 256.
The value i is initialised to zero.
The main loop of the random number generator is given in pseudocode:

while(true)
{
rand = (r[s_1]+c[s_2]) mod 256
s_1 =1s8_2

s_2 = rand

aux = c[il

c[i] = cls_1]

cls_1] = aux //shuffle c[i] and c[s_1]
aux = r[il

r[i] = r[s_2]

r[s_2] = aux //shuffle r[i] and r[s_2]
i=(i+1) mod 256

output (rand)

}

5 Some Observations Leading to an Attack

We observe immediately that no general quasigroup operation appears in the pseudocode, but
only an addition modulo 256 (in the first line of the loop of the pseudocode), whose summands
are determined from the variables s; and s by table lookup.

When we look closer at s; and sy, we note that their values can be easily determined by an
attacker. The new value s, is set to in the loop, is the easiest; it is identical to the value of rand,
which is output at the end of the loop. The new value s; is set to, is not much more difficult; it
is identical to the value s, is set to in the previous execution of the loop, or equivalently, to the
rand output of the previous loop.

Since the value of the index i is initialised to a known value and increased by one in each
round, its value is also known to the attacker.

So, starting in the second execution of the loop, the attacker knows exactly in which way the
algorithm manipulates its lookup tables r and c. In addition, in each execution she learns the
modulo 256 sum of two elements of the tables. In the second execution of the loop, the attacker
does not know yet from which position sy the index into the table ¢ was chosen, as this value
was determined in the first execution of the loop from the unknown initial value of s;. However,
starting with the third execution of the loop, the resulting values of s; and sy in the previous
execution of the loop, and hence, the indices the summands come from are known to the attacker.

6 The Attack

Now, we want to combine our observations in order to attack.

We only start our attack in the third execution of the loop, but we take into account the rand
values observed in the first two executions.

At this point, we know the values of s; and sz, as they are the values of the rand output in
the first two rounds. The value of i is 2, as it started with a value of 0 and was incremented twice
in the first two executions of the loop.

We define the variables Cy, Cq, ... , Cys5 as the content of the table ¢ at the beginning of
the third execution of the loop. We define the table C' as the table of the formal variables C;
corresponding to the content of the table ¢, and more specifically C[i] as the formal variable
corresponding to the content of ¢[i] for all indices 0 through 255. In a completely analogous way,
we also define the variables Ry, Ri, ... , Ros5 and the table R as the formal variables for the
content of the table 7.

At the start of the attack, i.e. at the beginning of the third execution of the loop of the
algorithm, we initialise all table entries C[i] with the formal variables C; and all table entries R][i]
with the formal variables R;.

Next, we evaluate the computation of rand. Here, we exploit for the first time that we learn the
sum of two formal variables, namely that the equation R[s1]+C|s2] = rand mod 256 holds. rand is
the rand output at the end of the loop. We obtain a linear equation of the form C;+R; = k mod 256
with concrete numbers ¢, j and k.

Then, we take into account the new assignments of s; and s3. We set the new value of s; to
the old value of so and the new value of sy to the rand output of the current loop execution.

The next step in the attack is to take into account the shuffling of ¢[i] and c[s1]. We do this
by exchanging the contents of C[i] and Cls1].

Similarly, we take into account the shuffling of r[i] and r[ss] by exchanging the contents of R][i]
and R[ss3].

The value of i is updated by incrementing it.

Now, we iterate the steps described above, until we have reached a number of n equations. We
will discuss the required number n subsequently in more detail. Obviously, n > 512 must hold,
as we have to determine the values of 512 unknowns. For the moment, we suggest to choose n as
1976. Subsequent statistics will show that this is sufficient in 99 % of all attacks tried (see last
paragraph of 7).

Now, it seems to be completely trivial to derive the values of the 512 variables Cy, C1, ... , Cas5
and Ry, Ry, ..., Ras5 from the n linear equations, but we still have to overcome a tiny problem:
We will never be able to find out the values of these variables! The good news is, however, that
we do not have to. All equations we can derive from the output of the pseudo random number
generator are of the form C; + R; = k mod 256. Even if we know the sum k for all possible values
of ¢ and j, there is no unique solution for such a system of linear equations. Let us assume that we
have found a solution of the system. Then, obviously, we obtain another solution if we increase all
C; values by a fixed integer a and decrease all R; values by a. We solve this problem by arbitrarily
fixing Ry to zero. It turns out that then all remaining variables are uniquely determined. But how
does our arbitrary choice of Ry affect our ability to predict further output of the pseudo random
number generator? Not at all, as all the sums of the form C; + R; have the correct and unique
value.

