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Abstract. We consider how to build an efficient compression function from a small number of random, non-
compressing primitives. Our main goal is to achieve a level of collision resistance as close as possible to the optimal
birthday bound. We present a 2n-to-n bit compression function based on three independent n-to-n bit random
functions, each called only once. We show that if the three random functions are treated as black boxes then finding
collisions requires ©(2"/2 /n°) queries for ¢ ~ 1. This result remains valid if two of the three random functions
are replaced by a fixed-key ideal cipher in Davies-Meyer mode (i.e., Ex (z) @ x for permutation Ex). We also
give a heuristic, backed by experimental results, suggesting that the security loss is at most four bits for block sizes
up to 256 bits. We believe this is the best result to date on the matter of building a collision-resistant compression
function from non-compressing functions. It also relates to an open question from Black et al. (Eurocrypt’05), who
showed that compression functions that invoke a single non-compressing random function cannot suffice.

We also explore the relationship of our problem with that of doubling the output of a hash function and we show
how our compression function can be used to double the output length of ideal hashes.
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1 Introduction

Hash functions are a central cryptographic primitive, appearing in countless protocols and applications.
Dedicated hash functions such as MD5 and SHA1 have dominated practice, as these are relatively fast and,
until recently, they were believed to resist collision-finding attacks. But this belief has been shown to be
unfounded: successful attacks have been published against most members of the MD/SHA-family. This has
prompted a renewed interest in design methodologies for hash functions, with a particular emphasis on
providing formal guarantees of collision resistance (along with other properties).

The design of hash functions usually proceeds in two stages. First one designs a compression function
with fixed domain, typically bitstrings of some small length. One then applies a domain extension method,
such as the Merkle-Damgard transform [11,24], to the compression function in order to construct a hash
function for messages of arbitrary length. The first part has our interest; in particular, the central problem
considered by this paper is the following one:

Given a (small) number of independent n-to-n bit random (one-way) functions, construct a 2n-to-n
bit compression function with provable collision resistance as close as possible to the optimal 2"/
birthday bound.

This problem is related to one recently considered by Maurer and Tessaro [22], who consider the problem of
constructing a function C' : {0, 1} — {0, 1}/ given a n-to-n bit random one-way function f. Setting
m(n) = 2n and I(n) = n gives rise to a 2n-to-n bit compression function. Maurer and Tessaro cast security
in the indifferentiability framework, in which case domain extension is actually far more challenging than
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range extension. For all ¢ > 0 they give a construction indifferentiable from a random function against
adversaries making ©(2"(1~9)) queries. Indifferentiability is a much stronger requirement than just collision
resistance, indeed for ¢ > 1/2 their functions have better proven security than ours. Unfortunately, the
construction by Maurer and Tessaro is not very efficient, to get the required collision resistance for a 2n-to-
n bit compression function requires 99 calls to the underlying primitive f.

This raises the question whether more efficient constructions are possible, at least when one focuses
primarily on collision resistance. Ideally we would like to make do with just one random function, and to
invoke it once for each n-bit block of message digested; such a compression function would be called rate-1.
Unfortunately, Black et al. [6] have given a negative result that all but rules this out. One can also show that
rate-1/2 compression functions (with optimal collision resistance) are unlikely to exist. Thus the best one
can hope for will be a rate-1/3 compression function.

We show that this hope can be realized. In particular, we present a compression function that calls
random n-to-n bit functions f1, f2, f3, and that has almost optimal collision resistance (here n is a parameter
that can be chosen freely). When we consider the construction for increasing n, we show that any adversary
making ©(2"/2/n°) total oracle queries, for ¢ > 1, has a vanishing probability of finding a collision in H.
On the other hand, for ¢ < 1 we provide compelling arguments that an adversary exists that will find a
collision with high probability. Thus it is fair to say that finding collisions takes around (9(2”/ 2 /n) queries.
For concreteness’ sake, we also develop a heuristic indicating that for n of cryptographic relevance (up to
256 bits), the loss is at most 4 bits of collision resistance. Of course, the standard caveats apply to these
results when one instantiates the random functions in practice.

Central to our proof is the concept of the yield of a set of queries. This is the number of compression
function evaluations an adversary can make given a certain number of queries to the underlying primitives.
Somewhat surprisingly, we can show that for our compression function an adversary can do not much better
than simply optimizing his yield and hoping for a collision via the birthday bound. The yield can also
be used to get (crude) negative results, for instance for any rate-1/2 compression function there exists a
(greedy) adversary with yield 2/2 using only 2"/* queries. Since we expect good hash functions to behave
randomly, this indicates it is unlikely to find a rate-1/2 compression function with good collision resistance.
This use of the yield to obtain impossibility results has recently been extensively generalized by Rogaway
and Steinberger [34] and later Stam [38], who pointed out some problems with the above reasoning. In
particular, he demonstrates a rate-1/2 compression function that is collision resistant up to almost on/3
queries (beating the intuitive 2"/* bound).

Our rate-1/3 construction itself is as follows:

HIVRI (VM) = f3 (Ll (M) @ foa (V) @ fi (M) .

A picture of the compression function is given in Figure 1. The compression function can easily be trans-
formed into a hash function with arbitrary domain while preserving the collision resistance (e.g., using
the Merkle-Damgéard transform). As a note of warning, we do not claim any “beyond-birthday” properties
one might hope for from a hash function, such as resistance against multi-collisions and optimal preimage
resistance. Indeed, preimages can typically be found in O(22"/3) queries, rather than the desired £2(2").
Rogaway and Steinberger [34] show that this reduced preimage-resistance is to a large extent inherent to
rate-1/3 schemes and not an artefact of our particular scheme.

We also investigate what happens when one wants to instantiate f1, f2, and f3 with a blockcipher with
its key fixed (thus supplying the adversary with inverse oracles for each). When f; or fy are instantiated
directly with a fixed-key ideal cipher (i.e., random two-way permutations instead of random functions), the
construction breaks down badly. However, we show that by using a Davies-Meyer like construction in the



ML fl
n n
V +» fo > f3 » H(V, M)

Fig. 1: The triple-function compression function. The functions fi, f2, f3 are random n-to-n bit functions.

place of f1 and fo we can also deal with a fixed-key ideal cipher in those places without loss of security.
Using a fixed-key ideal cipher for f3 does not seem to affect collision resistance, yet we do not have a full
proof for this.

The emphasis on blockcipher based hashing can be understood both historically and practically. Block-
ciphers have long been the central primitive in symmetric key cryptography, and there exists some measure
of confidence in blockcipher designs. From a practical perspective, one might like to reuse optimized code
or hardware implementations of blockciphers that are already implemented for encryption and message au-
thentication within certain applications. That said, there seems to be no intrinsic theoretical reason to restrict
designs to using blockciphers, hence our focus on simple random one-way functions (cf. [5, 22]).

Interestingly, the problem of building a compression function using random functions (as opposed to
a fixed-key ideal cipher) has an unexpected link with that of constructing double-length hash functions.
Specifically:

Given an ideal 2n-to-n bit compression function create a 4n-to-2n bit compression function with
collision resistance close to the optimal 2.

In Appendix A we show that range extenders could be used as an alternative means to turn a number of
non-compressing random functions into a compressing one, and vice versa. Therefore one could consider
range extension as the dual problem to domain extension. In particular, one can use our method to get a
rate-1/3 4n-to-2n bit double-length compression function with close to optimal collision resistance (in the
output size) based on a set of 2n-to-n bit random functions.

