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ABSTRACT. We give an improved index calculus attack for a large class of elliptic curves. Our algorithm works by
efficiently transferring the group structure of an elliptic curve to a weaker group. The running time of our attack poses
a significant and realistic threat to the security of the elliptic curves in this class. As a consequence of our construction,
we will also derive entirely new point counting algorithms. These algorithms set new run-time complexity records. We
discuss implementations of these algorithms and give examples.

1. INTRODUCTION

A discrete logarithm problem for a group G simply asks for the computation of x in a pair (g, g*) for g € G.
In most cases, we want GG to be efficiently representable, finite, and almost of prime order. This almost of prime
order property means that G should contain a large prime order subgroup relative to its size. Such a subgroup
is necessarily cyclic, and if G is very large, then efficiently computing discrete logarithm instances cannot be
accomplished by using general finite group theory (e.g., Sylow’s theorems, Chinese Remainder Theorem).

On a high level, what we look at is the case where we have another group H and a surjective homomorphism
f : H — G. In this case, there exists an h € H such that f(h) = g and consequently f(h*) = g*. Thus,
computing x for a pair (h, h") is at least as difficult as computing it for (g, g*) provided that the difficulty of
computing f~! does not get in the way. In the case of elliptic curve cryptography, the group G is replaced by an
elliptic curve E. Only the group structure of this curve is important, so one can think of E as a new letter for the
group . The group FE is always efficiently representable and finite, and it is sampled so that it is almost of prime
order. Most importantly, the computation of discrete logarithm problems on E' is a notoriously difficult problem
that has resisted decades of attacks. What we show in this paper is how to efficiently construct a new group H such
that there is a surjective homomorphism H — E with an efficiently computable inverse. We then show how to use
the structure of H to make it easier to compute discrete logarithms for a large family of elliptic curves.

1.1. Historical Overview of Index Calculus Attacks on Elliptic Curves. We now give a brief historical overview
of the results we will need. Since elliptic curves are centuries old and the central topic of numerous papers each
year, our overview is far from complete. See [33] for a more complete survey. For general elliptic curves, the
best known algorithm to compute discrete logarithms is the Pollard-Rho algorithm, which computes the discrete
logarithms of a group G in time equal to O(,/p), where p is the largest prime factor of #G. There have been
numerous efforts to do better than this when G is an elliptic curve. J. Silverman in [34] was the first to propose an
index calculus variant for elliptic curves that was hoped to have a faster running time than Pollard-Rho. Very shortly
thereafter, this approach was shown to be slower (see [17]). Roughly a decade earlier, N. Koblitz had proposed a
generalization of elliptic curve cryptography to hyperelliptic curves in [21]. This system was brought into question
by P. Gaudry in [14], where it was shown that index calculus for hyperelliptic curves worked with a remarkable
advantage: in [14], he was able to run his algorithm to calculate a challenge discrete logarithm problem using only
modest hardware. Once P. Gaudry proposed his attack against hyperelliptic curves, many generalizations quickly
followed (see [7], [9], [16], [35]).

Although Gaudry’s methods did not seem to have any direct advantage when used for elliptic curves, an attack
against elliptic curves surfaced anyway. The idea was to transfer the group structure of an elliptic curve to one of the
weaker hyperelliptic curves. The idea goes as follows. The running time of the generic discrete logarithm attacks
against an elliptic curve over F, is roughly O(,/q), whereas the running time of index calculus on a hyperelliptic
curve over the same field is roughly O(q2_2/ 9) for g > 2. This second attack does not help at all, unless we had a
situation where the elliptic curve, call it E/, was defined over [F;» and the hyperelliptic curve, call it C, was defined
over the subfield ;. If the group structures related to & and C' were isomorphic and if n > 2, we could gain a
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computional advantage by using index calculus on the hyperelliptic curve if we could compute this isomorphism
in reasonable time. This is the basic idea behind the so-called descent theory of index calculus on elliptic curves.
This descent procedure stimulated a great deal of investigation (see [12]) and resulted in a remarkable reduction
in the security of many elliptic curves over even extensions of finite fields in characteristic 2. However, in odd
characteristic, this attack was more difficult.

1.2. The mathematics behind the descent of index calculus. The main difficulty in transferring a discrete log-
arithm problem from an elliptic curve to a higher genus curve is at the heart of a very deep problem in algebraic
geometry. From a computational point of view, whether one is interested in point counts or cryptographic applica-
tions, a curve serves as a platform to construct an object known as a Jacobian. The Jacobian is the real object of
interest in virtually any application point of view; the curve merely serves as a method to construct it. A Jacobian
lives in a more general class of objects known as abelian varieties. A very difficult and fundamental problem in
algebraic geometry is to understand the interplay between the Jacobians and the abelian varieties that are not Ja-
cobians, and, most importantly for us, a deep problem asks about surjective homomorphisms with small kernels
between these objects.

The surjective homomorphisms we are looking for most naturally come from the theory of isogenies. An isogeny
is a morphism between abelian varieties that is both surjective and has a finite kernel. These maps give us more
freedom in trying to deform the elliptic curve into the Jacobian of a higher genus curve without destroying the
underlying discrete logarithm problem. In particular, if an isogeny f : A — B has a kernel in some part of A
that is small, say a few elements of order 2, then one could hope that by studying f one could transfer discrete
logarithms with more freedom than if we restricted to isomorphisms. In geometric language, we would be studying
the so-called isogeny classes.

1.3. Our results. The theoretical contributions of this article are two-fold. The first is a technical result: we prove
that under a certain condition, if A is an abelian variety that is isogenous to the Jacobian of a hyperelliptic curve,
then so is A2. The second contribution is that these constructions are computationally efficient. These two results
are then applied to two extremely active problems in computational algebraic geometry: the computation of discrete
logarithms on elliptic curves and point counting algorithms for hyperelliptic curves.

1.3.1. Implications to cryptographic schemes. The main contribution of this paper is to give the first new class
of ordinary elliptic curves where index calculus becomes a practical threat. We will show how to sample from
this family efficiently. We require no extra side information to apply our attack, nor do we need special oracles or
structure information about the elliptic curves we sample. Moreover, every member of the family we create will
be vulnerable to our descent attack. We show how to use this construction to build a large and explicit family of
elliptic curves where a factor basis for index calculus can be found and used to compute discrete logarithms in time
roughly O(¢%/®), where the generic attacks on the same curve would run in time roughly O(¢'/?).

