
How to Improve Rebound Attacks∗

Maŕıa Naya-Plasencia†

FHNW, Windisch, Switzerland

Abstract. Rebound attacks are a state-of-the-art analysis method for hash functions. These
cryptanalysis methods are based on a well chosen differential path and have been applied
to several hash functions from the SHA-3 competition, providing the best known analysis in
these cases. In this paper we study rebound attacks in detail and find for a large number of
cases that the complexities of existing attacks can be improved.
This is done by identifying problems that optimally adapt to the cryptanalytic situation,
and by using better algorithms to find solutions for the differential path. Our improvements
affect one particular operation that appears in most rebound attacks and which is often
the bottleneck of the attacks. This operation, which varies depending on the attack, can
be roughly described as merging large lists. As a result, we introduce new general purpose
algorithms for enabling further rebound analysis to be as performant as possible. We illustrate
our new algorithms on real hash functions. More precisely, we demonstrate how to reduce the
complexities of the best known analysis on four SHA-3 candidates: JH, Grøstl, ECHO and
Lane and on the best known rebound analysis on the SHA-3 candidate Luffa.

Keywords: hash functions, SHA-3 competition, rebound attacks, algorithms

1 Introduction

The rebound attack is a recent technique introduced in [13] by Mendel et al. It was conceived
to analyze AES-like hash functions (like Grøstl [7] in [14, 8, 15], Echo [2] in [14, 8, 17],
Whirlpool [1] in [11]). A rebound attack is composed of two parts: the inbound phase and
the outbound phase. The aim of the inbound phase is to find, at a low cost, a large number
of pairs of values that satisfy a part of a differential path that would be very expensive to
satisfy in a probabilistic way. The outbound phase then uses these values to perform an
attack.

This technique has been applied to other algorithms with inner permutations which are
not AES-like; for instance it has been applied to JH [20] (reduced to 22 rounds) in [16]
and Luffa [4] (reduced to 7 rounds) in [10]; both of those hash functions use Sboxes of size
4 × 4 and have a linear part in which the mixing is done in a very different way than in
the AES. The hash function LANE [9], which includes several AES states, each treated by
the AES round transformation, and a different transformation for mixing these states has
also been analysed in [12, 21] using rebound attacks.

∗This is the extended version of the article published at CRYPTO 2011.
†Supported by the National Competence Center in Research on Mobile Information and Communication

Systems (NCCR-MICS), a center of the Swiss National Science Foundation under grant number 5005-67322.

In these cryptanalysis results, the rebound attack technique needs to be refined and
adapted to each case, but all of them follow the same scheme: first find a differential path,
then find solutions verifying this differential path. This paper focuses on optimizing the
latter part. In all the previously mentioned cryptanalysis, that part involves enumerating,
from a very large set of possible candidates represented as a cross product of lists, all
those that verify a given relation. We call this operation ”merging” the lists. The merging
problem can be described more formally as follows.
Merging problem with respect to t: Let t be a Boolean function taking N k-bit words as
input, i.e. t : ({0, 1}k)N → {0, 1}. Let L1, . . . , LN be N given lists of k-bit words drawn
uniformly and independently at random from {0, 1}k. We assume that the probability over
all N -tuples X in L1× . . .×LN that t(X) = 1 is Pt. For any given function t and any given
N -tuple of lists (L1, . . . , LN) the merging problem consists in finding the list Lsol of all
X ∈ L1× . . .×LN satisfying t(X) = 1. We call this operation merging the lists L1, . . . , LN

to obtain Lsol.
It is assumed that the image of a given input under t can be easily computed. In the

following, the size of a list L is denoted by |L|. A brute force method for solving this problem
therefore consists in enumerating all the |L1| × . . . × |LN | inputs, in computing t on all
of them and in keeping the ones verifying t = 1. Note that, in the lack of any additional
information on t, it is theoretically impossible to do better. However, in practice, the
function t often has a set of properties which can be exploited to optimize this approach.
We aim at reducing the number of candidates which have to be examined, in some cases by
a preliminary sieving similar to the one used in [5]. This paper presents such optimization
techniques, that, when applied to most of the rebound attacks published on the SHA-3
candidates, yield significant improvements in the overall time and/or memory complexities
of the attack, as shown on Table 1. In this table we can see that we have considered the
best existing attacks against four hash functions and the best rebound attack on a fifth
(two of them are finalists and two are second-round candidates of the SHA-3 competition),
where by best attack we denote the one on the highest number of rounds. We have been
able to improve their complexities by scrutinizing the original attack and finding a more
efficient algorithm for obtaining the solutions for the differential path. Most of the time
the improvement relies on a better merging of the lists, and sometimes it is due to the use
of more adequate conditions in the general algorithm. Let us recall here that the aim is
to find all the N -tuples that verify t = 1 for a complex function t, which is significantly
different from finding just one (or few) of them for a linear t such as in [19, 18, 6, 3]. As in
the previous rebound analysis, we will work throughout the paper with average values in
the probabilistic cases.

In Section 2, we define Problem 1 that corresponds to functions t with a particular
form, and we propose three generic algorithms to solve it. These 3 algorithms have different
optimal scenarios. Some examples of applications are given. In Section 3 we define Problem
2 and propose the stop-in-the-middle algorithms for solving it. We also present two concrete
algorithms in this family applied to the scenarios of ECHO and Lane. In Section 4 we show

how applying these algorithms combined with an appropriate definition and decomposition
of the problem in each case, allows us to improve the complexities of the best known rebound
attacks on 5 SHA-3 candidates.

Table 1. Improvements on best known attacks. The highlighted values are the improved complexities. For
Luffa we consider the best known rebound attack where the complexities presented in the second row have
already been obtained in [10] by a dedicated algorithm similar to our general approach.

Hash function
SHA3

Best Known Analysis
Rounds Previous This paper

Round / total Time Memory Ref. Time Memory

JH
Final

semi-free-start coll. 16 / 42 2190 2104 [16] 297 297

JH semi-free-start near coll. 22 / 42 2168 2143.70 [16] 296 296

Grøstl-256
Final∗

(compr. function property) 10 / 10 2192 264 [15] 2182 264

Grøstl-256 (internal permutation dist.) 10 / 10 2192 264 [15] 2175 264

Grøstl-512 (compr. function property) 11 / 14 2640 264 [15] 2630 264

ECHO-256 2nd internal permutation dist. 8 / 8 2182 237 [17] 2151 267

Luffa 2nd semi-free-start coll. 7 / 8 2132 268.8 [10] 2112.9 268.8

(2104) (2102)

Lane-256
1st semi-free-start coll. 6+3 / 6+3 296 288 [12] 280 266

Lane-512 semi-free-start coll. 8+4 / 8+4 2224 2128 [12] 2224 266

* The Grøstl analysis does not apply after the final round tweak.

Besides the results in Table 1, the main interest of this paper is to present a general
framework for improving rebound attacks. We introduce several new algorithms that con-
siderably improve the overall effectiveness when the attack needs to merge large lists. We
provide a formal definition of the field of application of those algorithms, and describe
them as a set of constraints on t, in hope that designers of rebound attacks will be able to
easily identify scenarios where one of these algorithms, or variants, may be applied. This
was motivated by our own research path, when we realized that a generalization of the
techniques leveraged in specific cases allowed us to find similar improvements in almost all
of the rebound attacks that we have studied so far.

2 When t is Group-Wise

In some cases we can considerably reduce the complexity of the merging problem by re-
defining it into a more concrete one. We consider here a very common case that will appear
in many rebound scenarios, as we will later show with the examples. This case corresponds
to a function t that can be decomposed in smaller functions. After introducing the general
problem, we will illustrate it with an example. Though we preferred to state the problem

in full generality for any possible N , in the concrete rebound examples that we studied, the
number of lists N was either 2, 4 or 6. Also, the elements of each list can be decomposed in
sets of small size s, where s is typically the size of the involved Sbox; and z is the number
of such sets involved 1 in the function t.

Problem 1: Let L1, . . . , LN be N lists of size 2l1 , . . . , 2lN respectively, where the elements
are drawn uniformly and independently at random from {0, 1}k.
Let t be a Boolean function, t :

(
{0, 1}k

)N → {0, 1} for which there exists N ′ < N , an
integer z and some triples of functions tj : {0, 1}2s → {0, 1}, fj : ({0, 1}k)N ′ → {0, 1}s and
f ′j : ({0, 1}k)(N−N ′) → {0, 1}s for j = 1, . . . , z such that, ∀ (x1, . . . ,xN) ∈ L1 × . . .× LN :

t(x1, . . . ,xN) = 1 ⇔

∀j = 1, . . . , z,{ tj(vj , v
′
j) = 1

with vj = fj(x1, . . . ,xN ′)
and v′j = f ′j(xN ′+1, . . . ,xN)

Let Pt be the probability that t = 1 for a random input.
Problem 1 consists in merging these N lists to obtain the set Lsol, of size Pt2

PN
i=1 li , of all

N -tuples of (L1 × . . .× LN) verifying t = 1.

