
Direct Division in Factor Rings

Patrick Fitzpatrick Christopher Wolf∗

p.fitzpatrick@ucc.ie Christopher.Wolf@esat.kuleuven.ac.be

chris@Christopher-Wolf.de

Department of Mathematics ESAT-COSIC

University College Cork Katholieke Universiteit Leuven

Ireland Belgium

Date: 2004-12-18

This is an extended version. The bibliographical details of the original
article are P. Fitzpatrick and C.Wolf : “Direct division in factor rings,”

Electronic Letters 38 No. 21 (2002), pp 1253-1254.

Abstract

Conventional techniques for division in the polynomial factor ring
F[z]/〈m〉 or the integer ring Zn use a combination of inversion and
multiplication. We present a new algorithm that computes the di-
vision directly and therefore eliminates the multiplication step. The
algorithm requires 2 degree(m) (resp. 2 log

2
n) steps, each of which

uses only shift and multiply-subtract operations.

1 Introduction

The development of fast division algorithms for polynomials and integer
rings is motivated by a number of applications in coding theory and cryp-
tography (see, for example, [BSS99, Chapter 1]). In particular, computa-
tions on elliptic curves need division in finite fields [MOV96], and also newer
schemes like Hidden Field Equations, e.g., see [WP04]. In a previous pa-
per [PF98] an algorithm was presented for direct division in the finite field
GF(2k). Alternative algorithms are given in [PF03] and [?]. We generalise
the latter to arbitrary factor rings F[z]/〈m〉 and to Zn, for odd n.

∗At the time of writing the original article also with University College Cork

1



Let F be a field, not necessarily finite, and let F[z] be the ring of poly-
nomials with coefficients in F. We assume that we have effective algorithms
for arithmetic operations in F (which is of course the case when F = GF(2)).
We use ∂a for the degree of the polynomial a, and [a]i for the coefficient
of zi in a ∈ F[z]. The zero polynomial has degree ∂0 = −1. The greatest
common divisor of polynomials f, g is denoted gcd (f, g). Let m ∈ F[z] be a
fixed polynomial, with [m]0 6= 0, where we may assume [m]0 = 1. The ideal
generated by m is denoted 〈m〉. If m is irreducible then F[z]/〈m〉 is a field,
otherwise it is a ring with zero divisors. This situation specialises to that
treated in [ShC01] on taking F = GF(2) and m an irreducible polynomial of
degree k. Let f, g denote polynomials with ∂f, ∂g < ∂m and gcd (g, m) = 1.
This permits us to view division of f by g in F[z]/〈m〉 as solving for q (the
quotient) the congruence f ≡ qg mod m which gives f/g ≡ q mod m.

2 Algorithm for polynomials

We observe that the nonempty subset S ⊆ A = F[z] × F[z] of pairs (a, b)
that satisfy af ≡ bg mod m forms an F[z]−submodule since it is closed
under subtraction, defined componentwise, and F[z]−multiplication defined
by c(a, b) = (ca, cb). The following lemma is the key to the algorithm.

Lemma 2.1 The subset {(g, f), (m, 0), (0, m)} is a basis of S.

Proof. First observe that (g, f), (m, 0), (0, m) ∈ S. Since gcd (g, m) = 1
there exist r, s ∈ F[z] such that rg + sm = 1. Suppose (c, d) ∈ S. Then
crg + csm = c and cf ≡ dg mod m which implies crf = drg + em for some
e ∈ F[z]. Together, these equations allow us to express (c, d) in the form
(c, d) = cr(g, f) + cs(m, 0) + (sd− e)(0, m). ¤

Note that the elements of such a basis are only defined up to constant
multiples.

