
A Deniability Analysis of Signal’s Initial Handshake PQXDH∗

Rune Fiedler Christian Janson

Cryptoplexity, Technische Universität Darmstadt, Germany
{firstname.lastname}@cryptoplexity.de

Abstract. Many use messaging apps such as Signal to exercise their right to private communication.
To cope with the advent of quantum computing, Signal employs a new initial handshake protocol called
PQXDH for post-quantum confidentiality, yet keeps guarantees of authenticity and deniability classical.
Compared to its predecessor X3DH, PQXDH includes a KEM encapsulation and a signature on the
ephemeral key. In this work we show that PQXDH does not meet the same deniability guarantees as
X3DH due to the signature on the ephemeral key. Our analysis relies on plaintext awareness of the
KEM, which Signal’s implementation of PQXDH does not provide. As for X3DH, both parties (initiator
and responder) obtain different deniability guarantees due to the asymmetry of the protocol.
For our analysis of PQXDH, we introduce a new model for deniability of key exchange that allows a
more fine-grained analysis. Our deniability model picks up on the ideas of prior work and facilitates new
combinations of deniability notions, such as deniability against malicious adversaries in the big brother
model, i.e. where the distinguisher knows all secret keys. Our model may be of independent interest.

1 Introduction
Nowadays, messaging applications are widely adopted: Billions of people use messaging apps such as
Signal and WhatsApp.1 In order to provide confidentiality of the users’ communication, both apps offer
end-to-end encrypted messaging by using the Signal protocol. The Signal protocol consists of an initial
handshake, which allows two parties to derive a shared session key, and a ratcheting mechanism [MP16a],
which provides forward secrecy and post-compromise security. Until 2023, Signal used the X3DH protocol
[MP16b] for the initial handshake. To resist the threat of “harvest now decrypt later attacks” [KS23] posed
by future quantum computers, Signal replaced X3DH with the PQXDH protocol; pursuing post-quantum
confidentiality (without addressing quantum attackers against authenticity or deniability). Similarly, this
paper does not consider deniability against quantum adversaries.

Deniability is a subtle privacy property that allows a party to plausibly deny an action. Consider the
following example in a scenario without computers and smartphones present, where Alice and Bob have a
conversation. Later, Alice tells Charlie she talked to Bob, and Bob tells Charlie he never talked to Alice.
Charlie does not know whose word to trust; hence, Bob can deny his conversation with Alice since their
conversation did not leave any evidence behind. For sensitive topics such as medical conditions, sexuality,
or coordinating a protest against an oppressive regime, this type of privacy guarantee can be not just
helpful but even vital.

Conversations in the digital world entail sending data over the internet. Moving our previous example
to conversing via messaging, Alice and Bob exchange messages as specified by the messaging protocol,

∗An extended abstract of this paper appears in the Proceedings on Privacy Enhancing Technologies (PoPETS) 2024. This
is the full version.

1https://en.wikipedia.org/wiki/WhatsApp#User_statistics

1

https://en.wikipedia.org/wiki/WhatsApp#User_statistics

resulting in a protocol transcript. This transcript may convince Charlie that Alice and Bob did converse
and what they conversed about. However, if Alice and Bob use a deniable protocol, then either party can
deny involvement in a protocol run.

A deniable key exchange is necessary (but not sufficient, as pointed out in [CCHD23]) to build deniable
messaging. Signal desires deniability2 and, therefore, a deniable initial handshake, i.e. previously X3DH
and now PQXDH [MP16b, KS23]. Before X3DH, Signal used a derivative of Off-the-Record Messaging
(OTR) [OTR20], which also employs a deniable key exchange.

For a key exchange protocol to be deniable, the transcript must not prove Bob’s involvement in the
conversation. In particular, there must exist a Fake algorithm that simulates Bob’s involvement. Hence,
Alice acting as the adversary can simulate a transcript on her own by using the Fake algorithm. Charlie
acting as distinguisher must not be able to tell the simulated transcript apart from a real transcript.
Honest parties would likely use the freshly established session key in some subsequent protocol. Hence,
the Fake algorithm must simulate the session key indistinguishably as well.

Several deniability definitions were produced by prior works [DGK06, CF11, HKKP22, DFG+13,
BFG+22, BFG+21, YZ13, JS08, Jia14, JCL+22]; each definition follows the outline in the previous para-
graph. Additionally, [DGK06] introduces auxiliary information (e.g. valid protocol transcripts anybody
could have observed a priori) that all algorithms (adversary, their equivalent of the Fake algorithm, and
the distinguisher) can access. The definitions from the literature are incomparable, vary in the precise
guarantee they capture and which formalisms they use. In consequence, capturing several deniability no-
tions may require using several formalisms. Instead, we propose a new model for deniable key exchange,
which integrates cherry-picked ideas from prior works: Our model is parameterized in the auxiliary info
(Are some protocol transcripts available?), the power of the adversary (Does the adversary follow the pro-
tocol?), the power of the Fake algorithm (How much help do you need to simulate a transcript?), the power
of the distinguisher (Is the distinguisher a big brother who can force everybody to give up their secret keys?
Does it learn the auxiliary info?). Our new model facilitates new combinations of ideas, e.g. combining
malicious adversaries [DGK06] with a big brother distinguisher [BFG+22], thereby augmenting the design
space for deniability.

Starting a conversation in Signal. Observe that the Signal protocol allows starting a conversation
with offline users through the asynchronicity of the initial handshake: Bob prepares a so-called pre-key
bundle and uploads it to Signal’s key server. To initiate a conversation with Bob, Alice retrieves his pre-
key bundle from the key server and sends a message to Bob. (See Figure 3 on page 17 for an algorithmic
description of X3DH and PQXDH.)

The X3DH protocol uses the Diffie–Hellman (DH) key exchange, where each user has DH key pairs
of different lifetimes (long-term, semi-static, and ephemeral). Bob’s pre-key bundle contains his public
keys (of all three lifetimes) and a signature certifying his semi-static key under the long-term key. Upon
retrieving Bob’s pre-key bundle, Alice verifies the signature and generates a fresh ephemeral DH key pair.
She computes four (or in case Bob’s ephemeral keys run out, only three) DH shared secrets by combining
DH keys of different lifetimes, uses the resulting session key to encrypt her first user message with an
AEAD scheme, and sends her ephemeral public key and the AEAD ciphertext to Bob. Bob computes the
session key in the same manner, decrypts the AEAD ciphertext, and aborts if decryption fails.

The new PQXDH protocol does the same operations as X3DH and adds a KEM encapsulation to achieve
post-quantum confidentiality: Bob includes an ephemeral KEM public key in his pre-key bundle and a
signature for his KEM key (again under Bob’s long-term key). If the ephemeral KEM keys run out, a
semi-static KEM key and the corresponding signature are instead included in the pre-key bundle. Alice
verifies the signatures on the semi-static DH key and the KEM key and encapsulates against Bob’s KEM

2https://signal.org/blog/simplifying-otr-deniability/

2

https://signal.org/blog/simplifying-otr-deniability/

key. She derives the session key from the DH shared secrets and the KEM shared secret, and encrypts
her first user message with the AEAD scheme under the session key. She sends the resulting (KEM and
AEAD) ciphertexts and the public key of her freshly generated ephemeral DH key pair to Bob. Bob
decapsulates the KEM ciphertext. Bob computes the session key in the same manner, decrypts the AEAD
ciphertext, and aborts if decryption fails.

In order to show deniability, we need to specify a Fake algorithm that simulates protocol messages
and the session key indistinguishably. To simulate Bob’s message, the Fake algorithm needs to produce
signatures under Bob’s long-term key without Bob’s long-term secret key. For signatures on a semi-static
key, the Fake algorithm can reuse any signature from the auxiliary info (in practice, this can be a transcript
that the attacker learned from eavesdropping or a pre-key bundle) or from an independent session with
Bob. For PQXDH, the Fake algorithm needs a signature on an ephemeral key, i.e. a signature that the
distinguisher is not aware of. In Section 4 we call these private signatures.

To simulate the session key against malicious adversaries, the Fake algorithm requires all DH shared
secrets – and for PQXDH additionally the KEM shared secret. In particular, the Fake algorithm does
not know the DH secret keys (some are known to the honest party and some to the adversary); following
[VGIK20], we extract the DH shared secrets from the adversary under a knowledge of DH assumption
(see Section 2.3 for details; assume if a party produces a DH public key, this party can produce a DH
shared secret with this public key, or nobody can). On Alice’s side, the Fake algorithm learns the KEM
shared secret by encapsulating; on Bob’s side the corresponding KEM secret key is not available for
decapsulation. Hence, the Fake algorithm extracts the KEM shared secret from the adversary under
the plaintext awareness assumption (see Definition 2.7 for details; assume anybody who produces an
encapsulation knows the encapsulated secret).

1.1 Related Work

Built on the literature for deniable authentication [DNS98, Kat03, Pas03, DGK05, DG05], Di Raimondo,
Gennaro, and Krawczyk [DGK06] have initiated the formal study of deniable key exchange: A distin-
guisher cannot conclude whether some evidence stems from an actual protocol execution between two
parties or whether it was produced by some other means. Many papers have considered deniability for
key exchange [Kra96, HKK+02, MP02, BMP03, BMP04, LLPM07, YZ10, JS08, DKSW09, YZ13, Jia14,
BMS20, JCL+22]. Deniability was also named repudiability, mostly in the context of Off-the-Record (OTR)
messaging [BGB04, UDB+15, UG15, UG18]. Next, we revisit some more prominent work on deniability
notions in general and their application to Signal’s initial handshake.

1.1.1 (Non-)Interactive distinguisher

Deniable authentication [DNS98, DG05] and some forms of deniable key exchange [DGK06] are defined
with respect to a distinguisher3 that is presented with evidence after the fact, i.e. an offline distinguisher.
Dodis, Katz, Smith, and Walfish [DKSW09] have introduced the notion of an interactive, online distin-
guisher. Unger and Goldberg [UG15] argue that online deniability is not achievable for an asynchronous
key exchange protocol (i.e. one party uploads pre-keys to a central server) with forward secrecy.4 Hence,
in this paper we write deniability and refer to offline deniability, unless explicitly stated otherwise.

1.1.2 Deniable Key Exchange

Di Raimondo et al. [DGK06] have introduced concurrent deniability and partial deniability of key exchange
protocols, following the simulation-based approach of deniable authentication. They further share the

3Prior work uses the term judge, which we avoid for ambiguity with the legal profession.
4They call this assumed impossibility "Iron Triangle".

3

observation of Pass [Pas03] that a simulator for deniability needs to be implementable; in particular, the
simulator needs to refrain from rewinding the adversary, reprogramming a random oracle, and similar
techniques for simulation in thought experiments. Their deniability definition was since used in [VGIK20]
and slightly adapted in [CF11, HKKP22]. Dagdelen, Fischlin, Gagliardoni, Marson, Mittelbach, and
Onete [DFG+13] have introduced the first game-based definition for a weak version of deniability of key
exchange, named outsider deniability. Dodis et al. [DKSW09] defined online deniability for key exchange in
the Generalized UC framework, which was further refined by Unger and Goldberg [UG15, UG18]. Several
works [CF11, JS08, Jia14, JCL+22] consider (adaptive) corruptions in the sense that the attacker, the
simulator, and possibly the distinguisher learn the corrupted party’s secrets. Appendix A discusses the
relation between notions of prior work and our new model in more detail.

1.1.3 Signal’s initial handshake

Until recently, Signal employed X3DH [MP16b] as initial handshake protocol, whose security can be based
on the GapDH assumption [CCD+17]. Hashimoto, Katsumata, Kwiatowski, and Prest [HKKP22] have
proposed a generic post-quantum construction for Signal’s initial handshake based on KEMs for confi-
dentiality and either signatures (named SC-AKE), or ring signatures (SC-DAKE), or ring signatures and
NIZKs (SC-DAKE’) for authentication and increasing levels of deniability. In concurrent work Brendel,
Fiedler, Günther, Janson, and Stebila [BFG+22] have proposed a similar generic construction named
SPQR based on KEMs and designated verifier signatures (DVS). Dobson and Galbraith [DG22] adopt the
X3DH handshake to isogenies, resulting in a protocol named SI-X3DH, which was broken by the SIDH
attack [CD23, MMP+23, Rob23]. Collins, Huguenin-Dumittan, Nguyen, Rolin, and Vaudenay [CHDN+24]
have proposed K-Waay, which is based on a primitive named split-KEMs that was introduced by [BFG+20].
In 2023, Signal deployed PQXDH [KS23], which uses a more conservative hybrid approach: It combines
the classically secure X3DH handshake with a post-quantum secure KEM. This modification aims to add
confidentiality against future quantum attackers but is not concerned with quantum attacks against au-
thentication or deniability. Bhargavan, Jacomme, Kiefer, and Schmidt [BJKS23, BJK23] formally verified
PQXDH. Fiedler and Günther [FG24] provide a reductionist key indistinguishability analysis of PQXDH,
adding coverage for maximum exposure security to the analysis of [BJKS23, BJK23].

1.1.4 Deniability of Signal’s initial handshake

Vatandas, Gennaro, Ithurburn, and Krawczyk [VGIK20] have shown that Signal’s initial handshake X3DH
is deniable in the model of [DGK06] under a novel knowledge of DH assumption. Dobson and Galbraith
[DG22] sketch a similar deniability argument for SI-X3DH. Hashimoto et al. [HKKP22] show deniability
of SC-DAKE and SC-DAKE’ under the model of [DGK06] against semi-honest adversaries and malicious
adversaries, respectively, assuming plaintext awareness of the KEM and a related knowledge assumption.
Brendel et al. [BFG+22, BFG+21] show that SPQR is deniable under a new deniability notion (1-out-of-2
deniability against semi-honest adversaries in the big brother model), which they model after the intuition
of Signal’s specification [MP16b]. Collins et al. [CHDN+24] show deniability of K-Waay under a new
deniability notion close to the one of Brendel et al. [BFG+22, BFG+21].

1.1.5 Deniable Secure Messaging

A protocol combining a key exchange with a subsequent exchange of user messages is called Secure Mes-
saging. Unger, Dechang, Bonneau, Fahl, Perl, Goldberg, and Smith [UDB+15] cover several forms of
deniability for Secure Messaging; among them the distinction between participation deniability (a user can
deny participation in a specific session) and message deniability (a user can deny having written a partic-
ular (user) message). Cremers and Zhao [CZ24] extended the game-based deniability model of [BFG+22]

4

for key exchange to cover (extended) secure messaging. Reitinger, Malkin, Akgul, Mazurek, and Miers
[RMA+23], as well as Yadav, Gosain, and Seamons [YGS23] study the social implications of cryptographic
deniability for secure messaging.

1.2 Contributions

To capture the precise deniability guarantees of PQXDH, we introduce a new, more expressive deniabil-
ity model for key exchange protocols (cp. Section 3) that facilitates combinations of previous deniability
notions. Our new, game-based deniability model is designed for, but not limited to, asynchronous key ex-
change. Our model is parameterized to cover deniability notions for a multitude of scenarios: circumstantial
knowledge (auxiliary info aux), several adversarial capabilities (malicious, semi-honest, and combinations),
how much help the Fake algorithm needs to simulate (partial deniability, or only the peer can simulate,
i.e. 1-out-of-2 deniability), and distinguisher capabilities (big brother model, knowledge of auxiliary info).
The flexibility of our model allows for easy comparisons of deniability notions and easy adaptability of
a proof of deniability to another notion (simply by changing the four aforementioned parameters while
keeping the structure of the game, and, hence, the proof).

