ON A COMBINATORIAL CONJECTURE

THOMAS W. CUSICK', YUAN LI*>* AND PANTELIMON STANICA?

ABSTRACT. Recently, Tu and Deng [1] proposed a combinatorial conjecture on binary string,
and, on the premise that the conjecture is correct they obtain two classes of Boolean functions
which are both algebraic immunity optimal, the first of which are also bent functions. The second
class are balanced functions, which have optimal algebraic degree and the best nonlinearity up
to now. In this paper, from three different sides, we prove this conjecture is true in many cases
with different counting strategies. We also propose some problems about the weight equations
which is related to this conjecture. Because of the scattered distribution, we predict that a
general counting is difficult to obtain.

1. INTRODUCTION

In [1], Tu and Deng proposed the following conjecture.

Conjecture 1.1. S; = {(a,b)|a,b € Zox_j,a+b=1t (mod 2F — 1), w(a) +w(b) < k — 1}, where
1<t<2F—2k>2. Then, the cardinality #5S; < 2F~1.

They validated the conjecture by computer for £ < 29. Based on this conjecture, they
constructed some classes of Boolean functions with many optimal cryptographic properties.

In this paper, we attack this conjecture, and prove it for many parameters, based on the
binary weight of t. We found out that the distribution of the pairs in S; is very scattered.
With our method, the counting complexity increases directly with the weight of ¢, or ¢/, where
t' = 28 —t. Our counting approach is heavily dependent on the number of solutions of the
equation w(2 + 22 + ... 4+ 2 4 2) = r 4+ w(z).

This paper is organized as follows. In Section 2, we introduce some notations and basic facts
about the binary weight functions which will be frequently used in the rest of the paper. In
Section 3, we prove that the conjecture is true when w(¢) = 1,2. In Section 4 we prove the
conjecture when t = 2F — ¢, w(t') < 2 and ¢’ is even. In Section 5, we prove the conjecture
when t = 28 —#/, w(t’) < 4 and t' is odd. In Section 6, we give some open questions about
the number of solutions of w(2% + 2% + ... 4+ 2% 4+ x) = r + w(z), where 0 < x < 2¥ — 1 and
0<ihi<ig< ... <ig<k-—1

2. PRELIMINARIES

Let = be an nonnegative integer, if the binary expansion of x is = g + 212 + 2922 + - - -,
where z; € F = {0,1}. Then we write x = (zozy....). The (Hamming) weight (sometimes called
the sum of digits) of x is w(z) = >, ;. The following lemma is well known and easy to show.
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Lemma 2.1. The following statements are true:

oF 1—z)=k—-wx), 0<z<2¥-1;

x+2Y) <w(x), if o = 1;

x+y) <w(x)+w(y), with equality if and only if z; +y; < 1, for any i;
r)=w(x—1)—i+1,z=2" (mod2), i=0,1,2,....

The last statement implies that: w(z) = w(x — 1)+ 1if z is odd; w(z) = w(x — 1) if z = 2
(mod 4); w(z) = w(xr —1) — 1 if 2 =4 (mod 8), etc., and so, for two consecutive integers, the
weight of the even integer is never greater than the weight of the odd integer.

Lemma 2.2. When0 <2 <2 —-1and0<i<j<m—1, We have:
(1) w(x + 20 +27) = 1 +w(x) if and only if z; = 0,25 = 1,x541 = 0, or, 7; = 1,241 =
(2) wx+2"+2") =w(x) if and only if x; = 0,25 =1,z =1L, 240=0 (j <m—1); z; =
1,ziy1 =1, 2442 = O,IL’]' =0 (] >i+2),‘ ;=124 = 0,1,‘]‘ = 1,1’j+1 =0 (j >0+ 1),‘
or,z;i=1lz; =121 =0 (j =i+1).

Proof. The proof of the above lemma is straightforward by considering the four possible values

of z;, x;. O

The previous lemma can be used to show
Lemma 2.3. Given a positive integer m, let
NI = #{2]0 <z < 2™ — 1, w2+ 2 +2) =r+w(x)}, where 0 <i<j<m-—1.

Then N{7) = om=2 N{W) — ¢ ifr > 3.
am=2 1 om=3 jil<j=m-—1

. m—2 : g
Further, if r = 1, then Nl(z’]) = gm_g zi i Z:; ; z B ;
gm—3 i+1=j<m-2.
(om=3 pom—4 1o« j=m—1
2m=3 i+2=j=m-—1
2m—2 i+l=j=m-—1
N 2m=2 i+2<j=m-—2
Finally, if r =0, then Néz’]): am=3 pom—4 4 92=j=m-2
om—2 i+l=j=m-—2
om=3 L om—4 4 9<ji<m-3
gm—3 i+2=5<m-—3
[ 2" 42m 7t il =< m-3.