Informally, the main idea of the algorithm is to start with the basis given
by {(g, f), (m, 0), (0, m)} and to convert it into the basis {(1, q), (u, v), (0, m)},
where q, u, v are to be determined, by a sequence of steps each of which re-
duces the first component of one of the first two basis elements by a factor of
z. Let B = {(a1, b1), (a2, b2), (0, m)} be an intermediate basis and suppose
that ∂a1 ≥ ∂a2. We subtract a multiple of a2 from a1 to eliminate the con-
stant term of a1 and then divide by z. To keep the second component correct
we subtract the same multiple of b2 from b1. We also subtract a suitable
multiple of m in order to eliminate the constant term and then divide the

2



Input: f, g,m ∈ F[z], (g,m) = 1, [m]0 = 1
Output: q ≡ fg−1 mod m

DirectDivisionPolynomial (f, g)
a1 ← g, b1 ← f, a2 ← m, b2 ← 0, i← 1, j ← 2;
while ∂a1 > 0 and ∂a2 > 0 do
if ∂aj > ∂ai then i ↔ j;
if [aj ]0 = 0 then i ↔ j;

bi ←
1

z

(

bi −
[ai]0
[aj ]0

bj −

(

[bi]0 −
[ai]0
[aj ]0

[bj ]0

)

m

)

;

ai ←
1

z

(

ai −
[ai]0
[aj ]0

aj

)

;

done
return bi/[ai]0;

Figure 1: Division Algorithm for Polynomials

second component by z. The property of being a basis is preserved at each
step, and since the degrees of the first components are reducing, it follows
that a constant multiple of (1, q) must appear eventually. The algorithm is
as shown in Figure 1, and the next result gives a formal proof of correctness.

Theorem 2.2 After each iteration the following properties hold

(i) B = {(a1, b1), (a2, b2), (0, m)} is a basis of S

(ii) gcd (a1, a2) = 1.

After at most 2∂m iterations the basis contains a constant multiple of (1, q).

Proof. It is clear that at each iteration B ⊆ S, so to prove the first
assertion we need only check that an arbitrary element (c, d) = r(ai, bi) +
s(aj , bj) + t(0, m) is expressible in terms of the new basis B ′, where we use
the notation of the algorithm for indices i, j and dashes to represent updated
values. The following equation gives the required expressions:

(c, d) = rz(a′i, b
′

i) +

(

s + r
[a′i]0
[a′j ]0

)

(a′j , b
′

j) +

(

t + r[b′i]0 − r
[a′i]0
[a′j ]0

[b′j ]0

)

(0, m).

Next, gcd (a1, a2) = gcd (g, m) = 1 initially, and it is clear that gcd (a′

1
, a′

2
) =

gcd (a1, a2). Finally, by virtue of the reducing sum of degrees ∂a1 + ∂a2 we
must eventually obtain a′i = 0. At that point a′j is a non-zero constant, oth-
erwise gcd (a1, a2) would have positive degree. It follows that the algorithm

3



reaches a basis containing an element whose first component is a non-zero
constant, and we can make this the stopping criterion. The degree condi-
tions imply that this element is a constant multiple of the uniquely defined
element (1, q), since there is no other element (a, b) ∈ S with a = 1, ∂b < m.
It takes at most ∂m + 1 iterations to reduce ∂m to zero and at most ∂m
iterations to reduce ∂g to zero. Therefore the stopping criterion is satisfied
after at most 2∂m iterations. ¤

Input: X(t), Y (t)
Output: R(t) ≡ X(t) · Y −1(t) (mod M(t))

DirectDivisionUnrolled (X, Y)
A←Y , B←M , U ←X, V←0
while ∂A > 0 and ∂B > 0 do
if a0 = 0 then
A←A/z;
if u0 = 0 then U←U/z
else U←[U(t)− (u0/m0) ·M(t)]/z;

elif b0 = 0 then
B←B/z;
if v0 = 0 then V←V /z
else V←(V (t)− (v0/m0) ·M(t))/z;

elif ∂A > ∂B then
U←U(t)− (a0/b0) · V (t);
if u0 = 0 then U←U/z
else U←[U − (u0/m0) ·M(t)]/z;

A←[A(t)− (a0/b0) ·B(t)]/z;
else
V←V (t)− (b0/a0) · U(t);
if v0 = 0 then V←V /z
else V←[V − (v0/m0) ·M(t)]/z;

B←[B(t)− (b0/a0) ·A(t)]/z;
endif

done
if ∂A = 0 then return (1/a0) · U(t);
return (1/b0) · V (t);

Figure 2: Division Algorithm for Polynomials (unrolled)

For efficiency, it is also possible to “unroll” the above algorithm, see
Figure 2 for details. In particular, [ShC01] noted that such an algorithm

4



is more efficient than the one from Figure 1. However, the proofs about
correctness and running time from this section still apply.