The implications to actual in-use schemes are the following. There are three ways for a given security parameter
k € Z to influence the group size of a family of elliptic curves. The first is to use k as the bit-length of a prime p
and define elliptic curves over I, the second is to fix p and define elliptic curves over F ks and the third is some
combination of the first two. It was previously known that if we took p = 2 and k£ > 2 to be a power of 2 that there
were elliptic curves over For that were weak in the sense described above (see [12]). We extend this result to all
primes p. Our results show that elliptic curve cryptography must take special care when k is taken as an exponent
of any fixed prime or if k influences both the prime size and its exponent. Both of these statements are new.

The explicit family of weak elliptic curves we will construct contains instances of virtually all elliptic curve
classes proposed in the literature. Most importantly, if we sample random curves from this family, we find elliptic
curves with large prime factors that have not been previously ruled out as cryptographically weak. We will give
examples of elliptic curves with a group size in the 160 bit range with a single large prime factor that can be attacked
with a substantial advantage over the generic algorithms.

The larger question concerning how many elliptic curve schemes have a non-negligible number of weak elliptic
curves is more difficult to answer. In essence, this is a distribution question, and very little is understood about the
distribution of the group structure of families of elliptic curves over finite fields; in fact, even the distribution of
their orders is unknown (see [13] for conjectures). If used directly, our families are small and will most likely not be
sampled at random from most of the proposed schemes. However, in this paper we identify a condition that allows
us to descend an elliptic curve to a smaller field. If an elliptic curve E' that did not directly satisfy this property
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had a surjective map (with a small kernel) to a curve E’ that did satisfy this special property, then E would be as
vulnerable as F’ to the attack we outline in this paper. There is computational evidence that an enormous increase
in the number of weak curves might be found in this way, but due to the incomplete picture of how elliptic curve
families are distributed among their associated groups, we cannot offer any proofs.

1.3.2. Point Counting. A very difficult problem in computational algebraic geometry is to generate large families
of curves with a known number of points over a finite field IF,. The parameters one usually wants to consider are
q and an invariant of the curve known as its genus. One should view the genus g and the number ¢ as integers that
specify intrinsic properties of C'. In order to hope for efficient computations of the number of points of C', one must
restrict the class of curve in some way.

The current state of the art algorithm for generating genus 2 curves with a known number of points is that
given by Satoh in [30]. Satoh’s algorithm works by taking two isomorphic elliptic curves and glueing a genus 2
curve from these equations. Relaxing the condition of isomorphism to that of isogeny, we are able to make a new
algorithm for this purpose. Our algorithm is superior to Satoh’s in the following ways. (1) It outputs the group
order rather than merely the largest prime factor. (2) It outputs the group order with certainty, rather than merely
with some probability that is not well-understood. (3) It allows for a much wider distribution of curves, in contrast
to Satoh’s algorithm which is restricted to even orders. In particular, our algorithm can be used to find prime-order
Jacobians. We also drastically reduce the complexity of Satoh’s algorithm from O(log2 (q)) operations over F, to
O(log(q)) over IF,.

We are also able to propose entirely new point counting algorithms based on this work. One such extension is
an algorithm that generates genus 4 curves along with the order of their Jacobian at the cost of running a point
counting algorithm on a single elliptic curve. This algorithm is a significant improvement over existing point
counting algorithms (see [29]). In fact, we will be able to compute the entire Zeta function for the genus 4 curve,
which essentially classifies the genus 4 curve’s arithmetic properties.

As a final application to point counts, we will show how to generate a large class of hyperelliptic curves of genus
2g over I, with exactly ¢ + 1 points in O(glog(q)) operations over IF,. To generate these curves, we only require
a positive integer g and an odd prime power ¢ as an input to our algorithm. This algorithm remains efficient if g
grows linearly and ¢ grows exponentially, which is unlike any previous curve generation algorithm for a family as
large as the one we will consider (for previous work, see [29], [19]).

1.4. Organization. In the next section, we will collect the results we need at a high level to run our attack. We
will then proceed to prove them in detail. In Section 3, we will write out our point counting algorithms using
the material in Section 2. In Section 4, we give an algorithm that efficiently computes the transfer map explained
earlier in this introduction and we outline the discrete logarithm attack. In Section 5, we discuss the distributions
of the elliptic curves we sample. We conclude with a link to implementations of our algorithms.

2. A DESCENT OF HYPERELLIPTIC CURVES

2.1. An outline. Before we begin with a formal discussion, we will give an outline of what we prove and how we
use it. We will first fix a finite field " in odd characteristic. In this discussion, we have two objects. The first are
hyperelliptic curves. On the level of equations, a hyperelliptic curve is given by a formula of the form y? = f(z),
where f is a separable polynomial in the variable x. The second class of objects we deal with are Jacobians of
hyperelliptic curves. These objects can be thought of as unpacking the “group structure” of the equation for C'. For
instance, in elliptic or hyperelliptic curve cryptography, the curve serves only as a means to efficiently represent
the group structure of its Jacobian. It is in this group that all of the calculations are done. In coding theory, this
unpacking procedure is used to construct vector spaces with interesting parameters.

In our setting, we will let k& be a quadratic extension of k’. It is well known that k can be formed by taking
the square root of a non-square in &', and we will let w be this square root. If we let C' be the hyperelliptic curve
defined by

y* =z —w)f(x),

we can show that there is another hyperelliptic curve C’ of the form

y? = g(x)
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defined over k’. The curve C’ has the special property that the Jacobian of C' has a homomorphism to the Jacobian
of C’ on the level of groups. This map, call it §, is almost an isomorphism: in Theorem 2, we show that it is an
isomorphism modulo points of order 2. Another critical property is that J is computationally efficient to compute.
These two results give us a descent. We are able to construct this C’ from Theorem 1, and we can read off the
polynomial g(x) above from Corollary 1.

The map § is almost all we need for the discrete logarithm attack. To make the attack practical, we also need
to know the order of the Jacobian of C’. This takes a little more effort, but Corollary 3 gives us this order. Our
strategy is to then find elliptic curves E and to build the curves C’. Once we have C’, we try to apply the descent
again. If we can descend once more, we then have a computationally efficient map from F to the Jacobian of a
genus 4 hyperelliptic curve. Since index calculus works with a remarkable advantage with these curves (see [35]),
we have successfully attacked F.