Since integers b will be uniquely determined by a in Sy, we will count the number of such a’s.
We have two different groups of integers a, which will show up in the next few sections:
Group I: a=0,1,...,t,b=1—q;
Group II: a=t+v,b=2—-1—0v,v=1,2,...,2F -t — 2.
3. THE CONJECTURE IS TRUE FOR t = 2! AND t = 2/ 4 2¢
We have

Theorem 3.1. We have #S; < 2F71, t =2, 0<i<k—1.
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Proof. We split our analysis in two cases. '
We first assume that 0 < i < k — 2. Look at Group I, 1 < v < ok _ 91 _ 9 Tet

Y= w(a) + wb) = wt+v)+ w2 —1—-v) =w@ +v)+k—wb) <1+k.
Then
Y=k+1lo w2 +v)=14wl) v =0.
There are 2]‘“_1 many 0 < v < 2k — 1 with v; = 0. When v > 2F — 28 — 1 then v; # (0. Thus,
v=2F_—-2"—1and v =0 are two solutions of the above equation. Hence, there are 2F~1 — 2
many v (or a) such that ¥ =1+ k.
Now,
Y=ksw?2+v)=wk) < v =174 =0.
There are 2F—2 many 0 < v < 2k — 1 such that ¥ = k. When v > 2F — 2¢ — 1, vi41 =1, and 0
is not a solution of the above equation. Therefore, all the v such that v; = 1 and v;41 = 0 must
be between 1 and 2¥ — 2/ — 2. Hence, there are 25=2 many a’s such that ¥ = k.
In summary, there are exactly 2F — 2! — 2 — (2F=1 —2) — 2k=2 — 2k=2 _ 90 many a’s in Sy
belonging to Group II.
In Group I, a =0,1,...,t. Let
o =w(a) +wb) = wa)+ w2 —a)
=w(a) + w2 —1—(a—1)) =w(a)+i—wla—1)
=i+1 ifa=1 (mod?2)
<i—1 ifa=0 (mod 2),
which gives o < k—1. Combining these two groups, we get #S5; = 2F"2 2142141 =2F241 <
2k—1,
We next assume that i = k — 1. Group II (1 < v < 2¥~! — 2) makes no contributions to S,

since
Y =w@ o)+ k—ww)=1+k.

In Group I,
o =w(a)+wt—a)=w)+w21-1-(a-1))
=w(a)+k—1—-wla—1)
{—k ifa=1 (mod 2)
<k-1 ifa=0 (mod 2).
Consequently, #S5; =1+ % =1+ 22 < 2%=1 and the proof of the theorem is done. O

When the weight of ¢ is increased by 1, the counting complexity increases significantly.
Theorem 3.2. We have #5; < 2k=1 when t = 20 + 2, 0<i<j<k-1, k>4

Proof. Recall that: Group I: a = 0,1,2....t, t = 2! + 23"; ‘
GroupIa=t+v,b=2F-1—0v,v=1,2,..,2F—27 -2t _ 2,

We first assume that j < k —3 (Case A). In Group II, let

Y=w@+ 2 +0)+w@—1-0v)=w@+ 2 +v)+k—wh) <2+k.
Further,
Y=24+kc w2 +2 +v)=2+wl) & v =v;=0.

Then, v =0 and v = 2F — 27 — 2/ — 1 are two solutions. When v > 2F —2/ — 2/ — 1, then v; = 1
or v; = 1. Hence, we get 2¥~2 — 2 many v (or a) such that ¥ = 2+ k. Next, ¥ =1+ k <
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UiZO ’szl Uj+1:0
or, vi=1 viy1=0 v;=0 (j>i+1)
Certainly, v = 0 is not a solution. If v > 2¥ — 27 — 2/ — 1, then v does not satisfy any of the
above conditions. In other words, all solutions are between 1 and 2F — 27 — 2¢ — 2.
Hence, there are exactly { 2% j>itl
’ 263 j=i+1
Further, ¥ = k < w(2° + 27 +v) = w(v). It is easy to check that v = 0 is not a solution and
any v > 2% — 27 — 28 — 1 does not satisfy any condition of Lemma 2.3 when r = 0. Hence, there

w2+ 27 +v) =1+wlk) & { by Lemma 2.3.

many a’s such that ¥ =k + 1.

are exactly Néi’j ) many v such that ¥ = k, where

(ig) o [ 2877 j>i+1
No Z{2’€—i"+2’f—4 j=i+1.
ok 97 90 _ 9 (2k-2 _2) k=2 _ k=3 j>i+1
ok — 97 — 2t _ 9 (2k72 _9) k=3 (k=3 L ok—dy 5 —j ]
e e A Y D |
_{Qk—l_zj_2i_2k—4 j:Z+1
I there are only ¢ + 1 = 27 4+ 2 + 1 many a. Thus,