Furthermore, we provide the first deniability analysis of Signal’s new initial handshake PQXDH (cp.
Section 4). We show that—due to the signed ephemeral key on Bob’s side—the deniability guarantees
of PQXDH fall short of those of X3DH. Assuming plaintext awareness of the KEM, which PQXDH adds
onto X3DH, and knowledge of a signature hidden from the distinguisher, PQXDH retains the deniability
guarantees of X3DH. Table 2 gives the full results.

2 Preliminaries
In this section we review necessary preliminaries.

2.1 Notation

We denote the empty list by [], append element to list by list
+←− element, and append the content of

list2 to list1 by list1 +←− list2. In abuse of notation, we allow combining appends, e.g. (l1, l2) +←− (l3, l4)
returns ((l1 +←− l3), (l2 +←− l4)), and allow the same syntax for adding to sets. We denote by a, b, c ∈ S that
S contains a, b, c. Given a map a, we refer to its entry at position i with a[i].

Two distributions are said to be (tD, ϵD)-indistinguishable if no algorithm running in time tD has an
advantage better than ϵD in distinguishing the two distributions. We use y←$ A(x) to denote the random
output y of algorithm A for input x, where the probability is over A’s internal randomness. We use the
arrow ← for any assignment statements.

2.2 Signatures

We briefly review the syntax for digital signature schemes.

Definition 2.1 (Signature schemes). A digital signature scheme is a triple of algorithms SIG = (KGen,
Sig, Vf) with associated message space MSIG, defined as follows:

• KGen() $→ (pk, sk): This probabilistic algorithm returns a key pair (pk, sk)

• Sign(sk, m) $→ σ: On input a secret key sk and a message m ∈ MSIG, this probabilistic algorithm
returns a signature σ;

5

• Vf(pk, m, σ) → d: On input a public verification key pk, a message m, and a candidate signature
σ, this deterministic algorithm returns a bit d ∈ {0, 1}. If d = 1 we say that the signature is valid,
otherwise not.

We say that a digital signature scheme SIG is correct if, for every (pk, sk)←$ KGen(), every m ∈MSIG,
and random σ←$ Sign(sk, m), it holds that Pr[Vf(pk, m, σ) = 1] = 1.

We consider the security notion unforgeability under chosen message attacks for digital signature
schemes.

Definition 2.2 (Unforgeability for digital signature Schemes). A digital signature scheme SIG is (qSIG,
tSIG, ϵSIG)-unforgeable if, for every adversary A running in time tSIG and making at most qSIG queries to
the Sign oracle, it holds that Pr[Guf

SIG(A) = 1] ≤ ϵSIG, where Guf
SIG(A) is defined as:

Guf
SIG(A):

1 Q← ∅
2 (pk, sk)←$ SIG.KGen()
3 (m∗, σ∗)←$ASign(pk)
4 return Vf(pk, m∗, σ∗) ∧m∗ ̸∈ Q

Sign(m):

5 σ←$ Sign(sk, m)
6 Q← Q ∪ {m}
7 return σ

2.3 Diffie–Hellman Key Exchange

We briefly review the syntax for the Diffie–Hellman key exchange.

Definition 2.3 (Diffie–Hellman Key Exchange). A Diffie–Hellman Key Exchange (DH) scheme is a tuple
of algorithms (KGen, DH), defined as follows:

• KGen() $→ (pk, sk): This probabilistic algorithm returns a key pair (pk, sk)

• DH(pkA, skB)→ DHAB: On input a public key pkA and a secret key skB, this deterministic algorithm
returns the shared DH secret DHAB.

We say that a DH key exchange DH is correct if, for every (pkA, skA), (pkB, skB)←$ KGen(), it holds
that Pr[DH(pkA, skB) = DH(pkB, skA)] = 1. For notational convenience we allow the arguments to be in
arbitrary order. Hence, DH(pkA, skB) = DH(skA, pkB).

The following assumption differs slightly from the EKDH assumption in Definition 2.5: Here, A is first
given two DH public keys and outputs a third DH public key. Then, the extractor tries to extract the two
DH shared secrets between the output public key and each of the input public keys.

Definition 2.4 (K2DH Assumption [VGIK20]). Let G be a cyclic group with generator g and AuxPrep a
sampler for auxiliary inputs. Let A be any algorithm running in time tA which runs on input (U, W, aux)
where U, W ∈ G, and aux←$ AuxPrep, and outputs Z ∈ G; we denote with Z = A(U, W, aux, r) the output
of running A on input U, W, aux with coins r.

We say that the (tA , tE , tD , ϵD)-Knowledge of 2DH (K2DH) Assumption holds over group G and for
auxiliary info AuxPrep, if for every such A, there exists a companion algorithm EDH

A (called the extractor
for A) such that: EDH

A runs on input U, W, aux, r in time tE and outputs Ẑ1, Ẑ2 ∈ G or ⊥ such that

• If EDH
A (U, W, aux, r) ̸= ⊥ then Ẑ1 = DH(U, Z) and Ẑ2 = DH(W, Z)

• For every algorithm C running in time tD , we have that
Pr[C(U, W, Z, r, aux) ∈ {DH(U, Z), DH(W, Z)} | EDH

A (U, W, aux, r) = ⊥] ≤ ϵD ,
where Z = A(U, W, aux, r) and the probability is taken over the coins of C and uniform distribution
on (U, W, r).

6

We express whether a party can compute functions of its own DH secret key with the following as-
sumption: Consider an algorithm A that outputs a DH public key. Then an extractor EDH

A with runtime
tE given the same inputs as A and an extra DH public key can extract the DH shared secret of both
public keys from A. If EDH

A fails to extract the shared DH secret, then no other algorithm with runtime
tD succeeds with probability better than ϵD . To put it in a nutshell, extraction succeeds within tE , or not
even within tD . We denote the DH shared secret between two DH public keys U, Z with respect to some
generator g as DH(U, Z).

Observe that in [VGIK20], Vatandas et al. show that the knowledge of exponent assumption and
their novel knowledge of discrete logarithm assumption imply the knowledge of DH (KDH) assumption.
Compared to the EKDH assumption, the algorithm A of the KDH assumption receives the public key U
as input.

Definition 2.5 (EKDH Assumption [VGIK20]). Let G be a cyclic group with generator g and AuxPrep a
sampler for auxiliary inputs. Let A be any algorithm running in time tA which runs on input aux where
aux←$ AuxPrep, and outputs Z ∈ G; we denote with Z = A(aux, r) the output of running A on input aux
with coins r.

We say that the (tA , tE , tD , ϵD)-Extended Knowledge of DH (EKDH) Assumption holds over group G
and for auxiliary info AuxPrep, if for every such A, there exists a companion algorithm EDH

A (called the
extractor for A) such that: EDH

A runs on input aux, r and an additional input U ∈ G in time tE and outputs
Ẑ ∈ G or ⊥ such that

• If EDH
A (U, aux, r) ̸= ⊥ then Ẑ = DH(U, Z)

• For every algorithm C running in time tD , we have that Pr[C(U, r, aux) = DH(U, Z) | EDH
A (U, aux, r) =

⊥] ≤ ϵD , where Z = A(aux, r) and the probability is taken over the coins of C and uniform distribu-
tion on r.

2.4 Key Encapsulation Mechanisms (KEMs)

We briefly review the syntax for KEMs.

Definition 2.6 (Key Encapsulation Mechanisms). A key encapsulation mechanism (KEM) is a triple of
algorithms KEM = (KGen, Enc, Dec) with associated ciphertext space C and key space K. In more detail:

• KGen() $→ (pk, sk): A probabilistic algorithm that outputs a key pair (pk, sk)

• Enc(pk) $→ (ct, ss): A probabilistic algorithm taking as input a public key pk and outputs a ciphertext
ct ∈ C and the therein encapsulated key ss ∈ K.

• Dec(sk, ct) → ss′: A deterministic algorithm taking as input a ciphertext ct ∈ C and secret key sk
and outputs ss ∈ K ∪ {⊥}, where ⊥ indicates an error.

We define the key collision probability γcoll for a KEM KEM as the probability of the public keys of two
independently sampled key pairs to coincide.

We say that KEM = (KGen, Enc, Dec) is δ-correct if, for every key pair (pk, sk)←$ KGen() and every
encapsulation (ct, ss)←$ Enc(pk), it holds that Pr[ss′ ̸= ss | ss′ ← Dec(sk, ct)] ≤ δ.

Plaintext awareness for KEMs denotes whether one can create a valid KEM encapsulation without
knowing the corresponding shared secret. Based on plaintext awareness for PKE [BR95, BP04], and for
KEMs [Den06, JW10], Hashimoto et al. [HKKP22] have adapted the definition to plaintext awareness for
KEMs in the multi-key setting. We adapt their definition from asymptotic security to concrete security.

7

Gdec
KEM(C,D):

1 for i ∈ [nk]
2 (pki, ski)←$ KEM.KGen()
3 p⃗k← {pki}i∈[nk]
4 r←$RC

5 v ← CDecaps(p⃗k; r)
6 return D(v)

Decaps(i, ct):

7 return KEM.Dec(ski, ct)

Gext
KEM(C, EP A

C ,D):

8 for i ∈ [nk]
9 (pki, ski)←$ KEM.KGen()

10 p⃗k← {pki}i∈[nk]
11 r←$RC

12 v ← CDecaps(p⃗k; r)
13 return D(v)

Decaps(i, ct):

14 return EP A
C (i, ct, r)

Figure 1: Games for plaintext awareness, see Definition 2.7.

Definition 2.7 (Plaintext Awareness for KEMs [HKKP22]). A KEM scheme KEM is (nk, tC , tE , tD , ϵD)-
plaintext aware (PA1-secure) if for all (non-uniform) ciphertext creators C running in time tC, there exists
an efficient extractor EP A

C running in time tE such that for any distinguisher D running in time tD , the two
experiments Gdec

KEM(C,D) and Gext
KEM(C, EP A

C ,D) in Figure 1 are indistinguishable except with a probability of
ϵD .

Intuitively, a KEM is plaintext aware if creating a KEM ciphertext implies knowledge of the corre-
sponding shared secret. This is formally modeled with a ciphertext creator who has access to a decryption
oracle. This decryption oracle is implemented either with the actual decryption or with an extractor that
depends on the ciphertext creator and its randomness. Finally, the ciphertext creator outputs a string,
which is fed into a distinguisher. The distinguisher needs to distinguish how the decryption oracle is
implemented.

Note that Kyber [SAB+22] using the FO transform with explicit rejection instead of implicit rejection
is plaintext aware.

2.5 Authenticated Encryption with Associated Data (AEAD)

We follow the exposition of [Rog02].

Definition 2.8 (AEAD). An Authenticated Encryption scheme with Associated Data is a pair of algo-
rithms AEAD = (Enc, Dec) with associated key space K, nonce space N , associated data (header) space H,
message space MAE, and ciphertext space C, defined as follows:

• Enc(k, n, AD, µ) → ct: On input a key k, a nonce n, associated data AD, and a message µ, this
deterministic algorithm returns a ciphertext ct.

• Dec(k, n, AD, ct) → µ: On input a key k, a nonce n, associated data AD, and a ciphertext ct, this
deterministic algorithm returns a message µ or a distinguished error symbol ⊥ ̸∈ MAE.

We say that an AEAD scheme is correct if, for every k ∈ K, n ∈ N , AD ∈ H, µ ∈ MAE it holds that
Pr[Dec(k, n, AD, Enc(k, n, AD, µ)) = µ] = 1.

Note that throughout the paper we omit the nonce since Signal’s implementations of X3DH and PQXDH
derive the nonce deterministically from the key.

2.6 Key Exchange Protocols

We review the syntax for key exchange protocols, essentially following [BFG+22, BFG+21]. We differentiate
between protocol messages m and user (plaintext) messages µ (such as "Hi Bob, how are you doing?").
A key exchange protocol may allow a user message to be sent along with a protocol message during the
execution, e.g. X3DH and PQXDH.

8

Definition 2.9 (Key Exchange Protocol). A 2-party key exchange protocol is a triple of algorithms KE =
(KGenLT, KGenSS, Run), defined as follows:

• KGenLT() $→ (ltpkU , ltskU): A probabilistic long-term key generation algorithm that outputs a public-
key/secret-key pair attributed to user U .

• KGenSS() $→ (sspkssid
U , ssskssid

U): A probabilistic semi-static key generation algorithm that outputs a
public-key/secret-key pair attributed to user U and semi-static identifier ssid.

• Run(ltskU , ⃗ssskU , ⃗ltpk, ⃗sspk, π, m, µ) $→ (π′, m′, µ′): A probabilistic session execution algorithm that
takes as input a party’s long-term secret key ltskU , a list of that party’s semi-static secret keys ⃗ssskU ,
lists of long-term and semi-static public keys for all honest parties ⃗ltpk and ⃗sspk, a session state
π, an incoming message m, and a (potentially empty) user message µ to be sent, and outputs an
updated session state π′, a (possibly empty) outgoing message m′, and a (possibly empty) incoming
user message µ′.

We assume a distinguished message m = (create, infocreate) upon which Run sets up the session and
produces the first message. Note that an ephemeral key generation algorithm is not mandatory and can
happen inside of Run.

Parties and sessions. Let P be the set of np parties, each of whom has a long-term public-key/secret-
key pair generated by an algorithm KGenLT. Each party may run multiple instances of the protocol
simultaneously or sequentially, each of which is called a session. The ith session at party P is denoted πi

P .
For each session, the party maintains the following collection of session-specific information:

• oid ∈ P: The identity of the session owner.

• pid ∈ P ∪ {⋆}: The identity of the intended peer, which may initially be unknown (indicated by ⋆).

• role ∈ {initiator, responder}: The role of the party in this session.

• K ∈ KKE ∪ {⊥}: The session key established in this session, initialized to ⊥.

• infocreate is a tuple of elements that indicates the components of the first message. We use the
following elements:

– ssid ∈ [nss] denotes the identifier of the initiator’s semi-static key in this session. If π.role =
initiator this refers to sspkssid

π.oid, if π.role = responder this refers to sspkssid
π.pid.

– eDH ∈ {true, false} denotes whether an ephemeral DH key is included in the first message.
– eKEM ∈ {true, false} denotes whether an ephemeral KEM key is included in the first message.

Asynchronous key exchange. In principle, a key exchange protocol can have an arbitrary number of
message flows nm, which correspond to multiple calls to Run for a single session. In normal execution of
an asynchronous authenticated key exchange protocol, the following three calls to Run occur: 1) a call
to Run at the initiator Bob with m = (create, infocreate), which sets up the initiator session and outputs
the pre-key bundle, possibly including ephemeral public keys; 2) a call to Run at the responder Alice with
the initiator’s pre-key bundle, which generates a session key and outputs a key exchange message; and
3) a call to Run at the initiator with the responder’s long-term public key and key exchange message,
which generates a session key and has no output message. If a party outputs an empty message before the
protocol execution is finished, it aborts the protocol.

9

3 Our deniability model
We introduce our deniability model that facilitates combining ideas of deniability definitions from prior
literature, hence gaining expressiveness. We show how our model can match definitions from prior literature
in Appendix A.