2.2. The mathematics behind the descent. We will now proceed to prove these ideas, but as we move toward
the details we are forced to become more precise. We will let k£ be a finite field in odd characteristic. By a curve
over k, we will mean a projective, geometrically irreducible variety of dimension 1 over k that has at least one
non-singular rational point. We do not assume our curves are non-singular. Given a curve C, we will let C denote
the normalization of C, and we will let any arrow C — C reference the implicit normalization map whenever it
is needed. For a curve C, we will let Jac(C') denote the Jacobian of C. When a curve is specified by an affine
equation, we will always take the projective closure. A hyperelliptic curve is a curve that admits a double covering
of a conic.

Our first task is to glue two hyperelliptic curves to produce a new curve. Although this is a classical result, we
will reprove it with an emphasis on deriving an affine equation for the new curve. In the next series of proofs, we
will continue to keep track of equations. Eventually, this will lead us to the new algorithms in the later sections.
We will assume that all of our fields are finite fields, even though many of these results are more general.

Lemma 1. Let C; : y?> = f and Cy : y> = g be two hyperelliptic curves defined over k, where f and g are
separable polynomials in k[z] with h = fg/(ged(f, g))? ¢ k. If we let C3 : > = h, then the curve

@.1) Ciy' =2(f+9)y* — (f —9)°
has the property that

3
Jac(C) ~ [ [ Jac(Cy).
=1

Proof. In order for C' to have a function field, it must be geometrically irreducible; by inspecting the roots of the
equation for C in k(x)[y], we see that this implies that v/fg is not in k(x), which is where h ¢ k is used. Let the
function field of C be k(z)[y1] and let the function field of Co be k(x)[y2]. If we take the compositum, k(z)[y1, y2],
then y = y; + yo is permuted by the Galois actions of Gal(k(z)[y1]/k(z)) = {1,¢} and Gal(k(z)[y2]/k(z)) =
{1, ¢}. This implies that k(z)[y1,y2] = k(x)[y]. It is easy to see that the minimal polynomial Irr ;. (y) is the
equation for C' given above: it is simply [[(y £ (y1 £ y2)). Now, Gal(k(z)[y]/k(x)) = Z/2Z x Z/2Z, and it is
obvious that C'/v) = Cy, C/¢ = C4, and C/(1p¢) = C3. We apply Theorem 5 of [18] to obtain the k-isogeny

Jac(C) ~ H Jac(Cy).
U

We will construct a new hyperelliptic curve that captures the arithmetic data of a smaller genus hyperelliptic
curve. Our new hyperelliptic curve will be defined over a smaller field, and it is from here where our descent from
smaller genus curves to larger genus curves begins.

Let C be any curve over k and let k/k’ be a finite extension. Give C' an affine equation ZZ j cijr'y’ = 0as
before, where only the ¢; j are in k. For any automorphism o € Aut(k/k’), let o(C') denote the smooth, projective
curve with affine equation ZZ j o(c;;)x'y?. In order for us to allow o to act on points of C, we need to work in
a larger ambient space. To extend o, associate each closed point P € IP’% to its corresponding prime ideal [ in the
standard affine cover; let o(P) be the closed point associated to the prime ideal o (/). All points on curves will
now be considered in the ambient space of IP’% (this gives meaning to points o maps off a curve). Finally, let I'(+)
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denote the forgetful functor I' : AbSch/k — Ab from the category of abelian group schemes over k to the category
of abelian groups: it simply takes an abelian group scheme to its underlying group.

Lemma 2. If C' is any curve defined over k such that there exists a subfield &’ C k, then for any o € Gal(k/k’),
we have Jac(C) ~ Jac(o(C')). Moreover, ¢ extends to an isomorphism I'(Jac(C')) = I'(Jac(a(C))).

Proof. For any finite extension k& C [, if we have an [-rational point P of C, then o (P) is an [-rational point of o (C')
by definition. Thus, o establishes a bijection between the rational points of C' and o (C') over any finite extension of
k. This implies that they have the same Zeta function and hence the same L-polynomial. Since the L-polynomial
classifies an isogeny class (see Theorem 2.c, Appendix 1, [27]), our result follows.

Any divisorial correspondence D ~ D’ comes from a rational function f € k(C). If we write D = Y P; and
let o(D) denote > o(P;), we see at once that o(D) ~ o(D’) via o(f), where, again, o(f) is simply o applied to
the coefficients of f in k. Clearly, composing o with o1 gives us the identity; since it is obviously homomorphic,
we have an isomorphism I'(Jac(C)) = I'(Jac(c(C))). O

Example 1. The map o above is not typically in the image of the Picard functor. In other words, Jac(C') and
Jac(o(C')) are not usually isomorphic as varieties. It is this key property that gives us a very large distribution to
sample from, and it is one of the main features where our approach differs from other work. Essentially, we have
two Jacobians that are isomorphic as abelian groups but not as varieties. To make sense out of what this means,
some examples are in order. Consider the finite field k = F5[w], where w? = 2. Define the elliptic curve

By y? = (z —w)(2® — z).
By our construction (k' = 5 and o being absolute Frobenius),
Ey=0(Ey):y* = (z +w)(z? — ).

The previous result might lead one to think that the Pic® functor is represented by the same abelian group scheme
for both curves, and hence isomorphic (by the universal property of representability). This would indeed be the case
if o was in the image of the Pic® functor. But for E; and F5 to be isomorphic as varieties their j-invariants would
have to be the same and this is not the case: j(E)) = —w + 2 and j(E2) = w + 2. What is happening here is that
o defines an isomorphism in the category of abelian groups, but this isomorphism has no pullback to the category
of abelian group schemes over k. Note that o does not fix the base k, which is at the heart of this construction.
(It is also worth mentioning that o acts on the entire j-line exactly as one would expect — for instance, notice that
o(7(E1)) = j(E2) —but we will not develop this further.) One might also compare this with the discussion in 3.2.4
of [23].

Of particular interest to us is when we have a quadratic extension k over k. To ease notation, let k = k'[w] for
w? € k' be this quadratic extension. Let o denote the non-trivial element in Gal(k/k’), which is just the g-th power
Frobenius where g is the size of k’. Let C' — Pk be a double covering of curves over k£ with ramification divisor
R (i.e., C is a hyperelliptic curve with a fixed covering of IP}C). Recall that R consists of the sum of those closed
geometric points on IP)}C where the inverse image of C — IP’,% contains exactly one point. Since k£ is not closed, some
of these geometric points may form a higher degree place over k.

Theorem 1. Let C be as above. If there exists a k-rational point 7 € Supp (R) such that o(r) ¢ Supp (R) and
o(Supp (R) — {r}) = Supp (R) — {r}, then Jac(C)? is k-isogenous to the Jacobian of a hyperelliptic curve C" that
is defined over &'.