Hence, there are at most {

many a’s such that ¥ < k — 1 in Group II. In Group

k=l _9k=3 11 j>i4+1 < k-1

<
#St—{ oh=l_ok=d 11 j=i+1

Case A has been proved. ,
Assume next that j = k — 2 (Case B). In Group I, v = 1,2,...,2F — 2672 _ 20 _ 2 Let

Y =w@2 242 4 0) +k—w) <2+E.
First, if ¥ = 2 + k, then, as in Case A, we get exactly 252 — 2 many a’s such that ¥ = 2 + k.
, : 2k=2 p—2>i+1
Secondly, if ¥ = 14k, as in Case A, we get exactly { 9k—3 . _o9_ ;i1

Y =1+k If ¥ =k, that is, w(2¥"2 4 2 + v) = w(v), from Lemma 2.3(m = k, r = 0), then the
number of solutions of all the v between 0 and 2F — 1 is

many a’s such that

2k=2, i+2<j=k—-2
k=3 pok=4 49— j=k—2
2k=2 i+l1=j=k—2.

All the integers v satisfying the first condition in Lemma 2.3 are greater than 2% —2k=2 27 1,
This means that there are 283 (please note that always v; 19 = vy = 0) many v that should be
excluded from the solutions of ¥ = k. Hence, we get

k=3 4 2<k—2
264 i+ 2=k-2
k=3 i4+1=k—2.

many a’s such that ¥ = k.
In summary, the number of a’s with % > k is

k=2 _ 9y ok=2 4 ok=3 ;49 <k —2 k=l 94 2k3 4 2<k—2
k=2 9y ok=2 4 ok=4 y 90— —2 = 2k 1949kt 12—} 2
k=2 94 ok3 L ok=3 41 =k —2 k=1 _ 9 i+l=k—2
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So, the number of a’s in Group II with X <k — 1 is

ok — 27 9t 9 (2k"1 2y 2k=3)y —ok=l 97 9l _9k=3 19 <k -2
219_2]‘_21’_2_(2k—1_2_’_2k—4):2143—1_2]‘_21’_2k—47 i+2=Fk—2
ok 97 — 21 9 (2k-1 —2) =2kl 97 21 i+l=k—2.

In Group I, there are only t+1 = 2/4+2/4+1 many a’s. When i+1 = k—2, and a = 2" "3 +1, we
get w(a)+w(t —a) = k. Hence, combining all the a’s in the Groups I and II, we get #S5; < 2F~1,
and Case B is proved.

Next, we assume that j = k — 1 (Case C). Look at Group II, 1 < v < 281 — 20 — 2. Tet
Y=w@2F 420 ) +k—w(v) <24k If ¥ =24k, as in Case A, there are exactly 2872 — 2
many a’s such that ¥ =2+ k. Next, ¥ = 1+k < w(2F 1 +2/ +v) = 1 + w(v). By Lemma 2.3,
we must have k —1 > i+ 1 (since v; = vy—; = 1 is impossible due to v < ok — 27 91 _ 2 < 27)
and v; = 1 viy1 = 0wvpy =0 (if k=1 > ¢+ 1). Certainly, v = 0 is not a solution. If
v>2k okl _ 9t 1 — (2’“‘1 — 1) — 2%, then v does not satisfy v; = 1 v;41 = 0 vp_1 = O.
So, there are exactly 2¥~3 many a’s such that ¥ = 1 + k (only if k — 1 > 4 + 1). Further,
Y=ke w2142 4v) =wk), 1 <v< 2! -2 2 By Lemma 2.3, we infer that v; = 1
Vi1 = 102 =001 =0(k—1>i+2). v > ok—1_91_ 1 g impossible. So, there are exactly
2k=4 many a’s such that X = k (only if k — 1 > i +2). So, the number of a’s with ¥ > k is

ok=2 _ 94 ok=3 4 ok—4 490 k—1
k=2 _ 9 4 k=3 i+2=k—1
k=2 _ 9 i+1=Fk—1.

In Group II, the number of a’s that makes ¥ < k — 1 is

2k=1 _2i 9 (k"2 242k 3 4okt ok 2l 12k 1
k=l _2i —2— (282 — 24 2k=3) =, i+2=k—-1
k=1 2t 2 (2k-2 _2) =, i+1l=k—1.

