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Abstract. A public key cryptosystem based on Drinfeld modules has
been proposed by Gillard, Leprevost, Panchishkin and Roblot. The paper
shows how an adversary can directly recover a private key using only the
public key, and so the cryptosystem is insecure.

1 Introduction

Gillard, Leprevost, Panchishkin and Roblot [1] have recently proposed a cryp-
tosystem based on Drinfeld modules. We refer to this cryptosystem as the GLPR
cryptosystem. We aim to show that this cryptosystem is insecure, by showing
how an adversary with access to just the public key may recover a corresponding
private key. Thus the title of a paper by Scanlon [4] remains correct.

The paper is divided into three sections. Section 2 describes the GLPR trap-
door one-way function, avoiding the use of Drinfeld module terminology. This
description makes use of two linear maps λ1 and λ2 that Gillard et al [1] define
using Drinfeld modules. Section 3 explores the definition of λ1 and λ2 in more
detail, and shows that these linear maps have a property claimed in Section 2
which we use in our cryptanalysis. Section 3 is the only section that uses Drinfeld
modules explicitly. Finally, Section 4 describes our attack on the GLPR scheme.

The authors would like to thank Cécile Malinaud for help with the French
language.

2 The Cryptosystem

Let p be a prime and let d and e be integers. Typical values are p ≈ 232, d = 5
or d = 6 and e = 5 or e = 7. The GLPR trapdoor one-way function ψ maps Fpd

to Fpd . This function is specified by selecting two bijective Fp-linear maps λ1, λ2

on the vector space Fpd and an element δ ∈ Fpd . The function is then defined by

ψ(z) = λ1((λ2(z))e + δ) (1)



In fact, the linear maps λ1 and λ2 are chosen to be of the form

b0 + b1F + · · ·+ bd−1F
d−1 (2)

where F is the p-power Frobenius map on Fpd and where the coefficients bi lie
in Fpd .

The public key of the system will be the prime p, the integer d and certain
information about how to compute ψ. The private key or trapdoor consists
of the transformations λ1, λ2 and the values e and δ. Note that if λ1, λ2, e and δ
are all known, it is easy to compute the inverse of ψ. The particular structure of
the maps λi means that, if e is small, it is possible to give a compact description
of how to compute the function ψ(z), without explicitly describing λ1, λ2, e or
δ. We refer to the original paper [1] for details; for our purposes it is sufficient to
know the fact (obvious, since the GLPR proposal is a public key cryptosystem)
that the image of any element in Fpd under ψ can easily be computed from the
public key.

We note that the public key does not determine the private key uniquely: for
any non-zero b ∈ Fpd and any i ∈ {0, 1, . . . , d− 1} the private key

(λ1F
−ib−e, bF iλ2, e, b

eF iδ)

gives the same function ψ as the private key (λ1, λ2, e, δ). Any of these solutions
can be used as a trapdoor for the function ψ.

3 Drinfeld modules

The mappings λ1 and λ2 of the previous section were originally defined using
Drinfeld modules [1]. This section recaps this definition, so that it can be seen
that λ1 and λ2 really do have the form (2).

Let p be a prime number. We denote by A the ring Fp[T ] of polynomials in a
variable T with coefficients in Fp. We write A{τ} for the ring defined as follows.
The set of elements of A{τ} is the set of polynomials in τ with coefficients in A.
Addition in A{τ} is the usual addition for polynomials. However, multiplication
in A{τ} is ‘twisted’ by using the rule τk×a = apk

τk for all a ∈ A and all positive
integers k. Thus A naturally has the structure of a (left) A{τ}-module, where
for x =

∑m
i=0 aiτ

i ∈ A{τ} and z ∈ A we define

xz =
m∑

i=0

aiz
pi

.

So the elements of A ⊆ A{τ} act by left multiplication, and τ acts as the
Frobenius map.

A Drinfeld module is simply an Fp-algebra morphism ϕ : A → A{τ}, with
the property that ϕ(T ) is a polynomial in τ of degree at least 1 whose constant
term is T .
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Let d be an integer such that d > 1, and let f(T ) ∈ A be an irreducible
polynomial. We write B for the quotient A/(f(T )) of A by the principal ideal
generated by f(T ), so B ∼= Fpd . For z ∈ A, we write z for the corresponding
element z + (f(T )) ∈ B. The ideal (f(T )) is an A{τ}-submodule of A, and so
the quotient B = A/(f(T )) may be regarded as an A{τ}-module in a natural
way by defining

xz = xz

for any z ∈ B. When x =
∑m

i=0 aiτ
i ∈ A{τ}, we have that

xz =
m∑

i=0

aizpi =
m∑

i=0

aiz
pi

,

and so the map from B to itself defined by z 7→ xz is Fp-linear. For i ∈
{1, 2, . . . , d}, define bi ∈ B by bi =

∑
j≡i mod d aj . Since the Frobenius map

F on B has order d, the map z 7→ xz is of the form (2).
Let ϕ : A → A{τ} be a Drinfeld module, and let a ∈ A. Define x ∈ A{τ} by

x = ϕ(a). We write ϕa for the map from B to itself given by z 7→ xz discussed
above. Note that for any Drinfeld module ϕ and any a ∈ A we have that ϕa

is of the form (2). The mappings λ1 and λ2 in the GLPR encryption function
are defined by setting λ1 = ϕc1 and λ2 = ϕc2 where c1, c2 ∈ A are secret, and
are chosen so that λ1 and λ2 are bijective. So λ1 and λ2 are of the form (2), as
required.