Proof. Under the hypothesis of the theorem, we can write C' as
C:yQZ(ZL'—’LU)f,

where o(f) = f € k'[z]. By Lemma 1 we have a curve C” that covers three curves: the first is C, the second is the
curve with affine equation y? = (z 4+ w) f, and the third is the conic y? = 2> — w?. Since it is clear from the proof
of Lemma 1 that C’ has an involution such that the quotient is this conic, we have that C’ is a hyperelliptic curve
by definition. Moreover, it has an affine equation

(2.2) C' oyt = dafy? — 4w? f2,

by Lemma 1 which is fixed by &, and hence defined over &’. Lemma 2 and the last statement of Lemma 1 gives us
the k-isogeny Jac(C’) ~ Jac(C)2. O



6 OTTO JOHNSTON

C/

P}
k;/
Figure 1. Projection of H.

Our next problem is of a computational nature. The hyperelliptic curve C” defined in (2.2) has two undesirable
features: the first is that it is a singular curve and the second is that it is not of the form y? = h(x) for h a separable
polynomial in a single variable x. It is not practical to work on a curve of the form C’ is currently written in.
Moreover, for our discrete logarithm transfer, we need to write C in the form y? = h(x) so that we can apply our
theorems recursively. So, we look at ways to re-write (2.2) into the form y? = h(x).

The standard way of doing this is to find a rational point P and to compute a basis for the Riemann-Roch space
2P. This gives us a map, known as a pencil, from C’ — IP’%; that is also a double cover. It is a standard result from
here to derive an affine equation y? = h(x) for C’ (see [1], 1.6.A). However, we have a more efficient method; we
will apply 19th century geometry that is rarely used to find algorithms.

We begin by looking at how Theorem 1 constructed the hyperelliptic curve C’. The reason C’ is hyperelliptic is
that it covers the conic H : y? = x? — w?. Now, if we look a bit closer at H, we see that it is a circle. We can find a
K'-rational point on this circle that is independent of the choice of & or k": namely, the point P = (x1, y1) given by
71 = (—w? —1)/2 and y; = (w? — 1)/2. If we use this P as a base point on our circle, we can unwrap the circle
into a line. Doing so (see e.g. page 7 of [32]), we obtain an isomorphism IP’%;, — H given (locally) by sending a
fixed parameter ¢ for P}, to

w? +1  t(w?t+t+w?—1)

2.3 = -
(2:3) v 2 21

w? —1 t(w?t +t +w? — 1)
2.4 = t{w?+1- )
(2.4) Yy 5 T (w + P )

These formulas let us replace H with IP’,:E, in the proof of Theorem 1. The curve C’ now covers this IP)}E, via this
isomorphism (see Figure 1). Returning to the proof of Lemma 1, we can compute the equation of C” that covers H:

this is just (Y — y1 + y2)(Y + y1 — y2) fory1 = \/(x — w) f and yo = /(z + w) f. Further computation (again
using the = and y we computed above) reveals that (Y — y1 +42) (Y +y1 — y2) = Y? — 2f(x — y). Now we have
that C’ covers H by Y2 = 2(x — y) f(x), but the right hand side is not yet a polynomial. To clear denominators,
we replace Y by Y (¢t — 1)/(t?> — 1)? where d = g(C")/2 + 1. Collecting this into a single statement, we have the
following.

Corollary 1. The curve C’ in Theorem 1 can be written as
2(x —y) f(x)(* — 1)9(+
(t—1)? ’
where x and y are given in (2.3) and (2.4) respectively. The right hand side is a polynomial in &'[t].

(2.5) Y? =

The equation for C” given in (2.5) is non-singular outside of points at infinity. This is in contrast to the equation
for C’ given in Theorem 1. We will continue to let C’ denote the singular (projective) curve with affine equation
given in Theorem 1.

What we have collected so far are the basic parts of a new algorithm. At the moment, we can take a hyperelliptic
curve C of a special form over a quadratic extension k/k" and we can compute a new hyperelliptic curve C’ over
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k' that has a k-isogeny Jac(C’) ~ Jac(C)2. What we need to do next is to determine the relationship between
the groups I'(Jac(C(k))) and I'(Jac(C’(k’))). We will find out that there is a homomorphism between these two
groups that has a small kernel. In the next section, we will show how to compute this homomorphism efficiently.

Since our varieties are defined over varying fields, we will consider all curves as defined over a fixed algebraic
closure of &/ (formally, we replace C’ by C’ ® Spec k’). We will let o denote the gth power Frobenius where g is
the size of k’. For any geometric point Q = (x1,y1) on a hyperelliptic curve, let Q" = (x1, —y1) (this notation is
shorthand for the hyperelliptic involution). We will let (a, by £ b2) denote the divisor (a, by + b2) + (a, by — b2) on
C’. In the case that by is zero, we will simply add the same point twice. If C' has two geometric points at infinity,
we will let D, denote the sum of them; otherwise, C' has one geometric point Py, at infinity and we will let D,
denote 2P... It is clear that if we define D/ to be the same for o(C), then o(D%,) = Do.

In the next result, we will look for a way to associate divisors of C' over k with divisors of C’ over &’. Intuitively,
we want some form of a diagonal map on Jac(C') x Jac(o(C)) to stabilize the action of ¢ in the hopes of producing
divisors on C’ defined over k’. Recall that in the proof of Lemma 1, we had three curves: C1, Co, C3, and the glued
curve. We also fixed maps 7; : C; — Pi and, consequently, the map 7 : C' — IP’}C. In this section, we have that
C = (C1,0(C) =y, and H = C3. Also recall from Lemma 1 that we have two double coverings 71 : C' — C
and my : C' — o(C). For the sake of notation, temporarily let 7 denote either of these maps. It is well known
that m,7*D = deg(m)D = 2D for a divisor D, where deg(m) = 2 comes from our choice of 7 (see IV.ex.2.6
of[15]). The map p : Jac(C) x Jac(o(C')) — Jac(C") is given by 77 x 75 once we have normalized our singular
curves. Likewise, the map Jac(C") — Jac(C') x Jac(o(C)) is given by (1)« X (m2). once we have taken the
normalizations. We can see from direct calculation (using classical derivatives) that the affine singular points of C”
lie over the ramified points of 71 : C' — IP’}C which are sent to other ramified points of C by o. By our construction,
these points occur at exactly the roots of the polynomial f given in the definition of C. At these points, the maps 7;
will have different tangent directions for the same point P and thus form a node on C’. The degree of the divisor
summing up a blown up node on C" is 2 (this is made explicit in the proof of Corollary 1). Now we can prove our
next result.