RELATED WORK. Bellare and Micciancio [2] introduce incremental hash functions, which in principle
could be built upon a non-compressing primitive. Crucial differences with our work are that they build an
entire hash function, not just a compression function, and that the collision resistance of their schemes is not
based on query complexity (usually just n queries suffice for a collision), but on the presumed computational
hardness of combining the query answers into an actual collision.

Bernstein [5] bases his Rumba20 compression function on these ideas. He xor’s together the output
of four pseudorandom generators, components of the Salsa20 streamcipher. By modelling the underlying
primitives as (independent) random one-way functions, he shows an upper bound (and estimate) on the
full complexity for collision finding of 0(2”/ 3), well below the birthday bound (and our lower bound).
Note that the query complexity for finding collisions is @(2”/ 8) (cf. Wagner [40]). The expanding nature of
Bernstein’s primitives somewhat complicates theoretical efficiency comparisons, but the rate of his scheme
is arguably 1/2, so more efficient than ours.



If one is willing to digest only one bit at a time (instead of n), then existing techniques already provide a
way to construct an optimally collision-resistant hash function out of two random functions fy, f1: {0,1}" —
{0,1}™. Define a compression function g: {0,1}"** — {0,1}" by g(b||V) = f,(V) that takes a single
bit b of message to select which function will process the chaining value V. One can show that g is a com-
pletely random function iff both fy and f; were, and by using ¢ in the block-chaining hash function from
Damgard [11] one obtains a hash function that digests one bit per iteration. As an aside, the very same hash
function emerges by using Damgérd’s construction based on a pair of claw free permutations[10], but using
the functions fy and f; instead.

We already mentioned the work of Maurer and Tessaro [22]. Prior to this work Aiello and Venkatesan [1]
considered the secret key equivalent of doubling the length of a random function. That is, given a set of n-to-
n bit functions f; (for¢ = 1, ..., 8) construct a 2n-to-2n bit function F' that is indistinguishable to a random
2n-to-2n bit function for an adversary making up to 2™ adaptive queries to F'. The crucial difference with
our work (and that of Maurer and Tessaro) is that they do not allow the adversary access to the inner random
functions f;. Consequently there is no a priori reason to expect that schemes proven secure in the secret
model, even when beyond the birthday barrier, have good collision resistance in the public world.

Nonetheless, the scheme presented by Aiello and Venkatesan, dubbed Benes, bears some resemblance
with ours that is worth pointing out. Given two n bit inputs M and V/, first a butterfly construct is used to
compute intermediate values X = f1(M) @ fo(V)and Y = f3(M) @ f4(V). This pattern is then repeated
to get the final output G = f5(X) @ fs(Y) and H = f7(X) @ fs(Y). If one ignores the first output (G),
rendering f5 and fg superfluous and if one simplifies further by setting fo = f3 = 0 (the constant zero
functionality) and fg the identity function, one obtains our construction. As such, the proof we provide for
the collision resistance of our scheme can likely be reused (and probably even strengthened a bit) to prove
collision resistance of the general rate-1/6 Benes scheme with one output chopped.

There has also been extensive research into the construction of hash functions based on blockciphers.
Davies-Meyer [23], Matyas-Meyer-Oseas [21], and Miyaguchi-Preneel [26, 32] are all well-known 2n-to-n
bit compression functions based on a single call to a blockcipher with n-bit key operating on n-bit blocks.
These type of rate-1 constructions were later systematically studied by Preneel et al. [32] and Black et al. [7],
who identified twelve distinct constructions that provide optimal collision resistance when the blockcipher
is modelled as an ideal cipher. Black et al. [7] showed that an additional eight constructions do not yield
collision resistant compression functions, yet still lead to collision resistant hash functions when properly
MD-iterated.

Most of the work related to blockcipher-based compression functions allows per-round rekeying [7, 16,
28, 32]. As such, the primitive already compresses in the sense that it takes more input (key and plaintext
data) than that it provides output. This significantly eases design and proof. Unfortunately, rekeying has
the drawback of entailing a significant computational cost: Gladman’s implementation survey [15] shows
that AES key scheduling would account for nearly 50% of the overall runtime. Thus a lower rate fixed-
key solution might actually be more efficient. Fixing the key would make use of the blockcipher in a more
natural way, namely setting up a key once and then processing relatively large amounts of data with it (the
way that blockciphers are used for encryption). A fixed-key blockcipher would be modelled as a random
two-way permutation.

Preneel et al. [31] propose a family of fixed-key constructions, but no formal security proof is given.
The rate of their scheme is always strictly smaller then 1/2 and typically between 1/4 and 1/8. Knudsen [19]
proposed a rate-1 fixed-key construction, however, it was quickly broken [29].

Black et al. [6] explicitly consider fixed-key blockciphers and show an impossiblity result for rate-1
schemes. They show that if one uses the MD-transform over a 2n-to-n-bit compression function that makes
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only one call to a random n-to-n-bit function, then there always exists an information-theoretic adversary
that finds collisions efficiently (i.e., using just few calls to the non-compressing primitive). Although Black
et al. [6] phrase their results in terms of two-way random permutations, their result holds for the random
one-way functions we consider as well. However, they do not consider compression functions that call out
to more than one primitive per message block (and thus have a rate less than one).

Recently (but subsequent to the initial presentation of our work [36]), Rogaway and Steinberger [34]
have given impossibility results for schemes calling out more than once per message block, although under
the assumption that the compression function is suitably uniform (a refinement of their work is given by
Stam [38]). They have also constructed a rate-1/3 scheme based on a fixed-key ideal cipher that achieves
security comparable to ours [33].

2 Preliminaries

GENERAL NOTATION. For a positive integer n, we write {0, 1}™ for the set of all bitstrings of length
n. When X and Y are strings we write X || Y to mean their concatenation and X @ Y to mean their
bitwise exclusive-or (xor). Unless specified otherwise, we will consider bitstrings as elements in the group
({0,1}™, @).

For positive integers m and n, we let Func(m, n) denote the set of all functions mapping {0, 1} into
{0,1}". We write f <~ Func(m,n) to denote random sampling from the set Func(m, n) and assignment
to f. Unless otherwise specified, all finite sets are equipped with a uniform distribution.

DISTRIBUTIONS AND TENSORS. With ({0,1}")9 we denote the set of g-element vectors, or g-vectors,
in which each element is an n-bit string. When a € ({0,1}")? and b € ({0,1}")%, we will write a =
(a1,...,aq) and b = (b1, ..., b,) when we wish to stress its components.

Fix a value ¢, and let Q = ¢>. We define a ® b € ({0,1}")¥ as the tensor product under exclusive-or,
where we identify ({0, 1}")?*¢ with ({0,1}")%4 = ({0, 1}")%. More concretely (a ® b); j = a; @ b; for i
and j in [1, ..., q]. (Whenever possible we will try to use dummy 1 to refer to elements of a and dummy j
to refer to those of b.) If A and B are both distributions over ({0, 1}")?, this tensor operation induces a
distribution over ({0, 1}™)%, which we will denote by the symbol A®B. Unless otherwise specified, we will
assume throughout that A and B are two distributions induced by sampling from ({0, 1}")? without replace-
ment. We will use U to denote the uniform distribution over ({0, 1}™)? (where n and @ will often follow
from the context). Thus U corresponds to sampling @ strings from {0, 1}" uniformly and independently
with replacement.

If in a random sample some value appears exactly k times, we say there is a k-way collision in that
sample. Let My (k) be the random variable describing the number of k-way collisions when the samples
are drawn according to the distribution U. Similarly, let M g5 (k) be the random variable describing the
number of k-way collisions when the samples are drawn according to the distribution A®B.