4 An attack on the scheme

We show how to recover a private key from the public key.
The first step of the attack is to guess e. The original paper suggests either

e = 5 or e = 7, and in any case e must be small, so we can simply run the attack
on each possible value of e in turn.

Now, using the public key we can generate many pairs

(z, w) where w = ψ(z) (3)

for random values of z ∈ Fpd . In fact, our attack will need just
(
e+d−1

e

)
+ d+ 1

such pairs.
The main point of the attack is to recover the two linear maps λ−1

1 and λ2.
This is done by expressing the coefficients of the transformations as variables,
generating sufficiently many equations, and then solving these equations over a
finite field. A generic attack would be to represent λ−1

1 and λ2 as matrices over
Fp, each having d2 variables, and to solve the equations over Fp; however, we
can do better than this. Since ψ is a bijection it follows that λ1 is invertible. It
is also clear that λ−1

1 can be written in the form of equation (2).
We use 2d unknowns in Fpd . Write

λ−1
1 = x0 + x1F + · · ·+ xd−1F

d−1 (4)
λ2 = y0 + y1F + · · ·+ yd−1F

d−1 (5)
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where the xi and yj are treated as unknowns in Fpd . To be precise, for any given
element z ∈ Fpd , the value of λ2(z) is given by the linear equation

λ2(z) = y0z + y1z
p + y2z

p2
+ · · ·+ yd−1z

pd−1

and similarly for λ−1
1 (w). We also introduce a variable δ, which will replace the

private value of δ. Now, each pair (z, w) gives rise to a relation

λ−1
1 (w) = λ2(z)e + δ. (6)

Since z and w are exact field elements, each of these relations gives rise to a large
multivariate polynomial relation in the 2d+ 1 variables xi, yj and δ. Note that
these polynomials are linear in the variables xi and δ. Moreover, all monomials
involving the variables yj are of degree e, and do not involve the variables xi

and δ.
So we obtain a number of multivariate polynomial relations of degree e be-

tween the 2d + 1 variables. It remains to find an Fpd-solution to this polyno-
mial system. It is probably possible to apply standard Gröbner basis techniques,
but we suggest using linearisation methods (see, for example, [2, 5]) which have
proved to be effective against multivariate schemes. We have successfully im-
plemented this approach using the computer algebra package Magma [3]. The
attack may be described as follows.

We first linearise, by replacing each non-linear monomial
∏

j y
ej

j by a new
term uk and thus obtain a linear equation in a larger number of variables. In
this case the number of nonlinear monomials is at most

(
e+d−1

e

)
, and so we

obtain a linear system consisting of K unknowns, where K =
(
e+d−1

e

)
+ d + 1.

Solving this linear system is straightforward as K is small. (When e = d = 5
we have that K = 132. When e = 7 and d = 5 we find that K = 336.) In
experiments, we always obtained a solution space V of dimension d. Of course,
the majority of the vectors in V are spurious solutions, since we have not used the
fact that the variables uk were derived from monomials in the yj . The dimension
of V is accounted for by the Frobenius ‘twisting’. To see this, recall that if
(λ1, λ2, e, δ) is a valid private key, then so are the keys (λ1F

−i, F iλ2, e, F
iδ)

where i ∈ {0, 1, . . . , d − 1}. This gives a set of d valid solutions which give rise
to d linearly independent vectors in the solution space V .

We now need to pick out valid solutions from V by checking for consistency in
the usual way. In more detail, we choose a basis v1, v2, . . . , vd for V . We introduce
d new variables `1, `2, . . . , `d and imagine a typical element of V having the form
`1v1 + `2v2 + · · ·+ `dvd. Writing vik for the kth component of the vector vi, we
obtain a collection of equations of the form

`1v1k + `2v2k + · · ·+ `dvdk = uk

together with similar equations where the uk is replaced by either xj or δ. There
is almost certainly a valid solution with `1 = 1 (recall that (λ1b

−e, bλ2, e, b
eδ)

a valid private key for any non-zero b ∈ Fpd). So, without loss of generality,
we may set `1 = 1. If we now replace each variable uk by its corresponding
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monomial in the yj we obtain a simple system of non-linear equations. We can
solve this system by elementary means to obtain a valid set of solutions. In our
experiments we used Gröbner basis techniques to solve this system.

Finally, once one obtains λ−1
1 and λ2 it is trivial to recover λ1 and the private

key is completely known to the adversary.
In our experiments with a 32-bit prime and d = e = 5 we recovered the

private key in around 1 minute on a 700MHz Pentium III machine.
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