We want to capture that artifacts of a key exchange between Alice and Bob do not convince a third
party that the key exchange actually took place. Consider Alice, who tries to prove Bob’s involvement.
To defend against Alice’s claim, Bob must be able to argue that the artifacts were produced without him,
e.g. by Alice or by just anybody. Hence, we require the existence of a Fake algorithm that produces these
artifacts, where the artifacts are indistinguishable from artifacts of an actual execution of the key exchange
protocol.

Our model captures this with the following game: First, the challenger prepares the game by initializing
variables, sampling keys for all users, preparing auxiliary info aux according to AuxPrep, and sampling a
secret bit b. Second, the adversary interacts with some oracles. One of the oracles depends on the secret
bit b and embeds the challenge: To distinguish whether (a part of) a protocol transcript was generated
honestly or with a dedicated Fake algorithm, which needs to be given in the proof. Third, the distinguisher
guesses the challenge bit, based on the previous actions of the adversary. In particular, the distinguisher
gets the transcript of the interactions between the adversary and the challenge oracle and the (honestly
computed) session keys for all sessions. Note that A and Fake get access to the auxiliary info aux.

The game is parameterized by the adversary’s capabilities OA, i.e. the oracles it can query, the ca-
pabilities of the Fake algorithm OF , the capabilities of the distinguisher OD, and the sampling method
for auxiliary information AuxPrep. Extending OA or OD strengthens the deniability guarantee, while
extending OF or AuxPrep weakens the guarantee. In Sections 3.1 to 3.4 we explain these parameters in
detail. In Section 3.5 we discuss how to compare definitions with different parameters. The flexibility and
expressiveness of these parameters is the novelty of our model.

Definition 3.1 (Deniability for Key Exchange). We say that a key exchange protocol KE = (KGenLT,
KGenSS, Run) is (np, nss, qOA

, qOF
, qOD

, tA, tD, ϵD)-deniable wrt. (OA, OF , OD)-oracles, where OA ⊆ {Reg,
Init, ChallInit, ChallResp, RegHon, ChallHonInit, ChallHonResp}, OF ⊆ {SK, Userx,y}, OD ⊆
{SKs, aux}, and auxiliary inputs sampled with AuxPrep, if for any adversary A running in time tA, mak-
ing queries to OA limited by qOA

, there exists an algorithm Fake making queries to OF limited by qOF
such

that for any distinguisher D making queries to OD limited by qOD
and running in time tD, it holds that

Pr[GOA,OF ,OD-den
KE,AuxPrep,np,nss

(A,D) = 1] ≤ 1
2 + ϵD,

where GOA,OF ,OD-den
KE,AuxPrep,np,nss

(A,D) is defined in Figure 2.

Intuitively, the Fake algorithm models that a protocol message was not necessarily produced by the
alleged sender. Consider an adversary A acting as Alice (i.e. the adversary generates keys for Alice), who
produces Alice’s message(s) according to Run and Bob’s message(s) and the session key according to the
Fake algorithm. Note that the Fake algorithm also needs to produce the session key to ensure deniability of
the subsequent protocol. Since the Fake algorithm is public, Bob can argue that the transcript and session
key were produced by Alice using the Fake algorithm, without his involvement. On a technical note, the
Fake algorithm knows the code and randomness of the adversary A since they are in cahoots. This allows
the Fake algorithm to extract knowledge from the adversary under some knowledge assumptions.

In the following we describe the choices for using our model and how our model allows easy comparisons
of deniability notions.

10

GOA,OF ,OD-den
KE,AuxPrep,np,nss

(A,D):

1 Q[·]← []; K[·]← ⊥; C ← ∅
2 (p⃗k, s⃗k)←$ KeyPrep(np, nss)
3 aux←$ AuxPrep(p⃗k, s⃗k)
4 b←$ {0, 1}
5 r←$RA //randomness for the adversary

6 AOA (p⃗k, aux; r)
7 b′←$DOD (p⃗k, r, Q, K)
8 return Jb′ = bK

KeyPrep(np, nss):

9 for U ∈ [np] //number of keys to prepare

10 (ltpkU , ltskU)←$ KGenLT()
11 for ssid ∈ [nss]
12 (sspkssid

U , ssskssid
U)←$ KGenSS()

13 ⃗ltpk ← {ltpkU}U∈[np]; ⃗sspk ← {sspkssid
U }

ssid∈[nss]
U∈[np]

14 ⃗ltsk ← {ltskU}U∈[np]; ⃗sssk ← {ssskssid
U }

ssid∈[nss]
U∈[np]

15 return ((⃗ltpk, ⃗sspk), (⃗ltsk, ⃗sssk))
Reg(U, p⃗kU):

16 if U ∈ [np] ∪ C //abort if another key is already known for U

17 return ⊥
18 C ← C ∪ {U}

19 p⃗k +←− p⃗kU //includes semi-static keys

20 return success
Init(U, s, role, V):

21 if πs
U = ⊥ ∧ U /∈ C

22 πs
U .role← role

23 πs
U .oid← U //set owner identity

24 πs
U .pid← V //set partner identity (⋆ if post-specified peers)

25 return success
26 return ⊥
RegHon(U):

27 if U ∈ [np] ∪ C //abort if another key is already known for U

28 return ⊥
29 (p⃗kU , s⃗kU)←$ KeyPrep(1, nss)

30 p⃗k +←− p⃗kU ; s⃗k +←− s⃗kU

31 C ← C ∪ {U}
32 return (p⃗kU , s⃗kU) //simulates A honestly generating keys

ChallInit(U, s, m, µ) ChallResp(U, s, m, µ) :

33 if πs
U = ⊥ ∨ πs

U .role = responder initiator //initialized sessions only

34 return ⊥
35 if b = 0
36 (πs

U , m′)←$ Run(skU , p⃗k, πs
U , m, µ)

37 else
38 (πs

U , m′)←$ FakeOF (p⃗k, πs
U , m, µ, aux, r)

39 Q[πs
U] +←− (m, m′)

40 K[πs
U]← πs

U .K
41 return m′

ChallHonInit(U, V, infocreate, µ⃗, rC):

42 if U ∈ C //do not allow challenging a party under A’s control

43 return ⊥
44 πU .oid← U ; πU .pid← V

45 πV .oid← V ; πV .pid← U

46 πU .role← initiator; πV .role← responder
47 m1 ← (create, infocreate)
48 (µ1, . . . , µnm)← µ⃗

49 for i ∈ [1, 3, . . . , nm − 1] //until nm if nm is odd

50 if b = 0
51 (πU , mi+1)←$ Run(skU , p⃗k, πU , mi, µi)
52 else
53 (πU , mi+1)←$ FakeOF (p⃗k, πU , mi, µi, aux, rC)
54 (πV , mi+2)← Run(skV , p⃗k, πV , mi+1, µi+1; rC)
55 Q[πU]← (mi)nm

i=1; K[πU]← πU .K

56 return (Q[πU], K[πU])
ChallHonResp(U, V, infocreate, µ⃗, rC):

57 if V ∈ C //do not allow challenging a party under A’s control

58 return ⊥
59 πU .oid← U ; πU .pid← V

60 πV .oid← V ; πV .pid← U

61 πU .role← initiator; πV .role← responder
62 m1 ← (create, infocreate)
63 (µ1, . . . , µnm)← µ⃗

64 for i ∈ [1, 3, . . . , nm − 1] //until nm if nm is odd

65 (πU , mi+1)← Run(skU , p⃗k, πU , mi, µi; rC)
66 if b = 0
67 (πV , mi+2)←$ Run(skV , p⃗k, πV , mi+1, µi+1)
68 else
69 (πV , mi+2)←$ FakeOF (p⃗k, πV , mi+1, µi+1, aux, rC)
70 Q[πV]← (mi)nm

i=1; K[πV]← πV .K

71 return (Q[πV], K[πV])
Userx,y(π, u, m, µ):

72 U ← π.oid
73 H ← Hu

π //easier notation for uth honest dummy for session π

74 if πH
U = ⊥

75 (pkH , skH)←$ KeyPrep(1, 1)
76 p⃗k← p⃗k ∪ {pkH}
77 if π.role = initiator
78 πH

U .role← x

79 else
80 πH

U .role← y

81 πH
U .oid← U

82 πH
U .pid← H

83 (πH
U , m′, µ′)←$ Run(skU , p⃗k, πH

U , m, µ)
84 return m′

SK(π):

85 return skπ.pid

SKs():
86 return s⃗k

aux():
87 return aux

Figure 2: Our deniability game parameterized in the adversary’s capabilities OA ⊆ {Reg, Init, ChallInit, ChallResp,
RegHon, ChallHonInit, ChallHonResp}, the capabilities of the Fake algorithm OF ⊆ {SK, Userx,y}, the capabilities of
the distinguisher D OD ⊆ {SKs, aux}, and the sampling algorithm for auxiliary info AuxPrep.

11

Type of Deniability OA OF OD

against malicious adversaries Reg, Init, Chall ♢ ♢
against semi-honest adversaries RegHon, ChallHon ♢ ♢
against passive adversaries ChallHon ♢ ♢
partial deniability wrt. an x, y oracle ♢ Userx,y ♢
1-out-of-2 deniability ♢ SK ♢
in the big brother model ♢ ♢ SKs
with aux known to the distinguisher ♢ ♢ aux

Table 1: Translating oracles into names for adversarial capabilities and deniability guarantees. We refer to an arbitrary set
with ♢. For the challenge oracles we omit the suffix indicating which role they act as.

3.1 AuxPrep: Sampling auxiliary information

The auxiliary info aux models that an adversary may obtain relevant information prior to the experiment.
To the best of our knowledge, this idea was introduced by [DGK06]: They use aux to model that the
adversary may have obtained transcripts of previous protocol executions by eavesdropping. Following
[DGK06], the auxiliary info is also available to the Fake algorithm, i.e. anybody who knows the auxiliary
info can simulate a transcript and session key. Optionally, the distinguisher gets access to aux as well (cp.
Section 3.4.2).

3.2 OA: capabilities of A

The oracles in OA model the behavior of the adversary, i.e. whether it is malicious or semi-honest,5 and
define the challenge. In the following, we remark on how we handle the roles of parties and detail the
usage of the respective subsets of oracles.

3.2.1 Initiator and receiver deniability

We obtain initiator deniability by having ChallInit ∈ OA or ChallHonInit ∈ OA, and responder
deniability by having ChallResp ∈ OA or ChallHonResp ∈ OA; i.e. we give separate challenge oracles
per role. This allows separate analyses of deniability per role. (Section 4 shows that the deniability
guarantees for both roles differ for X3DH and PQXDH.) Also, this enables more precise specifications, e.g.
deniability for the responder may have stricter requirements than for the initiator.

3.2.2 Malicious adversaries

We obtain deniability against malicious adversaries with OA = {Reg, Init, ChallInit, ChallResp},
allowing at most qR queries to the Reg oracle, qI queries to the Init oracle, qCI queries to the ChallInit
oracle, and qCR queries to the ChallResp oracle, for qR, qI , qCI , qCR ∈ qOA

. The Reg oracle allows
the adversary to register maliciously generated keys with the challenger. The Init oracle allows the
adversary to initialize sessions for honest users and to partner these sessions arbitrarily. The ChallInit
and ChallResp oracles allow the adversary to send arbitrary messages to sessions (including, e.g. messages
replayed from other sessions) and to interleave sessions at will. The ChallInit and ChallResp oracles
respond either according to the protocol specification via Run or “simulate” via Fake, depending on the
challenge bit b. For the case of Signal’s initial handshake, note that this also captures an adversarially

5In Appendix B we also treat passive adversaries for the sake of completeness. We do not consider passive adversaries for
our analysis and therefore defer it to the appendix.

12

controlled server, i.e. a server who forwards messages wrongly. Only sessions of honestly generated users
can be challenged since the Init oracle does not create sessions for users with maliciously generated keys.

3.2.3 Semi-honest Adversaries

Next, we obtain the notion of deniability against semi-honest adversaries by setting the oracle OA =
{RegHon, ChallHonInit, ChallHonResp}, allowing at most qRH queries to the RegHon oracle,
qCI queries to the ChallHonInit oracle, and qCR queries to the ChallHonResp oracle, for qRH ,
qCI , qCR ∈ qOA

. To register a key pair for a new user, the adversary can query the RegHon oracle,
which returns the user’s private key(s) to the adversary. A semi-honest adversary partners sessions cor-
rectly and obeys the protocol flow. Hence, we merge the Init oracle and the challenge oracles. These
ChallHonInit, ChallHonResp oracles partner the sessions correctly and directly produce the complete
transcript, thereby enforcing correct message flow.

Only honest users can be challenged (cp. lines 42 and 57). Note that the adversary provides the
randomness to the challenge oracles to create messages “in place of the adversary”6. The adversary also
provides the protocol-specific infocreate to indicate the components of the first message.

3.2.4 Combining different adversarial capabilities

It is possible to combine the aforementioned oracles at will, e.g. achieving responder deniability against
malicious adversaries and initiator deniability against semi-honest adversaries with malicious keys via OA =
{Reg, Init, ChallResp, ChallHonInit}. Note that OA should always contain at least one challenge
oracle; and for the ChallInit, ChallResp oracles the Init oracle is necessary. Oracles for both malicious
and semi-honest adversaries seem redundant but may have some use cases.

3.2.5 Adaptive Corruptions

Several works [CF11, JS08, Jia14, JCL+22] allow the adversary to adaptively corrupt parties. The at-
tacker, the simulator, and possibly the distinguisher learn the corrupted parties’ secrets. Fundamentally,
deniability is a statement that a Fake algorithm can simulate a transcript (and session key). The Fake
algorithm needs to work even if the adversary does not corrupt any party. Hence, the strategy of the Fake
algorithm should not rely on secret keys of corrupted parties and that is why our model does not consider
adaptive corruptions. Appendices A.2 and A.8 describe how to represent non-adaptive corruptions in our
model.

3.3 OF : capabilities of Fake
The oracles in OF are accessed by the Fake algorithm. They offer help in simulating a transcript and
session key and should reflect the capabilities of an adversary who wants to frame a user for a particular
transcript. If fewer oracles are required, then more people can simulate, i.e. the deniability guarantee gets
stronger.

3.3.1 Partial deniability (Userx,y oracle (parameterized by x, y))

We obtain partial deniability wrt. x, y oracles by having Userx,y ∈ OF , allowing at most qU sessions
with the Userx,y oracle per session π, where x, y ∈ {initiator, responder,⊥}. Each invocation of the Fake
algorithm (lines 53, 69, and 38) has access to exactly one session π. The Fake algorithm can query the
Userx,y oracle with this session π to get access to another session with π.oid (the owner of π) with the

6In consequence, the distinguisher learns this randomness as well.

13

role x (if π.oid is the initiator in π) or y (if π.oid is the responder in π), where ⊥ denotes no access. The
Fake algorithm can have up to qU ∈ qOF

sessions with the Userx,y oracle per session π. For u ∈ [qU], the
user π.oid is partnered with a (freshly generated) honest user Hu

π (and in particular not with π.pid), where
Hu

π ∈ H and H ∩ [np] = ∅.
This idea is sourced from partial deniability [DGK06] (informally known as peer independence [DGK06]

or receiver obliviousness [HKKP22], following the idea of post-specified peers [CK02]).
This oracle models that an adversary can start a separate session with the victim π.oid to produce the

transcript. This oracle can be helpful if messages do not contain session-specific data.