COMPRESSION FUNCTION SECURITY. When algorithms are provided with oracles, we write them as
superscripts. A compression function is a mapping from {0, 1}" x {0,1}™ to {0, 1}" for some m,n > 0.
For us, a compression function H must be given by a program that, given (V, M), computes H " (V, M) via
access to a finite number of specified oracles. A collision-finding adversary is an algorithm with access to
one or more oracles, whose goal it is to find collisions in some specified compression function.

Definition 1 Let n,¢ > 0 be integer parameters. Let H: {0,1}" x {0,1}" — {0,1}" be a compression
function taking £ oracles. Let A be a collision-finding adversary for H that takes ¢ oracles. The collision-



finding advantage of A is defined to be

Advl (A) =Pr|fi,..., fr < Func(n, n), (V, M), (V', M) — A0 00

(V. M) # (V!, M) and BF =9 (V, M) = BP9 (v )|
Furthermore, for ¢ > 0, we define Adv‘}?&) (q) as the maximum of Adv}?&) (A) over all adversaries A
making at most q queries.

When the compression function H is defined for arbitrary positive integers n, we will be able to make
asymptotic statements about collision resistance.

We consider information-theoretic adversaries in order to make a strong statement about collision resis-
tance. That is, our adversaries are computationally unbounded and their complexity is measured only by the
number of queries made to the oracles for the non-compressing primitives. Of course, in practice, time com-
plexity or even time-space complexity (the product of space and time) are arguably more relevant. But query
complexity is the most conservative resource measure: it yields a lower bound on the other two measures
(and hence the actual costs of mounting an attack). Moreover, finding lower bounds in the other two models,
other than by query complexity, is notoriously hard. Without loss of generality, we assume that adversaries
do not repeat queries to oracles and that they do not query an oracle outside of its specified domain.

3 Some Background on Collision Probabilities

COLLISIONS IN UNIFORM SAMPLES. The susceptibility of hash functions to collisions has been heavily
studied. The generic case can be termed in the language of occupancy urn models, a well-known tool from
discrete probability theory. (Johnson and Kotz [17] and Feller [12] are the standard references, Girault et
al. [14] and Preneel [30, Appendix B] are cryptographically oriented.) We give a brief overview of the main
results that are relevant to our work.

One central concern for collision-finding attacks is to determine how many k-way collisions are ex-
pected for some fixed k, typically k& = 2. If the hash function is modelled as a random oracle with range
{0,1}", and @ domain points are hashed, then the number of k-way collisions is My (k) with expected
value E [My; (k)] = N (?) (£)" (1 = £)°7F, where N = 27, Thus, E[My; (k)] follows a (scaled) binomial
distribution with parameters 1/N and Q. If we let Q and N grow such that Q/N < 1, the binomial distri-
bution can be approximated by a Poisson distribution with parameter A = % This well known “urns and
balls” result is captured in the following theorem (by Kolchin [?]), which also gives a more general result
on the distribution of k-way collisions.

Theorem 2 Let (Q and N be positive integers, and let A = % Then for k > 2 the random variable My (k)
follows asymptotically a Poisson distribution with parameter \i, where

oY

)\t
Pr[My (k) =t] = e "k and A, = Ne o

it

when Q, N tend to infinity such that A — 0.

The expected number of k-way collisions is therefore \; (since the parameter of a Poisson distribution
equals its expected value). Furthermore, the A\;, themselves are also distributed according to a scaled Poisson



digtribution with parameter A, as expected. The probability of finding any sort of collision is approximately
g

Sometimes one is more interested in the expected waiting time before the first k-way collision occurs.
If the probability for finding a collision after g queries is at most €, then the expected waiting time is at least
(1 — €)q. Thus upper bounding collision probabilities simultaneously lower bounds the expected waiting
time, which is why we restrict our attention to the former.

In bounding the probability of finding a collision in our compression function, we will also need the
distribution of k-way collisions when the samples from {0, 1}" are distributed according to ADB. It seems
that occupancy is very similar to that of a fully uniform distribution, and we conjecture that the occupancy
distribution arising from A®B is asymptotically the same as the one from Theorem 2. We could find neither
proof nor reference for this conjecture in full, but there is no need to. For the sequel, to bound the collision
finding probability either upwards or downwards, the following lemma suffices (proven in Appendix B).

Lemma 3 For some positive integers q,n, let Q = q*> and N = 2", and let \ = Q/N. Let g-vectors a and b
have elements drawn according to A and B, respectively (i.e., uniformly from {0, 1}" without replacement).
Then

1. Asymptotically E[M aqp(k)] = A\, = ]\76_)‘)]‘7]!€ when q, n tend to infinity such that A — 0.
2. Forall k > 0 we have

(¢h)%2" (2" — k)!
’;PT[MA®B(H) > O] < ((q — /6‘)!)2]{:!(2")! .

For notational convenience, the righthand side of the inequality will be denoted by Py i, ..

4 The Rate-1/3 Compression Function

We want to show that H (see Figure 1) is collision-resistant, so that it can be iterated to create a collision-
resistant hash function [3, 11, 13,24]. In the sequel, we will model f;, fo, and fs as three independent,
uniform elements of Func(n,n), and simply refer to our construction as H/1-#2:3 (or just H when it is
not necessary to make the component functions explicit). We proceed to bound the probability that a com-
putationally unbounded adversary can find a collision as a function of the number of its oracle queries. In
particular, we will prove the following statement.

Theorem 4 Fixn > 0and let H/'12:73 pe as previously defined. Then for all k,q > 0 we have Adv?})?n) (q) <
37:‘ + (];qn)2 + P 7k7n'

Section 5 is dedicated to a proof of this theorem. What is more, the following lemma provides asymptotic
upper and lower bounds on the number of queries required to find collisions. The first item is a corollary of
Theorem 4 and we will give a short proof sketch. The second item is proven after the proof of Theorem 4.
Lemma 5 can be loosely rephrased by saying that to find collisions with any constant (non-zero) probability,
©(2"/2) queries are necessary and sufficient.

Lemma 5 1. Forany ¢ > 1 and all adversaries making at most O(2"? /n°) queries it holds that

lim Adv%‘f%ln) (A)=0.

n—oo



2. For any c < 1 there exists an € > 0 and an adversary asking @(2”/2/nc) queries for which, under a
uniformity assumption,

Adv%‘[)?n) (A) >¢€  forall sufficiently large n .

Proof:  The first item is a corollary of Theorem 4. Let d be such that ¢ > d > 1 and consider the upper
bound from Theorem 4 with k = n® and ¢ = 2"*/2/n¢. Then for n — oo all three terms tend to zero.

The first term will equal 1/n2¢, whereas substitution in the second term, gives n2(4=¢) which indeed both
tend to zero iff ¢ > d > 1. For the third term, we need to upper bound F, j , (Lemma 3). Using Stirling’s
formula k! ~ \/ﬂ(%)k, substituting ¢ = 2*/2 /n° and k = n® and taking logarithms leads to:

1
Inp < (2q+1)lnq—2q+nln2+(2”—k+§)ln(2”—k¢)—(2”—]4:)

—(2g—K)+ 1) nlg — k) +2(g —K) — (2" + ) In2" + 2"~ kInk -+ k +o{1)
<2klngk —klnk+nln2 —knln2+ o(1)

< 2k(gln2—clnn) —klnk+nln2—knln2+ o(1)

< —(2c+dn?Inn+nln2+o(1) .