7 Attacking Even Sooner

Now, one may wonder whether we really have to wait until we can solve the system of 512 linear
equations completely in order to successfully predict further output. In most cases, it is possible
to predict output bytes much earlier. The individual steps of the attack we will describe now are
as given above. For our improved attack, we must analyse in detail which other sums of the form
C; + R; we can derive from the ones we already know.

We define a matrix m with 256 rows and columns. Its entry m;; contains our information about
the sum C; + R;. Since we initially have no information at all, the matrix entries are initialised
to the symbol nil. As we learn equations of the form C; + R; = k mod 256, we update the matrix
by setting m;; to k. But occasionally, we can derive new matrix entries from the ones we already
know: If we have non-nil entries at m;;, my, and my; with 4, j, £, and [all distinct, we obtain
my; = Cr + Rj = (Cz + RJ) — (Cz + Rl) + (Ck + Rl) = (mij —my + mkl) mod 256. So, if we have
nil at myj, we replace it with (m;; —m; + my;) mod 256.

Symmetrically, if we have non-nil entries at m;;, my;, and my; and nil at m;, we replace nil
at my with (mg;; — my; + my) mod 256.

Geometrically, this means that if we know matrix entries at three corners of a rectangle in the
matrix, we can determine the matrix entry at the fourth corner. Here, we only consider rectangles
whose sides are parallel to the rows and columns of the matrix.

For any matrix entry we derive by using the “rectangle rule” explained above, we also try
whether we can derive further matrix entries from it.

The blue curve (upper curve) in Fig. 1 shows for 1000 samples how may output bytes of the
generator we need in order to fill the whole matrix by using the “rectangle rule”. The results are
in ascending order. The smallest values are 1118, 1128, 1137; the biggest values are 2793, 2836,
2970. The mean is 1714.45; the median is 1666.5.

We can also exploit the Latin square property of the matrix m, that is each entry appears
exactly once in each row and column. So, even if we are not able to predict an output of the pseudo
random number generator, we can predict that all non-nil entries in the corresponding row and
column are impossible as the next output of the pseudo random number generator. Occasionally,
the entries in a row and column leave only one possibility for the entry at the intersection of the
row and the column. Hence, one can use Sudoku-like arguments to derive additional entries of the
matrix.

The red curve (lower curve) in Fig. 1 shows for 1000 samples (in ascending order) how many
output bytes of LOQG PRNG 256 we need in order to fill the whole matrix by using the “rectangle
rule” and the “Sudoku rule” just explained. The smallest values are 971, 994, 1014; the biggest
values are 2223, 2245, 2287. The mean is 1417.39; the median is 1391. The value for sample 990 is
1976, i.e. in 99 % of our attacks, 1976 output bytes of LOQG PRNG 256 were sufficient in order
to predict all further output (see second to last paragraph of 6).

Number of output bytes

3000 o
8
2500
3
1500 m—

1000

500

\

N
o
o

400 600 800 1000

Fig. 1. Number of LOQG PRNG 256 output bytes necessary to predict all future output bytes. Blue curve
(upper curve): only “rectangle rule”. Red curve (lower curve): both “rectangle rule” and “Sudoku rule”.
The results have been sorted in ascending order.

8 Two More Attack Statistics

In the previous section, we found out how many output bytes of LOQG PRNG 256 we need in
order to predict all future output bytes. But it is also interesting to know when we are able to

predict for the first time which output byte comes next. Fig. 2 displays for 1000 samples the
minimum number of output bytes we need in order to predict the next output byte. The results

are again in ascending order. The smallest values are 10, 13, 13. The mean is 221.8; the median is
234.

Number of output bytes
350

300
250
200
150

100

50

L L L L L L Sarnpl €
200 400 600 800 1000

Fig. 2. Minimum number of output bytes necessary to predict the next output byte, based on 1000 trial
attacks with random seeds. The results have been sorted in ascending order.