3.3.2 1-out-of-2 or 1-out-of-∞ deniability (SK oracle)

We obtain 1-out-of-2 deniability by having SK ∈ OF . If SK /∈ OF , then we obtain 1-out-of-∞ deniability.
The SK oracle grants the Fake algorithm access to the peer’s secret keys, thereby modeling that the peer
(and only the peer) can execute the Fake algorithm. Hence, 1-out-of-∞ deniability is more desirable.
Note that this refers to long-term and semi-static keys, i.e. keys that are registered with the challenger.
In particular, the SK oracle cannot yield secret keys of users that the adversary registered via the Reg
oracle.

If a transcript (and session key) can stem from either an honest execution or the peer creating the
transcript on his or her own (with the Fake algorithm) then there are two options for this; hence, the name 1-
out-of-2 deniability. Absence of this oracle indicates that anybody could have produced a transcript, hence,
we dub it 1-out-of-∞ deniability. These terms were coined by [HLLC11] for authentication protocols7 and
adopted for key exchange by [BFG+22].

The idea of using one party’s secret key for faking a transcript was also used by [VGIK20], though
coming from a different angle: They allow the simulator (roughly corresponding to our Fake algorithm) to
use the adversary’s long-term secret key to fake a transcript. They justify this with the adversary having
registered its long-term key to some form of PKI, possibly with an extractable proof of knowledge, from
which the simulator can learn the secret key.

3.4 OD: capabilities of D

The distinguisher always gets all users’ public keys, the transcripts and session keys from the interaction
with the Chall oracle, and the randomness of the adversary. The oracles in OD define the extra power
that the distinguisher may have in the form of access to all (honestly generated) secret keys (i.e. the big
brother model) or the auxiliary info. The more oracles the distinguisher has access to, the stronger the
deniability guarantee we obtain.

3.4.1 Big brother model

We obtain deniability in the big brother model by having SKs ∈ OD. By querying the SKs oracle, the
distinguisher gets access to all secret keys that the challenger prepared for all users as well as secret keys
registered by the adversary via the RegHon oracle. This models that the distinguisher can subpoena all
parties into giving up their private keys or can exert social pressure in a different manner. Note that the
SKs oracle does not yield secrets of keys registered via the Reg oracle—the challenger does not know
these secret keys and possibly the adversary does not either. Similarly, the SKs oracle does not yield
ephemeral secret keys, as they are not registered with the challenger (and, for X3DH and PQXDH, honest
parties erase ephemeral secret keys directly after use).

7They also call a ring signature with a ring of n members 1-out-of-n deniable. This allows for a philosophical debate
whether this applies to messaging services with n registered users. We argue that anybody can sign up for the service and,
hence, there is no practical difference to 1-out-of-∞ deniability.

14

The term big brother was introduced by [Nao02] in the context of deniable ring authentication. The
adversary divulging its secret key to the distinguisher was coined complete deniability by [MP02]. Informal
descriptions [UDB+15, UG15] and the UC-based definitions of [Ung21] are set in this model without using
this name. The game-based definition of [BFG+22] first uses the term big brother model for deniability of
key exchange protocols.

3.4.2 Auxiliary info known to the distinguisher

We obtain deniability with aux known to the distinguisher by having aux ∈ OD. By querying the aux
oracle, the distinguisher gets access to the auxiliary information (cp. Section 3.1). This models that the
distinguisher learns whatever the adversary has eavesdropped on before the beginning of the experiment. If
aux ̸∈ OD then the deniability guarantee relies on the distinguisher never learning aux. This is important
for analyzing PQXDH, where the Fake algorithm reuses signatures from aux, which are not reused in honest
executions, and thereby allows the distinguisher to tell Run and Fake apart.

3.5 Comparability of deniability notions

Our model allows fairly easy comparisons between any two deniability notions by weighing OA, OF ,
OD, AuxPrep between the two notions. If the adversary A or the distinguisher D gain more capabili-
ties, i.e. if OA, OD contain more or stronger oracles, the deniability guarantee becomes stronger (since it
holds in more cases). Though, the aux oracle does not make a difference in case aux = ⊥. However, if
Fake gains more capabilities, i.e. if OF contains more oracles, the deniability guarantee becomes weaker:
Simulating a transcript requires access to the oracles in OF . Similarly, the more information is included in
the auxiliary information aux, the harder it is to match these circumstances and the weaker the guarantee.

It is easy to see that an algorithm has more capabilities if it gains an extra oracle. The adversary A
can have access to oracles for malicious adversaries (Reg, ChallInit, ChallResp) and for semi-honest
adversaries (RegHon, ChallHonInit, ChallHonResp). It is clear that the former oracles are stronger
than the latter, yielding a stronger deniability guarantee.8

This leaves some relations open, e.g. how does deniability against semi-honest adversaries in the big
brother model compare to deniability against malicious adversaries? While both notions remain incom-
parable, our model makes the differences explicit: We can argue about the "upper bound" (malicious
adversaries in the big brother model) and the "lower bound" (semi-honest adversaries). Note that a denia-
bility guarantee also holds for smaller numbers of users and semi-static keys: If it holds for np, nss, it also
holds for n′p ≤ np, n′ss ≤ nss.9

4 Deniability of Signal’s initial handshake
We look at Signal’s initial handshake protocols—X3DH and its recent replacement PQXDH adding post-
quantum confidentiality—and which deniability notions they fulfill. Note that both protocols aim for
classical authentication and deniability, and not post-quantum deniability. Figure 3 gives an algorithmic
overview of both protocols and the respective subsections give a textual description. The protocol speci-
fication [MP16b, KS23] uses only one long-term key per user, which is used for both the DH scheme and
the signature scheme XEdDSA [Per16]. We follow [BJKS23] in treating them as two separate keys. We
follow the protocol specification in using the session key directly as key for the AEAD scheme. Signal’s
implementation derives several values from the session key, among them the key and nonce used for the

8Assuming that the ChallInit, ChallResp oracles come with an Init oracle, since they are otherwise useless.
9A reduction can simply withhold some keys from the inner adversary.

15

X3DH PQXDH σ Assumption
semi-honest adv., big brother dist., 1-out-of-2

✓ Th. 4.1 ✗ Th. 4.4 -
✓ Rm. 4.1 ✓ Th. 4.5 -

malicious adversaries with honest keys, 1-out-of-2
✓ Th. 4.2 ✗ Rm. 4.4 K2DHA, KDF RO
✓ Rm. 4.1 ✓ Th. 4.6 K2DHA, KDF RO, KEM PA1

malicious adversaries, 1-out-of-∞
✓ Th. 4.3 ✗ Rm. 4.4 EKDHA, KDF RO
✓ Rm. 4.1 ✓ Th. 4.7 EKDHA, KDF RO, KEM PA1

malicious adv, big brother dist., 1-out-of-∞
• Rm. 4.2 • Rm. 4.5 -

(a) Initiator (Bob) deniability

X3DH PQXDH σ Assumption
malicious adv. w/ honest keys, big brother dist., 1-out-of-2

✓ Th. 4.8 ⊥ -
malicious adversaries, 1-out-of-∞

✓ Th. 4.9 ⊥ EKDHA, KDF RO

malicious adversaries, big brother distinguisher, 1-out-of-∞
• Rm. 4.2 • Rm. 4.5 ⊥ -

(b) Responder (Alice) deniability

Table 2: Comparing deniability of X3DH and PQXDH: Theorems (and Remarks) in the first two columns address the model in
the continuous line above (indicating adversarial capabilities, big brother model, and how many people can fake a transcript,
i.e. whether SK ∈ OF), the third column indicates if Fake requires a signature that the distinguisher is not aware of with
 (Userinitiator,y ∈ OF or both AuxPrep yields appropriate signatures and aux ̸∈ OD) or a signature that the distinguisher
may learn with (Userinitiator,y ∈ OF or AuxPrep yields appropriate signatures) or no signature at all with ⊥, and the final
column states the assumptions needed. We denote that a property holds by ✓, does not hold by ✗, or that we currently do
not have a proof by •. For the knowledge of DH assumptions (K2DH, EKDHA), see Definitions 2.4 and 2.5; the plaintext
awareness assumption on KEM (gray background , see Definition 2.7) only applies to PQXDH.

AEAD scheme. Beware that we consider Bob, who creates the pre-key bundle, as initiator, following
e.g. [UG15, CCD+17, UG18] and contrasting [BFG+22].

We summarize our findings for both X3DH and PQXDH in Table 2, stated separately per role. For
initiator (Bob) deniability, we have two results per adversary model to differentiate whether the Fake
algorithm has access to a signature that the distinguisher does not know, i.e. a private signature, or if
Fake and the distinguisher know the same signatures, i.e. public signatures. For X3DH either case works
(see Remark 4.1), while for PQXDH we must have a private signature for the ephemeral KEM key (see
Theorem 4.4 and Remark 4.4). Without further restrictions, we achieve 1-out-of-2 deniability against
semi-honest adversaries. We use a knowledge of DH assumption (see Definitions 2.4 and 2.5) against
malicious adversaries and additionally plaintext awareness of the KEM (see Definition 2.7) for PQXDH
to simulate the session key. Concerning responder (Alice) deniability, PQXDH matches the guarantees of
X3DH without limitations. For malicious adversaries in the big brother model, i.e. the strongest possible
adversary model, we give our thoughts in Remarks 4.2 and 4.5. Note that Table 2 implies all other notions:
Each theorem still holds if you weaken the adversary, weaken the distinguisher, add an oracle to OF , or
add auxiliary info (without the Fake algorithm using it).

While our analysis relies on the random oracle model, we do not program the RO, following [DGK06]
and in line with the results of [Pas03]. All Fake algorithms abort on receiving malformed inputs. We state
the expected message format explicitly in the pseudocode.

4.1 X3DH
We recall how Signal’s classical initial handshake protocol X3DH [MP16b] works, see Figure 3. First, Bob
signs his semi-static public key (or retrieves a previously created signature) under his long-term key. Bob
samples an ephemeral DH key pair if the boolean eDH is set. Bob’s three public keys (long-term, semi-static
with id ssid, and optionally ephemeral) and the signature are Bob’s first message. We call this first message
Bob’s pre-key bundle, which he sends to the key server and is not tied to any particular peer. Second,
Alice parses the message, verifies the signature, samples an ephemeral DH key herself, and computes four
DH shared secrets (or three if Bob’s message does not include an ephemeral key) between her keys and
Bob’s keys (long-term–semi-static, ephemeral–long-term, ephemeral–semi-static, ephemeral–ephemeral),

16

KGenLT:
1 (ltpkDH

U , ltskDH
U)←$ DH.KGen()

2 (ltpkSIG
U , ltskSIG

U)←$ SIG.KGen()
3 return

(
(ltpkDH

U , ltpkSIG
U), (ltskDH

U , ltskSIG
U)

)
KGenSS:
4 (sspkDH

U , ssskDH
U)←$ DH.KGen()

5 (sspkKEM
U , ssskKEM

U)←$ KEM.KGen()
6 return

(
(sspkDH

U , sspkKEM
U), (ssskDH

U , ssskKEM
U)

)
Alice Bob

Run(ltskB , ⃗ltpk, ⃗ssskB , ⃗sspk, πB , m0, µ0)
(create, (ssid, eDH, eKEM))← m0
πB .pid← ⋆

(sspkDH
B , sspkKEM

B)← sspkssid
B

if σssid
DH = ⊥ //saved from a previous run?

σssid
DH ←$ Sign(ltskB , sspkDH

B)
if eDH = true

(epkDH
B , eskDH

B)←$ DH.KGen()
else epkDH

B ← ⊥
if eKEM = true

(epkKEM
B , eskKEM

B)←$ KEM.KGen()
σKEM←$ Sign(ltskB , epkKEM

B)
else

if σssid
KEM = ⊥ //saved from a previous run?

σssid
KEM←$ Sign(ltskB , sspkKEM

B)
σKEM ← σssid

KEM

epkKEM
B ← ⊥

epkB ← (epkDH
B , epkKEM

B)
m1 ← (B, ssid, σssid

DH , epkB , σKEM)
return (πB , m1, ϵ)

m1

Run(ltskA, ⃗ssskA, ⃗ltpk, ⃗sspk, πA, m1, µ1)
(epkDH

A , eskDH
A)←$ DH.KGen()

(B, ssid, σssid
DH , epkB , σKEM)← m1

(sspkDH
B , sspkKEM

B)← sspkssid
B

(epkDH
B , epkKEM

B)← epkB

if SIG.Vf(ltpkB , sspkDH
B , σssid

DH) = false
return (πA, ϵ, ϵ)

DH1 ← DH(ltskA, sspkDH
B)

DH2 ← DH(eskDH
A , ltpkB)

DH3 ← DH(eskDH
A , sspkDH

B)
if epkDH

B ̸= ⊥ //ephemeral DH key present

DH4 ← DH(eskDH
A , epkDH

B)
else DH4 ← ϵ
if epkKEM

B ̸= ⊥ //ephemeral KEM key present

if SIG.Vf(ltpkB , epkKEM
B , σKEM) = false

return (πA, ϵ, ϵ)
(ctKEM, ss)←$ KEM.Enc(epkKEM

B)
else //no ephemeral KEM key present

if SIG.Vf(ltpkB , sspkKEM
B , σKEM) = false

return (πA, ϵ, ϵ)
(ctKEM, ss)←$ KEM.Enc(sspkKEM

B)
ms← DH1∥DH2∥DH3∥DH4∥ss
πA.K← KDF(ms)
AD ← ltpkA∥ltpkB

ctAE ← Enc(πA.K, AD, µ1)
πA.pid← B
m2 ← (A, epkDH

A , ctAE, ctKEM)
return (πA, m2, ϵ)

m2

Run(ltskB , ⃗ssskB , ⃗ltpk, ⃗sspk, πB , m2, µ2)
(ssskDH

B , ssskKEM
B)← ssskssid

B

(A, epkDH
A , ctAE, ctKEM)← m2

DH1 ← DH(ltpkA, ssskDH
B)

DH2 ← DH(epkDH
A , ltskB)

DH3 ← DH(epkDH
A , ssskDH

B)
if epkDH

B ̸= ⊥ //ephemeral DH key present

DH4 ← DH(epkDH
A , eskDH

B)
else then DH4 ← ϵ
if epkKEM

B ̸= ⊥ //ephemeral KEM key present

ss← KEM.Dec(eskKEM
B , ctKEM)

else //no ephemeral KEM key present

ss← KEM.Dec(ssskKEM
B , ctKEM)

ms← KDF(DH1∥DH2∥DH3∥DH4∥ss)
πB .K← KDF(ms)
AD ← ltpkA∥ltpkB

µ′ ← Dec(πA.K, AD, ctAE)
if µ′ = ⊥ then πB .K← ⊥
πB .pid← A
return (πB , ϵ, µ′)

Figure 3: Signal’s initial handshake protocols X3DH and PQXDH. The KEM with gray background is exclusive to PQXDH.

17

and finally derives the session key from the DH shared secrets. She encrypts her first user message with
the AEAD scheme under the session key10 and sends this AEAD ciphertext and her ephemeral public key
back to Bob. Third, Bob computes the DH shared secrets and derives the session key in the same way.
He tries to decrypt the AEAD ciphertext and rejects the session key if decryption fails.

To simulate a transcript and session key, we face two challenges: obtaining all DH shared secrets and
obtaining a valid signature on Bob’s semi-static key. We briefly discuss our approaches for each of the two
challenges, as well as the difficulties arising with big brother distinguishers, before going into the actual
proofs.