Theorem 2. There exist homomorphisms ¢ : I'(Jac(C)(k)) — T'(Jac(C”)(K')) and ¢’ : T'(Jac(C’)(K')) —
I'(Jac(C)(k)) such that the kernel of the composition ¢’ consists of all elements of order 2 on I'(Jac(C')(k)).

Proof. Let P = (x0, o) be an affine k-rational point on C. We will show how to map P to a divisor on C” over
k'. We start by defining the point Q = (o(xg), y1) on C lying over o(zg). The point ) need not be k-rational, but
it clearly must be defined in at most a quadratic extension of k. If P is ramified and xg is a root of f, then define
the divisor D to be the sum of the blown up points over the points P and o(P) (which are defined on both C' and
o(C)). This gives us a divisor D that is fixed by 0. Otherwise, define the divisor

D = (z0,y0 £ 0(y1)) + (0(z0), 0 (y0) £ 91))

on C’ (that the points described on D are points of C’ follows trivially from the second definition of C’ in the
proof of Lemma 1). If we look at this second definition of D, it is immediate that o permutes x( with o(z() and
yo with o(yg) (since xo and yg are in k). As for y;, which may be in a quadratic extension L of k, we know that
T1(0(0(Q))) = o(xp), so o(o(y1)) is either y; or —y; by Lemma 2. This shows us that o permutes the summands
of D, hence o(D) = D. We now have that in both of our definitions of D (one for P singular and one for P
non-singular) that (D) = D. Moreover, o generates both Gal(k/k’) and Gal(L/k’), so D is fixed by the entire
Galois action in either case. This implies that D is defined over £’ (see Lemma 4, Appendix 1, [27]). By Lemma
2, we could replace C by o(C') and P by o(P) and still obtain the same divisor D. Thus, we have a map from
degree 1 divisors of C' to the divisors on C’ given by ¢ : P +— (P, o(P)) + D (where D is defined above). Since
we have that deg(D) = 4 and we can translate Pic* (C") to Pic’(C") (over any base field), we can define § as a map
I'(Jac(C)(k)) — T'(Jac(C")(K")).

Now, if we push our divisor D back down to C' (resp. o(C)) in the case where P is ramified, we get 4P and
otherwise, we get (m1).D = 2P + Q + @’ (resp. (m2)«D = 20(P) + o(Q) + o(Q)"). Subtracting 2D, (resp.
20(Dx)), we obtain 2P — D, (resp. 20(P) — 0(Dx)). This tells us that if o € T'(Jac(C)), then (71 ).d(a) = 2av.
So, ¢’ = (1) is the map we need to finish the proof. O
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Corollary 2. Using the notation above, #Jac(C') (k) =#Jac(C")(k').

Proof. In light of the previous result, we see that #Jac(C') (k) and #Jac(C") (k') are equal up to a factor of the form
2", One can show that the points of order 2 on a hyperelliptic curve 32 = P(t) are completely determined by the
factorization of P(t) over the base field (see [2]). In our case, if we look at the equation for C’ given in Corollary 1
and write it as C’ : y> = P(t), we can see by elementary algebra that the linear factor x — r; of f (from the curve
C : y?> = (x — w)f) corresponds to the (blown up) factor (¢ — 1)2 + 2r;(¢t2 — 1) + (¢ + 1)?w? of P. Each factor
of P is of this form, except if deg(f) is even, when P has a factor (> — 1) (corresponding to the blown up point at
infinity). Now we have a simple relationship between the factors of f and the factors of P. If f is of odd degree d
and has s factors, then P has s even degree factors and degree 2d = 2 mod 4. Otherwise, f is of even degree and
P has s + 2 factors, one of which has odd degree (e.g. (t — 1)).

Let H : y?> = h(x) be a hyperelliptic curve over a finite field and suppose that h = [1;_; hi, where each h;
is irreducible (assume that h is separable). We define the 2-rank of Jac(H) to be dimg,, Jac(H)[2] (this is the
dimension of the Z/2-vector space of all points of order 2 on Jac(H ) over the finite field). In Theorem 1.4 of [5],
we have the statement that the 2-rank of Jac(H) is s — 2 if deg(h) is even and some h; has odd degree; the 2-rank
is s — 1 if deg(h) is odd or if deg(h) = 2mod 4 and all h; have even degree; and the 2-rank is s otherwise. In
our case, let f = [[;_, f; for irreducible f;. If deg(f) is odd, then (x — w) f is of even degree with an odd factor.
In this case, Jac(C') has 2-rank s — 1. Since P has s even degree factors and degree 2d = 2mod 4, we have that
Jac(C") also has 2-rank s — 1. If deg(f) is even, then (x — w) f has odd degree and 2-rank s. In this case, P has
even degree and s + 2 irreducible factors (one of which is linear), so Jac(C") also has 2-rank s. U

Although it is tempting to conclude that I'(Jac(C”) (k")) and I'(Jac(C') (k)) are isomorphic, this is rarely the case.
What we can show instead is that there is a special abelian variety defined over &’ that is isogenous to Jac(C"). Let
W be the Weil restriction of Jac(C') (over k) to k. It is known that W is an abelian variety of dimension 2g that is
defined over k' (see Section 1 of [26]).

Corollary 3. There is a k’-isogeny W ~ Jac(C’). If L(t) is the L-polynomial of C' over k, then L(t?) is the
L-polynomial of C’ over k’. Moreover, #C' (k') = q + 1.