We now look at solution from Group I. If i = 0 (call it, Case Cy), then o = w(a) + w(2¥~1 +
1—a)=w(a)+k—1—wla—2)=k when a = 2,3 (mod 4). So, there are at most 2872 4 2
many a’s between 0 and ¢ = 2571 +1 such that ¢ < k — 1. Combining with the results in Group
I, we get #5; < 2872 4 2 4 2k=4 90 — 9k=2 4 ok—=4 | | < ok—1

Now, we assume ¢ > 1. If i > 1, j = k—1 > i+2 (Case C3), then 0 = w(a)+w(t—a) = w(a)+
w(2F 1421 —a). When 0 < a < 2/, 0 = w(a)+1+w (2 —a) = w(a)+1+i—w(a—1) < i+2 < k—1.
So, this contributes 27 + 1 many a’s to S;. When 2/ 4+1 < a < 28=1 4+ 27 then (let z = a — 2" — 1,
0<z<21 1)

o = wla)+w21—1-(a—2"-1))
= wl)+k—-1-—wa—-2"-1)
= wz+2+1)+k-1-w) <1+k
First, if o =k +1 & w(x + 2/ +1 = 2 + w(x), there are exactly 287172 = 2=3 many s (or
as). fo=k<s wlxz+2"+1=1+w(z), by Lemma 2.3 (m =k — 1), then

$0:0,$121,$¢+1 =0
zo=1,21=0,2, =0 (i>1).

k-3 ;< e —
27, 1<i<k=3 Hence, the number of a’s that

The number of solution z (or a) is b4 | —i<k_3
273 1<i<k-3 k=2 1<i<k-3
<k_—_1i k=1 _ 9k—=3 _ > _ < '
osk-lis2 2 {2“ 1=i<k-3 {2“+2k4 1=i<k-3
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Putting all this together, in Group I, the number of a’s in S; is
2k=2 4 21 1 1, l<i<k-3 _ k=2 4 ok=3 4 1, 1<i<k-—3
k=2 4ok 4 94 ] 1=i<k—3 — | 2k 242k 3 42k4 4] 1=i<k-3
Combining these estimates with the ones from Group II, we get (in any case) #S5; < 281,
Finally, we assume that j =k —1=4i+ 1, that is, j =k — 1 and i = k — 2 (Case C3). When
0<a< 22 then
o = wla)+w@2F 4282 )
= wla) +1+w?2"?—a)
= wa)+1+k—2—-wla—-1)
B k a=1 (mod 2)
- <k—-1 a=0 (mod?2)
which contributes 1 + 2¥=3 many a’s to S;.
When 2872 +1 <a <281 4+ 22 then (let r =a —2""2 - 1,0< 2 <2F1 1)
o = wla)+k—1-w(a-282-1)
= wz+2" 2+ D) +k-1-wx) <1+k
First, as before, when ¢ = k + 1, there are 2°=172 = 2=3 many z (or a). Next, o = k, that
is, w(x +b*2 4+ 1) = 1 + w(z), and as in Lemma 2.3(m = k — 1), we have 29 = 0, zx_o = 1;
or, g = 1, x1 = 0, x3_» = 0. which gives that the number of solutions is 2873 4 2k if
l<i=k—-2
Hence, the number of a’s in Sy is 2871 — 2k=3 — (k=3 L oh=4) — k=3 L ok—d | .y — — 2,
Group I contributes 1 + 2F73 4 2k=3 4 9k=4 — 9k=2 4 9k=4 4 1 many solutions to S;.
Combining these estimates with the ones from Group II, we have

and this completes the proof of this theorem. O

4. THE CONJECTURE IS TRUE FOR t = 2F — 28 AND ¢ = 2k — 27 — 9
Theorem 4.1. We have #S; <281 ¢t =2F -2/ 1 <i<k-1.

,...,t; and Group II includes a =

Proof. Under our assumption, Group I includes ¢ = 0,1,..
1,2,...,20 —2.

t+1,...,28 —2 thatis,a=t+v,b=2F -1 —v, v =1,
In Group II,
Y = w(a)+wb) =wt+v)+w@ —1-0v)
= w2 -2+ v) + k- w(v)
= 2%k—w2 —v—1)—wl)=2k—i
> k+1,

so, Group II makes no contributions to S;.
we now look at Group I. If a is odd, then

o = w(a)+wd) =w(a)+w(t—a)
= wla)+w?@ -2—a)=w)+k—-w2+a—-1)
> w(a)+k—(14+wla—-1)) =k
Hence, there are at most 5t + 1 = 2¢=1 — 2171 4+ 1 < 2%=1 many a’s with w(a) + w(b) < k — 1,
and so, #S5; < 28~1. The proof is done. O
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Theorem 4.2. We have #S; <281 t=2F -2 — 21 1 <i<j<k—1.