4.1.1 Obtaining the DH shared secrets

For adversaries that create keys honestly, the Fake algorithm knows the necessary DH secret keys to
compute all DH shared secrets itself (via the SK oracle or the semi-honest peer’s randomness), as shown
in Figure 5 and Figure 7 on the left-hand side. Against malicious adversaries, the Fake algorithm uses the
knowledge of DH extractor (of the K2DH or EKDH assumption, see Definitions 2.4 and 2.5) to extract
the remaining DH shared secrets from the adversary, as shown in Figures 5 and 6 on the right-hand side,
following [VGIK20]. By assumption, if the extractor fails, no other extractor can succeed in a given time
with more than a given probability. This allows Fake to set a random session key in case the extraction
fails.

4.1.2 Obtaining a signature on Bob’s semi-static key

Recall that the semi-static key can be used for several sessions, so neither the semi-static key nor the
signature on the semi-static key are tied to a particular session. The Fake algorithm has two options
(shown in Figure 4) to obtain a signature on Bob’s semi-static key: First, from a pre-key bundle in the
auxiliary info (the pre-key bundle may be part of a complete transcript), as previously done by [VGIK20].
Second, Fake may query the Userinitiator,⊥ oracle (i.e. the oracle acts as initiator) to get a pre-key bundle
including the signature on the semi-static key. Note that the Fake algorithm may use the SK oracle to
learn the peer’s secret key but does not have an option to learn the secret key of the session owner.

Both options rely on Fake obtaining a signature from the pre-key bundle. The first option (using aux)
models that the adversary is able to eavesdrop on previous protocol executions and, hence, Fake can use
aux as well. The second option (the Userinitiator,⊥ oracle) models that Fake may start an independent
session with the victim, i.e. anybody who can start a session with the victim can produce a transcript
and session key. If Fake uses aux and aux is known to the distinguisher, then we have public signatures.
Otherwise, we have private signatures, i.e. Fake knows signatures that the distinguisher does not. For
X3DH either setting works. Looking ahead, this will make a difference for PQXDH.

4.1.3 Big Brother distinguishers

Ideally, we want to have deniability results against malicious adversaries in the big brother model. Against
malicious adversaries, we rely on the knowledge of DH assumption, which we cannot apply in the big brother
model. We discuss the challenges to show responder deniability in the big brother model in Remark 4.2.

4.1.4 Theorems for X3DH

Here we give our results for initiator deniability of X3DH. For responder deniability, we show the same
results for both X3DH and PQXDH. We state them in Theorems 4.8 and 4.9.

10In practice, Signal uses an elaborate key scheduling algorithm. The actual key and nonce used for encryption are
deterministically derived from the session key.

18

Fake(p⃗k, π, m, µ, aux, rC):

1 (create, (ssid, eDH, eKEM)← m
2 π.pid← ⋆

3 (σDH, σssid
KEM)← from aux for sspkssid

B
4 if eDH = true
5 (epkDH

B , eskDH
B)←$ DH.KGen()

6 else epkDH
B ← ⊥

7 if eKEM = true
8 (epkKEM

B , σKEM)← from aux
9 else

10 epkKEM
B ← ⊥

11 σKEM ← σssid
KEM

12 epkB ← (epkDH
B , epkKEM

B)
13 return (π, (B, ssid, σssid

DH , epkB , σKEM), ϵ)

Fake(p⃗k, π, m, µ, aux, rC):

14 (create, (ssid, eDH, eKEM))← m

15 π.pid← ⋆
16 (B, ssid, σssid

DH , epkB , σKEM)← Userinitiator,⊥(π, 1, m, ϵ)
17 (epkDH

B , epkKEM
B)← epkB

18 if eDH = true
19 (epkDH

B , eskDH
B)←$ DH.KGen()

20 else epkDH
B ← ⊥

21 epkB ← (epkDH
B , epkKEM

B)
22 return (π, (B, ssid, σssid

DH , epkB , σKEM), ϵ)

Figure 4: The Fake algorithms simulating Bob’s pre-key bundle (initiator deniability) in Theorems 4.1 to 4.3 and 4.5 to 4.7.

We show that Bob can deny (initiator deniability) participation in a protocol run against a semi-honest
Alice (against semi-honest adversaries, Theorem 4.1), against a malicious Alice that honestly generated her
keys (against malicious adversaries with honest keys, Theorem 4.2), and against a malicious Alice (against
malicious adversaries, Theorem 4.3). He does so by showing that Alice (1-out-of-2, i.e. anybody using
Alice’s secret keys, Theorems 4.1 and 4.2) or anybody (1-out-of-∞, Theorem 4.3) could have produced the
transcript and session key herself, assuming she has previously observed a valid transcript with Bob as
initiator (AuxPrep yielding a valid pre-key bundle per ssid and user). This holds even against a big brother
distinguisher (in the big brother model, Theorem 4.1), who shares Alice’s observations (aux known to the
distinguisher, Theorems 4.1 to 4.3).

Theorem 4.1. The X3DH protocol as shown in Figure 3 is (np, nss, qOA
, qOF

, qOD
, tA, tD, ϵD)-deniable

with respect to ({RegHon, ChallHonInit}, {SK}, {SKs, aux})-oracles and auxiliary info sampled with
AuxPrep yielding a valid pre-key bundle per ssid and user, and aux known to the distinguisher, where np

is the number of parties and nss the number of semi-static keys per party, and qOA
, qOF

, qOD
, tA, tD are

arbitrary and ϵD = 0.

Proof. We give the Fake algorithm in Figure 4 on the left-hand side and Figure 5 on the left-hand side.
The Fake algorithm simulates Bob’s pre-key bundle by sampling a fresh ephemeral key (if needed)

and learns a signature on the semi-static key from the auxiliary info aux. Furthermore, to process Alice’s
message, the Fake algorithm learns Alice’s long-term secret key from the SK oracle and Alice’s ephemeral
secret key eskDH

A from the randomness that was previously used to create Alice’s message. Using these
secret keys, it can compute DH1 (with eskDH

A), and DH2, DH3, DH4 (with ltskDH
A), and in consequence

the session key. Using the session key, Fake decrypts the AEAD ciphertext. If decryption fails, it aborts.
Since Fake produces a transcript and session key in the same way as Run, the distinguisher cannot have

an advantage in winning his game, even if the distinguisher has access to all long-term and semi-static
secret keys.

Remark 4.1 (Obtaining the signature). In Theorems 4.1 to 4.3, the Fake algorithm obtains the signature
on the semi-static DH key from the auxiliary info aux (cp. the left-hand side of Figure 4). Instead,
the Fake algorithm may also learn the signature via the Userinitiator,⊥ oracle (cp. the right-hand side of
Figure 4), resulting in partial deniability wrt. a Userinitiator,⊥ oracle. Hence, these theorems also hold for
AuxPrep = ⊥ if OF additionally includes Userinitiator,⊥.

The following two theorems use knowledge of DH assumptions, which [VGIK20] have introduced to
show deniability of X3DH in their model. The first theorem adapts the proof of [VGIK20, Theorem 6] to

19

Fake(p⃗k, π, m = (A, epkDH
A , ctAE, ctKEM), µ, aux, rC):

23 π.pid← A

24 (ltskDH
A , ltskSIG

A)← extract from SK(π)
25 eskDH

A ← from rC

26 (sspkDH
B , sspkKEM

B)← sspkssid
B

27 DH1 ← DH(ltskDH
A , sspkssid

B)
28 DH2 ← DH(eskDH

A , ltpkDH
B)

29 DH3 ← DH(eskDH
A , sspkssid

B)
30 if epkB ̸= ⊥ //full handshake

31 DH4 ← DH(eskDH
A , epkDH

B)
32 else //reduced handshake
33 DH4 ← ϵ

34 ss← from rC //encapsulation against epkKEM
B or sspkKEM

B

35 ms← DH1∥DH2∥DH3∥DH4∥ ss

36 π.K← KDF(ms)
37 AD ← ltpkA∥ltpkB
38 µ′ ← Dec(π.K, AD, ctAE)
39 if µ′ = ⊥ then π.K← ⊥
40 return (π, ϵ, µ′)

Fake(p⃗k, π, m = (A, epkDH
A , ctAE, ctKEM), µ, aux, r):

41 π.pid← A

42 (ltskDH
A , ltskSIG

A)← extract from SK(π)
43 eskDH

B ← from previous run
44 (sspkDH

B , sspkKEM
B)← sspkssid

B

45 DH1 ← DH(ltskDH
A , sspkssid

B)
46 (DH2, DH3)← EDH

A (ltpkDH
B , sspkssid

B , aux, r)
47 if epkB ̸= ⊥ //ephemeral DH key present

48 DH4 ← DH(epkDH
A , eskDH

B)
49 else
50 DH4 ← ϵ

51 if epkKEM
B ̸= ⊥ //ephemeral KEM key present

52 ss←$ EP A
AOA

(epkKEM
B , ctKEM, r)

53 else //no ephemeral KEM key present

54 ss←$ EP A
AOA

(sspkKEM
B , ctKEM, r)

55 if DH2 = ⊥ ∨DH3 = ⊥
56 π.K←$ {0, 1}256

57 else
58 ms← DH1∥DH2∥DH3∥DH4∥ ss

59 π.K← KDF(ms)
60 AD ← ltpkA∥ltpkB
61 µ′ ← Dec(π.K, AD, ctAE)
62 if µ′ = ⊥ then π.K← ⊥
63 return (π, ϵ, µ′)

Figure 5: The Fake algorithm processing Alice’s message (initiator deniability) in Theorems 4.1 and 4.5 (on the left-hand
side) and Theorems 4.2 and 4.6 (on the right-hand side).

our model. Since [VGIK20] considers only keys of two lifetimes (which they call long-term and ephemeral),
we extrapolate to long-term, semi-static, and ephemeral keys. Their ephemeral key gets signed, just like
the semi-static key in our description of X3DH. And if their ephemeral keys were used only once, then
the simulator using a signature from the auxiliary info would raise the distinguisher’s suspicion (since
the distinguisher knows the auxiliary information as well). Hence, we consider their “ephemeral” keys as
semi-static. Furthermore, they do not consider the AEAD ciphertext.

The proof of [VGIK20] relies on key registration: They argue that at the time of key registration a user
needs to provide an extractable proof of knowledge of the secret key. Hence, they provide the long-term
secret key of the adversary to the simulator. We model this by limiting the adversary to honestly generated
keys with the RegHon oracle and by giving the Fake algorithm access to the SK oracle.11

Theorem 4.2. If the (tADH , tEDH , tDDH , ϵDDH)-Knowledge of 2DH (K2DH) Assumption holds and KDF
is a random oracle, then the X3DH protocol as shown in Figure 3 is (np, nss, qOA

, qOF
, qOD

, tA, tD, ϵD)-
deniable with respect to ({RegHon, Init, ChallInit}, {SK}, {aux})-oracles and auxiliary inputs sampled
with AuxPrep yielding a valid pre-key bundle per ssid and user, and aux known to the distinguisher, where
np is the number of parties and nss the number of semi-static keys per party, qOA

, qOF
, qOD

are arbitrary,
and tA ≈ tADH , tD ≈ tDDH , and ϵD ≤ ϵDDH .

Proof. We give the Fake algorithm in Figure 4 on the left-hand side and Figure 5.
The Fake algorithm uses Alice’s secret key from the SK oracle to compute DH1, Bob’s ephemeral

secret, which it previously sampled, to compute DH4, and the extractor from the K2DH assumption to
learn DH2 and DH3. If the extraction fails, Fake sets a random key as session key. Using the session key,
Fake decrypts the AEAD ciphertext. If decryption fails, it aborts.

11These oracles also return semi-static secret keys, which we deem in spirit consistent with the idea of [VGIK20].

20

Fake(p⃗k, π, m, µ, aux, r):

64 (A, epkDH
A , ctAE, ctKEM)← m

65 π.pid← A

66 (sspkDH
B , sspkKEM

B)← sspkssid
B

67 DH1 ← EDH
A (sspkDH

B , aux, r)
68 DH2 ← EDH

A (ltpkDH
B , aux, r)

69 DH3 ← EDH
A (sspkDH

B , aux, r)
70 if eDH = true //with ephemeral DH key?
71 eskDH

B ← from previous run
72 DH4 ← DH(epkDH

A , eskDH
B)

73 else
74 DH4 ← ϵ

75 if eKEM = true //with ephemeral KEM key?

76 ss←$ EP A
AOA

(epkKEM
B , ctKEM, r)

77 else
78 ss←$ EP A

AOA
(sspkKEM

B , ctKEM, r)
79 if DH1 = ⊥ ∨DH2 = ⊥ ∨DH3 = ⊥
80 π.K←$ {0, 1}256

81 else
82 ms← DH1∥DH2∥DH3∥DH4∥ ss

83 π.K← KDF(ms)
84 AD ← ltpkA∥ltpkB
85 µ′ ← Dec(π.K, AD, ctAE)
86 if µ′ = ⊥ then π.K← ⊥
87 return (π, ϵ, µ′)

Figure 6: The Fake algorithm processing Alice’s message (initiator deniability) in Theorems 4.3 and 4.7.

Formally, the adversary A never outputs any value. Here, we apply the extractor EDH
A in line 46 to

A querying the Chall oracle with the message (A, epkDH
A , ctAE) after receiving a message from Bob with

semi-static key ssid.
Since Fake produces the transcript in the same way as Run, it does not help the distinguisher to win.

If the extractor succeeds, then Fake has computed the session key in the same way as Run, allowing no
advantage for the distinguisher. If the extractor fails, then the distinguisher succeeds in extracting the
DH2 or DH3 with a maximum probability of ϵDDH . Hence, the distinguisher can distinguish the real
session key from the simulated session key with a probability of at most ϵDDH .

Theorem 4.3. If the (tADH , tEDH , tDDH , ϵDDH)-Extended Knowledge of DH (EKDH) Assumption holds
and KDF is a random oracle, then the X3DH protocol as shown in Figure 3 is (np, nss, qOA

, qOF
, qOD

,
tA, tD, ϵD)-deniable with respect to ({Reg, Init, ChallInit}, ∅, {aux})-oracles and auxiliary info sampled
with AuxPrep yielding a valid pre-key bundle per ssid and user, and aux known to the distinguisher, where
np is the number of parties and nss the number of semi-static keys per party, qOA

, qOF
, qOD

are arbitrary,
and tA ≈ 3 · tADH , tD ≈ tDDH , and ϵD ≤ ϵDDH .

Proof. We give the Fake algorithm in Figure 4 on the left-hand side and Figure 6.
The Fake algorithm simulates Bob’s pre-key bundle by sampling a fresh ephemeral key (if needed)

and learns a signature on the semi-static key from the auxiliary info aux. Furthermore, to process Alice’s
message the Fake algorithm uses two techniques: It relies on the extractor from the EKDH assumption
to learn DH1 through DH3 and uses Bob’s ephemeral key (from its previous run) to compute DH4. If
any of the three extractions fail, Fake sets a random key as session key; otherwise it computes the session
key normally. It decrypts the AEAD ciphertext using the session key and erases the session key in case
decryption fails.