Hence for d > 1 this logarithm tends to minus infinity, and thus the probability of a k-way collision occuring,
and with it the advantage of the adversary in finding a collision in H, tends to zero.
Q.E.D.

In the remainder of this section we build some intuition about the compression function and the nec-
essary requirements on f1, f2, f3 when instantiated in practice. For a classical birthday attack, an attacker
would need to evaluate the compression function H on roughly 2/2 inputs to succeed. Clearly, one can
obtain this many evaluations by querying each of the f1, fo, f3 oracles on this many points. However, the
structure of the compression function may make things easier for the adversary. In particular, asking ¢
queries to each of the oracles can provide more than ¢ evaluations of H, due to internal xor-collisions at the
input to fs. In the next section we will introduce the yield of a query set, and use it to measure the number
of H evaluations an adversary can make given ¢ queries to each of the oracles.

PRACTICAL CONSIDERATIONS. Firstly, we note that in the construction of H any bijection can be applied
to the inputs and the output without affecting the collision resistance as bounded by Theorem 4. This freedom
might yield a possible avenue to strengthen the hash function when iterating the compression function,
without aversely affecting the security of the compression function itself.

Secondly, a collision in either f; or fs easily leads to a collision on the full compression function. In
fact, it is even worse, since a single colliding pair M, M’ for f; can be used for any chaining value V. That
is, if f1(M) = f1(M’), then for all V' it holds that H (V, M) = H(V, M'). The precise ramifications of such
an attack are unclear, although it for instance allows finding k-way collisions in a standard (strengthened)
MD-iterate in query complexity ©(2"/2), which is an improvement over Joux’ [18] ©(2"/2 log k). We will
not delve into this in great detail; actual attacks based on this property will also crucially rely on the iteration
method used (and if multi-collisions are an issue one should not rely on the standard MD-transform). We
do note that for instance by changing fo’s input to V' & M, a collision in f; still leads to many collisions in
H, but in contrast with the previous version they will be of the form H(V, M) = H(V', M') with V' # V.
This might hinder chaining the collisions when iterated.



Thirdly, from the proof it will be clear that our construction is equally secure if the random functions
are replaced by random one-way permutations. However, if either fi; or fo are invertible, an adversary
can find collisions in H by making 0(2”/ 4) oracle queries. Say that f5 is invertible. Then the adversary
makes 2™/ queries to both f; and f3. With reasonable probability this will result in an internal xor-collision
[(M) @ f3(Z) = fLr(M") @ f3(Z"). Inverting fo on Z & f1(M), resp. Z' @ f1(M') will give a collision
for H. Similarly if f; is invertible, call f and f3 each 2/* times to find an internal xor-collision fo(V)@®
f3(Z) e Z = fo(V') @ f3(Z') & Z'. Now inverting f1 on Z & fo(V) and Z' & fo(V') will complete
the collision. If both f; and f5 are invertible, only two calls to f3 are needed to find a collision. Thus
we will need (at least) for f; and f5 to be collision-resistant and one-way. In particular, this rules out the
straightforward blockcipher implementation f;(M) = Ef, (M) for fixed (distinct) keys K;, i € {1,2},
as this violates the one-way requirement. Nonetheless, one could instantiate the functions fi, fo with a
simple blockcipher-based function. In Appendix C we show that, for example, instantiation as f;(X) =
Ex,(X)® X, (i € {1,2}, where K and K are fixed and publicly known keys) gives a collision-resistant
compression function in a combined model using a random oracle for f3 and an ideal cipher for E.

Instantiating f3 with f3(X) = Eg,(X) @& X is pointless: it essentially results in the original rate-
1/3 scheme with the inputs swapped and f3 replaced with E,. Luckily, neither invertibility of f3 nor
collisions in f3 appear to be useful for finding collisions in H. It would be interesting to see whether our
construction can be proven secure (with similar collision resistance), in the ideal cipher model for f3. Note
that invertibility of f3 is useful for finding preimages, allowing a meet-in-the-middle attack using only
©(2"/?) (as shown later).

Again, we stress that there is no need to restrict oneself to blockcipher-based implementations of func-
tions f1, fo, f3. Faster alternatives might be available by using for instance streamcipher-based components
(cf. [5D).

A potential speedup could be obtained in practice when two of the three functions are identical, in
particular if f; = fo. We have reasons to believe that this only results in a marginally decreased security
(the proof carries through, apart from the bounding of a k-way collision).

5 Proof of Theorem 4 and Lemma 5

In this section we will prove Theorem 4 and the second item of Lemma 5. Following the proof, we will also
give some intuition why one expects that 9(22”/ 3) queries are necessary and sufficient to find preimages.
This provides a fairly complete asymptotic characterization of the newly proposed construction.

SETTING UP THE PROOF. We will distinguish between three ways for an adversary to find a collision in H.
It can try to find a collision in fj or fs, since either would lead to a collision in H, as already shown above.
Failing that, it can try to find a collision in the final output. This leads to the following upper bound

Adv‘?}&) (A) <Pr|A finds collision in f1] + Pr[A finds collision in f5]

+ Pr[A finds collision in H |no collisions in fj or fa]
and the corresponding lower bound

Pr[A finds collision in fi],
max Pr[A finds collision in fa], < Adv‘}??n) (A).
Pr[A finds collision in H| no collisions in f; or fs]
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The probabilities of finding a collision in f; or fo are ordinary collision-finding problems and hence
well understood. For ¢ < +/N these probabilities roughly sum up to (and are upper bounded by) ﬁ, the
first term in the upper bound of Theorem 4. Needless to say, if fi and fo are (random) permutations, no
collisions exist and both probabilities are always zero. In any case, we can concentrate on the probability of
A finding a collision in H when f; and f; are collision free. Henceforth we will therefore model f; and fo
as random (one-way) permutations, but f3 still as a random (one-way) function.

We also make the following standard assumptions, all without loss of generality. Firstly, we assume that
the adversary makes exactly ¢ queries to each of the three oracles, f1, fo, f3: for any adversary that makes
q; queries to f; there is an adversary that makes ¢ = max(qi, g2, q3) queries to each of the oracles with
identical success probability. Secondly, we will assume that adversaries actually compute H/1/2:/3 (V, M)
and H/1:/2:/3(V' M) before outputting their candidate collisions. In particular, this means that all necessary
queries to f1, fo and f3 are made before halting.

REMOVING THE ADVERSARY. Normally we would imagine that the adversary makes queries to all three
oracles in some adaptive, probabilistic manner. But here we cannot only argue away the adversary’s adap-
tivity, but we can remove the adversary altogether. Recall that f1, fo, f3 are independent oracles, and let us
focus for a moment on the adversary’s queries to f1 and fs.

Knowing that A makes ¢ queries to each, we can imagine preparing the answers in advance. That is,
before the adversary starts querying the oracles, we make two lists, each of ¢ random elements, and when
the adversary makes a query to one of the two oracles f1 or fs, we supply it with the next element of
the respective list. Because the inputs to f; and f, are not used elsewhere in the compression function,
the actual correspondence between query and response is irrelevant. Consequently, we might as well have
provided the two lists to the adversary before any queries to f1 or fo, and even at the very beginning of the
collision-finding game, in advance of any f3 queries, given f3’s independence of fi and fo.