Proof. Under our assumption, Group I includes a =0, 1,...,¢ and Group Il includes a =t + v,
b=2F_—1—v,v=1,2,...,27 420 —2.
In Group II,

= w2 -2 -2 4 v)+k—w)
= 2k—w@+2" —v—-1)—w).
Ifl1<ov<2—1thn¥=2k-1-w2-1-v)-wk) =2k-1-i>k+1 If
20 <v <242 =2, then ¥ =2k —w(2) —1—(v-2")) —w(v) =2k —j +w(v—2") —w(v) >
2k—j+w(v—2")— (w(v—2")+1) =2k —j—1 > k. Thus, Group II has no contributions to S;.
We now look at Group L. We consider several cases.
Case A:i=1.S0,t=2F—-2/ —2=2F_1—-2/ — 1. Thus,

oc=w(a)+wt—a)=wa)+w@—1-2-1—a)=wla)+k—w2 +14+a)>k—2.

Ifo=k—2s w(l+2 +a) =2+ w(a), there are at most 2°~2 many such a’s. If 0 =k — 1 <
w(l +27 +a) = 1 +w(a), there are at most 2¥~2 many such a’s by Lemma 2.3. Consequently,
#S, < 2k,

Case B: i >1and j <k —2. Then

o =w(a)+wd) = w(a)+w(2k—27—2—a) = w(a)+k—w (2 +2'+a—1) > w(a)+k—2—w(a—1).

Ifa=1 (mod2),thenoc>k—1 Next,oc=k—1o w2 +2+a-1)=24+w(a—1) &
(a—1); = (a—1); = 0. Since (a — 1)g = 0, there are at most 2¥~2 many a’s belongs to S;.

Ifa =2 (mod 4), then o > w(a)+k—2—w(a—1) = k—2. Next, 0 = k—2 & w(2/+2'+a—1) =
24+w(a—1), which is equivalent to (a—1)g = 1, (a—1); =0, (a—1); =0, (a—1); = 0. Thus, there
are at most 2¥~4 many such a’s for a contribution to S;. Further, o = k—1 < w(2/4+2'+a—1) =
1+ w(a — 1), and by Lemma 2.3, there are at most 2% many such a’s (m =k, = a — 1,
(a—1)=1, (a—1)1 =0).

Consequently, there are at most 28~2 many a’s such that a = 0 (mod 4), even if all of them
belong to Sy, and so, we obtain #S; < 2F=3 4 2k=4 4 ok=4 | k=2 _ ok—1

Case C:i>1and j =k —1, and so, t = 2¥~1 — 2!, Then

o = w(a)+wb) =wa)+w@ -2 —a)
= w(a)+k—-1-w@ +a—-1)
> w(a)+k—2—-w(a—1).
Whena=1 (mod2),0 >k—1l,ando=k—-1w+a-1)=1+wla—1)& (a—1) =
(a —1); = 0. Therefore, there are at most 28~1=2 = 28=3 many solutions to contribute to S;.

When a =2 (mod 4), 0 > k—2,and o =k—2 < w2i+a—1)=1+w(a—1) & (a—1) =1,
(a — 1)1 =0, (a — 1); = 1. Therefore, there are at most 2¥~'=3 = 2¥=% many solutions.

oc=k-1ewl+a-1)=wa-1)s (a—1)g=0,(a—1);1 =1, (a—1); =1, (a—1);41 = 0.
There are at most 2°~17% = 2¥=5 many solutions to contribute to S;.

Consequently, there are at most 2872 many a = 0 (mod 4), even if all of them belong to Sy,
and we obtain #5; < 2873 4 2k—4 4 9k=5 4 9k=2  gk—1 O

Y = wa)+wb) =wt+v)+w@ —1-0v)
(

5. THE CONJECTURE IS TRUE FOR ¢ = 2F — 2/ —1 ¢ =28 -2/ — 2/ —1 AND
t=2F_20l_2/ 201

Since the proofs require many counting arguments we split our result in several theorems.

Theorem 5.1. We have #S; < 281 ift=2F—21 -1, 0<i<k—1.
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Proof. Recall that Group I includes 0 < a < ¢; Group II includes a =t + v, b = 2F — 1 — v,
v=1,...,2 — 1.

For Group I, ¥ = w(t4v) +k—w(v) = w(2F —1— (2" —v))+k—w(v) = 2k—w(2'—v) —w(v) =
2k—i+wlv—1)—ww)>2k—i—1>k.

For Group I, 0 = w(a) +w(t—a) = w(a) +w(2F —1—(a+2%)) = w(a) + k—w(a+2") > k—1.
Next, if 0 = k — 1 © w(a 4 2) = 1 + w(a), then there are at most 2¥~! many such a’s. Hence,
#S, < 2k, O

Theorem 5.2. We have #S; < 2F 1 ift=2F -2 -2 1 1<i<j<k-1.
Proof. As before, for Group II, when 1 < v < 2¢, then

Y o= wt4v)+k—wk)=2k—w® +2"—v) —w)
= 2k— (1 + w2 —v) —w)
= 2k—1—-(i—wl-1)) —wv)
2k—i—14+ww—-1)—w()
> %k —i—1-1>k

When 20 +1 < v <2/ +2° — 1, then (withz =v—-2"—1,0< 2 <2/ —2)

Y = 2k —w(2 +2°—v) —w)

= 2k—w®@ —1-(v—-2"—1))—w(v)
2k — j 4+ w(z) —w(x + 2 + 1)
2% — j — 2.