Formally, the adversary A never outputs any value. Here, we apply the extractor EDH
A to those cases

were A queries some oracle with a message: In line 67, the adversary’s output refers to A querying the Reg
oracle (with a long-term and a semi-static public key, but we only care about the long-term key); in lines 68
and 69, the adversary’s output refers to A querying the ChallInit oracle on message (A, epkDH

A , ctAE).
The Fake algorithm produces the transcript in the same way as Run and, hence, the transcript is

indistinguishable. If the extractor succeeds in all three cases, then the Fake algorithm has computed the
session key in the same way as Run, i.e. indistinguishably. If the extractor fails in any of the three cases,
then the distinguisher succeeds in extracting one of the shared DH secrets with a maximum probability of
ϵDDH as per the EKDH assumption. Hence, the distinguisher can distinguish the real session key from the
simulated session key with a probability of at most ϵDDH . Note that the second and third extractor call
refer to the same output of the adversary, i.e. they are not independent. Conservatively, we bound with

21

ϵDDH and not (ϵDDH)3.

Remark 4.2 (Deniability against malicious adversaries in the big brother model). In the big brother
setting, we cannot apply the EKDH assumption (since the distinguisher gets extra inputs compared to the
adversary and Fake). Hence, if the extractor fails a big brother distinguisher may be able to compute the
correct session key with probability > ϵDDH . Thereby, the big brother distinguisher can tell the two cases
apart. We discuss another (unsuccessful) strategy in Section 5.

4.2 PQXDH
We review PQXDH [KS23] with the help of Figure 3. PQXDH extends X3DH by including a KEM to
achieve post-quantum confidentiality. In particular, Bob’s pre-key bundle includes an ephemeral KEM
key (if the boolean eKEM is set) or a semi-static KEM key (otherwise), and a signature on this KEM
public key. Alice verifies the signature on the KEM key (and on the semi-static DH key as before) and
encapsulates against Bob’s KEM public key. Alice’s message consists of her ephemeral DH key, the AEAD
ciphertext, and the KEM ciphertext. Both parties compute the session key from the three or four DH
shared secrets and the KEM shared secret, and use the session key for encryption and decryption of the
AEAD ciphertext, respectively.

Note that in practice, Bob’s pre-key bundle includes a semi-static KEM key only if no ephemeral KEM
key is used. We model this by not using the semi-static KEM key if an ephemeral KEM key exists; though
we formally unwrap it from the semi-static key.

Since PQXDH builds on top of X3DH, simulating a transcript bears the same difficulties as for X3DH
with some new ones added on top: obtaining a signature for the KEM key (which may be ephemeral or
semi-static) and the KEM shared secret.

4.2.1 Obtaining a signature on Bob’s semi-static and ephemeral keys

We need a signature on Bob’s semi-static DH key for X3DH, and also on Bob’s ephemeral or semi-static
KEM key for PQXDH. So we need to cover signatures on semi-static and ephemeral keys.

We have the same two options as for X3DH to obtain a signature: from aux and from the Userinitiator,y
oracle, see Figure 4. If Fake uses aux and aux is known to the distinguisher, then we have public signatures.
Otherwise, we have private signatures, i.e. Fake knows signatures that the distinguisher does not. The
distinguisher can detect reuse of public signatures, see Theorem 4.4. Hence, we require private signatures,
see Remark 4.4.

4.2.2 Obtaining the KEM shared secret

For responder deniability, Fake can learn the KEM shared secret by encapsulating against the KEM public
key. For initiator deniability against malicious adversaries, we rely on plaintext awareness of the KEM
(see Definition 2.7), following [HKKP22].12

4.2.3 Theorems for PQXDH

Here we give our results for initiator deniability of PQXDH and or responder deniability of both X3DH
and PQXDH. We start with initiator deniability and show that faking a transcript requires a signature
that the distinguisher is not aware of, i.e. a private signature. In particular, we show that Bob cannot
deny (initiator deniability) participation in a protocol run against a semi-honest Alice (against semi-honest

12For initiator deniability against semi-honest adversaries, Fake can learn the randomness used for encapsulation and thereby
obtain the KEM shared secret.

22

adversaries). This follows from nobody, not even Alice (1-out-of-2, i.e. using Alice’s secret keys) being
able to produce the transcript and session key herself, even assuming she has previously observed a valid
transcript with Bob as initiator (AuxPrep yielding a valid pre-key bundle per ssid and user). This holds
even against a big brother distinguisher (in the big brother model), who shares Alice’s observations (aux
known to the distinguisher).

An indistinguishable transcript contains a valid signature on the ephemeral KEM key and the distin-
guisher must not have seen that signature before. Since the Fake algorithm cannot get this signature from
anywhere, it must be a forgery of the signature scheme.

Theorem 4.4. If SIG is (qSIG, tSIG, ϵSIG)-unforgeable, KEM has a key collision probability bounded by
γcoll, and the public key spaces of KEM and DH are disjoint, then the PQXDH protocol as shown in Fig-
ure 3 is not (np, nss, qOA

, qOF
, qOD

, tA, tD, ϵD)-deniable with respect to ({RegHon, ChallHonInit}, {SK},
{SKs, aux})-oracles and auxiliary inputs sampled with AuxPrep yielding a valid pre-key bundle per ssid and
user and qCI pre-key bundles per user with ephemeral KEM keys, where np ≥ 2 is the number of parties
and nss the number of semi-static keys per party, qOA

, qOF
, qOD

, tA, tD are arbitrary, qSIG = 2 · nss + qCI ,
tSIG ≈ tA, and ϵD ̸< 1− nss · γcoll − ϵSIG.

Proof. For contradiction, we assume PQXDH was (np, nss, qOA
, qOF

, qOD
, tA, tD, ϵD)-deniable and build a

reduction to (qSIG, tSIG, ϵSIG)-unforgeability of SIG. Note that the reduction relies on the Fake algorithm to
win its unforgeability game. As such, the reduction simulates both the deniability game and the deniability
adversary around the Fake algorithm. The reduction receives a challenge key pkSIG as input and proceeds
to run KeyPrep(np, nss) to generate key pairs for all users. Wlog. we determine two distinct users A and
B. The reduction saves the long-term signing key pair of B as (ltpkSIG

B , ltskSIG
B), replaces the public key

with the challenge key pkSIG, and saves the resulting list of public keys as p⃗k. The reduction prepares the
auxiliary info aux according to AuxPrep; to produce the pre-key bundles for B, the reduction queries its
Sign oracle to obtain signatures under pkSIG for all of B’s semi-static DH keys and KEM keys and for qCI

ephemeral KEM keys, totaling 2 · nss + qCI queries. Since the reduction controls both the (deniability)
challenger and the (deniability) adversary, it acts as if the adversary challenges B to a full handshake
with A13 while b = 1. The Fake algorithm has to answer for this query. If Fake queries its SK oracle,
the reduction replies with (ltskA, ⃗ssskA). The Fake algorithm returns a protocol message containing a
signed ephemeral KEM key for B. The reduction returns this ephemeral KEM key and signature tuple
(epkKEM

B , σKEM).
We include the running time of the oracles OA = {RegHon, ChallHonInit}, OF = {SK} in tA,

allowing for tSIG ≈ tA. The reduction simulates the game GOA,OF ,OD-den
PQXDH,AuxPrep,np,nss

(A,D) around Fake faithfully,
since it can mimic the behavior of the game and answer as the game would.

The distinguisher can tell if Fake uses a signature on the ephemeral key from aux since the distinguisher
knows aux itself (via the aux oracle). We exclude this by assuming PQXDH to be deniable. The probability
of epkKEM

B colliding with one of B’s nss KEM keys signed in AuxPrep is nss · γcoll (and 0 to collide with
a DH public key). We need to exclude this probability since these signatures were created by the Sign
oracle of the reduction. If the transcript contained an invalid signature, then the transcript could not
be (tD, ϵD)-indistinguishable. Hence, the signature must be valid and on a fresh message. Therefore, the
reduction wins if the distinguisher loses and we get ϵSIG ≥ 1− nss · γcoll − ϵD and ϵD ≥ 1− nss · γcoll − ϵSIG,
which is not close to 1

2 .

Remark 4.3 (Domain separators). If signatures on the KEM public keys include a domain separator for
ephemeral and semi-static use, then we do not have the loss of nss · γcoll in the above theorem.

13via ChallHonInit(B, A, (create, (ssid = 1, eDH = true, eKEM = true)))

23

Remark 4.4 (Fake needs a private signature for initiator deniability). In Theorem 4.4 the distinguisher
detects Fake since Fake does not learn any "private" signatures on ephemeral keys that the distinguisher does
not know. In Theorems 4.5 to 4.7, the Fake algorithm obtains signatures on the semi-static DH key and on
the KEM key from the auxiliary info aux (cp. the left-hand side of Figure 4), while the distinguisher does
not, i.e. aux ̸∈ OD. Alternatively, the Fake algorithm may also learn the signatures via the Userinitiator,⊥
oracle (cp. the right-hand side of Figure 4), resulting in partial deniability wrt. a Userinitiator,⊥ oracle.
Hence, these theorems also hold for AuxPrep = ⊥ if OF additionally includes Userinitiator,⊥. In either case
the distinguisher does not see the signature, i.e. the signature remains "private".

Bob can deny (initiator deniability) participation in a protocol run against a semi-honest Alice (against
semi-honest adversaries, Theorem 4.5), against a malicious Alice that honestly generated her keys (against
malicious adversaries with honest keys, Theorem 4.6), and against a malicious Alice (against malicious
adversaries, Theorem 4.7). He does so by showing that Alice (1-out-of-2, i.e. anybody using Alice’s secret
keys, Theorems 4.5 and 4.6) or anybody (1-out-of-∞, Theorem 4.7) could have produced the transcript
and session key herself, assuming she has previously observed a valid transcript with Bob as initiator
(AuxPrep yielding a valid pre-key bundle per ssid and user and qCI pre-key bundles per user with ephemeral
KEM keys, Theorems 4.5 to 4.7). This holds against big brother distinguishers (in the big brother model,
Theorem 4.5) who do not learn Alice’s observations (aux unknown to the distinguisher, Theorems 4.5
to 4.7).

Theorem 4.5. The PQXDH protocol as shown in Figure 3 is (np, nss, qOA
, qOF

, qOD
, tA, tD, ϵD)-deniable

with respect to ({RegHon, ChallHonInit}, {SK}, {SKs})-oracles and auxiliary inputs sampled with
AuxPrep yielding a valid pre-key bundle per ssid and user and qCI pre-key bundles per user with ephemeral
KEM keys, where np is the number of parties and nss the number of semi-static keys per party, qCI ∈ qOA

,
qOA

, qOF
, qOD

, tA, tD are arbitrary, and ϵD = 0.

Proof. We give the Fake algorithm in Figure 4 on the left-hand side and Figure 5.
The Fake algorithm simulates Bob’s pre-key bundle by sampling a fresh ephemeral DH key (if needed)

and learns a signature on the semi-static DH key and on the KEM key from the auxiliary info aux. Note
that the Fake algorithm may need a signature for any semi-static KEM key or a signed ephemeral key for
each of the qCI queries. To process Alice’s message, the Fake algorithm computes the DH shared secrets as
for Theorem 4.1 (using Alice’s freshly sampled ephemeral secret and the long-term secret obtained from the
SK oracle). Furthermore, Fake extracts the KEM shared secret from the randomness that was previously
used for the encapsulation. It computes the session key honestly as well as decrypts the AEAD ciphertext
and aborts if decryption fails.

Since Fake produces a transcript and session key in the same way as Run and the distinguisher cannot
detect reuse of the signature on the ephemeral KEM key, the distinguisher cannot have an advantage in
winning the game, even if the distinguisher has access to all long-term and semi-static secret keys.

For the next two theorems we need plaintext awareness.

Theorem 4.6. If the (tADH , tEDH , tDDH , ϵDDH)-Knowledge of 2DH (K2DH) Assumption holds, KEM is
(nk, tC , tEP A , tDP A , ϵDP A)-PA1 secure, and KDF is a random oracle, then the PQXDH protocol as shown
in Figure 3 is (np, nss, qOA

, qOF
, qOD

, tA, tD, ϵD)-deniable with respect to ({RegHon, Init, ChallInit},
{SK}, ∅)-oracles and auxiliary inputs sampled with AuxPrep yielding a valid pre-key bundle per ssid and
user and qCI pre-key bundles per user with ephemeral KEM keys, where np is the number of parties and nss
the number of semi-static keys per party, the number of keys for the PA assumption is nk = np ·nss + qCI ,
qCI ∈ qOA

, qOA
, qOF

, qOD
are arbitrary, tA ≈ tC ≈ tEDH , tD ≈ tDDH ≈ tDP A, and ϵD ≤ ϵDDH + ϵDP A.

Proof. We give the Fake algorithm in Figure 4 on the left-hand side and Figure 5.

24

The Fake algorithm simulates Bob’s pre-key bundle by sampling a fresh ephemeral DH key (if needed)
and learns a signature on the semi-static DH key and on the KEM key from the auxiliary info aux. Note
that the Fake algorithm may need a signature for any semi-static KEM key or a signed ephemeral key for
each of the qCI queries. When processing Alice’s message, Fake uses Alice’s long-term secret key from the
SK oracle and the previously sampled ephemeral key to compute DH1 and DH4. It extracts DH2, DH3
from the adversary under the K2DH assumption. Furthermore, it uses the PA1 extractor in line 52 or 54
(depending on whether an ephemeral or semi-static KEM key is used) to learn the KEM shared secret.
In contrast, Run computes DH2, DH3 with Bob’s DH secret keys and the KEM shared secret ss with
KEM.Dec() and Bob’s corresponding KEM secret key. If the K2DH extraction fails, Fake sets a random
key as session key. Else, it computes the session key honestly. It decrypts the AEAD ciphertext and aborts
if decryption fails.

In a nutshell, the Fake algorithm creates Bob’s pre-key bundle virtually identical to Run.
We argue over a series of game hops that the distinguisher cannot distinguish whether Alice’s message

was processed by Run or Fake.

Game 0 = Run. The initial game is the original deniability game GOA,OF ,OD-den
PQXDH,AuxPrep,np,nss

(A,D) with chal-
lenge b = 0, executing Run.

Game 1 (SK oracle). In this game Fake obtains Bob’s long-term and semi-static secret key using
the SK oracle, instead of receiving Bob’s secret keys as input. This change is purely syntactical and not
noticeable to an attacker or distinguisher. Hence, the winning probabilities for Games 0 and 1 are identical.

Game 2 (PA1 extractor). We replace the honest decapsulation of the KEM ciphertext with the PA
extractor in lines 52 and 54. (In each invocation of Fake for processing Alice’s message exactly one of these
two lines is executed, depending on eDH.)

We bound the advantage difference introduced by this step by the (nk, tC , tEP A , tDP A , ϵDP A)-PA1 as-
sumption. We consider the reduction B – running the adversary with its oracles, excluding calls to the
Decaps oracle – as ciphertext creator C of the PA1 game. The reduction B is started with a list of KEM
keys p⃗kKEM and explicit randomness rC = (rA, rRH , rC).

The reduction samples np + np · nss DH keys and sorts them by user into p⃗k. Next, it prepares the
auxiliary info aux, which consists of one pre-key bundle per user and semi-static key and qCI pre-key
bundles per user with ephemeral KEM keys. Note that for both sampling the DH keys and preparing
the auxiliary info the reduction uses hard-wired randomness. (Without hard-wiring the randomness the
PA1 extractor would require this randomness as input since we view the reduction as ciphertext creator.)
Then, it starts the adversary A on the auxiliary info aux and the list of public keys p⃗k with the randomness
rA. The reduction provides the adversary with access to its oracles OA = {RegHon, Init, ChallInit}.
To answer queries to the RegHon oracle the reduction uses the randomness rRH . To answer queries
to the ChallInit oracle the reduction always uses Fake as described for the previous game with the
following three changes: First, instead of sampling a new ephemeral KEM key for Bob’s pre-key bundle,
it uses the next KEM public key from its input list. Second, the reduction replaces lines 52 and 54
(the decapsulation or extraction of the KEM shared secrets) with a call to its own Decaps oracle of
the PA1 game. Third, it uses the randomness rC where needed. After the adversary terminates, the
reduction outputs (aux, p⃗k, r, Q, K). The PA1-distinguisher D′ then runs the deniability-distinguisher D
on (aux, p⃗k, r, Q, K) and returns the same guess as the deniability-distinguisher D.