Reduction from N to 2: For any N ≥ 2 Problem 1 can be reduced to an equivalent
and simplified problem with N = 2, i.e. merging two lists LA and LB, which consist of
elements in ({0, 1}s)z corresponding to xA = v = (v1, . . . , vz) and xB = v′ = (v′1, . . . , v

′
z),

with respect to the function xA,xB 7→ Πz
j=1tj(vj , v

′
j). The reduction is performed as

follows:

1. Build a table T ∗A of size 2
PN′

i=1 li storing each element eA = (x1, . . . ,xN ′) of L1 ×
. . . × LN ′ , indexed2 by the value of (f1(eA), . . . , fz(eA)), i.e. (v1, . . . , vz). Store the
corresponding (v1, . . . , vz) in a list LA. Note that several eA may lead to the same
value of (v1, . . . , vz).

2. Build a similar table T ∗B of size 2
PN

i=N′+1 li storing each element eB = (xN ′+1, . . . ,xN)
of LN ′+1× . . .×LN , indexed by (f1(eB), . . . , fz(eB)), i.e. (v′1, . . . , v

′
z). Store (v′1, . . . , v

′
z)

in a list LB.
3. Merge LA and LB with respect to Πz

j=1tj and obtain Lsol.
4. Build L∗sol by iterating over each pair ((v1, . . . , vz), (v′1, . . . , v

′
z)) of Lsol, and adding the

set of all (x1, . . . ,xN ′ ,xN+1, . . . ,xN) ∈ T ∗A [(v1, . . . , vz)]×T ∗B [(v′1, . . . , v
′
z)]. L∗sol is the

solution to the original problem.

1Sometimes, elements are only partially involved in t.
2Here and in the following sections we can use standard hash tables for storage and lookup in constant

time, since the keys are integers.

Let 2Tmerge , 2Mmerge be the time and memory complexities of step 3. The total time complex-
ity of solving Problem 1 is O(sz2

PN′
i=1 li + sz2

PN
i=N′+1 li + 2Tmerge +Pt2

PN
i=1 li) where the last

term comes from the fact that only the N -tuples satisfying t = 1 are examined at step 4
because of the sieve applied at step 3. The proportion of such tuples is then Pt. The memory
complexity 3 is O((zs+N ′k)2

PN′
i=1 li + (zs+ (N −N ′)k)2

PN
i=N′+1 li + 2Mmerge + Pt2

PN
i=1 li),

where the last term appears only when the solutions must be stored.
Using the brute force approach, 2Tmerge would be 2lA+lB where 2lA (respectively 2lB)

denotes the size of LA (LB), and 2Mmerge would be negligible. We present in the following
sections some algorithms for solving Problem 1 considering N = 2 with LA and LB, that
provide better complexities than the brute force approach. Note that the roles of LA and
LB are assigned by choice to obtain the best overall complexity. Those algorithms can be
applied for obtaining a smaller 2Tmerge when N > 2.

2.1 Basic Algorithm for Solving Problem 1: Instant Matching

As s is typically very small we can enumerate the solutions (vj , v
′
j) of tj(vj , v

′
j) = 1 and store

them in tables Tj of size ≤ 22s, indexed by v′j . This costs O(z · 22s) in time and memory.
We propose in Fig. 1 a first algorithm for solving Problem 1, which has lower complexity
than the brute-force approach. Although being the simplest algorithm presented in this
paper, it has not been applied in critical steps of some of the previously mentioned attacks,
though it could yield significant improvements.

Fig. 1 Instant matching algorithm.

Require: Two lists LA, LB and a Boolean function t as described in Problem 1.
Ensure: The returned list Lsol will contain all elements of LA × LB verifying t.
1: for j from 1 to z do
2: for all (vj , v

′
j) in {0, 1}s × {0, 1}s do

3: if tj(vj , v
′
j) = 1, then add vj to Tj [v

′
j].

4: for each (v′1, . . . , v
′
z) ∈ LB do

5: Empty Laux.
6: for j from 1 to z do
7: if Tj [v

′
j] is empty, then go to 4.

8: Add all tuples (v1, . . . , vz) verifying ∀j vj ∈ Tj [v
′
j] to Laux.

9: for each (v1, . . . , vz) in Laux do
10: if (v1, . . . , vz) ∈ LA then
11: Add (v1, . . . , vz, v′1, . . . , v

′
z) to Lsol.

12: Return Lsol.

Let 2−pj be the probability over all pairs (vj , v
′
j) that tj(vj , v

′
j) = 1. The relationship

between t and the (tj)1≤j≤z implies that
∑z

j=1 pj = − log2(Pt) where Pt is the probability

3The first two terms, corresponding to the storage of T ∗
A and T ∗

B could be avoided if they were the
bottleneck by slightly increasing the time complexity by a factor of 2.

that t = 1.
Let us determine the average size of Laux. The average size of Tj [v′j] over all v′j is 2s−pj .
Then the average size of Laux is 2zs−

Pz
j=1 pj = Pt2zs. It follows that the time complexity

of the algorithm is O(z2s + zPt2lB+zs) and is proportional to the product of the size of LB

by the average size of 4 Laux. The memory complexity is O(z2s + 2lA + 2lB +Pt2lA+lB). In
some cases, the last term can disappear, namely if we do not need to store the list Lsol,
but just use each solution as soon as it is obtained. The same way, the list LB does not
need to be stored, if it can be given on the fly.

We now describe a concrete example of application of the instant-matching algorithm
in a case included in a particular rebound attack, improving its complexity. In Appendix A
we provide two more examples where it clearly appears that identifying and isolating the
most appropriate problem (or problems) to solve is of major importance. These two last
examples might help also to understand the role of fj and f ′j .

Example 1: Application of the Instant Matching Algorithm We use here a case
presented in the analysis of JH [16] which is the attack on 8 rounds using one inbound
when the dimension of a block of bits denoted by d is 4. Here we improve step 3 of the
attack, which is also the bottleneck in time complexity. Two lists are given, LA and LB

of size 224.18 elements each. The aim of step 3 is to merge those lists, i.e. find all pairs
(v,v′) ∈ LA × LB verifying 10 conditions on groups of s = 4 bits of (v,v′).
In [16] this is solved by exhaustive search, i.e. all possible pairs are examined and only
the ones that verify the 10 conditions are kept, which has cost 248.36. We can improve this
complexity by applying the instant-matching algorithm: first, we notice that 6 out of these
10 conditions can be written as

tj(vj , v
′
j) = 1,∀j ∈ {1, . . . , 6},

where variables vj and v′j represent groups of differences of 4 bits. The functions tj return
1 when the linear function of JH, L, applied to vj and v′j produces 4 bits out of 8 without
difference in the wanted positions. Those functions tj can be computed directly by using a
precomputed table of size 28.
This is an instance of Problem 1 with the parameters: z = 6 (corresponding to the number
of relations t1, . . . , t6), and pj = 3.91 ∀j. Hence Pt2zs = 20.09 · 6 = 20.54 ' 1.45. The
instant-matching algorithm allows us to find all pairs satisfying these 6 conditions with
a complexity of 227.8 in time and no additional memory. We then obtain 224.9 pairs of
elements that pass the first 6 conditions. To complete step 3 of the attack, we evaluate the
4 remaining conditions for each pair, for a global complexity of 224.9.
To summarize, we were able to resolve step 3 of the attack with a time complexity of about
227.8, improving significantly the complexity of 248.36 given in [16].

4The cost of building and storing the lists Tj [v
′
j] is negligible.

2.2 Solving Problem 1 when Pt2zs > 2lA: Gradual Matching

In Fig. 2 we present an algorithm for solving Problem 1 that is useful in cases where the
average size of Laux exceeds the size of LA, i.e.5 Pt2zs > 2lA . In this case the instant-
matching algorithm has a higher complexity than the exhaustive search. This is why here,
instead of directly matching the z groups that appear in relation t, we will first match
the z′ < z ones, and next, the z − z′ remaining ones. We present here how to use one
step of the gradual-matching algorithm for solving Problem 1. This algorithm reminds the
method used in Example 1 where the problem is first solved with only 6 relations. But the
difference is that the remaining z − z′ relations can also be written in the form needed for
Problem 1 and Pt2zs > 2lA . Let us suppose that we choose z′ so that z′s < lA (the best
value for z′ depends on the situation).

Fig. 2 Gradual matching algorithm.

Require: Two lists LA and LB and a function t as described in Problem 1.
Ensure: List Lsol ⊂ LA × LB of all elements verifying t.
1: for j from 1 to z do
2: for all (vj , v

′
j) in {0, 1}s × {0, 1}s do

3: if tj(vj , v
′
j) = 1, then add vj to Tj [v

′
j].

4: for each α = (α1, . . . , αz′) in ({0, 1}s)z′
do

5: Empty Laux.
6: Consider the sublist LB(α) of all elements in LB with (v′1, . . . , v

′
z′) = α.

7: for each (v1, . . . , vz′) in T1[α1]× . . .× Tz′ [αz′] do
8: add (v1, . . . , vz′) to Laux.
9: for each γ = (γ1, . . . , γz′) in Laux do

10: Consider the sublist LA(γ) of all elements of LA with (v1, . . . , vz′) = γ.
11: Merge LA(γ) with LB(α) with respect to t′ = Πz

j=z′+1tj .
12: Add the solutions to Lsol.
13: Return Lsol, containing about Pt2

lA+lB elements.

Let 2merge be the time complexity of merging once lists LB(α) and LA(γ) as defined
in Fig. 2. Since their respective average sizes are 2lA−z′s and 2lB−z′s the complexity of the
brute force is 2lA+lB−2z′s. It can be improved by using one of the proposed algorithms
from this section but it cannot be smaller than the size of the resulting merged list, i.e.