Y

Itj<k-2thenY >k lfj=k—-1then¥ >k—-1,Y=k-1 S wr+20+1) =2+w(z).
Thus, there are at most 272 = 2kf3 many such z (v or a) contributing to S;.
In Group I, 0 < a <2F -2/ — 2" — 1, and

c=w(a)+w@2F -2 -2 —1—a)=wla)+k—w@ +2"+a)>k—2.

Case A: j <k —2; Then 0 = k —2 & w(2’ + 2" + a) = 2 + w(a), and so, there are at most
282 many a’s. Next, 0 =k — 1 < w(2/ + 2 + a) = 1 + w(a), and by Lemma 2.3, the number
of such a’s is at most 272, Hence, #S; < 0 + a*=2 4+ 2F=2 = 2k— 1,

Case B: j = k —1; Then 0 = k — 2, and there are at most 2¥~2 many such a’s. Next,
oc=k—1& w2 +2'+a)=1+w(a) & (as in Lemma 2.3) a; =0, aj = ax_1 = 1, aj41 = 0 or
ai=1,a;41=0,a;=0,(j >i+1). But j =k —1,t < 2571 hence a; = 0. It means that the
first condition cannot be satisfied. So, there are at most 2¥~3 many such a’s. Combining this
estimate with the one from Group II, we have #5; < 2F=3 4 2k=2 4 9k=3 — 9k=1 "and the proof
is done. (]

Before proving our last theorem, we need a lemma.

Lemma 5.3. Let N\ = #{z|0 <z < 2™ — Lw2 + 2 + 2 +2) = r + w(z)}, where
0<i<j<li<m—1. The following hold:

(1) Ifr=3, w2 +2 +2 +2) =3+ wx) & 2 =, = 1 = 0; Purther, N{" = am=3,
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) Ifr=2, w2 +2+2+z)=24wk)e =0z, =0z, =121 =0; or, ;=0
J +
zj=1aj1 =0z, =0(>j+1);0r 0, =121 =02;=0x=0(j >i+1).

Further, Néi’j’l) =

2m72

2m73 4 2m74
2m73 + 2m74
2m73
2m73 + 2m74
2m—3
2m—3
2m—4

1+2<j4+1l<l=m-1
i+2=j+1<l=m-1
i1+2<j+1l=l=m-1
i+2=j+1=1l=m-1
i+2<j+1l<i<m-—2
i+2=j4+1<i<m-2
i+2<j4+1=1<m-2
i+2=j4+1=1<m-2

\
B3) Ifr=1, w2 +2 +2 4 2) =14+ w(x) &
zi=0,2;=0,2=1, 241 =1, 2140 =0 (Il <m —2);
szl, l‘j+1=1, .%‘j+2=O, xl:()(l>j+2);
szl,:clzl, le:O(l:j—i—l);

or, x; =0,

or, x; = 0,
or, T; =1,
or, T; =1,
or, x; =0,
or, T; =1,
or, T; =1,
Further,

(Z7]7m_1)
Ny

(Z7J7m_2)
Ny

(3.0 _
Ny =

Tit1 =1, 24420=0, 2; =0, xZZO(j>i+2)
szoy $j+1:0, xl:0<]:Z+17l>.]+1)7
szl,xj+1:0,xl:1,xl+1:0(l>j—|—1)

7

)

Tit1 =0, iL'jZO, =1, .1‘l+1:0(j>i—|—1);

.I‘Z'+1:O,£L'j:1,xj+1:0,l’l:O(l>j—|—1,j>i+1).

\

2m—3 4 2m—4 4 2m—5

2m73 4 2m74
2m73 + 2m75
2m73 + 2m74

2m73 + 2m75
2m—3

2m—3 + 2m—4 + 2m—5

2m—3 4 2m—4
2m—3

( 2m73+2m74+2m75

i+4<j+2<l=m-1
i+4=j4+2<l=m-1
i+3=j4+2<l=m-1
i+4d<j+2=l=m-1
t+4d=j+2=1l=m-1
1+3=j+2=1l=m-1
i+3<j+1=l=m-1
i+3=j+1=l=m-1
i+2=j+1=l=m-—1,
i+4<j+2<l=m-2

gm=3 4 gm—4 itd=j+2<l=m—2
gm=—3 4 gm—4 i+3=j+2<l=m—2
gm—3 4 gm—4 i+4<j+2=1l=m—2
2m=3 4 gm=5 i+4=74+2=1=m—2
2m=3 4 gm=5 i+3=j4+2=1l=m—2
2m=3 4 gm—4 i+3<j4+1=1l=m-2
gm=3 4 gm=—>5 i+3=j+1=1l=m—2
gm=3 i+2=j+1=1l=m-2,