DEFINING THE YIELD. A central quantity in bounding an adversary’s succes is what we call the yield.
Formally, given a vector ¢ = (cy,...,cq) € ({0,1}")9, deﬁne

yield(c) = Gg{lg}f}n Z Z

|G| =q gEGz 1

where [true] = 1 and [false] = 0. Thus the yield counts the total number of occurences of the ¢ most
frequent elements in a vector. We also define the yield over the tensor of two g-vectors. Given vectors
a=(ay,...,aq)and b = (by,...,bq) in ({0,1}")?, we will define the yield of tensor a ® b to be

q
yield(a® b) = Gggg}f}nzzz [a; @ bj = g] .

‘Gl q geqG i=1 j=1

Let us give some intuition for this latter definition, in particular. Recall that we will give the response
lists of fi and fo, call these a = (ai,...,a4) and b = (b1,...,b,) (resp.), to the adversary prior to its
making any fs queries. These ¢ queries to f3 can be made according to any strategy. One such strategy,
already mentioned in the previous section, is to query the f3 oracle on those values for which it knows the
greatest total number of xor-preimages, thereby maximizing the number of inputs for which it can evaluate
the compression function. It is precisely this number that the yield of a ® b represents: the number of
compression function outputs that the adversary can evaluate by asking ¢ queries to fs.
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CONNECTING THE PIECES. We still need to show how the yield relates to the collision-finding probability
of the adversary. Let d,., for » = 1,...,q, denote the number of pairs (4, j) such that a; ® b; equals the
input of the r-th query to fs3. Suppose that after » — 1 queries to f3, the adversary still has not found a
collision. Then it will be able to output preimages for E;;% ds hash values (or, equivalently, it will be able
to output the hash value for that many preimages). With its rth call to f3 it will be able to evaluate d, new
hash values, and the probability that one collides with one of the older values is therefore upper bounded
by d, ZZ;} ds/2"™. The upper bound is not always tight. Consequently, picking the elements corresponding
to the maximal yield is sometimes not the optimal strategy for finding a collision; picking elements that are
slightly less common might actually increase the chances of finding a collision, nonetheless the same upper
bound will apply.
Summing over all queries to f3 leads us to the following upper bound

qg r—1
Pr[A finds collision in H| no collisions in f or fa] < Z Z dyds/2" .
r=1 s=1

What can we say about this value? Firstly, the possible values of d, are determined by a and b and the
maximum »_?_, d; = yield(a ® b). Suppose we allow the adversary to partition yield(a ® b) arbitrarily
in ¢ (real) parts d,. The optimal way, in the sense of maximizing the sum above, is then to choose d, =
yield(a ® b)/q forall r = 1,..., g (optimality of this choice can be shown by induction). In that case we
have

q r—1

Pr[A finds collision in H| no collisions in f; or fa] < Z Z dyds/2"
r=1 s=1
qg r—1

< ZZ yield(a ® b)/q)? /2"

=] s=

—_

<

< yield(a ® b)?/2"*1 .

Moreover, if we would assume that the compression function outcomes for an adversary optimizing its
yield are uniformly distributed, the probability that a collision occurs will satisfy the birthday bound, that is
Adv}ff&) (A) =~ 0.63 - yield(a ® b)?/2"*! giving us nearly matching upper and lower bounds. Our task
then is to put bounds on the expected value of yield(a ® b), or rather its square, where the elements in a
and b are chosen independently, uniformly at random from {0, 1}" (without replacement).

To upper bound the yield we recall that it is the sum of the frequencies of the ¢ most frequent elements
in a ® b. As such, the trivial upper bound on the yield is the cardinality of a ® b, that is Q = ¢>. Moreover,
if all collisions in a ® b are less than k-way, then the yield is (strictly) smaller than kq. We can combine
the two bounds as well. Let p be an upper bound on the probability that at least one collision that is at least
k-way occurs in a ® b. Then conditioning on this event and employing the above observations yields that

Pr[A finds collision in H| no collisions in f; or fo] < (kq)?/2" +p.

By Lemma 3 we can use P, as our upper bound p. This concludes the proof of the upper bound of an
adversary’s advantage.

To lower bound the adversary’s advantage, we need to lower bound the expected yield. We will only do
this asymptotically, proving the second item of Lemma 5. Given ¢ < 1, let d be such that ¢ < d < 1 and
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consider the expected number of k-way collisions for k¥ = n?. By Lemma 3, this number is given by \;. We
will show that )\ /¢ tends to infinity for increasing n. Now, since

on/2(_1 ndnc
Ak/q = i

we can take logarithms, use Stirling’s formula to approximate the factorial, and ignore smaller order terms,

thus arriving at

In2
In(A\x/q) =~ nTn — (2¢+ d)n?lnn .

Since d < 1 the term lnTQn will eventually dominate, showing that the expected number of k-way collisions
asymptotically exceeds . Consequently the yield is at least kg = 2"/?n%~¢ and the probability of finding a
collision tends to one.

A NOTE ON PREIMAGE RESISTANCE. Although our goal is to demonstrate a construction that yields
a compression function with good collision resistance, other useful properties should also be mentioned.
Ideally, finding a preimage takes expected time 2" for an n-bit primitive. To get an idea of the preimage
resistance of the current proposal, we can look at the value of ¢ for which the yield is around 2. If ¢ > 2"/2,
a lower bound (and reasonable estimate) for the yield is 7 /2". Since 7 /2™ &~ 2" for q ~ 9257 it follows that
our construction is not as preimage resistant as one might wish for. However, Rogaway and Steinberger [34]
recently showed that this reduced preimage resistance is all but inevitable. Indeed, for any rate-1/3 scheme
there exists an adversary whose yield is at least 2" after 22"/ queries, which will likely lead to a preimage.

When f3 is a random two-way permutation instead of a random one-way function, finding preimages
becomes easier due to a meet-in-the-middle attack pointed out to us by Antoine Joux. Given a target h,
the adversary queries f; on ¢ = 2™? arbitrary values leading to fi(V3),..., fi(V,) and subsequently
queries f5 3 on the values h @ f1(V;) for i = 1,...,q. After querying fo on ¢ arbitrary values (leading
to fo(Mjy), ..., f2(M,)) a preimage is obtained if f2(M;) = f3 ' (h @ f1(V;)) which will occur with prob-
ability ¢?/2" = 1. One could defeat the meet-in-the-middle attack for instance by feed-forwarding M as
well, so H'(M,V) = M & H(M,V). Unfortunately this tweak also destroys our proof of collision re-
sistance, even though we expect H' to be as collision resistant as H. In a way, we need to compromise on
some security properties in order for our proof of collision-resistance to go through (this is not unlike certain
public key schemes where efficiency is sacrificed for security proofs to go through).

PO1SSON HEURISTIC TO APPROXIMATE THE YIELD. In Appendix D we develop an alternative charac-
terization of yield(a ® b) and recast the problem of finding the expected value yieldﬁ@B (¢) into that of
determining a certain property of the tail of a Poisson distribution. Experimental results give concrete esti-
mates of the collision resistance of our proposal in practice, and it turns out that for n up to 256, the loss in
collision resistance is at most four bits.

6 Conclusion

In this paper we have proposed a rate-1/3 2n-to-n bit compression function based on three random n-to-n
bit functions. If the three underlying functions are modelled as random oracles, finding collisions requires
roughly on/2 /m queries. Preimage resistance is loosely estimated to be around 22n/3 Since the attacks based
on optimizing the yield are inherently time and space consuming, it is unclear whether in practice algorithms
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can be found with a time complexity matching these query complexities (meaning our scheme will be harder
to break).
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A The Dual Relationship with Double-Length Constructions (or Range Extenders)

In the main body we have considered the problem of extending the domain of a cryptographic primitive.
One could consider range extension as the dual problem to domain extension. A relevant example instance
of this problem is:

Given a 2n-to-n bit compression function create a 4n-to-2n bit compression function with collision
resistance close to the optimal 2.