2lA+lB−2z′s−
Pz

j=z′+1 pj . Now the average size of Laux
6 is S = 2z′s−

Pz′
j=1 pj . Then, the time

complexity of this algorithm is O(z2s + 2z′s(z′ + S2merge)). It is worth noticing that this

complexity corresponds to z′2z′s + 2lA+lB−
Pz′

j=1 pj when the intermediate lists are merged
by the brute force algorithm and to z′2z′s + Pt2lA+lB if they are merged by an optimal
algorithm. The memory complexity is O(z2s + 2lA + 2lB + S + Pt2lA+lB). Again, in some

5When Pt2
zs is close to 2lA this algorithm might also outperform the instant-matching technique.

6Here and in the previous section, there is no need for storing Laux, as each element can be treated as
soon as it is obtained, but these auxiliary lists are very useful for describing the complexities.

cases, the last term can disappear, if we do not need to store the list Lsol, but just use the
solutions on the fly.

2.3 Time-Memory Trade-Offs when Pt2zs > 2lA: Parallel Matching

The parallel-matching algorithm improves the time complexity of the gradual-matching by
a time-memory trade-off and can be applied in the same situations. It is a generalization of
an algorithm proposed in [10]. As the gradual-matching algorithm this algorithm first finds
elements that verify tj = 1 for j ∈ {1, . . . , z′} and then, for each of them, it checks if the
remaining (z − z′) relations are also verified. However, in this algorithm, the matching of
the z′ relations is done in parallel for n and m relations, so that z′ = m+n. The motivation
of choosing different variables for n and m is showing that there is no need for them to be
the same when applying the algorithm.

(z+m)s

 ms ms ms ms ms

0...0 : 0...0 0...0 : 0...0 : 0...0

: : : : : :

: : : : :
:

1...1 1...1 1...1

zs zs

 ns ns ns ns ns

LA LB Ln Lm L'mv1... vn vn+1..vn+m vn+m+1..vz v'n+1..v'n+m v'1...v'n v'n+m+1...v'z v1... vn v'1...v'n vn+1.vn+m v'n+1..v'n+m vn+1.vn+m v'1...v'n v'n+1 … v'z

2lA-ns 2lB-ms 2lB-Σmpj)

22ns-Σnpj 22ms-Σmpj

α β 1 β' α' α α' β β' β α'
β lA-ns

Fig. 3: Representation of the parallel-matching algorithm.

We choose n so that n < z, ns < lA and ns < lB, and in the same way, we choose
m (n + m = z′ ≤ z). This algorithm will be explained with ordered lists, as it is more
graphical and helps the understanding. However, since we can perform it with hash tables
indexed by the values we want to have ordered, we do not need to take into account the
logarithmic terms for ordering and searching in the final complexity. First we build the
lists that we will use and that are represented in Fig. 3:

– We order the list LA by the first n groups (v1, . . . , vn). LA has 2lA−sn elements in
average corresponding to a given value of these n groups.

– We order the list LB by the next m groups (v′n+1, . . . , v
′
n+m). LB has 2lB−sm elements

in average corresponding to a given value of these m groups.

– We build the list Ln of size 22ns−
Pn

j=1 pj formed by all (v1, . . . , vn, v
′
1, . . . , v

′
n) with

vj ∈ Tj [v′j] for all 1 ≤ j ≤ n. All the elements from this list satisfy tj(vj , v
′
j) = 1 for

j ∈ [1, . . . , n].
– We build the list Lm of size 22ms−

Pn+m
j=n+1 pj formed by all (vn+1, . . . , vn+m, v

′
n+1, . . . , v

′
n+m)

with vj ∈ Tj [v′j] for all (n + 1) ≤ j ≤ (n + m). All the elements from this list satisfy
tj(vj , v

′
j) = 1 for j ∈ [n+ 1, . . . , n+m].

– From Lm and LB we build L′m as follows: for each (β, β′) in Lm, we add to L′m all ele-
ments (β, v′1, . . . , v

′
z) of LB such that (v′n+1, . . . , v

′
n+m) = β′ and we store them ordered

by the values of (β, v′1, . . . , v
′
n). The average size of L′m is 2lB+sm−

Pn+m
j=n+1 pj . Then we

perform the algorithm given in Fig. 4.

Fig. 4 Parallel matching algorithm.

1: for each (α, α′) in Ln do
2: for each (v1, . . . , vz) in LA with (v1, . . . , vn) = α do
3: if L′

m contains any element (vn+1, . . . , vn+m, v′1, . . . , v
′
z) starting by (vn+1, . . . , vn+m, α′) then

4: if (v1, . . . , vz, v′1, . . . , v
′
z) satisfies the remaning (z − n−m) conditions then

5: Add (v1, . . . , vz, v′1, . . . , v
′
z) to Lsol.

6: Return Lsol containing about Pt2
lA+lB elements.

As already mentioned, the respective average sizes of Ln and Lm are 2ln = 22ns−
Pn

j=1 pj

and 2lm = 22ms−
Pn+m

j=n+1 pj , and the average size of L′m is 2lB+ms−
Pn+m

j=n+1 pj . In total we
will find the 2lA+lB−

Pz
j=1 pj matches that exist, with a complexity in time O(2ln + 2lm +

2lA+lB−
Pn+m

j=1 pj +2lA+ns−
Pn

j=1 pj +2lB+ms−
Pm

j=n+1 pj) andO(2ln+2lm+2lB +2lB+ms−
Pm

j=n+1 pj +
2lA+lB−

Pz
j=1 pj) in memory, where the last term corresponds to the storage of all solutions,

not always needed. In this case, the storage of LA is not necessary.

2.4 Example 2: Gradual Matching vs Parallel Matching

We are going to apply both previous algorithms to the analysis of Luffa presented in [10].
We are given two lists LA and LB of size 267 and 265.6. These lists contain elements formed
by z = 52 groups of differences of s = 4 bits. List LA contains the possible differences for
the input of 52 Sboxes. List LB contains the possible differences for the output of the same
52 Sboxes. For the j-th Sbox, the probability that one input difference can be associated
to one output difference is 2−pj = 2−1.23. The average size of Laux if we apply the instant-
matching algorithm is then Pt2zs = 2144.04. In this case t can be decomposed in 52 tj , one
per Sbox. So tj(vj , v

′
j) = 1 if there exists x ∈ {0, 1}s such that

Sbox(x)⊕ Sbox(x⊕ vj) = v′j .

The brute force algorithm for solving this problem has a time complexity 265.6+67 = 2132.6

and a memory complexity of 268.8. If we apply the gradual-matching algorithm with z′ = 16

we have S = 244.32, and we obtain the 268.8 solutions with a time complexity of 2112.9 and
the same memory as before as no additional memory is needed. If instead we apply the
parallel-matching algorithm with m = n = 13, we can obtain the solutions with a time
complexity of 2104 and a memory complexity of 2102. Different choices of parameters allow
many other time-memory trade-offs, but we just show here the one that provides the lowest
time complexity, and so the highest memory needs, for contrast with the gradual matching
algorithm.

3 Stop-in-the-Middle Algorithms

In this section we present another case that allows to reduce the complexity of solving
the basic problem. It is described in Problem 2. Then, we describe the main lines of the
stop-in-the-middle algorithms, that we use for solving Problem 2. Next, we present such an
algorithm that solves Problem 2 in the scenario of Lane-256. Then a more complex variant
of this algorithm is applied to a ECHO-256 scenario. But we believe that, in particular,
this kind of algorithms can be adapted and applied to functions that use several AES
(like) states in parallel which are then merged at the end of each round. In the following,
we consider a permutation F from {0, 1}sk to {0, 1}sk and we assume that there exist a
decomposition function φ (respectively ψ) of the input of F (respectively the output) in
k elements of {0, 1}s. These two decompositions may be different. Then, instead of the
original function F we will now focus on the function f = ψ ◦ F ◦ φ−1 which is a function
over ({0, 1}s)k (see Fig. 5). In the following (u,w) denotes the word corresponding to the
concatenation of the vectors u and w.

Problem 2: Let zA and zB be two integers less than or equal to k . Let LA be a list of
elements in ({0, 1}s)zA and LB be a list of elements on ({0, 1}s)zB . The Problem 2 consists
on finding all triples (a, b, c) with a ∈ LA, b ∈ LB and c ∈ LC = ({0, 1}s)k such that

f(c)⊕ f(c⊕ (a, 0s(k−zA))) = (b, 0s(k−zB)),

where there exists the function F1 : ({0, 1}s)k → ({0, 1}s)k and some permutations of
{0, 1}s, g1, . . . , gk and h1, . . . , hk over {0, 1}s such that

f = H ◦ F1 ◦G

where

G : ({0, 1}s)k → ({0, 1}s)k

(x1, . . . , xk) → (g1(x1), . . . , gk(xk))

and

H : ({0, 1}s)k → ({0, 1}s)k

(x1, . . . , xk) → (h1(x1), . . . , hk(xk))

It is worth noting that we assume that both decompossitions φ and ψ have been cho-
sen in an appropriate way such that the zA words of a (respectively the zB words of b)
correspond to the first words of the input state (respectively of the output state). We call

F

f

١ ١ ١ ١

Φ

g1 h1

gzA
zA zA

F
1

ψhzB
zB zB

gk hk

Fig. 5: Representation of F from Problem 2.

stop-in-the-middle algorithms those that solve Problem 2 following the main general scheme
described in Fig. 6. The complexities associated depend on the particular form of F1, as
we show in the next sections.