Proof. Tt is known that W can be defined as the abelian variety that represents the functor Res;, /,/Jac(C)(S) =
Jac(C)(S xy k) from k’-schemes®P to Sets. In particular, if we let S = Spec k; for some finite extension k; of &/,
then we see that #WW (k1) =#Jac(C”)(k1) (by using Corollary 2 over base extensions). This gives us a k’-isogeny
W ~ Jac(C") (use Theorem 2.c, Appendix 1, [27]). Since the L-polynomial of W is L(t?) if L is the L-polynomial
of C (over k), we see that L(¢?) is the L-polynomial of C’ over k’. Now, the number of k’-rational points for a
curve is ¢ + 1 — > «; where the «; are the roots of the L-polynomial of the curve over &k’ (see Appendix C, [15]).
Since this sum is 0 on L(t?), we have that the number of k’-rational points of C” is q + 1. n

3. POINT COUNTING ALGORITHMS

In this section, we construct three very simple algorithms for generating curves with a known number of rational
points. In the case of genus 2 and 4, we will even get the Zeta functions. Although interesting in their own right, the
point counting algorithms will become essential to the discrete logarithm attack we will outline in the next section.
For the definition of the L-polynomial and the Zeta function and their relationship, there are many references (see
e.g. [25] or [15]), and we will not develop these ideas here (a worthy discussion would take an entire chapter). We
will just mention that evaluating the L-polynomial at 1 gives us the order of the Jacobian. As before, we let IF, be
a finite field in odd characteristic and let > = [F,[w] be a quadratic extension for w? € F,. Let C a curve defined
by

3.1 v = (e —w)f
for any separable f € [F,[x] with roots outside +w.
Our first algorithm can be used to generate curves of any even genus with exactly ¢ + 1 points over a finite field.

Algorithm 1.

Input:
(1) an odd prime power ¢
(2) anintegerg > 0
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Output:
(1) ahyperelliptic curve of genus 2g over [F, with ¢ + 1 points.
Procedure:
(1) randomly search for a non-square s € [F,. Set w? = s.
(2) randomly search for a separable polynomial f of degree 2g + 1.
(3) if f has either w or —w as a root, return to the previous step.
(4) Output equation (2.5) from Corollary 1 using f and w.

Remark 1. The proof of correctness follows from Theorem 1, Corollary 1, and Corollary 3. The complexity of the
algorithm amounts to a square root test, sampling separable polynomials of degree 2g + 1, and evaluating them at
+w. It is clear that the cost is O(glog(q)) (see [31]). If g grows linearly and ¢ grows exponentially, we can still
generate these curves efficiently.

Our next algorithm can be viewed as a generalization and simplification of Algorithm 1 in [30]. We take in as
input any hyperelliptic curve of the special form in Theorem 1. We are then able to construct a new hyperelliptic
curve. In the case where we wish to generate genus 2 curves, we simply restrict to elliptic curves of the form given
in Theorem 1.

Algorithm 2.

Input:

(1) an odd prime power g > 3

(2) the value w

(3) acurve C over IF 2 of the form (3.1)

(4) the L-polynomial L of C.
Output:

(1) a hyperelliptic curve over [, with L-polynomial L(t?).
Procedure:

(1) Output equation (2.5) from Corollary 1 using f and w.

Remark 2. The proof is similar to the previous algorithm; using the results in Section 1, we simply apply Theorem
1 and Corollary 1 to construct C’, and then Theorem 2 and Corollary 3 to obtain the relation on the L-polynomial.
In the special case where C'is an elliptic curve, we obtain a new algorithm for computing genus 2 curves. Beyond
reducing the complexity of Algorithm 1 in [30] from O(log?(q)) operations over F, to O(log(q)), our algorithm is
able to sample odd and prime order Jacobians, whereas the previous algorithm (in [30]) could only generate even
order Jacobians. One important application for these types of algorithms is finding genus 2 curves suitable for
public key cryptographic schemes (see [30] for a security analysis for curves of this type). For this purpose, it is
important that ¢ be prime. Another application is to generate hyperelliptic curves for pairing based cryptographic
schemes. In this case, C' would have to be a (geometrically) supersingular hyperelliptic curve. (We will give
examples in the Section 5.)

Now that we have seen how to make a genus 2 curve generator using the previous section, we outline how the
previous section can generate similar algorithms for higher genus curves. The idea here is to start with an elliptic
curve F over some field quk and construct a series of new curves C’ over FqQkﬂ-, where each curve C! satisfies the
condition in Theorem 1. One can expect the equations to become more complicated as ¢ grows, but for small genera
one can produce extremely efficient curve generation algorithms using this idea. The genus 4 curve generator below
demonstrates this. This algorithm is interesting by itself, and it has the extremely interesting feature that any of
the curves it generates are cryptographically weak. Such a curve can be used to attack the elliptic curve used to
construct it (see the next section).

To set things up, let IF 2 = [F,[wo], where wy is the square root of a non-square in ¥, and suppose wo — 1 is a

non-square in Fy[wo]. Let Fa = F 2 [w1] where w} = wo — 1. Let E be the elliptic curve

(3.2) E:y?=(z—w)(x—r)(z—1),
where 1 = (=2 + wp — w3)/(2(wp — 1)) and 79 = 1/2(w? + 1).
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Algorithm 3.

Input:

(1) wo

(2) aninteger h = #FE
Output:

(1) ahyperelliptic curve of genus 4 over [, with L-polynomial g8 + (h — ¢* — D)t* + 1 or failure.
Procedure:

(1) If E is not an elliptic curve, output failure.

(2) Otherwise, calculate the polynomial P € F,[wy] as

1
—5 (- 1)? + (t 4+ 1)%wd) (wi(t + 1)* + 3t — 2w — 1)
(=2(t — 1)% = (t = 1)(t + 3)wo — 2(t + 1)*w3 + (¢t + 1)*w))
(t(t +2)(w§ — 1) +w§ + 3))
(3) Output the hyperelliptic curve C : 3> = P.

Remark 3. This algorithm only fails when 71, 72, and +w are not distinct. Like the previous algorithm, the formula
can be computed in O(log(q)) steps. The only thing that needs to be checked is that the intermediate curve C] over
[F2 is of the form required by Theorem 1. This amounts to checking long equations and using elementary algebra,
so we omit the proof.

4. THE INDEX CALCULUS ATTACK

In Section 2, we mentioned a map J that could define a homomorphism from the Jacobian of C' to the Jacobian of
C'. Formally, the description of 0 is given in Theorem 2. In this section, we will sketch an algorithm to compute it.
For efficiency reasons, we will use Mumford’s representation of divisors (for background, see [4]). For simplicity,
we will only describe the algorithm in the case that there is one rational point P, at infinity. For a rational point
P = (z0,yo0) on C, recall that P — P, corresponds to the Mumford divisor [z — 0, yo] where k(z) is the function
field of the projective line covered by C. When we use polynomial interpolation in the following algorithm, we
will always mean the polynomial of minimal degree passing through the specified number of points.

Algorithm 4.
Input:
(1) acurve C over FF 2 of the form (3.1)
(2) adivisor D = [z — x¢, yo] on C'
(3) the curve C’ from Algorithm 2.
Output:
(1) adivisor D" in Mumford form on C” such that §(D) = D".