2m=3 pom=4 ji4<j+2<i<m-—3

2m=3 L 9M=5 4 d=j+2<I<m—3

2m=3 4 om=5 4 3=j4+2<I<m—3

QM3 L M5 44 < j42=1<m—3

om—3 i+d=j+2=1<m-—3

om—3 i+3=j+2=1<m-3

2m=3 1 9m=5 43 < j+1l=1<m—3

om—3 i+3=j+1=1<m-3

om—4 4 om=5 i1 2—j4+1=[<m-—3.

Proof. We omit this straightforward and slightly tedious proof.
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Theorem 5.4. We have #S; < 2F-1 t=2F 92l 21 — 2 1 1<i<j<l<k-—1.

Proof. Under our assumptions, Group I includes 0 < a < t; and Group II includes a = ¢ + v,
b=2F—1—v,v=1,2,...,2' +2/ 4+ 2/ — 1. We consider several cases.
Case A: Il <k—-3(k>143>j+4>i+5). In Group II,
Y = w(a)+wb) =wt+v)+w@ —1-0v)
= w2 —1-2"+27+2) +v) +k—w)
= 2k —w(2' + 27 + 2" —v) —w(v).
If 1 <wv < 2% then
Y o= 2k— (24 w2 —v)) —w)
2k —2 —w((2'—1) — (v—1)) —w(v)
2k—2—i14+wv—-1)—w)
2k —2—i—1>k+2.

Y

If 20 +1 < v < 27, then
Y o= 2k— (14w +2"—0))—w)
= 2%k—1-w® -1-(w-2"-1)) —w()
= 2k—1—j4+wlhv—2"-1)—w)
> 2%k—1-—j—-2>k+1.
If 27 +1<wv <2 +2¢ then
Y o= 2k— (14w +2"—0)) —wb)
= 2%k—1-w@2-1-(v—-2 —1))—w()
= 2%k—1—it+wv—-2—1)—w)
2%k —1-i—-2>k+2.
If20 +20+1<0v<2 42 42 —1,then
Y o= 2%k-—w@ —-1—(v—2—2"—1)) —w)
2k — I +wv—2" —2° —1) —w(v)
> 2%k—1-3>k

Y

Hence, Group II has no contributions to S;.

In Group I, ¢ = w(a) + w(t —a) = w(a) + k — w2 + 27 + 2" +a) > k — 3. First, if
oc=k—-3c w2 +2 42 +a) = 3+ w(a), there are at most 2°~3 many such a’s. Next,
ifo =k—2e w2 +2 42 +a) =2+ w(a), there are at most 2¥73 + 254 many such
a’s by Lemma 5.3 (please note that m = k and | < k— 3, r = 2). Finally, if c = k-1 &
w(2' +27 4+ 2" +a) = 1 +w(a), there are at most 273 4 2¥=% many such a’s by Lemma 5.3(r = 1,
I <Ek-3).

In summary, #S; < 2873 4 2k=3 | ok=4 4 ok=3 | ok—4 _ ok—1

Case B: l=k—2(k=1014+2>j+3>i+4). In Group II, by the proof of Case A, there are
some a’s which will contribute to S; only if 24241 <p<2 4242 —1. Then

b w(a) +wd) =2k — w2 —1—(v—27 =21 = 1)) —w(v)
= 2%k—l4+wlv—2 —2"—1)—w)
= 2k—l+wx)—wx+2 +20+1)

> 2k—-1-3=k—-1,
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wherez =v -2/ -2 —1,0<2<2' - 2. Y =k -1 w2 +2/ + 2" +2) =3+ w(z), there
are at most 2!=3 = 2¥=5 many such a’s.

In Group I, 0 = w(a) + w(t —a) = w(a) + k —w(2' +2/ + 2" +a) > k—3. If ¢ = k — 3, there
are at most 2°73 many such a’s. If ¢ = k — 2, there are at most 273 + 28=% many such a’s.
Ifo=k—-1s w2 +2 +2'+4a) =14 w(a), by Lemma 5.3, with r =1, m =k, | = k — 2,
wegetx; =0,2; =0, 5y =1, 21 =1, 200 =0& 2, =0, 25, =022 =1, 751 =1
=z > 281 4+ 2F=2 5 ¢ 50, the number of solutions of o = k — 1 should not include this 2F—*
many. That is, there are at most 2°=3 + 2¥=5 many a’s such that ¢ = k — 1 by Lemma 5.3.