Fig. 6 General scheme of stop-in-the-middle algorithms.

1: for each b in LB do
2: for each j ∈ [1, . . . , zB] do
3: for each yj ∈ {0, 1}s do
4: add (h−1

j (yj), h
−1
j (yj)⊕ h−1

j (yj ⊕ bj)) to Lj,b.
5: for each a in LA do
6: for each i ∈ [1, . . . , zA] do
7: for each xi in {0, 1}s do
8: add (gi(xi), gi(xi)⊕ gi(xi ⊕ ai)) to Li.
9: Using the previous lists Li and Lj,b, match in the middle using F1, i.e. construct the list

Laux = {(x, b1, . . . , bzB), x ∈ ({0, 1}s)k} such that
((F1[g1(x1), . . . , gzA(xzA), x∗)], F1[g1(x1 ⊕ a1), . . . , gzA(xzA ⊕ azA), x∗)]) =`
(h−1

1 (y1), . . . , h
−1
zB

(yzB), y∗), (h−1
1 (y1 ⊕ b1), . . . , h

−1
zB

(yzB ⊕ bzB), y∗)
´

for some x∗ ∈ ({0, 1}s)k−zA and y∗ ∈ ({0, 1}s)k−zB .
10: for all (x, b1, . . . , bzB) in Laux do
11: if b = (b1, . . . , bzB) ∈ LB then
12: add (a, b, x) to Lsol.
13: Return Lsol.

In the cases we have studied and that we detail below, the function f is formed by several
AES transformations in parallel. We then expect 2lA+lB solutions, as for each a ∈ LA and

each b ∈ LB there exists one c ∈ LC so that the condition of Problem 2 holds. The match-
in-the-middle step is assumed to be simple due to the simple form of F1 (typical functions
F1 are linear diffusion layers). For the same reason, Laux can typically be written in a
compact way, for example, in several independent lists.

3.1 Algorithm for Lane-256

Each lane of the internal state of Lane-256 is composed of two AES states. An AES
state is a state of size 128 bits that can be seen as a 4×4 matrix of bytes. The AES
transformations are noted: SB for SubBytes, SR for ShiftRows and MC for MixColumn.
The transformation SC mixes the two AES states at the end of each round by interchanging
their columns. We consider Fig. 7 that represents a part of the differential path used in [12].
In that attack it was treated as the merging of two inbounds and 264 solutions were found
with a complexity of 296 in time and 288 in memory. We consider the scheme represented in
Fig. 7 where we have swapped lines and columns for a more easy intuitive understanding
(so SR is applied to the columns and MC is applied to the lines).

x* x* 3 4
x* x* 3 4

4 4 4 4 4 4 4 4 4 x* x* 3 8 8 8 8

SB SR MC SC 3 3 3 3 SB 3 3 3 3 SR 3 4 x* x* MC 7 7 7 7 SC SB SR4 3 2 1 4 3 2 1 4 4 4 4 4 4 4 4 x* x* 1 2 8 8 8 8 8 8 8 8 8 5 6 7
3 2 1 4 3 2 1 4 3 3 3 3 3 3 3 3 x* x* 1 2 7 7 7 7 7 7 7 7 7 8 5 6
2 1 4 3 2 1 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 x* x* 1 6 6 6 6 6 6 6 6 6 6 6 6 6 7 8 5
1 4 3 2 1 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 x* x* 5 5 5 5 5 5 5 5 5 5 5 5 5 6 7 8

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

g
i F

1
h
j
- 1

Fig. 7: Differential path associated to the first improvement on the Lane analysis.

Using the example from [12], lA = 32 and lB = 32 and LC is the list of all possible
input values and needs to be neither stored nor computed. We consider that the input state
(respectively the output state) of the function f presented in Fig. 7 is decomposed into
eight 32-bit words (i.e. s = 32 and k = 8). The input differences and output differences
that we consider in LA and LB correspond to the first zA = zB = 4 32-bit words of the
state. In Fig. 7 each one of the 4 + 4 = 8 32-bits active word corresponds to the four active
bytes with the same number written on them (1 to 4 for the four active input words and
5 to 8 for the 4 active output words).

With the algorithm described in Fig. 8 we find the 264 solutions with a complexity
of 266 in time and 265 in memory. The time complexity associated to the studied path is
zB2lB+32 + 2lA+32. This comes from the fact that each Li has average size 216. Then, L5,6

and L7,8 have size 2lB+32. Then the size of both L0
aux and L1

aux is 2lB since in each we keep

Fig. 8 Algorithm for solving two inbounds of Lane-256.

Require: Function f and lists LA and LB of differences in #1 and #11 respectively.
Ensure: List Lsol = {(a, b, c) such that f(c⊕ (a, 0s(k−zA)))⊕ f(c) = (b, 0s(k−zB))}.
1: for each b in LB do
2: for i from 5 to 8 do
3: for each y ∈ {0, 1}32 do
4: if h−1

i (y)⊕ h−1
i (y ⊕ bi) has only the two wanted bytes active (see #7 of Fig. 7) then

5: Store (y, bi, h
−1
i (y), h−1

i (y ⊕ bi)) in Li, where the last two terms are truncated to the 2 active
bytes.

6: for each (y5, b5, u5, w5) from L5 and (y6, b6, u6, w6) from L6 do
7: Add (u5, w5, u6, w6, y5, y6, b5, b6) in L5,6 indexed by the values of the u5, w5, u6, w6 operations.
8: for each (y7, b7, u7, w7) from L7 and (y8, b8, u8, w8) from L8 do
9: Add (u7, w7, u8, w8, y7, y8, b7, b8) in L7,8 indexed by the values of the u7, w7, u8, w8 operations.

10: Empty L5, L6, L7 and L8.
11: for each a in LA do
12: for i from 1 to 4 do
13: for each xi ∈ {0, 1}32 do
14: if gi(xi)⊕ gi(xi ⊕ ai) has only the two wanted bytes active (see #4 of Fig. 7) then
15: Store (xi, gi(xi), gi(xi ⊕ ai)) in Li, where the two last terms are truncated to the 2 active

bytes.
16: for i from 0 to 1 do
17: for each (x2i+1, u2i+1, w2i+1) in L2i+1 and (x2i+2, u2i+2, w2i+2) in L2i+2 do
18: if there exists an element in L5+2i,6+2i indexed by (u2i+1, w2i+1, u2i+2, w2i+2) then
19: Add (x2i+1, x2i+2, b5+2i, b6+2i) to Li

aux indexed by (b5+2i, b6+2i).
20: for each (x1, x2, b5, b6) in L0

aux do
21: for each (b7, b8) such that (b5, b6, b7, b8) ∈ LB do
22: if there exists an element in L1

aux indexed by (b7, b8) then
23: add (a, (b5, b6, b7, b8), (x1, x2, x3, x4)) to Lsol.
24: Return Lsol.

the pairs of elements that match on 4 active bytes, and this happens with a probability
of 2−64 (32 values and 32 differences); and the number of possible pairs is 216+16+lB+32.
The memory complexity is 2lB+32+1 + 232+1 + 2lA+lB for obtaining 2lA+lB solutions. We
explain in Section 4.5 how this algorithm allows to considerably reduce the complexity of
the Lane-256 semi-free-start collision presented in [12] when applied jointly with other
improvements concerning other steps of the attack.

3.2 Algorithm for ECHO-256

An ECHO-256 state is a state of size 2048 bits that can be seen as a 4×4 matrix of
AES states. The ECHO operations BigSR, BigMC and BigSB are similar to the AES
ones, but they operate on AES states instead of bytes. A SuperSbox is an Sbox defined
by SR ◦ SB ◦ MC ◦ SR ◦ SB. Applied on an AES state, it can be seen as a 32×32 Sbox.
We define a SuperSbox set as each one of the 4 (in the AES state) sets of bits that act
as input and output of the SuperSbox. We define a BigSuperSbox as an Sbox defined by

BigSR ◦ BigSB ◦ BigMC ◦ BigSR ◦ BigSB. Applied to ECHO it defines 4 sets of size 4
AES-states.