Hence, depending on the secret bit of the PA1 game, the reduction simulates either the previous game
or the current game. We include the running time of the OA = {RegHon, Init, Chall} oracles in tA,
allowing for tA ≈ tC .

25

The PA1 distinguisher D′ executes the deniability distinguisher D, resulting in essentially the same
run time tD ≈ tDP A , and directly returns the guess of the deniability distinguisher D. If the deniability
distinguisher D succeeds, then the PA1 distinguisher D′ succeeds as well and can distinguish between the
current and the previous game. By the PA1 assumption, the PA1 distinguisher succeeds with an advantage
≤ ϵDP A , which also limits the advantage of the deniability distinguisher.

Game 3 = Fake (K2DH assumption). We replace the honest computations of DH2, DH3 with the
K2DH extractor in line 46, finally resulting in Fake as described in Figure 5 on the right-hand side. We
bound the advantage difference introduced by this step by the (tADH , tEDH , tDDH , ϵDDH)-K2DH assumption.

Formally, the adversary A never outputs any value. Here, we apply the extractor EDH
A in line 46 to A

querying the Chall oracle with the message (A, epkDH
A , ctAE, ctKEM) after receiving a message from Bob

with semi-static key ssid.
If the extractor succeeds, then Fake has computed the session key in the same way as Run, allowing

no advantage in distinguishing the current game from the previous game. If the extractor fails, then Fake
sets a random session key. The runtime of the attacker in the K2DH assumption limits the runtime of the
deniability attacker, i.e. tA ≈ tADH . Furthermore, any K2DH distinguisher running in time tDDH succeeds
in extracting DH2 or DH3 with a maximum probability of ϵDDH . Hence, the deniability distinguisher with
the same limit in runtime can distinguish the previous game from the current game with a probability of
at most ϵDDH .

Theorem 4.7. If the (tADH , tEDH , tDDH , ϵDDH)-Extended Knowledge of DH (EKDH) Assumption holds,
KEM is (nk, tC , tEP A , tDP A , ϵDP A)-PA1 secure, and KDF is a random oracle, then the PQXDH protocol as
shown in Figure 3 is (np, nss, qOA

, qOF
, qOD

, tA, tD, ϵD)-deniable with respect to ({Reg, Init, ChallInit},
∅, ∅)-oracles and auxiliary inputs sampled with AuxPrep yielding a valid pre-key bundle per ssid and user
and qCI pre-key bundles per user with ephemeral KEM keys, where np is the number of parties and nss
the number of semi-static keys per party, qCI ∈ qOA

, qOA
, qOF

, qOD
are arbitrary, and tA ≈ tC ≈ 3 · tEDH ,

tD ≈ tDDH ≈ tDP A, and ϵD ≤ ϵDDH + ϵDP A.

Proof. We give the Fake algorithm in Figure 4 on the right-hand side and Figure 6.
The Fake algorithm reuses the pre-key bundle obtained from the Userinitiator,⊥ oracle but replaces the

ephemeral DH key with a freshly sampled key (if mandated by eDH). Furthermore, to process Alice’s
message, the Fake algorithm requires several techniques: The Fake algorithm relies on the extractor from
the EKDH assumption to learn DH1 through DH3 (lines 67, 68, and 69) and uses Bob’s ephemeral key
(from its previous run) to compute DH4. Additionally, it utilizes the plaintext extractor for the KEM to
learn the KEM shared secret (line 76 or 78). If any of the three extractions under the EKDH assumption
fail, Fake sets a random key as session key. Else, it computes the session key honestly. It decrypts the
AEAD ciphertext and aborts if decryption fails.

The Fake algorithm creates Bob’s pre-key bundle virtually identical to Run. We argue via a series of
game hops that the distinguisher cannot tell whether Alice’s message was processed by Run or Fake.

Game 0 = Run. The initial game is the original deniability game GOA,OF ,OD-den
PQXDH,AuxPrep,np,nss

(A,D) with chal-
lenge b = 0, executing Run.

Game 1 (PA1 extractor). We replace the honest decapsulation of the KEM ciphertext with the PA
extractor in lines 76 and 78. (In each invocation of Fake for processing Alice’s message, exactly one of
these two lines is executed, depending on eDH.)

We bound the advantage difference introduced by this step by the (nk, tC , tEP A , tDP A , ϵDP A)-PA1 as-
sumption. We consider the reduction B—running the adversary with its oracles, excluding calls to the

26

Decaps oracle—as ciphertext creator C of the PA1 game. The reduction B is started with a list of KEM
keys p⃗kKEM and explicit randomness rC = (rA, rR, rC).

The reduction samples np ·nss DH keys and sorts them by user into p⃗k. Next, it prepares the auxiliary
info aux, which consists of one pre-key bundle per user and semi-static key. Note that for both sampling
the DH keys and preparing the auxiliary info, the reduction uses hard-wired randomness. (Without hard-
wiring the randomness, the PA1 extractor would require this randomness as input since we view the
reduction as ciphertext creator.) Then, it starts the adversary A on the auxiliary info aux and the list of
public keys p⃗k with the randomness rA. The reduction provides the adversary with access to its oracles
OA = {Reg, Init, Chall}. To answer queries to the Reg, oracle the reduction uses the randomness
rR. To answer queries to the Chall oracle, the reduction always uses Fake as described for the current
game with the following three changes: First, instead of sampling a new ephemeral KEM key for Bob’s
pre-key bundle, it uses the next KEM public key from its input list. Second, the reduction replaces lines 76
and 78 (the decapsulation or extraction of the KEM shared secrets) with a call to its own Decaps oracle
of the PA1 game. Third, it uses the randomness rC where needed. After the adversary terminates, the
reduction outputs (aux, p⃗k, r, Q, K). The PA1-distinguisher D′ then runs the deniability-distinguisher D
on (aux, p⃗k, r, Q, K) and returns the same guess as the deniability-distinguisher D.

Hence, depending on the secret bit of the PA1 game, the reduction simulates either the previous game
or the current game. We include the running time of the OA = {Reg, Init, Chall} oracles in tA, allowing
for tA ≈ tC .

The PA1 distinguisher D′ executes the deniability distinguisher D, resulting in essentially the same
run time tD ≈ tDP A , and directly returns the guess of the deniability distinguisher D. If the deniability
distinguisher D succeeds, then the PA1 distinguisher D′ succeeds as well and can distinguish between the
current and the previous game. By the PA1 assumption, the PA1 distinguisher succeeds with an advantage
≤ ϵDP A , which also limits the advantage of the deniability distinguisher.

Game 2 = Fake (EKDH assumption). We replace the honest computations of DH1, DH2, DH3 with
the EKDH extractor in lines 67, 68, and 69, finally resulting in Fake as described above. Following
Theorem 4.3, we bound the advantage difference introduced by this step by the (tADH , tEDH , tDDH , ϵDDH)-
EKDH assumption.

If the extractor succeeds (in all three cases), then Fake has computed the session key in the same way as
Run, and, hence, indistinguishably. If the extractor fails (in any of the three cases), then the distinguisher
succeeds in extracting one of the shared DH secrets with a maximum probability of ϵDDH while running
in time tDDH . Hence, the distinguisher can distinguish the real session key from the simulated session key,
i.e. the previous game from the current game, with a probability of at most ϵDDH . As for Theorem 4.3, the
second and third extractor call refer to the same output of the adversary, i.e. they are not independent.
Conservatively, we bound with ϵDDH and not (ϵDDH)3.

For responder deniability we obtain identical guarantees for X3DH and PQXDH. Alice can deny (re-
sponder deniability) participation in a protocol run against a malicious Bob that honestly generated his
keys (against malicious adversaries with honest keys, Theorem 4.8), and against a malicious Bob (against
malicious adversaries, Theorem 4.9). She does so by showing that Bob (1-out-of-2, i.e. using Bob’s secret
keys, Theorem 4.8), or anybody (1-out-of-∞, Theorem 4.9) could have produced the transcript and session
key himself. This holds even against a big brother distinguisher (in the big brother model, Theorem 4.8)
and does not rely on eavesdropped info (AuxPrep = ⊥, Theorems 4.8 and 4.9).
Theorem 4.8. Both the X3DH and PQXDH protocols as shown in Figure 3 are (np, nss, qOA

, qOF
, qOD

, tA,
tD, ϵD)-deniable with respect to ({RegHon, Init, ChallResp}, {SK}, {SKs})-oracles and auxiliary inputs
sampled with AuxPrep = ⊥, where np is the number of parties and nss the number of semi-static keys per
party, qOA

, qOF
, qOD

, tA, tD are arbitrary, and ϵD = 0.

27

Fake(p⃗k, π, m = (B, ssid, σssid
DH , epkB , σKEM), µ, aux, r):

88 π.pid← B

89 ssskssid
B ← extract from SK(π)

90 (ssskDH
B , ssskKEM

B)← ssskssid
B

91 (epkDH
A , eskDH

A)←$ DH.KGen()
92 (sspkDH

B , sspkKEM
B)← sspkssid

B

93 (epkDH
B , epkKEM

B)← epkB

94 if SIG.Vf(ltpkSIG
B , sspkDH

B , σDH) = false
95 return (π, ϵ, ϵ)
96 DH1 ← DH(ltpkDH

A , ssskDH
B)

97 DH2 ← DH(eskDH
A , ltpkDH

B)
98 DH3 ← DH(eskDH

A , sspkDH
B)

99 if epkDH
B ̸= ⊥ //ephemeral DH key present

100 DH4 ← DH(eskDH
A , epkDH

B)
101 else
102 DH4 ← ϵ

103 if epkKEM
B ̸= ⊥ //ephemeral KEM key present

104 if SIG.Vf(ltpkSIG
B , epkKEM

B , σKEM) = false
105 return (πA, ϵ, ϵ)
106 (ctKEM, ss)←$ KEM.Enc(epkKEM

B)
107 else //no ephemeral KEM key present

108 if SIG.Vf(ltpkSIG
B , sspkKEM

B , σKEM) = false
109 return (πA, ϵ, ϵ)
110 (ctKEM, ss)←$ KEM.Enc(sspkKEM

B)
111 ms← DH1∥DH2∥DH3∥DH4∥ ss
112 π.K← KDF(ms)
113 AD ← ltpkA∥ltpkB
114 ctAE ← Enc(πA.K, AD, µ)
115 return (π, (A, epkDH

A , ctAE, ctKEM), ϵ)

Fake(p⃗k, π, m = (B, ssid, σssid
DH , epkB , σKEM), µ, aux, r):

116 π.pid← B
117 (epkDH

A , eskDH
A)←$ DH.KGen()

118 (sspkDH
B , sspkKEM

B)← sspkssid
B

119 (epkDH
B , epkKEM

B)← epkB

120 if SIG.Vf(ltpkSIG
B , sspkDH

B , σDH) = false
121 return (π, ϵ, ϵ)
122 DH1 ← EDH

A (ltpkDH
A , aux, r)

123 DH2 ← DH(eskDH
A , ltpkDH

B)
124 DH3 ← DH(eskDH

A , sspkDH
B)

125 if epkDH
B ̸= ⊥ //ephemeral DH key present

126 DH4 ← DH(eskDH
A , epkDH

B)
127 else
128 DH4 ← ϵ

129 if epkKEM
B ̸= ⊥ //ephemeral KEM key present

130 if SIG.Vf(ltpkSIG
B , epkKEM

B , σKEM) = false
131 return (πA, ϵ, ϵ)
132 (ctKEM, ss)←$ KEM.Enc(epkKEM

B)
133 else //no ephemeral KEM key present

134 if SIG.Vf(ltpkSIG
B , sspkKEM

B , σKEM) = false
135 return (πA, ϵ, ϵ)
136 (ctKEM, ss)←$ KEM.Enc(sspkKEM

B)
137 if DH1 = ⊥
138 π.K←$ {0, 1}256

139 else
140 ms← DH1∥DH2∥DH3∥DH4∥ ss
141 π.K← KDF(ms)
142 AD ← ltpkA∥ltpkB
143 ctAE ← Enc(πA.K, AD, µ)
144 return (π, (A, epkDH

A , ctAE, ctKEM), ϵ)

Figure 7: The Fake algorithms for producing Alice’s message (responder deniability) in Theorem 4.8 (on the left-hand side)
and Theorem 4.9 (on the right-hand side).

Proof. We give the Fake algorithm in Figure 7 on the left-hand side. The Fake algorithm considers the
KEM parts (obtaining the KEM public key, verifying the signature on the KEM public key, encapsulating
against the KEM public key, and sending a KEM ciphertext) only for PQXDH.

The Fake algorithm uses the freshly sampled ephemeral key eskDH
A to compute DH1 and Bob’s long-

term secret keys from the SK oracle ltskDH
B to compute DH2, DH3, DH4. It learns the KEM shared secret

from encapsulating against Bob’s public key. If either signature (on the semi-static DH key or on the KEM
key) does not verify, it aborts. Using those secrets, Fake computes the session key and encrypts the user
message with the AEAD scheme under the session key.

Since Fake produces a transcript and session key in the same way as Run, the distinguisher cannot have
an advantage in winning his game, even if the distinguisher has access to all long-term and semi-static
secret keys.

Theorem 4.9 (Responder deniability against malicious adversaries of PQXDH). If the (tADH , tEDH , tDDH ,
ϵDDH)-Extended Knowledge of DH (EKDH) Assumption holds and KDF is a random oracle, then both the
X3DH and the PQXDH protocols as shown in Figure 3 are (np, nss, qOA

, qOF
, qOD

, tA, tD, ϵD)-deniable with
respect to ({Reg, Init, ChallResp}, ∅, ∅)-oracles and auxiliary inputs sampled with AuxPrep = ⊥, where
np is the number of parties and nss the number of semi-static keys per party, qOA

, qOF
, qOD

are arbitrary,
tA ≈ tADH , tD ≈ tDDH , and ϵD ≤ ϵDDH .

Proof. We give the Fake algorithm in Figure 7 on the right-hand side. The Fake algorithm considers the

28

KEM parts (obtaining the KEM public key, verifying the signature on the KEM public key, encapsulating
against the KEM public key, and sending a KEM ciphertext) only for PQXDH.

The Fake algorithm uses its freshly sampled ephemeral secret key eskDH
A to compute DH2 through

DH4. It extracts DH1 from the adversary under the EKDH assumption. As before, we interpret the
adversary’s query to the Reg oracle as its output and apply the extractor EDH

A accordingly. It learns the
KEM shared secret from encapsulating against Bob’s public key. If either signature (on the semi-static
DH key or on the KEM key) does not verify, it aborts. If the extraction fails, Fake sets a random key as
session key. Otherwise, it computes the session key honestly. It encrypts the user message with the AEAD
scheme under the session key.