Combine Groups I and II, and get #5; < 2F=5 4 2k=3 4 9k=3 | ok—4 | ok=3 | ok=5 _ ok—1

Case C:l=k—-1(k=14+1>j+2>i+3). In Group II, by the proof in Case A, there are
some a’s will make contributions to Sy, only if 20 +1 < v < 2/ or 2742141 < v < 2l 427 4211,
If2l+1<w<27,

Y=w(a)+wbd)=2k—-1—j4+wv—-2—-1)—wlv)>2%k—-1—j—-2>k—1.
First ¥ = k — 1 implies that w(v —2' — 1) =2 = w(v) and j = k — 2. Let z = v — 2" — 1,
0<2z<2 —2 —1. Then w(x + 2+ 1) = 2+ w(x) has at most 2/~2 = 2¥=* many solutions, so

Y =k — 1 has at most ok—4 many solutions if j =k — 2.
If27 +20+1<v <2 4+2/ 42 —1 then

Y =w(a) +wbd) =2k —l+wv—-2" -2 —1) —ww) >k+1-3=k—2.

Letx =v—2/ =2/ —1,0<2 <2 —2=2F1_2 If ¥ = k— 2 we get at most (in fact, exactly)
2k=1=3 — 9k=4 many solutions. If ¥ = k — 1 then w(z + 27 + 2' + 1) = w(z) + 2, by Lemma 5.3
(m =k —1), we get exactly N2(O’Z’] ) many solutions since 2! — 1 is not a solution. Recall that

k=3 2<i+l<j=k-2
k=4 L ok=5 9 —jitl1<j=k—2
k=4 L 2k=5 2 <itl=7=k—-2

N0 2k—4 2=i+1=3=k—-2
2 k=4 L ok=5 9 < it 1<j<k-3
ok—4 2=i+1<j<k-3

ok—4 2<i+1=5<k-3

| 2k 2=i+1=5j<k-3

In Group I,

oc=wa)+wt—a)=wl)+k—w2 +27+2+a)>k—3.
If o = k — 3, there are at most (in fact, exactly) 2¥=3 many solutions. If ¢ = k — 2, then
w(2' + 27 + 2 + a) = w(a) + 2, and the first condition of Lemma 5.3 is satisfied (r = 2), and we
geta; =0,a; =0, =1, ;41 =0 a; =0, a; =0, ap—1 =1 = a > 21 >t That means
2¥=3 many a’s should not be counted. So, the number of solutions of ¢ = k — 2 is at most

k=3 ir2<jtl<i=k-1
k=4 jr2=j+l1<i=k-1
k=4 ir2<i+l=l=k-1
0 i+2=j+1=1l=k—1

If o = k — 1, then w(2' + 2/ + 2 + a) = w(a) + 1. By Lemma 5.3 (r = 1), we obtain a; = 0,
aj=1Laq=1Laq1=0(0=j+1)a =0a; =1, ap—1=1= a> 21 > ¢ so, there are
2k=3 many a’s which should not be counted for [ = j + 1.

The sixth condition of Lemma 5.3 implies a; =0, a; =1, aj41 =0, a,_1 =1 (1> j+1) =
a > t. There are 2°~* many a’s which should not be counted for I > j + 1.
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The seventh condition of Lemma 5.3 implies a; =1, aj41 =0,a; =0, ap_1 =1 (j >i+1) =
a > t. There are 25~ many a’s which should not be counted for j > i + 1. In summary, we get
the number of solutions of o = k — 1 is at most

ok—4 4 ok=5 4 4cjt2<l=k—1
ok—4 i+4=j+2<l=k—-1
k=4 4 k=5 43 =j42<i=k—1
ok—4 i+4<j+2=1=k—-1
2k—=5 i+4d=j+2=1=k-1
ok—4 i+3=j+2=1=k—-1
k=5 i+3<j+l=1l=k—-1
0 i+3=j+1=1l=k—1
0 i+2=j+1=1=k—1

If j # k — 2,that is, j < k — 3, then
#St < 2k—4 + 2k—4 + 2k—5 + 2k—3 + 2k—3 + 2k—4 + 2k:—5 — 2k—1'
If j = k — 2, then
4G, < okt 4 ok—4 4 ok=3 | ok=3 | ok—4 | ok=5 _ oh=2 L ok=3 4 ok—4 4 ok-5 _ gk-1

This completes the proof of our theorem. O

6. FURTHER REMARKS

As we see, the counting heavily depends on the following quantity
N{ieis) = ()0 < @ < 28 — 1Lw(2" +22 4+ 4+ 2% +2) =+ w(2)},

where 0 < i1 <9 < ... < is < k— 1. Obviously, we have Nﬁil’@’“"is) =0if r > s. We also have

Nt 4 < o A general formula may be hard to obtain, but it could be interesting
if a good upper and lower bound can be determined for given s and r.
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