We consider Fig. 9, where each column represents the four AES states that form a
BigSuperSbox at a certain state #i, for i from 1 to 13. Each possible differences in #1 in
LA consist of zA = 12 32-bit words and the possible differences in #13 consist of zB = 8
32-bit words, where LB can be written as LB = LB1 × LB2 with both LB1 (associated to
AES state B1 in Fig. 9) and LB2 (associated to AES state B4) are subsets of ({0, 1}32)4

each of size 232 (this is a particular case which has to be adapted in other cases). Finding
solutions for this differential path with the previously mentioned conditions is a problem
proposed in [17] and was solved in such a way that 232 solutions could be found with a
complexity of 2128 in time and 237 in memory. We propose here a new algorithm that can
solve it for obtaining 264 solutions with the same time complexity and a memory of 267.
Variants of our algorithm can be applied in several cases, like when the transition in #7
to #8 is from 2 active states to 3, or from 1 to 4 or from 4 to 1. Additionally we believe
that it can improve the complexity of other future attacks on ECHO-256.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 X X Y Y 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
4 1 2 3 SB 4 1 2 3 SR 1 2 3 4 MC 1 2 3 4 SB 1 2 3 4 SR 2 3 4 1 MC Y X X Y 4 1 2 3 SB 4 1 2 3 SR 1 2 3 4 MC 1 2 3 4 SB 1 2 3 4 SR 2 3 4 1
3 4 1 2 3 4 1 2 1 2 3 4 1 2 3 4 1 2 3 4 3 4 1 2 Y Y X X 3 4 1 2 3 4 1 2 1 2 3 4 1 2 3 4 1 2 3 4 3 4 1 2
2 3 4 1 2 3 4 1 1 2 3 4 1 2 3 4 1 2 3 4 4 1 2 3 X Y Y X 2 3 4 1 2 3 4 1 1 2 3 4 1 2 3 4 1 2 3 4 4 1 2 3

SB SR MC SB SR MC SB SR MC SB SR
Big

5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 O O MC8 5 6 7 SB 8 5 6 7 SR 5 6 7 8 MC 5 6 7 8 SB 5 6 7 8 SR 6 7 8 5 MC O O SB SR MC SB SR7 8 5 6 7 8 5 6 5 6 7 8 5 6 7 8 5 6 7 8 7 8 5 6 O O
6 7 8 5 6 7 8 5 5 6 7 8 5 6 7 8 5 6 7 8 8 5 6 7 O O
9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12 O O 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
12 9 10 11 SB 12 9 10 11 SR 9 10 11 12 MC 9 10 11 12 SB 9 10 11 12 SR 10 11 12 9 MC O O 8 5 6 7 SB 8 5 6 7 SR 5 6 7 8 MC 5 6 7 8 SB 5 6 7 8 SR 6 7 8 5
11 12 9 10 11 12 9 10 9 10 11 12 9 10 11 12 9 10 11 12 11 12 9 10 O O 7 8 5 6 7 8 5 6 5 6 7 8 5 6 7 8 5 6 7 8 7 8 5 6
10 11 12 9 10 11 12 9 9 10 11 12 9 10 11 12 9 10 11 12 12 9 10 11 O O 6 7 8 5 6 7 8 5 5 6 7 8 5 6 7 8 5 6 7 8 8 5 6 7

g
i F

1
h
j
-1

A1 B1

A2 x* B2

y*
A3 B3

A4 B4

Fig. 9: Differential path on a BigSuperSbox of ECHO-256.

The list LC contains all the possible values for the input state. This list needs to
be neither computed nor stored. Here the aim is to find for each possible (a, b1, b2) in
LA × LB1 × LB2 the associated c so that f(c) ⊕ f(c ⊕ (a, 0s(k−zA)) = (b1, b2, 0s(k−zB)). In
Fig. 9 we can see how the function f can be written in the way requested by Problem 2.
We omit the operation BigSR as it does not affect the states, as well as the round keys
that are taken into account in the different gi and hj . For the sake of simplicity we consider
in Fig. 9 the list LB of possible differences before the last MC of the BigSuperSbox. This
can be done by a simple transformation MC−1 of the differences in #B’ (see Fig. 12). The
grey bytes represent the bytes with differences. We can observe that, from #1 to #6 there
are zA = 12 independent active SuperSbox sets (s = 32), denoted in Fig. 9 by a number
from 1 to 12. To each of these groups we can associate a difference from LA and a value

from LC at state #1 and we can apply independently gi, i ∈ [1, . . . , 12] to obtain the value
and the difference of the group in #6. The same way, from #8 to #13 there are zB = 8
independent active SuperSbox sets and the corresponding functions h−1

i , i ∈ [1, . . . 8] that
link state #13 with state #8. The function F1 =MC◦BigMC takes a complete internal
state in #6 and computes the corresponding state in #8. Let f(x) = y, and let d#7

i the
ith active diagonal in state #7. Without knowing the values of x∗ nor of y∗ represented in
Fig. 9 we can still write the following equations that have to be verified, that are obtained
from BigMC, and that are used in the algorithm:

2× d#7
i ⊕ d#7

i+4 ⊕ d#7
i+8 ⊕ 9× d#7

i ⊕ 3× d#7
i+4 ⊕ 6× d#7

i+8 = h−1
i (yi)⊕ 3× h−1

i+4(yi+4) (1)

for i ∈ 1, . . . , 4 where the multiplication corresponds to the one in the definition of MC
applied independently to each byte of the diagonal.

We consider that the input state (respectively the output state) of the function pre-
sented in Fig. 9 is decomposed into sixteen 32-bit words (i.e. s = 32 and k = 16). The input
differences (respectively output differences) that we consider in LA (LB) correspond to the
first zA = 12 (zB = 8) 32-bit words of the state. In Fig. 9 each one of the 12 (respectively
8) 32-bits active word from the input (respectively the output) corresponds to the four
active bytes with the same number written on them (1 to 12 for the twelve active input
words and 1 to 8 for the eight active output words).

Let VX (VY , VO respectively) be the values at the positions in #7 marked with an X

(Y , O) and ∆X (∆Y , ∆O) their differences. Let ∆#r
j′ be an auxiliary variable denoting the

difference for the SuperSbox set j′ in state #r. The algorithm is described in Fig. 10.
So the time complexity is O(zB2lB1

+s +zB2lB2
+s +zA2s +2lA+64(2lB1 +2lB2 +2lB1 2lB2 +

zA264)). The memory complexity is O(zB2lB1
+s + zB2lB2

+s + 2lB1
+lB2 + |Lsol|). In the case

of lA = 0, we will obtain a complexity of 2129 in time and 266 in memory for obtaining
264 solutions. This algorithm proposes several trade-offs when changing the values of |∆X |,
and can be adapted for other forms of LB.

4 How to improve the best known attacks on five SHA-3 candidates

In this section we first enumerate briefly the main algorithms or ideas that we use to
improve the best known attacks on each of the hash functions JH, Grøstl, ECHO, Luffa
and Lane as shown on Table 1. Then, we provide more detailed descriptions.

– JH: To improve the complexities over the ones in [16] we use the instant-matching
(as in Section 2.1) and gradual-matching algorithms as well as the fact that we do not
merge the lists until we really have to (to keep lists of smaller sizes, with a smaller
complexity).

– Grøstl: Instead of the initial lists used in [15], we can define them so that we erase
the elements that for sure won’t verify the outbound part. Having lists of smaller size
translates to a smaller complexity.

Fig. 10 Algorithm for finding solutions for one ECHO BigSuperSbox.

Require: Function f , list LA of differences in #1 and lists LB1 and LB2 of differences in #13.
Ensure: List Lsol = {(a, b1, b2, c), such that f(c)⊕ f(c⊕ (a, 0s(k−zA))) = (b1, b2, 0s(k−zB))} .
1: for j from 1 to 4 do
2: for each yj ∈ {0, 1}32 and for each b1 from LB1 do
3: Store (h−1

j (yj), h
−1
j (yj)⊕ h−1

j (yj ⊕ b1
j)) in Lj

#8,b1
(one of 4× 232 lists of size 232).

4: for j from 5 to 8 do
5: for each yj ∈ {0, 1}32 and for each b2 from LB2 do
6: Store (h−1

j (yj), h
−1
j (yj)⊕ h−1

j (yj ⊕ b2
j)) in Lj

#8,b2
(one of 4× 232 lists of size 232).

7: for each a in LA do
8: for i from 1 to 12 do
9: for each xi ∈ {0, 1}32 do

10: Store (gi(xi), gi(xi)⊕ gi(xi, ai)) in Li
#6.

11: for ∆X from 0 to 264 − 1 (and not the 128 bits as done in [17]) do
12: Compute ∆O (with linear conditions of inactive states in #8) and ∆#8

j′ for j′ ∈ {1, 2, 5, 6} (with
BigMC).

13: for each b1 in LB1 and for j = [1, 2] do
14: Find an element in Lj

#8,b1
such that h−1

j (yj) ⊕ h−1
j (yj ⊕ b1

j) = ∆#8
j and store

(h−1
1 (y1), ∆

#8
1 , h−1

2 (y2), ∆
#8
2 , b1) in Laux1 .

15: for each b2 in LB2 and for j = [5, 6] do
16: Find an element in Lj

#8,b2
such that h−1

j (yj) ⊕ h−1
j (yj ⊕ b2

j) = ∆#8
j and store

(h−1
5 (y5), ∆

#8
5 , h−1

6 (y6), ∆
#8
6 , b2) in Laux2 .

17: for each (h−1
1 (y1), ∆

#8
1 , h−1

2 (y2), ∆
#8
2 , b1) in Laux1 and for each (h−1

5 (y5), ∆
#8
5 , h−1

6 (y6), ∆
#8
6 , b2)

in Laux2 do
18: Compute V ′

1 = h−1
1 (y1) ⊕ 3 × h−1

5 (y5) and V ′
2 = h−1

2 (y2) ⊕ 3 × h−1
6 (y6), and store

((h−1
1 (y1), ∆

#8
1 , h−1

2 (y2), ∆
#8
2 , b1), (h−1

5 (y5), ∆
#8
5 , h−1

6 (y6), ∆
#8
6 , b2)) in a hash table T indexed

by these (V ′
1 , V ′

2).
19: for ∆Y from 0 to 264 − 1 do
20: Determine by BigMC ∆#8

j′ for j′ = 3, 4, 7, 8; and ∆#6
j for j ∈ [1, . . . , 12].