(1) Define ag(z) = (2 — z0)(z — ) and define a(t) = ag(x)(t* — 1) where z is as in Corollary 1.
(2) if yo = 0, then return [1, 0]. //this is a ramified point
(3) if o € K/, then //this is a rational point that needs to be counted twice
(a) let a1 () and az(t) be the irreducible factors of a(t) (they need not be distinct).
(b) if a; and as are unique, replace a; with a?.
(¢) Let ; be the unique root of a;, set ¢; = (a? — 1)(a; + 1).
(d) Let T be the tuple (e1Tr(yo), e2Tr(yo))
(e) Let G be the polynomial y? = G(z) defining C".
(f) Setb; = (T[i]* + G)/(2T]i)).
(g) if Gmoda; = b? mod a; then return [ay, b; mod ay].
(h) if Gmoday = b? mod a9 then return [ag, b; mod as].
(4) let R be the list of roots of a(t) over a splitting field (let R; denote the ith coordinate).
(5) letdy = +/ f(28)(xd — w) over this extension (ignore the sign).
(6) lete(t) = (12 — 1)(t + 1).
(7) fori = 1to #R, testif z(R;) = xo (where z(t) is the expression in Corollary 1).
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(a) if the test passes, append [(yo — do)e(R;), (yo + do)e(R;), R;)] to matrix L.
(8) if #Rows(L) < 2 or zg € k', then
(a) let b be the polynomial interpolating the points (L1 3, L1,1), (L} 3, L7 ).
(b) replace a(t) with its irreducible factor and return 2[a(t), b]
(9) else let A interpolate (L1,3, L1,1), (La,3, L22), (L] 3, LY 1), (L 3, L 5).
(10) and let B interpolate <L173, LLQ), (L273, Lg’l), <L11J737 LZLQ), (L12)73’ LIQ),I)'
(11) if Gmod a(t) = A2 mod a(t), return [a(t), A].
(12) else return [a(t), B].

All of the computations preformed in the above procedure are just arithmetic manipulation of small degree poly-
nomials and a few factorizations. The complexity of this algorithm is clearly O(log(q)) (see [31]). The proof of
this algorithm is a consequence of the construction given in Theorem 2. To see this, note that at any step in the
procedure, at least one root of a(t) lies over the value of x( in the covering map C’ — C. This means that a(t) is a
polynomial that has roots over the locus of points over zg in IP’,IC; there are at most 4 such points. What the algorithm
is doing is testing all possible cases in this locus using the value yg. Since § is a homomorphism, there is only one
unique solution (otherwise & would map a point into a locus). The remaining details are minor. For example, if
xo € k', then we can improve the algorithm by splitting up a(¢) and using the trace to avoid taking square roots.

The final step is to outline a full attack. First, we sample at random an elliptic curve in the class given by (3.2).
We repeat until we find a #E' with a large prime factor, and if so, we take a random discrete logarithm instance D,
D’ on E. We use Algorithm 3 for the choice of wq used to sample E to construct the hyperelliptic genus 4 curve
C" over F,. Now we use the previous algorithm on D and D’ twice to get to two divisors Dy, D}, on C” (here we
may be forced to deal with points at infinity in a different way). A solution to the discrete logarithm problem on
Dy and D), is only off by a factor of 2 when we apply it to the original D and D'.

For the hyperelliptic curve C” given in Algorithm 3, index calculus works by first finding rational points on C”
to form a strictly ordered set S C C’(k’) of some large size. Once such a set has been fixed, one takes a discrete
logarithm instance (D, D) on C” and calculates, for each step 7, random numbers («;, 3;) of size less than the order
of the Jacobian of C’. One then computes D; = «; D + ;D' and converts this to Mumford notation [a(t), b(t)]. If
the support of D; is in S, then one collects («;, ;) and the points in this support. This is the case if a(¢) splits and
its roots 7; form points (r;,b(r;)) in S. For each i where this occurs, we form a (usually sparse) matrix M such
that each row ¢ has a number representing the multiplicity of these points (with respect to the given strict ordering
on S). Once this linear system is large enough, we search through it to find a non-trivial vector in its kernel. Such
a vector gives us the relation R = ) a; M; = 0, where M, is the ith row of M. The expression R can be rewritten
as R = Y a;(a;D + ;D") = 0, and from here we have Y a;a;D = > —a;3;D’. If we let « = ) a;a; and
B =1 aifBi, we have that D = —/aD’.

In our setting, we have a discrete logarithm problem (P, P’) on F that is mapped to a discrete logarithm problem
(D3, D)) on a genus 4 curve C’. By adapting the index calculus method to mimic the number field sieve with the use
of large primes, the amount of work required to solve a discrete logarithm problem on a genus 4 curve is O(q14/ %
(see [35]). In contrast, the amount of time running Pollard-Rho on the elliptic curve E' we have constructed is
O(q?). We will leave it to future work to determine exactly how much of a security parameter increase is required
in practice.

We can also offer a few improvements that may help in practice. Since we know #C'(k') = ¢ + 1, we can
order k' x k' in some natural way, and we can let S be the factor basis of points up to some maximal number.
This saves us from having to store S. The second improvement is that we can compute «; P; + 5P/ on E and map
it to a divisor on C’. This saves us from having to use the slower algorithms in [4] for Jacobian arithmetic on a
hyperelliptic curve. Another option is to instead compute S and map each divisor in S back to E and ignore C’
completely. We will leave further discussion to future work.

5. IMPLEMENTATIONS AND EXAMPLES

Although little is gained by writing out long equations to give examples, this section looks at the distribution
problem. As mentioned in the introduction, very little is understood about the distribution of randomly selected
elliptic curves. A fundamental result of M. Deuring in [6] gives us a complete description of what numbers can
occur as the number of points on an elliptic curve (see also [36]). However, if we sample random elliptic curves,
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then the distribution of their orders among the possible orders is still very mysterious (for conjectures and further
discussion, see [13]). Depending on the application, control over the order is often desirable, and it is in these cases
that one often assumes that the distribution has regularly occurring values of some desired type. For example, in
elliptic curve public key cryptography, one often assumes that via a random search of elliptic curves, one will find
prime order groups for a non-negligible portion of all elliptic curves (as the base field grows). In practice, this does
seem to occur. The lack of proofs in this area requires us to give examples if we want to make claims about the types
of curves we can generate. These examples give evidence that the desired orders can be found via a random search.
In another type of distribution problem, it is very easy to single out supersingular elliptic curves from the class
of all elliptic curves in characteristic p = 3 mod 4. We will show how this can be used to construct supersingular
hyperelliptic curves where there is a reduction of their discrete logarithm problems to the same problems in a finite
field. At the end of this section, we will provide links to source code for all of our algorithms so that they can be
tested against various distributions.