Perhaps a more common approach is to take as the starting primitive a blockcipher operating on n-bit
blocks and having keysize (some multiple of) n; see, for example, Peyrin et al. [28]. (This has the practical
advantage that one can use blockciphers of 128-bit blocks, which would not be advisable if a square root
attack running in time 254 were possible.)

When hash functions are expected to behave as random oracles, Maurer and Tessaro [22] make the point
that domain extension is much harder than range extension. There is an easy counting argument underlying
this claim (extending the domain increases the number of possible functions far more than a comparable
extension of the range). However, in the context of collision-resistant hashing some other issues come to
the fore. The difficulty in range extension is that the new construction should satisfy considerably stronger
collision-resistance bound than the underlying primitive. Said another way, why bother with range exten-
sion if the longer hash value does not provide comensurately better security against generic (read birthday)
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attacks? As a result, satisfactory bounds on the collision resistance of double-length hash functions have
been elusive. For example, Steinberger [39] showed that the collision-resistance of the standardized MDC-2
construction is at least 9(23”/ %) in the ideal cipher model, when iterated; still considerably shy of the de-
sired ©(2"). Mironov and Narayanan [25] recently claimed that if the MMO constructions in MDC-2 are
replaced with random 2n-to-n bit compression functions, the double length construction does have collision
resistance ©(2").

Somewhat paradoxically, range extenders can also be used to solve the problem of building a compress-
ing function out of non-compressing primitives, and vice versa. As such, they can truly be regarded as dual
problems. The resulting constructions are not necessarily very elegant, however, as our two transformations
below will show. If applied to our constuction (see Figure 2) one needs six calls to process two blocks of
n-bits (of message) simultaneously, making it rate-1/3. It inherits the collision resistance from Theorem 4,
so one provably needs almost 2" /2n queries to find collisions. This compares favourably with Nandi et al.’s
construction of rate 1/3 and collision-resistance at most 8(22”/ 3) [20,27] or Peyrin et al.’s construction of
rate 1/5 and collision-resistance @ (2%"/3) [28, 35].

Let H : {0,1}?" — {0, 1}" be some construction to build an optimally collision resistant compression
function out of non-compressing primitives fi,..., fx : {0,1}" — {0, 1}", for arbitrary n. For example,
our triple function construction is such an H for & = 3. Now, let g1,..., g% : {0,1}*™ — {0,1}™ be
some given (single length) compression functions; we desire to use these 2k functions to build a double
length compressing function G- : {0,1}*™ — {0,1}?™. We do so as follows. Set n = 2m and define
fi = gillgak+1—i fori € {1,..., k}. If we model the g; as 2m-to-m bit, independent random oracles then
the f; are 2m-to-2m bit (i.e., non-compressing) random oracles. Now we apply H to these f; to obtain a
4m-to-2m bit compression function, ultimately based on the g;, whose collision resistance is 2™, as desired.

Conversely (and for even k and n), let G- : {0,1}*™ — {0,1}*™ be an optimally collision resistant
double length combiner for primitives gi,...,gx : {0,1}*™ — {0,1}™. Let f1,.. s iy {0,130 —
{0, 1}" be given. Again, let n = 2m and define the g; such that f; = g;||gx+1-; fori € {1,...,k/2}. Run
the range extender G’ with components g;, yielding a hash function G : {0,1}?" — {0, 1}" with collision
resistance 2"/2. (Note that in this construction one should expect to throw half of f’s output away all the
time.)

B Proof of Lemma 3

Lemma 6 For some positive integers q,n, let Q = q*> and N = 2", and let \ = QQ/N. Let g-vectors a and b
have elements drawn according to A and B, respectively (i.e., uniformly from {0, 1}" without replacement).
Then

1. Asymptotically E]M g5 (k)] = A\, = Ne*)‘% when q,n tend to infinity such that X — 0.
2. forall k > 0 we have
(gh)22m (2" — k)!

PriMacn ) = 0= (o T

Proof:  Define F, j, as the binary random variable taking on 1 iff the value z € {0,1}" occurs exactly k
times (when sampling from A®B). This variable is related to the variable (G, denoting how often = occurs,
indeed E(F, ;) = Pr(G, = k). Let us try to determine Pr(G, = k). This probability is the same for all
x, so we can concentrate on Pr(Go = k). Since we also have that Magp(k) = ), F, 1 and linearity of
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Fig. 2: The rate-1/3 double-length hash function. The functions g1, g2, 93, 94, g5, g¢ are random 2n-to-n bit
functions.

expectancy (even over dependent variables), we get

E(Magp(k) = > E(Fyx) = NPr[Go = k] .

A collision occurs iff a; ©b; = 0", where a; is an element in the vector a and b; in the vector b; equivalently,
a; = b;. This problem has been studied, for example in the context of meet-in-the-middle attacks [14], and
it turns out that the probability of a k-way collision follows a hypergeometric distribution, thus Pr(Gg =
k) = (%) (N 0/ ( ). Asymptotically this means that E(M g 5(k)) behaves as a scaled Poisson distribution
with parameter () /N, as claimed.

For the second part, we need to upper bound p, the probability of a k-way collision in a ® b when a and
b are drawn independent of each other and both uniformly at random from {0, 1}" without replacement.
Now suppose that we have a k-way collision, then we can look at the positions in the matrix a ® b that
contribute to this collision. Suppose both (7, j) and (i, ;') are involved, so a; & b; = a; & b;,. We claim that
ifi =4 (or j = j'), then also (i,5) = (i, j'). Clearly, if ¢ = 4’ then also a; = a; and, because both pair of
indices xor to the same value, b; = b;». But b does not contain any collisions, thus j = j'.

This allows us to bound the probability on a k-way collision. Firstly, we need to choose the k indices
(i,7) that lead to the collision. For the indices 7 and j there are (z) possibilities each, moreover given k
indices 7 and k indices j, there are k! ways of hooking them up. Given the locations of the collision, we have
2" different values the collision can take. Then the values of a; are still unrestricted, but the values of b; are
now determined. Without restrictions, there would have been N!/(N — ¢)! ways to choose b, but this now
reduces to (N — k)! /(N — ¢)!. This leads us to:

0\ L= R ()22 (2n — k).
p= (k) BT ET T (- pEREn)

Q.E.D.
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C Instantiating f; and f> in the Ideal Cipher Model

In this appendix we will consider the Davies-Meyer like instantiation f1(X) = Ex, (X) & X and fo(X) =
FEk,(X) @ X (with K; # Kb). These are optimally inversion and collision-resistant in the ideal cipher
model [7]. They are not, however, indifferentiable from a random oracle, even when the blockcipher E
is modelled as an ideal cipher [9] (nor are the other 19 provably collision-resistant constructions [8]). As
a result, it is not immediate that our bounds on the collision resistance of the compression function will
still hold. We will show that if  is modelled as an ideal cipher (and f3 as a random oracle as before) the
proof goes through with only some minor modifications to show that the oracle acces to both Ex, and its
inverse will not help the adversary to get a list of outputs of f; that significantly deviates from the list used
in the original proof (where f; was modelled by a random oracle). A central tool for this argument it the
Permutation-Pseudo-Permutation (PPP) Switching Lemma below.