21: for i from 1 to 12 do
22: Find the element from Li

#6 such that gi(xi)⊕ gi(xi, ai) = ∆#6
i .

23: Compute with them by MC the values d#7
i of the active diagonals in #7 and then

Vj = 2× d#7
j ⊕ d#7

j+4 ⊕ d#7
j+8 ⊕ 9× d#7

j ⊕ 3× d#7
j+4 ⊕ 6× d#7

j+8 for j = 1, 2.

24: if there is an element such that V ′
1 = V1 and V ′

2 = V2 in T (one on average, determines b1 and
b2) then

25: Find from Lj′

#8,b1
the element (h−1

j′ (yj′), ∆#8
j′) for j′ = 3, 4. This determines y3 and y4.

26: Find from Lj′

#8,b2
the element (h−1

j′ (yj′), ∆#8
j′) for j′ = 7, 8. This determines y7 and y8.

27: if with these values of (h−1
j′ (yj′), j′ = 3, 4, 7, 8 and the ones obtained in step 22 of gi(xi) for

i = 3, 4, 7, 8, 11, 12 that we have not used yet, the equation (1) for i = 3, 4 derived from F1 can
be verified (happens with a probability of 2−64) then

28: The value x∗ is determined. Add the element (x1, . . . , xzA , x∗, a, b1, b2) to Lsol

29: Return Lsol, containing about 264+lA elements.

– ECHO: Using conviniently the algorithm from Section 3.2 we provide better trade-offs
improving the time complexity from [17].

– Luffa: The parallel-matching algorithm is applied in [10], improving the time complex-
ity over the brute force merging method by increasing the memory requirements. If we
apply instead the gradual-matching algorithm (with three layers), the time complexity
can still be better than the brute force one while the memory needs are not increased.

– Lane: In the cases of Lane-256 and Lane-512 several improvements are applied at
different steps of the attacks from [12]. They use the instant-matching algorithm, as
well as some more appropriate ways to formulate the problem, as shown in Appendix A,
and the algorithms from Section 3.1 and from Appendix B.

For a detailed description of the hash functions, we refer to their SHA-3 submission
documents. As those attacks are quite complex, we do not explain here all the details,
but we give the information needed for identifying the problem, referring in each case to
the corresponding attack. These improvements are based on the algorithms that we have
described in this paper as well as on recognizing the situations where they can be applied.
This way we are able to reduce the overall complexity of the attacks.

4.1 JH

For simplicity, we consider here the attack on JH with d = 4 for 8 rounds when using the
three-inbound attack given in [16] with a complexity of 232.09 in time and 224.18 in memory.
We shall see here how, when we apply one of the previously introduced algorithms, this
complexity can be significantly improved. For d = 8 the improvement is performed the
same way for the three-inbound attack on 19 and 22 rounds, and it is simpler in the case of
one-inbound for 16 rounds. The three-inbound attack for d = 4 uses the differential path
represented in Fig. 11, where #0 represents the initial internal state and #8 the final one.
The colored parts are the parts with a difference. Each small square represents the 4×4
Sbox for rows from 0 to 15, and each rectangle represents the linear permutation on 8 bits.
Each wire conrresponds to 4 bits.

To improve this attack, we use the algorithms from Sections 2.1 and 2.2. Besides,
we consider the same three inbounds as in [16] but we sometimes keep two non-overlaping
groups of solutions per inbound (instead of merging them into one). Without this, we could
still improve the time complexity, but this would be limited by the size of the intermediate
lists stored, 224.18. Keeping two lists instead of one means that their size will be smaller.
We start the attack as in [16] by finding the possible solutions for the first inbound (from
round #0 to the beginning of round #2), storing a list LA of 211.36 solutions with a cost
of 216.

We consider the third inbound, from round #5 to the beginning of round #7. In this
part, we obtain two sets of 216, each one associated to a list: L5

0,1,8,9 and L5
2,3,10,11. This is

done by first building the lists, L0,1, L8,9, L2,3 and L10,11 of size 211.91 each verifying the

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Fig. 11: Differential path for d = 4 of JH of the three-inbound attack.

conditions from #6. Next the two first ones are merged in the same way as the Example 1
of Section 2.1 using the instant-matching algorithm. The list L5

0,1,8,9 is obtained. We do the
same with lists L2,3 and L10,11 to obtain L5

2,3,10,11, both of size 216. The cost of this phase
is 217.

Next, for rounds #3 and #4 we will repeat the same procedure at the same cost for
obtaining two sets of solutions for these two rounds: L3

0,1,2,3 and L3
8,9,10,11 of size also 216.

We will now merge these two lists and the list LA. Merging L3
0,1,2,3 and L3

8,9,10,11 determines
3.91 × 2 bit conditions and, for merging both of them with LA, 16 bit conditions need to
be verified (from the two active 4-bit words where they collide). Merging these three lists
can be done by first applying a gradual-matching to L3

0,1,2,3 and LA using the groups of
differences. Next, we can apply an instant-matching with the partial solutions and list
L3

8,9,10,11. As a result, a new list LB of size 219.54 is obtained with a cost of 219.54. The
elements of this list are solutions for the rounds #0 to #5. Next, in a similar way we will
merge LB with L5

0,1,8,9 and L5
2,3,10,11 (here there are 32 bit conditions to verify), and we will

obtain 219.54 solutions that verify the merge (and so rounds from #0 to #7) with a cost
of 219.54. For each solution, we check if it also verifies round #8 (3.91× 2 bit conditions),
obtaining 211.72 solutions (as in [16], before taking the symmetries into account). The
complexity of the attack using our algorithm is then 219.54 in time and 219.54 in memory,
improving the previous complexity of 232.09 in time and 224.18 in memory. Similarly as
we have shown for d = 4 and 8 rounds, we can identify the same problem and apply the
algorithms of Sections 2.1 and 2.2 to the attack on 19 and 22 rounds of [16] that uses
three-inbound attacks and has a complexity of 2168.02 in time and 2143.70 in memory, so

that it can also be improved using the same algorithm, and having a final complexity of
295.63 in time and memory. The 16-round attack with one-inbound attack of [16], can also
be improved to 296.12 in time and memory, while its complexity was 2190 in time and 2104

in memory.

4.2 Grøstl

In this case we do not apply one of the algorithms but we state again the importance of
identifying the best problem to solve. Here, we consider the results on Grøstl-256 presented
in [15], where, in particular, distinguishers are given for the full compression function as
well as for the internal permutation. We can improve by a factor of 210 or 217 (depend-
ing on the differential path considered) their time complexities. In this case, instead of
finding a new algorithm (the corresponding part of the path can be directly solved with
a SuperSbox precomputation) we have identified a better problem to solve: the lists LA

and LB, representing differences in the input and in the output of the SuperSbox phase
respectively, can have a smaller size than considered in [15]. They were built with all the
possible differences, but we noticed that they can be smaller by just storing the differences
that we know for sure might also satisfy the outbound phase. The factor that we are going
to gain will depend on the number of active columns in the input (Ni) and the number of
active columns in the output (No). So instead of merging two lists of size 2lA = 264Ni and
2lB = 264No , we have to merge one list of size 2lA = 263Ni and one list of size 2lB = 256No .
The algorithm applied to merge these lists is the same one as in [15], obtaining a complexity
in time of 263Ni+56No instead of 264(Ni+No). This is possible because in this attack the one
byte differences introduced by the constants additions have a fixed value, implying that the
number of possible differences at the input and output of the SuperSbox will be smaller.
In the 10-round compression function analysis this improves from 2192 to 2182 and in the
permutation distinguisher from 2192 to 2175. In the case of Grøstl-512 we can improve time
complexity of the analysis on 11 rounds of the compression function from 2640 to 2630.

4.3 ECHO-256

In [17] an analysis of the whole ECHO-256 permutation is provided which has complexity
2182 in time and 237 in memory. By studying in detail this analysis we have been able to
provide some trade-offs that were previously unknown and that allow to improve the time
complexity. For example, we can perform the same attack with a complexity 2151 in time
and 267 in memory. We consider the differential path given in [17]. In Fig. 12, the inbound
part is represented. We need to find 286 solutions of this part in order to satisfy also the
outbound part. In Fig. 12, the BigSB are decomposed into the AES operations (2 rounds,
where we omit operations that do not influence the differential path) and we can see how
two BigSB can be seen as a BigSuperSbox (from #A to #B’), where the sets formed by
it have the form of the highlighted sets of four AES states. For finding solutions for each

one of this 4 BigSuperSbox we can apply the algorithm from Section 3.2. As with one
element from LA we obtain 264 solutions, we will have to iterate the algorithm over 222

different a. For reducing the memory needs, we will find solutions for the whole inbound
considering lA = 0 and next we will repeat the process for 222 different a. The elements
in LB1 (LB2) are generated by the 232 possible differences in the AES state (0, 0) (1, 1
respectively) in #β. We then apply the algorithm from Section 3.2 to each BigSuperSbox

SR
Big Big

SB
MC

SR MC

#A

SR MC SB SR MC

Big Big

SB

SR MC

SR MC SB SR MC

Big Big

SR MC

#B #B'

Represents one of the four BigSuperSbox

Grey bytes represent SuperSbox groups

#α

#β

Fig. 12: Inbound part of the differential path on ECHO. A number of 286 solutions needs
to be found for satisfying the outbound part.

set, obtaining 4 associated sets of solutions of size 264+lA = 264. Each element from one set
will be associated to an unique 3-tuple of elements from the other groups: the ones that
were generated by the same difference in #β (that define the b1, b2 differences). This gives
in total 264 solutions for the whole inbound phase. As said previously, if we repeat this
procedure for 222 distinct differences in #α (that define the a differences) we will obtain
the 286 needed solutions with a time complexity of 2151 and memory of 267.