5.1. Weak Elliptic Curves and Points Counts. Algorithm 2 seems to be able to generate prime order Jacobians
of genus 2 curves at a very fast rate. For one such example at 160 bits, we have the hyperelliptic curve

y? = 67353434412343231568661t% + 266764643564099517354601¢° + 244021071497214277712230t*+
311017899974232689949122¢3 + 557134887168713724834785¢2 + 537290912002427906501256¢+
246564062462488879689319

over the prime field GF(1207034207473389622886491). The Jacobian of this curve has the 160 bit (probable)
prime order

1456931578010913785349746263294406745202104698519.

We had to sample 41 elliptic curves of the form specified in Theorem 1 before it found a prime order elliptic curve;
Algorithm 2 then gave us the equation seen above. In other situations, we have found them in as little as 3 random
searches, and at other times it has taken around 100.

From a cryptographic point of view, one can conclude that the hyperelliptic curve above has the same level of
security as the prime order elliptic curve it was sampled from. To test the speed at which a standard public key
exchange could be executed on these curves, we have implemented Cantor’s algorithms (see [4]) in a standard (and
very basic) hyperelliptic curve package in C++ using the NTL/GMP libraries (see below for links to this source
code). We have found that the speed to be competitive on limited hardware, but we will leave a full analysis for
future work.

The next example shows two things. On the one hand, it shows us that we can also sample almost of prime order
genus 4 curves using Algorithm 3. On the other, it shows us that we can sample elliptic curves of almost prime
oder that can be attacked with index calculus. For an example of Algorithm 3 in action, let w% = 12499454285990
over GF'(17592186044423) and consider the elliptic curve defined by

E:y? = 2® + (17592186044422w; + (12188339541165w, + 12188339541164))z2 + ((5403846503258wq +
5403846503259)w; + (16901862777098wq + 4980906183389))z + (690323267325wy + 12611279861034)w;

over GF(17592186044423%). This curve has the 171 bit prime factor
1995436902172302086412028343508819458313536173109093.

One can test that F is ordinary and has no special features that would rule it out as undesirable from a cryptographic
point of view. Algorithm 3 gives us the following genus 4 hyperelliptic curve.

C : y? = 3622586324622'0+8876727378392x° 4+1189989348357% +16045316041652" +81216919817602° +
104486255661592° + 165060346686692* + 1570741071171223 + 73023085504322:2 + 1913995000352 +
6027788515385

over GF(17592186044423). Algorithm 4 gives us the transfer from E to Jac(C”) (adapting it to work with double
points at infinity where needed).
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We will leave to future work exactly how much of a security parameter increase is required to protect these
vulnerable elliptic curves. In practice, we can sample these weak curves quickly. Moreover, one can also readily
produce examples of elliptic curves not in the class specified by Theorem 1 with the same number of points as one
that is in this class. Since two elliptic curves with the same number of points are isogenous, we can attack curves
not directly in the class of Theorem 1 once we have computed this isogeny. More computational experiments are
necessary to determine if there is any hope of writing down exactly which types of elliptic curves must be avoided
if they are to be used in public key cryptography.

5.2. Supersingular Hyperelliptic Curves. Another application of our algorithms is to use them to construct su-
persingular curves (see [8] for background information). The existence of these curves is not resolved for all
characteristics and for all genera (see [22]). Where they are known to exist, supersingular curves have an appli-
cation to pairing based cryptography (see [3], [10]). From a discrete logarithm point of view, these curves should
be considered very weak when compared to other elliptic curves; it is possible to reduce the discrete logarithm
problem on these curves to a discrete logarithm problem in a finite field (see [24]). We will show how to use our
algorithms to sample curves where the discrete logarithm is very weak in this sense, even though our curves will be
of a higher genus. The fact that our approach generates hyperelliptic curves is interesting for two other reasons: the
first is that supersingular hyperelliptic curves are interesting from the theory of moduli (see [22]), and the second
is that they have an application to pairing and are more efficient to use than a general curve.

We will prove that every elliptic curve is of the form in Theorem 1 over at most a base extension. This should
not be surprising from a geometric point of view: an elliptic curve is given by four distinct points and we can move
any three of them by a fractional linear transformation of P!. In what follows, we will require that the characteristic
of our base field is larger than 3.

Lemma 3. Every elliptic curve can be written in the form given in Theorem 1 over at most a finite base extension.

Proof. Over a base extension, E can be written as
E:y?=t{t—1)(t—\)

over some k. For all w € k*, we can show that E is isomorphic over a finite extension of k to a curve of the form
By = (22— )t —w)

for ¢ = \2w?/(A —2)%if A # —1 and ¢ = w?/9 otherwise. To see this, one just computes the j-invariants of E
and E’ and shows that they are the same. Thus, over a finite extension, E and E’ are isomorphic. 0

To illustrate how this result can be used to manufacture supersingular hyperelliptic curves, recall that the curve
y? = 23 — x is supersingular over IF,, for all p = 3mod 4 (this is a simple calculation of the Hasse-invariant, see
[33]). Using Lemma 3, this curve can be made into E : y?> = (¢t — w?/9)(t — w) for w the square root of a
non-square in F),. We can now send this to Algorithm 2 to produce an explicit supersingular genus 2 curve C’ over

[F,. A simple algorithm to go from Jac(C") to E based on Theorem 2 would be the following.

Algorithm 5.

Input:
) E:y*=Ff
@) ¢’
(3) A Mumford divisor D = [a(t), b(t)], where deg(a(t)) < 2.
Output:
(1) adivisor D' on E such that §'(D) = D'".
Procedure:
(1) Factor a(x) into roots o, a.
(2) Evaluate 8; = x(«;) for z as in Corollary 1.
(3) Collect the points P; = (5;, £/ f(5;)), output the P; that creates D in Algorithm 4.

All divisors on a genus 2 curve can be represented by [a(t), b(t)] for deg(a(t)) < 2 (see [4]). If we now apply the
reduction in [24] to E, we have reduced the discrete logarithm problem on the divisors of C” to that of a finite field.

Remark 4. The source code for all of these algorithms can be found at http://www.ottojohnston.com/dlp
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