A pseudopermutation consists of a pair of oracles £ and D with joint state, where D can be thought of
as the inverse of E. Essentially, &£ and D implement dependent random functions. Specifically, there is a
single, finite set S that serves as both domain and range of both E and D. The joint state consists of a list of
pairs (z,y) € S x S such that y = E(x) and = D(y). Initially the list is empty. When E is queried on a
point z that does not appear in the list (rather there is no y for which (z, y) is on the list), it picks a random
value y in S, adds (z, y) to the list and returns y. If E is queried on a point = and there exists a y such that
(z,y) is in the list, this y is returned (this is done uniformly if several y satisfy this criterion). Similary, if D
is queried on y, it returns a random element from S unless there exists a pair (z,y) in the list; in this case,
D returns x (uniformly if necessary).

Considered separately, both D and F would (perfectly) implement a random function. The joint state
ensures that D and F are consistent with respect to being each others inverse, however it is not sufficient to
ensure both end up being permutations. The PPP Switching Lemma states that as long as no collision is found
(that is = # 2/ such that E(x) = E(2') or y # v such that D(y) = D(y’)) a random pseudopermutation
is indistinguishable from a true random permutation and its inverse. Moreover, the probability of finding a
collisions as expressed in the number of queries made adheres to the birthday paradox.

Lemma 7 (PPP Switching Lemma) Ler S be a finite set of cardinality N. Let  be a random permutation
on S, and let 7= be its inverse. Let the pair E, D be a random pseudopermutation on S. Let A be an
adversary with an interface for two oracles making at most q queries in total. Moreover, assume that A is
query-respecting. Then the PPP-distinguishing advantage of A is upper bounded as follows:

7r,7r_1 _ _ E.D __ qu
| Pr[A =1]-Pr[A®" =1]| < SN °
Proof:  We refer to Figure 3. Let A denote the experiment of running adversary .A with oracles described
by game GO, and similarly let A9" denote the experiment of running .4 with oracles described by game G1.
We claim that Pr[A™" " = 1] = Pr[A%0 = 1] and Pr[A®P = 1] = Pr[AC! = 1].

For the latter, the proper simulation of E and D is clear by inspection. Note that since lines 16 and 25
do not exist in game G1, if O; is asked x and the test on line 10 is false, then a random value y is returned
and (z,y) is added to the list. On the other hand, if the test is true, lines 11-12 ensure that O; returns a
uniform y from satisfying pairs (x, y) in the list. Likewise, if O3 is asked y and the test on line 20 is false,
then a random value z is returned and (z, y) is added to the list. If the test is true, lines 21-22 ensure that a
uniform x from the satisfying pairs (x, y) is returned.

Arguing that Pr[A”’”_1 = 1] = Pr[A%" = 1] is less obvious. In particular, a permutation 7 should
never have a set Y on line 11 (or X on line 21) with more than one element. We must argue that this is the
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case. If |Y'| > 1, then there are some two pairs (zo, ), (o, y’) in L. Notice these cannot appear in the list
as a result of two O queries: asking x the first time will add (¢, y) to the list (at line 17), and asking xg
a second time will return y without adding any pairs to the list; that is, asking z( twice to O will not result
in pairs (xo, ), (xo,y’) being added to L. Similarly, these cannot appear in the list as a result of two Oy
queries. So it must be that (g, y) and (zg,y’) are added to the list as a result of a query to O; and a query
to Os.

— Say that z is asked to O; and that this causes a new pair (xg,y) to be added to the list. A subsequent
query of ¢’ (# y) to Oz will never add (xg, ") to the list: if line 23 selects xq , then line 24 will catch
this and resample from points not yet assigned as x values.

— Say that y is is asked to O and that this causes a new pair (g, y) to be added to the list. A subsequent
query of xg to Oy will simply return ¥, and not add a new pair to the list.

So, in game GO, the set Y will never contain more than 1 element. A similar argument shows that the set X
will never contain more than 1 element. Moreover, the (random) resampling on lines 16 and 25 ensures
that both oracles observe permutivity, and so O and O simulate a random permutation and its inverse in
game GO. Thus,

‘Pr[A”v”’l — 1] — Pr[APP = 1]( = |Pr[A%0 = 1] — Pr[A%! = 1]|.
Notice now that games GO and G1 are identical-until-BAD, as defined in [4], and so we can state that
[Pr[A%0 = 1] — Pr[A°" = 1]| < Pr[A% sets BAD to true]
It remains to bound the probability that BAD is set in game G1. But this is almost immediate, since each

oracle query adds at most one new pair (z,y) to the list. Thus the probability that BAD is set on the i-th
oracle query is at most (i — 1)/N, and a union bound gives us that Pr[ A" sets BAD to true] < ¢?/2N.

Q.E.D.
procedure Oy (x): procedure Oz (y): Gl
10 if Jy such that (z,y) € L then 20 if 3 such that (x,y) € L then

11 LetY ={y|(z,y) € L} 21 LetX ={z|(z,9) € L}

12 returny Sy 22 returnz < X

3 oy s B S

14 if 32’ such that (z/,y) € L then 24 if 3y’ such that (x,y’) € L then

15 BAD « true 25 BAD « true

y < Range(L) 2 < Domain(L)

17 L—LU{(x,y)} 26 L+ LU{(z,9)}

18 return y 27 return T

Fig. 3: Games utilized in proof of Lemma 7. The list L is initially empty. Game GO includes the instructions
with boxed-in line numbers, while game G1 does not. The set Range(L) is the set of all y not yet assigned
to some pair (x,y) in the list L. Similarly, the set Domain(L) is the set of all = not yet assigned to some
pair (z,y) in the list.
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We are now ready to show that replacing the random one-way functions f; and fy with respective
random two-way permuations 71 and 7 (with respective inverses 7, ! and Ty 1) in Davies-Meyer mode
(that is f1(M) = m (M) @ M and fo(V) = m(V) @ V) hardly affects our proof of security and that,
as before, we can replace the queries to 1, mo and their inverses by two random lists a and b. For this
we replace the pseudopermutation D, E of the previous Lemma by a slightly different construction D', E'.
Instead of generating the output of D’ and E’ on-the-fly for fresh queries, we now commit to a list a of
elements in S = {0,1}" in advance and on the i’th fresh query (be it y; to D’ or z; to E’) we return the
queried value plus the i’th element in the list (so D' (y;) = y; @ a;, resp. E'(z;) = x; ® a;). It is not hard
to see that D’, E’ has the exact same output distribution as D, E/ (provided the list a is long enough), so
an adversary cannot distinguish between the two. Furthermore, the effect of using D', E’ in the place of
7,7~ ! in the construction f(z) = 7(x) @ z is that, regardless of which queries the adversary makes, we get
flx;) = a;.

Another (less exciting) consequence of the PPP Switching Lemma is that finding collisions in the rate-
1/2 compression function f1 (M )@ fo(V) requires ©(2"/4) queries in the ideal cipher model when f; (M) =
Ex,(M)® M and fo(V) = Ek, (V) @ V (with K # K»).

D Poisson Heuristic to Approximate the Yield

In this appendix, we will derive an alternative characterization of yield(a ® b). We then combine it with the
conjectured distribution of k-way collisions in A®B in order to recast the problem of finding the expected
value yieldé@g (¢) into that of determining a certain property of the tail of a Poisson distribution. The
latter problem can be tackled much more easily numerically for larger values of n. Indeed, we provide
experimental results to both validate our reformulation, as well as determining concrete estimates of the
collision resistance of our proposal in practice. It turns out that for n up to 256, the loss in collision resistance
is at most four bits.