Input: X(t), Y (t)
Output: R(t) ≡ X(t) · Y −1(t) (mod M(t))

DirectDivisionShort (X, Y)
A←Y , B←M , U ←X, V←0
while (true)
if a0 = 0
A←A/z;
U←[U(t)− (u0/m0) ·M(t)]/z;

elif ∂A = 0 then return (1/a0) · U(t);
elif ∂A < ∂B then A↔ B, U↔ V ;
else
U←U(t)− (a0/b0) · V (t);
A←A(t)− (a0/b0) ·B(t);

endif
done

Figure 3: Division Algorithm for Polynomials (code-size efficient)

When not speed but code-size is the issue, the algorithm from Figure 3
seems to be the best option. All computations are done in one single loop
— and there is no extra memory requirement when compared with the
other implementations. However, we want to stress that all these algorithms
have been implemented in software and a hardware implementation may use
different optimisations.

5



3 Algorithm for Zn

Input: r, s ∈ Zn, (s, n) = 1
Output: q ≡ rs−1 mod n

DirectDivisionShortIntegers (r, s)
a1 ← s, b1 ← r, a2 ← n, b2 ← 0, i← 1, j ← 2;
while (ai > 1)
if ai < aj then i ↔ j;
if [aj ]0 = 0 then i ↔ j;
bi ← (bi − bj [ai]0 − ([bi]0 − [ai]0[bj ]0)n)/2;
if bi < 0 then bi ← bi + n;
ai ← (ai − aj [ai]0)/2;

done
return bi;

Figure 4: Short Algorithm for Division in Zn

This algorithm can be adapted for Zn, n odd. In this section we present
this algorithm, leaving to the reader the precise details of the proof of cor-
rectness. We express all integers in base 2 and denote by [a1]0 the least
significant bit of the integer a1. The algorithm is given in Figure 4.

By an argument similar to that in Theorem 2 the number of iterations
at most 2 log2 n.

4 Conclusions

The algorithm presented in this paper can be used to compute fg−1 (mod m)
for f, g, m ∈ F[z], where [m]0 6= 0, gcd (g, m) = 1, and rs−1 (mod n) for
r, s, n ∈ Z, where n is odd, and gcd (s, n) = 1. The division is carried out
directly rather than as a combination of inversion and multiplication. Its
complexity is 2∂m (resp. 2 log2 n). In contrast, division based on the ex-
tended Euclidean algorithm has the same complexity in computing only the
inverse of g or s, and thereafter an additional multiplication step is needed.

Acknowledgements

We want to thank Michael Scott (Dublin City University, Ireland) for point-
ing out an error in the algorithm from Fig 4 in an earlier version of this
article.

6



References

[BSS99] I. BLAKE, G. SEROUSSI, N. SMART: Elliptic Curves in Cryp-

tography, Cambridge University Press, 1999.

[PF98] E. M. POPOVICI, P. FITZPATRICK, ‘Division algorithm over
GF(2m)’, Elect. Lett. 34:19, 1998, 1843–1844.

[MOV96] ALFRED J. MENEZES and PAUL C. VAN OORSCHOT
and SCOTT A. VANSTONE: Handbook of Applied Cryptogra-

phy, CRC Press, 1996, ISBN 0-8493-8523-7. http://www.cacr.
math.uwaterloo.ca/hac/

[PF03] E. POPOVICI and P. FITZPATRICK: Algorithm and architec-

ture for a multiplicative Galois field processor, IEEE Trans. In-
form. Thy, 49 (2003), 3303-3307.

[ShC01] SHEULING CHANG SHANTZ: ‘From Euclid’s GCD to
Montgomery multiplication to the great divide’, Sun Mi-

crosystems, SML Technical Report, SMLI TR-2001-95,
2001. http://research.sun.com/research/techrep/2001/

abstract-95.html

[WP04] CHRISTOPHER WOLF and BART PRENEEL. Asymmetric
Cryptography: Hidden Field Equations. In European Congress

on Computational Methods in Applied Sciences and Engineer-

ing 2004. P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J.
Périaux, and D. Knörzer, editors, Jyväskylä University, 2004.
20 pages, extended version: http://eprint.iacr.org/2004/

072/.

7