4.4 Luffa

In [10], a way of finding a semi-free-start collision is provided for 7 rounds out of 8. This
is done by using the differential path represented in Fig. 13, where each small square
represents one bit, and the colored ones are the ones with differences. This path is solved
by first, finding solutions for the possible differences of the path from #1 to #7 (in LA).
In parallel the possible differences are found for the part of the path from #8 to #14 (in
LB). State #7 is separated from #8 by 64 4×4 Sboxes. Among them, 52 are active. We
want to keep the possible differences for the whole path from #1 to #14. In this case, the
problem is very easy to identify: we have two lists of differences, one of differences of the
inputs of 52 active Sboxes, the other one of the outputs of these 52 active Sboxes. We can

apply the gradual-matching or the parallel-matching algorithms, as we did in Example 2.
In [10] the parallel-matching was applied, reducing the time complexity from 2132.6 to 2104,
while the memory complexity increases to 2102. We can also apply the gradual-matching
algorithm with z′ = 16 and obtain an improved time complexity of 2112.9 while the memory
complexity stays the same (268.8).

MWSB

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

#1
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30

29
28
27
26
25
24
23
22
21
2019

18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30

29
28
27
26
25
24
23
22
21
2019

18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

#2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

MWSB MWSB MWSB MWSB MWSB SB

Fig. 13: Differential path used in the rebound attack from [10] on Luffa.

4.5 Lane-256

The analysis in [12] provides a way of finding a semi-free-start collision for the complete
compression function of Lane-256 with a complexity of 296 in time and 288 in memory. In
this section we are going to identify 2 concrete problems extracted from this attack, and
by applying two of the previously described algorithms, we are able to reduce the total
complexity of the attack to 280 in time and 266 in memory, or more precisely, to 280 in

time and 258 in memory + 264 in time and 266 in memory. We are not going to describe in
detail here the analysis from [12], but we give the information needed for identifying and
defining the problem to be treated by the corresponding algorithm.

First problem: In this attack, the first three steps aim at finding 256 solutions for two
inbounds in 4 independent lanes. Each one of the four lanes represents an independent and
similar problem. Instead of looking at it as three steps, we are going to unify it in just
one, and we will use the differential path from Fig. 7. We can now build the list of possible
differences in the input: from five active bytes, we can obtain 240 possible differences in the
input, before the first SB considered. We store 232 out of these 240 and this forms the list
LA. We can do the same with the possible differences in the output: out of a totally full
active AES state, we want to reach a position with only 4 active bytes. The list LB will be
formed by all the 232 possible differences in the output after the last Sbox considered (in
the two inbounds). We want to merge these two lists keeping the differences that can verify
the whole path defined by the two inbounds and to recover the associated values. So we
want to obtain a total of 264 values and differences as solutions. There is an extra condition
of one byte before the differential path from Fig. 7, so we finally obtain 256 solutions. We
will directly apply the algorithm from Section 3.1. The cost of this step was 296 in time
and 288 in memory (it was the bottleneck for time and memory). Now, we can perform
these two inbound phases with a complexity of 266 in time complexity and 265 in memory.
As this step is not bottleneck anymore for the attack, we can now try to reduce the rest of
the complexities.

Second problem: Once the previous step is finished we have obtained 256 solutions for the
first two inbounds, for each lane (four lists of values and differences). They need to be
merged so that they verify the message expansion. In [12] this is done in steps 4 and 5 with
a complexity of 280 in time and memory. This memory complexity can be reduced to 248

by directly applying the example from Section A.1, obtaining 264 solutions for this step
and giving the new bottleneck of the time complexity of the attack: 280. The last part of
the attack is the same as in [12], and corresponds to the bottleneck in memory: 264 × 4.

4.6 Lane-512

A semi-free-start collision attack is given in [12] for the whole compression function of
Lane-512 with a complexity of 2224 in time and 2128 in memory. Applying three of the
previously described algorithms we can reduce this memory complexity from 2128 to 266.
At this aim, we have to identify 3 problems.

First problem: The original first step in the attack on Lane-512 leads to 4 lists of 268

solutions for a first inbound. We realized that, as it is possible to change the number of
active bytes at the beginning of each lane from 6 to 4, obtaining 256 solutions is enough.
Steps 2 and 3 merge these 4 lists for finding one solution that verifies also the message

expansion. We can apply, as we did before, the example from Section A.1. We obtain one
solution with complexity 256 in memory and 280 in time, instead of the previous 288 in time
and memory.

Second problem: In the attack on Lane-512, in the Starting Points phase, four lists of values
are built, of size 264. The Merge Lanes and Message Expansion phases need a complexity
of 2128 in time and 2128 in memory. We can instead apply the example from Section A.2.
With a complexity of 2192 in time and 264 × 4 in memory we can obtain the 2128 starting
points needed for repeating the rest of the attack enough times until we find one solution
for the whole path (and so a semi-free-start collision). We do not need to store these 2128

starting points, because we can perform the rest of the attack as soon as we find one. This
way, the memory complexity does not go beyond 264, and the time complexity, though
higher, is not the bottleneck.

Third problem: In [12], the second merge of inbound phases (that finds a collision between
two lanes) needs a memory of 296×4. With the previous improvements, the memory needed
is 264, so we want to reduce the memory needs of this last phase to 264. We have three lists
of 232 elements for each of the two lanes of the same branch (6 in total). Instead of merging
the three lists into a new one of size 296, as done in [12], we can apply the algorithm from
Appendix B. This way we will only store a list of 264 elements.

5 Conclusion

The main contributions of this paper can be classified in three groups. First, we propose
several algorithms for solving the problem which constitutes the bottleneck of most rebound
attacks, leading to improvements of the previously known complexities.

Secondly, we highlight with some examples the importance of identifying the situations
that could help improving the complexity of this type of attacks and we show how to find
the problems in each particular case that will provide the best overall complexity. This is
often a difficult task due to the high technicality of the attacks and algorithms.

Finally, the previous two contributions lead to improvements of most of the best known
rebound attacks applied to the SHA-3 candidates JH, Grøstl, Luffa, ECHO-256 and Lane.
It is important to point out that we just tried to improve the complexities of existing
attacks. However, the work presented in this paper can be very useful for future rebound
attacks, in particular we believe that the attacks on JH and on the compression function
of ECHO can be improved (extending the number of rounds attacked) by exploiting the
algorithms and ideas presented here. Finally, we believe that some of these algorithms,
specially those of Section 2, will be applicable in other contexts besides rebound attacks.

Acknowledgements

The author would like to thank Willi Meier, Simon Knellwolf, Marine Minier, Thomas
Peyrin, Martin Schläffer, Joana Treger and Fabien Viger for many helpful comments and
discussions. A special mention is needed for Anne Canteaut and Andrea Röck for all the
help and suggestions to improve this paper.

References

1. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool Hashing Function, revised in 2003.
2. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M., Seurin, Y.: Sha-3

proposal: ECHO. Submission to NIST (updated) (2009)
3. Camion, P., Patarin, J.: The knapsack hash function proposed at Crypto’89 can be broken. In: EURO-

CRYPT. Lecture Notes in Computer Science, vol. 547, pp. 39–53. Springer (1991)
4. Canniere, C.D., Sato, H., Watanabe, D.: Hash Function Luffa: Specification. Submission to NIST

(Round 2) (2009)
5. Canteaut, A., Naya-Plasencia, M.: Structural weaknesses of permutations with low differential unifor-

mity and generalized crooked functions. In: Finite Fields: Theory and Applications - Selected papers
from the 9th International Conference Finite Fields ans applications. Contemporary Mathematics, vol.
518, pp. 55–71. AMS (2010), http://www-rocq.inria.fr/secret/Maria.Naya Plasencia/papers/canteaut-
nayaplasencia.pdf

6. Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: An algorithmic point of view. In: EURO-
CRYPT. Lecture Notes in Computer Science, vol. 2332, pp. 209–221. Springer (2002)

7. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thom-
sen, S.S.: Grøstl – a SHA-3 candidate. Submitted to the SHA-3 competition, NIST (2008),
http://www.groestl.info

8. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-like permutations. In:
FSE. Lecture Notes in Computer Science (2010), to appear

9. Indesteege, S.: The Lane hash function. Submitted to the SHA-3 competition, NIST (2008),
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf

10. Khovratovich, D., Naya-Plasencia, M., Røck, A., Schläffer, M.: Cryptanalysis of Luffa v2 components.
In: SAC. Lecture Notes in Computer Science, vol. 6544, pp. 388–409 (2010)

11. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound Distinguishers: Results
on the Full Whirlpool Compression Function. In: ASIACRYPT. Lecture Notes in Computer Science,
vol. 5912, pp. 126–143. Springer (2009)

12. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound Attack on the
Full Lane Compression Function. In: ASIACRYPT. Lecture Notes in Computer Science, vol. 5912, pp.
106–125. Springer (2009)

13. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Re-
duced Whirlpool and Grøstl. In: Fast Software Encryption - FSE 2009. Lecture Notes in Computer
Science, vol. 1008. Springer (5665)

14. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of the reduced Grøstl
compression function, ECHO permutation and AES block cipher. In: Jacobson, Jr., M.J., Rijmen, V.,
Safavi-Naini, R. (eds.) Selected Areas in Cryptography. Lecture Notes in Computer Science, vol. 5867,
pp. 16–35. Springer (2009)

15. Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Advances in Cryptology - CRYPTO
2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6223, pp. 370–392. Springer (2010)

16. Rijmen, V., Toz, D., Varici, K.: Rebound Attack on Reduced-Round Versions of JH. In: FSE. Lecture
Notes in Computer Science, vol. 6147, pp. 286–303 (2010)

17. Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-Full-Active Super-Sbox Analysis Applications
to ECHO and Grøstl. In: ASIACRYPT. Lecture Notes in Computer Science, vol. 6477, pp. 38–55 (2010),
to appear

18. Schroeppel, R., Shamir, A.: A T=O(2n/2), S=O(2n/4) algorithm for certain NP-complete problems.
SIAM J. Comput. 10(3), 456–464 (1981)

19. Wagner, D.: A generalized birthday problem. In: CRYPTO. Lecture Notes in Computer Science, vol.
2442, pp. 288–303. Springer (2002)

20. Wu, H.: The hash function JH. Submission to NIST (updated) (2009), http://icsd.i2r.a-
star.edu.sg/staff/hongjun/jh/jh round2.pdf

21. Wu, S., Feng, D., Wu, W.: Cryptanalysis of the Lane hash fonction. In: SAC 2009 - Selected Areas in
Cryptography. Lecture Notes in Computer Science, Springer (2009)

A Importance of Identifying the Appropriate Problems

Here we present some improvements of two different steps of the attacks against Lane
presented in [12], which result from a formulation of the underlying problem which is more
appropriate for applying the instant-matching algorithm.

A.1 Example 3: Using Equalities for Dividing the Problem

We improve the memory complexity needed for steps 4 and 5 of the attack in [12], which
was the bottleneck of the attack. At the beginning of step 4, four lists have been obtained
(L1, L2, L3 and L4), each one with 256 elements. These elements can be represented in 20
groups of size s = 8 bits. Among these 20 bytes, 4 correspond to differences and 16 to
values. Let (vi

j)1≤j≤20 be the 20 bytes of an element v in list Li. We denote by `1 and `2
two linear permutations. We want to find all 4-tuples (v1, v2, v3, v4) from the four lists that
satisfy the following relations:

v1
i = v2

i = v3
i = v4

i for 1 ≤ i ≤ 4

`1(v1
i , v

2
i) = `2(v3

i , v
4
i) for 5 ≤ i ≤ 20.

In [12], this problem was solved with a complexity of 280 in time and 280 in memory. Their
approach was to first merge lists L1 and L2, as well as L3 and L4 by using the equations
involving the differences. This lead to two new lists L1,2 and L3,4 of size 256+56−8 · 4 =
280 each. Next, these two lists were merged using the remaining equations, obtaining one
solution on average since 2l1,2+l3,4−pt = 280+80−20 · 8 = 1. However this memory complexity
can be improved. First we can separate this problem in smaller ones: by considering the
first equation, we know that we won’t find a 4-tuple that will be a solution unless all the
elements have the same first four bytes. We can then separate each one of the four lists in
24s = 232 sublists, Lγ

i for γ from 0 to 232− 1, so that each sublist Lγ
i contains the elements

from Li that had a difference γ in the 4 bytes. Now the initial problem can be seen as

232 independent problems, where the merge is determined by the conditions on the last 16
bytes. Each problem can be solved with the instant-matching algorithm with parameters:
N = 4, N ′ = 2, z = 16, s = 8, pt = 128, li = 56− 32 = 24 and tj is the ⊕ operation. The
memory complexity now is 4 · 256 + 224+24 ' 258 instead of 280 while the time complexity
stays the same.

A.2 Example 4: Increasing Time to Reduce Memory

We present here another application example. In this case, we suppose that the memory
complexity is the bottleneck of the attack instead of the time complexity (so we are allowed
to increase it). We study a case we find when improving the overall complexity of the
attack on Lane-512 presented in [12]. We consider steps 7 and 8 of the attack. In this
particular case, the time complexity, of 2224, was imposed by another step of the attack. The
concrete problem is the following: we have four lists, L1, . . . , L4 of size 264 elements. These
elements are defined by s = 8, z = 8. Let `1 and `2 be linear permutations. Let vi

1, . . . , v
i
8

denote an element of Li. Then we want to find all the 4-tuples of values (v1, v2, v3, v4) in
L1 × L2 × L3 × L4 that verify the following relation over ({0, 1}8)2:

`1(v1
j , v

2
j) = `2(v3

j , v
4
j), j ∈ [1, z].

Here we also have Pt2zs = 1. In the attack presented in [12], this part was solved with a
complexity of 2128 in time and memory. With the improvements that we present in this
paper of other steps of the attack in [12], this step would be the bottleneck in memory,
but we show here how to reduce this memory complexity to 266 with a correct use of the
instant-matching algorithm. We notice that this relation can also be written the following
way (N ′ = 1):

v1
j = `′(v2

j , v
3
j , v

4
j).

We can then directly apply the instant-matching algorithm obtaining 2192+64−8s = 2128

solutions. In this case, each time we obtain a match we can use it instead of storing it.
Hence the memory complexity is now 266 and the time complexity 264 · 3 = 2192, which is
still below the bottleneck in time complexity. This way, memory needs are reduced from
2128 to 266 while the overall time complexity stays 2224.

B Algorithm for Improving the Complexity of the Third Problem in
Lane-512

We consider the path given by Fig. 14. In this case, we are given 6 lists, LA, LB, LC , LA′ ,
LB′ and LC′ of size 232, where each list Li contains possible values for the AES state marked
in Fig. 14 with an i on state #1. The black bytes represent bytes with differences and have
been completely determined in previous inbound phases, i.e. the value and the difference in
each black byte is fixed. We want to find all the elements from LA×LB×LC×LA′×LB′×LC′

such that, when we consider the values a, b, c in the three corresponding states of #1, and
we compute the state #15, the difference ∆ obtained is the same as the ∆′ obtained when
we consider the values a′, b′, c′ in the parallel lane. The final operations have been omitted
for the sake of simplicity, as they are linear and colliding in #15 is equivalent to colliding
at the end. We expect to find 232×6−128 solutions. In [12] these 6-tuples are found by
computing a list LABC with all values in LA × LB × LC and the corresponding ∆, and
then by checking for all triples LA′ × LB′ × LC′ the resulting ∆′ belongs to LABC . The
complexity for finding the 264 solutions is 297 in time and 296 in memory. With the other
improvements presented in Section 4.6, this memory requirement would be the bottleneck
of the attack. We show here how to apply an algorithm for solving this problem that would
need the same time complexity but with a memory complexity of only 264.

A B C A' B' C'#1 #8

SC SC MC MC MC MC MC MC MC MC

#2 #9

SB SB SB SB SB SB SB SB SC SC

#3 #10

SR SR SR SR SR SR SR SR SB SB SB SB SB SB SB SB

#4 #11

MC MC MC MC MC MC MC MC SR SR SR SR SR SR SR SR

#5 #12 P Q R S

SC SC MC MC MC MC MC MC MC MC

#6 #13

SB SB SB SB SB SB SB SB SC SC

#7 #14

SR SR SR SR SR SR SR SR SB SB SB SB SB SB SB SB

#8 #15

Δ Δ' =

Fig. 14: Part of the differential path on Lane-512 representing the third improved part
from Section 4.6

First we remark that if we go through all the 224 possible values for the three bytes in
#12 marked with a P , then we will generate all the possible values for the differences in
the first column of ∆. That means that this column can only take 224 possible differences
among the 232. The same happens with the groups Q, R and S for the second, third and
fourth columns of ∆, respectively. We proceed as follows:

1. We store four tables of size 224, LP , LQ, LR and LS , of possible differences in each of
the columns of ∆.

2. For each one of the 296 elements in LA′ ×LB′ ×LC′ we compute the associated ∆′ and
we check if each of its four columns is included in the corresponding list LP , LQ, LR

or LS . For each column, this will be the case with probability 224−32 = 2−8. Then the
probability that ∆′ is valid is 2−32.

3. If ∆′ is valid we add an element (∆′,a′, b′, c′) to the list LA′B′C′ . At the end, the size
of this list is 296−32 = 264.

4. Once LA′B′C′ is computed, we can try for all the 3-tuples from LA ×LB ×LC if the ∆
they generate belongs to LA′B′C′ . This will happen with a probability of 2−24×4 = 2−96.

The number of solutions is 264. With our algorithm we can find them with the same time
complexity as before and with a reduced memory complexity of 264 instead 296 as was the
case in [12].