THEORETICAL BACKGROUND. Let ¢ € ({0,1}")¥ be given (we can ignore for the moment from which
distribution c has arisen). Recall that yield(c) is the sum of the frequencies of the most frequent elements in
c. Thus, to determine yield(c), it suffices to know how many k-way collisions there are, for all k. Recalling
that M. (k) denotes the number of k-way collisions in c, then we have:

Q
ield(c) = max kwy, .
vde) = | w2 ku

wi<Me(k), Y0 gwk=q

To approximate yield2®5(¢), we can look what happens if we look at yield(c) for an (imaginary)
sample ¢ whose number of k-way collisions exactly equals the expectation of M 44 (k) (for all k). That
such an ideal ¢ might not exist, since the expected value of M s 5(k) could be fractional, is irrelevant. We
refer Lemma 3 for the expectation of M aqp5(k). (If ¢ were drawn uniformly at random, rather than from
A®B, we could use Theorem 2, leading to the same approximation.) Let yieldf; (q) be the yield based on the
Poisson heuristic corresponding to a sample size of ) = ¢? elements of {0, 1}". Then we pose the following
approximation, where A = QQ/N:

welo,...,Q]@t!

k
N Q —
wkgk!EA,E b0 Wk=4q

Q
yield29B (q) ~ yield? (¢) = max Z kwy .
k=0
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Note that we make two types or error in this approximation. The distribution of E(M 4q5(k)) is not exactly
a scaled Poisson distribution; moreover, the maximum of an expected vector is not the same as the expected
maximum of a vector. It is however a lower bound.

EXPERIMENTAL JUSTIFICATION We provide experimental results to support our claim on the behaviour of
expected number of k-way collisions for the distribution ABB. It also suggests that yieldflD (q) is a very good
estimator for the actual yield,‘i@B (q).

In order to get accurate estimates, we performed the experiment of picking from A and B a large number
of times per pair (n, ¢). (Anywhere from 103 to 10° runs per pair.) Given that each run takes time 2" with
similar space requirements, we only have the data for n up to 22.

In Table 1 the data is given for query complexity ¢ = 2"/2. Since N = 2" and Q = ¢ this means
that A = 1. The first column gives the values of n, from which the other parameters (¢, @), and N) can
be deduced. We then give three columns with the average yield (or rather the logarithms thereof). The first
is the result of experiments based on the distribution A®B, the second of experiments based on a uniform
distribution U and the final is the Poisson estimation. The remaining five columns give the average numbers
Mg (k), normalized by N. These are the numbers we conjecture are distributed according to a Poisson
distribution with parameter (Q/N. So, in the final row we give the Poisson distribution with A\ = 1 for
reference.

Table 2 gives the analogous results, but for ¢ = 2"/2~1, corresponding to A = i.
ESTIMATED COLLISION-RESISTANCE. We are now ready to estimate the actual level of collision-resistance
our construction offers. For each value of n, we have determined the smallest ¢ for which the resulting av-
erage yield exceeds 2"/2. (Note that this is not exactly equivalent to having probability half of finding
collisions, but we are confident it gives a faithful indication.)

In Table 3a we have tabulated log, ¢ for small values of n. Included are three versions. First we give
the value of ¢ that, when simulating the experiment of picking A and B and computing yield 44 5, gives an
average yield exceeding 92"/2 Second up is the corresponding result for the experiment of picking U directly

uniformly at random. Finally we also give the value of log, ¢ that follows from the Poisson estimation. For
on/2

the latter we also provide the value of ¢ such that ¢ = 2"/ /n=¢, that is ¢ = log,,

In Table 3b we have only given the values corresponding to the Poisson estimation, for n of crypto-
graphic relevance. Note the very small loss of actual security. Even for a 512-bit primitive the loss is less
than five bits. The table also shows the very slow increase in c.

As a consequence of log, q being fairly close to 7, one might want to take the probability of finding a
collision in either f; or f5 into account as well. Assuming f; and f> are random functions, the probability
of finding a collision in either is about 276 for n = 160, decreasing even further to 27 for n = 256, where
q is chosen according to Table 3. (Again, if f; and f, are random permutations, this issue is moot.)
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n log, yield Average nr. of k-way collisions / N
ADB U Poisson | Magp(l) Magp(2) Magp(3) Magp(4) Magp(5)
4 3.21 3.20 3.15 0.366 0.206 0.054 0.012 0.0016
6 4.47 4.49 4.45 0.367 0.189 0.060 0.014 0.0027
8 5.74 5.75 5.74 0.368 0.185 0.061 0.015 0.0030
10 6.90 6.90 6.90 0.368 0.184 0.061 0.015 0.0030
12 8.09 8.10 8.10 0.368 0.184 0.061 0.015 0.0031
14 9.19 9.19 9.19 0.368 0.184 0.061 0.015 0.0031
16 | 10.35096 10.35301 10.35384 0.3678 0.1839 0.0613 0.0153 0.00307
18 | 11.42019 11.42016 11.42020 0.3679 0.1839 0.0613 0.0153 0.00307
20 | 12.51232  12.51221 12.51233 0.3679 0.1839 0.0613 0.0153 0.00306
22 | 13.63089 13.63084 13.63085 0.3679 0.1839 0.0613 0.0153 0.00307
Poisson, A = 1 0.3679 0.1839 0.0613 0.0153 0.00307
Table 1: Comparison of experimental yield and its Poisson estimate for ¢ = 2% samples.
n log, yield Average nr. of k-way collisions / N
A®B U Poisson MA@B(l) MA@B(Q) MAEBB(g) MA@B(ZI) MA$B(5)
6| 252 253 2.54 0.787 0.0968 0.00543  0.000636  0.0000313
8 3.85 3.90 3.93 0.781 0.0975 0.00736  0.000517  0.0000302
10 | 5.10 5.10 5.10 0.780 0.0972 0.00791  0.000501  0.0000283
12 | 620 6.20 6.20 0.779 0.0974 0.00805  0.000505 0.0000261
14 | 737 737 7.37 0.779 0.0974 0.00810  0.000506  0.0000259
16 | 8.613 8.617 8.619 0.779 0.0974 0.00810  0.000507  0.0000254
18 | 9.653 9.652 9.652 0.779 0.0973 0.00811  0.000507  0.0000254
Poisson, A = % 0.779 0.0974 0.00811  0.000507  0.0000254
Table 2: Comparison of experimental yield and its Poisson estimate for ¢ = 22~ samples.

n q (logyq) c n| logyq| ¢
A®B U Poisson 321 14.2148 | 0.36

8 9@3.17) 12 (3.58) 9(3.16993) | 0.28 64 | 29.6518 | 0.39
10 16 (4.00) 17 (4.09) 16 (4.00000) | 0.30 96 | 45.2324 | 0.42
12 30 (4.91) 31 (4.95) 30 (4.90689) | 0.30 128 | 60.9975 | 0.43
14 56 (5.81) 60 (5.91) 56 (5.80735) | 0.31 160 | 76.8034 | 0.44
16| 105(6.71) 114(6.83) 105 (6.71425) | 0.32 192 | 92.5954 | 0.45
18 195 (7.61) 210 (7.71) 195 (7.60733) | 0.33 2241 108.415 | 0.46
20 360 (8.49) 363 (8.50) 360 (8.49185) | 0.35 256 124.3 | 0.46
22 676 (9.40) 676 (9.40) 676 (9.40088) | 0.36 384 | 187.907 | 0.48
24 1 1338 (10.39) 1343 (10.39) 1338 (10.3859) | 0.35 512 | 251.601 | 0.49

(a) Small n (b) Large n

Table 3: The relative bit-security provided against collision resistance based on n-bit primitives.
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