Furthermore, we wanted to know how likely it is at any time to be able to predict the next
output byte. Fig. 3 contains these figures for 1000 samples.

Probability
1.0

0.8

0.6

0.4

0.2

L Output bytes
500 1000 1500 2000

Fig. 3. Probability for being able to predict the next LOQG PRNG 256 output byte as a function of the
number of previous LOQG PRNG 256 output bytes.

Some examples:

— After 437 output bytes of the generator, we can predict the next output byte with a probability
of 50 %.

— After 777 output bytes of the generator, we can predict the next output byte with a probability
of 90 %.

— After 1196 output bytes of the generator, we can predict the next output byte with a probability
of 99 %.

To make these probabilities completely clear, we should define their semantics. When we try
to predict output bytes, we do not guess (although in some cases we could very well), but we look
at the entries of our attack matrix. If we find the entry nil at the relevant place, we say we cannot
predict the output. In the other case that we find a non-nil entry in the matrix, which occurs with
the probabilities given above, we predict the LOQG PRNG 256 output byte as the matrix entry,
and we are certain that our prediction is correct.

The statistics in 7 and 8 show how efficient our attack is.

9 What Made the Attack Possible?

Two properties of the suggested pseudo random number generator made the very efficient attack
possible:

1. The same data are used as the output of the algorithm and for shuffling the internal data. This
enables an attacker to keep track of the shuffling. A similar problem occurs when using shuffling
to enhance the cryptographic strength of pseudo random number generators. The shuffling
algorithm suggested by D. Knuth in [Knu81] is not suitable for cryptographic purposes, as an
attacker learns from the output the details of the shuffling operations executed. In [Dic07b], a
solution for the required cryptographic shuffling is suggested.

2. The attack is made much more efficient by the fact that no general quasigroup, but a disguised
version of addition modulo 256 is used. In principle, a similar attack is also possible for a
general quasigroup, but it would take many thousands of bytes of observed output to be able
to predict further output. The designers of LOQG PRNG 256 aimed at an algorithm for
resource constrained environments. With their choice of a somewhat disguised additive group
modulo 256 with low storage requirements, they simultaneously made the attack much more
efficient.

10 Another Property of LOQG PRNG 256

While implementing the attack on LOQG PRNG 256, we discovered another, probably not desired
property of this algorithm. The values of the variables C[s1] of our attack in the i-th execution
of the loop of LOQG PRNG 256 are with a high probability equal to C;_s. Fig. 4, based on
10000 trials with random keys, gives the probability of this equality to hold as a function of ¢ for
5 < i < 255.

This observation is explained as follows: First, the current random value, which is called s, is
used for row shuffling. The rows r[i] and r[ss] are swapped. In the next execution of the loop of
LOQG PRNG 256, the previous value of s5 becomes s;, which still another execution of the main
loop later is used as an index into the row permutation. If the value of r[i] still contains the value
it was initialised to, the equation given above holds, but it might have been modified in another
row swapping operation with a certain probability. This probability increases as the number of
previous executions of the main loop of LOQG PRNG 256 increases. This phenomenon is clearly
visible in Fig. 4.

Probability
1.0

7

0.9

0.8

0.7

0.6

0.5

04

Fig. 4. Probability, as a function of i, of the equation C[s1] = C;_2 to hold at the beginning of the i-th
execution of the main loop of LOQG PRNG 256.

Although such a structure seems quite undesirable in a cryptographic algorithm, this observa-
tion does not improve our attack. As the attack finds out with certainty which row permutations
occurred, it gains nothing from knowing that some specific permutations occur with high proba-
bility.

11 Statistical Test Results

The main argument the authors of [BP12] give for the strength of their algorithm are statistical
test results. They apply some test benches to data generated by various pseudo random number
generators. Since in most tests the number of rejections for their pseudo random number generator
was lower than for the competitors, they conclude that their generator is better. This argument
neglects the probabilistic nature of statistical testing. For the NIST tests ([RSNT01]), the worst
test result reported in Figure 1 of [BP12] was 984 acceptances in 1000 tests. As the NIST tests
are based on an acceptance level of 99 percent, even perfect random numbers are accepted as
random at an average of 990 out of 1000 test cases. A result of 984 or less acceptances in 1000
tests is by no means uncommon; when testing perfect random numbers 1000 times, it occurs with
a probability of 4.79 percent. As in Figure 1 of [BP12] the results of 14 tests are reported for five
generators, numbers of 984 should be observed several times, even when testing perfect random
number generators.

The only conclusion one can draw from the results of Figure 1 in [BP12] is that none of the five
algorithms showed deviations from random behaviour. The interpretation in [BP12] that LOQG
PRNG 256 outperformed the other algorithms is not valid. The authors of [BP12] were just a little
lucky when choosing the seeds for their tests.

We are convinced that rerunning the tests of Figure 1 in [BP12] with different random seeds
would not lead to “better” results for LOQG PRNG 256 compared to the other algorithms, in the
majority of cases. However, we have not considered it worth the effort to do all these tests for an
algorithm already broken.

What the statistical results reported in [BP12] show indeed convincingly are the very bad
statistical properties of the quasigroup based algorithm from [DMO03].

12 Conclusion

Clearly, the pseudo random number generator suggested in [BP12] is not suitable for security
purposes like stream cipher encryption as suggested in the paper, since we have shown how to
attack it very efficiently.

Our conclusions about the general suitability of quasigroups for cryptographic purposes are not
quite clear. Although cryptographic algorithms based on quasigroups seem to have a tendency to
be broken, we wonder whether the quasigroups are to blame. They are interesting combinatorial
objects, but maybe the correct way of using them for cryptographic algorithms has not yet been
found.

References

[BP12] Matthew Battey and Abhishek Parakh, A Quasigroup Based Random Number Generator for
Resource Constrained Environments, Cryptology ePrint Archive, Report 2012/471, 2012, http:
//eprint.iacr.org/.

[Dic07a] Markus Dichtl, Bad and Good Ways of Post-processing Biased Physical Random Numbers, FSE
(Alex Biryukov, ed.), Lecture Notes in Computer Science, vol. 4593, Springer, 2007, pp. 137—
152.

[Dic07b] Markus Dichtl, Cryptographic Shuffling of Random and Pseudorandom Sequences, Symmet-
ric Cryptography, Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2007, http://drops.
dagstuhl.de/opus/volltexte/2007/1014/.

[DMO03] V. Dimitrova and J. Markovski, On Quasigroup Pseudo Random Sequence Generators, 1st
Balkan Conference in Informatics, Thessaloniki, 2003, pp. 393-401.

[GOM™08] Danilo Gligoroski, Rune Steinsmo @degard, Marija Mihova, Svein Johan Knapskog, Ljupco
Kocarev, Ale Dréapal, and Vlastimil Klima, Cryptographic Hash Function EDON-R, Sub-
mission to NIST, 2008, http://people.item.ntnu.no/~danilog/Hash/Edon-R/Supporting._
Documentation/EdonRDocumentation.pdf.

[K1i08] Vlastimil Klima, Multicollisions of EDON-R Hash Function and Other Observations, 2008,
http://cryptography.hyperlink.cz/BMW/EDONR_analysis_vk.pdf.

[Knu81] Donald E. Knuth, The Art of Computer Programming, Volume II: Seminumerical Algorithms,
2nd Edition, Addison-Wesley, 1981.

[KNWO08] Dmitry Khovratovich, Ivica Nikoli, and Ralf-Philipp Weinmann, Cryptanalysis of Edon-R,
2008, http://ehash.iaik.tugraz.at/uploads/7/74/Edon.pdf.

[MGKO05] Smile Markovski, Danilo Gligoroski, and Ljupco Kocarev, Unbiased Random Sequences from
Quasigroup String Transformations, Fast Software Encryption: 12th International Workshop,
FSE 2005, Paris, France, February 21-23, 2005, Revised Selected Papers, Lecture Notes in
Computer Science, vol. 3557, Springer, 2005, http://www.iacr.org/cryptodb/archive/2005/
FSE/3135/3135.pdf, pp. 163-180.

[RSNT01] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D.
Banks, A. Heckert, J. Dray, and S. Vo, A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications, NIST special publication 800-22, National
Institute of Standards and Technology (NIST), Gaithersburg, MD, USA, 2001, See http:
//csrc.nist.gov/rng/.