The Fake algorithm produces the transcript in the same way as Run and, hence, indistinguishably.
If the extractor succeeds, then Fake has computed the session key in the same way as Run, and, hence,
indistinguishably. If the extractor fails, then the distinguisher succeeds in extracting the shared DH secret
with a maximum probability of ϵDDH . Hence, the distinguisher can distinguish the real session key from
the simulated session key with a probability of at most ϵDDH .

Remark 4.5 (Deniability against malicious adversaries in the big brother model). In Remark 4.2 we have
pointed out challenges for showing deniability against malicious adversaries in the big brother model for
X3DH. They directly apply to PQXDH as well.

5 Conclusion and Future Work
Table 2 summarizes that in comparison to X3DH, PQXDH keeps the deniability guarantees for the responder
but not for the initiator: simulating a transcript requires a signature that the distinguisher never sees. It
remains an open question if deniability against malicious adversaries holds in the big brother model for
both X3DH and PQXDH.

Observe that the AEAD ciphertext influences the assumptions needed to show deniability: Without
the AEAD ciphertext, we can show that the DH assumption (and for PQXDH also plaintext awareness
of the KEM) is necessary to show deniability against malicious adversaries.14 When including the AEAD
ciphertext, we cannot show the necessity of these assumptions anymore. Also, the KEM used in Signal’s
implementation, Kyber, does not fulfill plaintext awareness, as pointed out in [KS23].

One can consider a key awareness assumption (similar to the case of SIGMA [DGK06]) that allows
extracting the AEAD key from a malicious Alice. However, on the one hand, the Fake algorithm cannot
tell if an extracted AEAD key is the real session key. On the other hand, the distinguisher can tell them
apart (since it knows what the adversary does). Observing the adversary’s queries to the random oracle
does not help either since Fake cannot compute the master secret ms. (Nor could the challenger verify if
the adversary queries the random oracle on the actual master secret.) Hence, it appears this proof strategy
does not work.

Our analysis treats Bob’s long-term DH key and signing key separately, which is not the case in practice.
A formal proof for the protocol taking this combined primitive into account is still open.

We see it as an interesting problem to examine if our deniability model is directly applicable to messag-
ing protocols or if any modifications are needed. Cremers and Zhao [CZ24] have extended the deniability
notion of [BFG+22] for key exchange to messaging protocols. Furthermore, one can extend our deniabil-
ity model to group chats, see e.g. [HW21] and the efforts around the MLS standardization process. An
extended deniability model for secure messaging can then be used to analyze the deniability guarantees of
the whole Signal protocol, i.e. including the Double Ratchet.

14A deniability adversary can use any ciphertext creator to obtain a KEM ciphertext, add a freshly sampled DH public key,
and send this as Alice’s message to the challenge oracle. We can build a PA extractor by observing the RO queries of the
Fake algorithm to learn the KEM shared secret, which must be indistinguishable due to deniability.

29

Acknowledgements

We thank the anonymous reviewers for their constructive feedback, and Marc Fischlin, Ehren Kret, Trevor
Perrin, Olga Sanina, and Rolfe Schmidt for helpful discussions and feedback.

R.F. was supported by the German Federal Ministry of Education and Research and the Hessian
Ministry of Higher Education, Research, Science and the Arts within their joint support of the Na-
tional Research Center for Applied Cybersecurity ATHENE. C.J. was (partially) funded by the Deutsche
Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297.

References
[BFG+20] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Douglas Stebila.

Towards post-quantum security for Signal’s X3DH handshake. In Orr Dunkelman, Michael
J. Jacobson Jr., and Colin O’Flynn, editors, SAC 2020: 27th Annual International Workshop
on Selected Areas in Cryptography, volume 12804 of Lecture Notes in Computer Science, pages
404–430, Halifax, NS, Canada (Virtual Event), October 21-23, 2020. Springer, Heidelberg,
Germany. (Cited on page 4.)

[BFG+21] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas Stebila.
Post-quantum asynchronous deniable key exchange and the Signal handshake. Cryptology
ePrint Archive, Report 2021/769, 2021. https://eprint.iacr.org/2021/769. (Cited on
pages 2, 4, 8, 36, 38, and 39.)

[BFG+22] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas Stebila.
Post-quantum asynchronous deniable key exchange and the Signal handshake. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022: 25th International Con-
ference on Theory and Practice of Public Key Cryptography, Part II, volume 13178 of Lecture
Notes in Computer Science, pages 3–34, Virtual Event, March 8–11, 2022. Springer, Heidel-
berg, Germany. (Cited on pages 2, 4, 8, 14, 15, 16, 29, 36, 38, and 39.)

[BGB04] Nikita Borisov, Ian Goldberg, and Eric A. Brewer. Off-the-record communication, or, why
not to use PGP. In Vijay Atluri, Paul F. Syverson, and Sabrina De Capitani di Vimercati,
editors, Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, WPES
2004, Washington, DC, USA, October 28, 2004, pages 77–84. ACM, 2004. (Cited on page 3.)

[BJK23] Karthikean Barghavan, Charlie Jacomme, and Franziskus Kiefer. Formal analysis of the
PQXDH protocol, 2023. https://github.com/Inria-Prosecco/pqxdh-analysis. (Cited on
page 4.)

[BJKS23] Karthikean Barghavan, Charlie Jacomme, Franziskus Kiefer, and Rolfe Schmidt. An analysis
of Signal’s PQXDH. https://cryspen.com/post/pqxdh/, October 2023. (Cited on pages 4
and 15.)

[BMP03] Colin Boyd, Wenbo Mao, and Kenneth G. Paterson. Deniable authenticated key establishment
for internet protocols. In Security Protocols Workshop, pages 255–271, 2003. (Cited on page 3.)

[BMP04] Colin Boyd, Wenbo Mao, and Kenneth G. Paterson. Key agreement using statically keyed
authenticators. In Markus Jakobsson, Moti Yung, and Jianying Zhou, editors, ACNS 04:
2nd International Conference on Applied Cryptography and Network Security, volume 3089
of Lecture Notes in Computer Science, pages 248–262, Yellow Mountain, China, June 8–11,
2004. Springer, Heidelberg, Germany. (Cited on page 3.)

30

https://eprint.iacr.org/2021/769
https://github.com/Inria-Prosecco/pqxdh-analysis
https://cryspen.com/post/pqxdh/

[BMS20] Colin Boyd, Anish Mathuria, and Douglas Stebila. Protocols for Authentication and Key
Establishment, Second Edition. Information Security and Cryptography. Springer, 2020. (Cited
on page 3.)

[BP04] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryption without
random oracles. In Pil Joong Lee, editor, Advances in Cryptology – ASIACRYPT 2004,
volume 3329 of Lecture Notes in Computer Science, pages 48–62, Jeju Island, Korea, Decem-
ber 5–9, 2004. Springer, Heidelberg, Germany. (Cited on page 7.)

[BR95] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo De Santis,
editor, Advances in Cryptology – EUROCRYPT’94, volume 950 of Lecture Notes in Computer
Science, pages 92–111, Perugia, Italy, May 9–12, 1995. Springer, Heidelberg, Germany. (Cited
on page 7.)

[CCD+17] Katriel Cohn-Gordon, Cas J. F. Cremers, Benjamin Dowling, Luke Garratt, and Douglas
Stebila. A formal security analysis of the Signal messaging protocol. In IEEE European
Symposium on Security and Privacy, EuroS&P 2017, pages 451–466, 2017. (Cited on pages 4
and 16.)

[CCHD23] Daniel Collins, Simone Colombo, and Loïs Huguenin-Dumittan. Real world deniability in
messaging. Cryptology ePrint Archive, Paper 2023/403, 2023. (Cited on page 2.)

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH. In Carmit
Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, Part V,
volume 14008 of Lecture Notes in Computer Science, pages 423–447, Lyon, France, April 23–
27, 2023. Springer, Heidelberg, Germany. (Cited on page 4.)

[CF11] Cas Cremers and Michele Feltz. One-round strongly secure key exchange with perfect forward
secrecy and deniability. Cryptology ePrint Archive, Report 2011/300, 2011. https://eprint.
iacr.org/2011/300. (Cited on pages 2, 4, 13, 36, and 37.)

[CHDN+24] Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, and Serge
Vaudenay. K-Waay: Fast and deniable Post-Quantum X3DH without ring signatures. In
33rd USENIX Security Symposium (USENIX Security 24), Philadelphia, PA, August 2024.
USENIX Association. (Cited on pages 4, 36, and 39.)

[CK02] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-based key-exchange
protocol. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of
Lecture Notes in Computer Science, pages 143–161, Santa Barbara, CA, USA, August 18–
22, 2002. Springer, Heidelberg, Germany. https://eprint.iacr.org/2002/120/. (Cited on
page 14.)

[CZ24] Cas Cremers and Mang Zhao. Secure messaging with strong compromise resilience, temporal
privacy, and immediate decryption. In IEEE Symposium on Security and Privacy, 2024. (Cited
on pages 4 and 29.)

[Den06] Alexander W. Dent. The Cramer-Shoup encryption scheme is plaintext aware in the standard
model. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume
4004 of Lecture Notes in Computer Science, pages 289–307, St. Petersburg, Russia, May 28 –
June 1, 2006. Springer, Heidelberg, Germany. (Cited on page 7.)

31

https://eprint.iacr.org/2011/300
https://eprint.iacr.org/2011/300
https://eprint.iacr.org/2002/120/

[DFG+13] Özgür Dagdelen, Marc Fischlin, Tommaso Gagliardoni, Giorgia Azzurra Marson, Arno Mit-
telbach, and Cristina Onete. A cryptographic analysis of OPACITY - (extended abstract). In
Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013: 18th European
Symposium on Research in Computer Security, volume 8134 of Lecture Notes in Computer
Science, pages 345–362, Egham, UK, September 9–13, 2013. Springer, Heidelberg, Germany.
(Cited on pages 2, 4, 36, and 38.)

[DG05] Mario Di Raimondo and Rosario Gennaro. New approaches for deniable authentication.
In Vijayalakshmi Atluri, Catherine Meadows, and Ari Juels, editors, ACM CCS 2005: 12th
Conference on Computer and Communications Security, pages 112–121, Alexandria, Virginia,
USA, November 7–11, 2005. ACM Press. (Cited on page 3.)

[DG22] Samuel Dobson and Steven D. Galbraith. Post-quantum signal key agreement from SIDH.
In Jung Hee Cheon and Thomas Johansson, editors, Post-Quantum Cryptography - 13th
International Workshop, PQCrypto 2022, Virtual Event, September 28-30, 2022, Proceedings,
volume 13512 of Lecture Notes in Computer Science, pages 422–450. Springer, 2022. (Cited on
page 4.)

[DGK05] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Secure off-the-record messaging.
In Vijay Atluri, Sabrina De Capitani di Vimercati, and Roger Dingledine, editors, Proceedings
of the 2005 ACM Workshop on Privacy in the Electronic Society, WPES 2005, Alexandria,
VA, USA, November 7, 2005, pages 81–89. ACM, 2005. (Cited on page 3.)

[DGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Deniable authentication and key
exchange. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
ACM CCS 2006: 13th Conference on Computer and Communications Security, pages 400–
409, Alexandria, Virginia, USA, October 30 – November 3, 2006. ACM Press. (Cited on pages 2,
3, 4, 12, 14, 16, 29, 35, 36, 37, and 38.)

[DKSW09] Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish. Composability and on-
line deniability of authentication. In Omer Reingold, editor, TCC 2009: 6th Theory of
Cryptography Conference, volume 5444 of Lecture Notes in Computer Science, pages 146–
162. Springer, Heidelberg, Germany, March 15–17, 2009. (Cited on pages 3 and 4.)

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In 30th Annual
ACM Symposium on Theory of Computing, pages 409–418, Dallas, TX, USA, May 23–26,
1998. ACM Press. (Cited on page 3.)

[FG24] Rune Fiedler and Felix Günther. Security analysis of Signal’s PQXDH handshake. Cryptol-
ogy ePrint Archive, Paper 2024/702, 2024. https://eprint.iacr.org/2024/702. (Cited on
page 4.)

[HKK+02] Dan Harkins, Charlie Kaufman, Tero Kivinen, Stephen Kent, and Radia Perlman. Design
rationale for ikev2. Internet-Draft draft-ietf-ipsec-ikev2-rationale-00.txt, IETF Secretariat,
Aug 2002. (Cited on page 3.)

[HKKP22] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. An efficient
and generic construction for Signal’s handshake (X3DH): Post-quantum, state leakage secure,
and deniable. Journal of Cryptology, 35(3):17, July 2022. (Cited on pages 2, 4, 7, 8, 14, 22, 36,
and 38.)

32

https://eprint.iacr.org/2024/702

[HLLC11] Lein Harn, Chia-Yin Lee, Changlu Lin, and Chin-Chen Chang. Fully deniable message au-
thentication protocols preserving confidentiality. Comput. J., 54(10):1688–1699, 2011. (Cited
on page 14.)

[HW21] Andreas Hülsing and Fiona Johanna Weber. Epochal signatures for deniable group chats. In
2021 IEEE Symposium on Security and Privacy, pages 1677–1695, San Francisco, CA, USA,
May 24–27, 2021. IEEE Computer Society Press. (Cited on page 29.)

[JCL+22] Shaoquan Jiang, Yeow Meng Chee, San Ling, Huaxiong Wang, and Chaoping Xing. A new
framework for deniable secure key exchange. Inf. Comput., 285(Part):104866, 2022. (Cited on
pages 2, 3, 4, 13, 36, and 39.)

[Jia14] Shaoquan Jiang. Timed encryption with application to deniable key exchange. Theor. Com-
put. Sci., 560:172–189, 2014. (Cited on pages 2, 3, 4, 13, 36, and 39.)

[JS08] Shaoquan Jiang and Reihaneh Safavi-Naini. An efficient deniable key exchange protocol
(extended abstract). In Gene Tsudik, editor, FC 2008: 12th International Conference on Fi-
nancial Cryptography and Data Security, volume 5143 of Lecture Notes in Computer Science,
pages 47–52, Cozumel, Mexico, January 28–31, 2008. Springer, Heidelberg, Germany. (Cited
on pages 2, 3, 4, 13, 36, and 39.)

[JW10] Shaoquan Jiang and Huaxiong Wang. Plaintext-awareness of hybrid encryption. In Josef
Pieprzyk, editor, Topics in Cryptology – CT-RSA 2010, volume 5985 of Lecture Notes in
Computer Science, pages 57–72, San Francisco, CA, USA, March 1–5, 2010. Springer, Hei-
delberg, Germany. (Cited on page 7.)

[Kat03] Jonathan Katz. Efficient and non-malleable proofs of plaintext knowledge and applications.
In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lec-
ture Notes in Computer Science, pages 211–228, Warsaw, Poland, May 4–8, 2003. Springer,
Heidelberg, Germany. (Cited on page 3.)

[Kra96] Hugo Krawczyk. SKEME: a versatile secure key exchange mechanism for internet. In James T.
Ellis, B. Clifford Neuman, and David M. Balenson, editors, ISOC Network and Distributed
System Security Symposium – NDSS’96, pages 114–127, San Diego, CA, USA, February 22–
23, 1996. IEEE Computer Society. (Cited on page 3.)

[KS23] Ehren Kret and Rolfe Schmidt. The PQXDH key agreement protocol, September 2023.
https://signal.org/docs/specifications/pqxdh/. (Cited on pages 1, 2, 4, 15, 22, and 29.)

[LLPM07] Meng-Hui Lim, Sanggon Lee, Youngho Park, and Sangjae Moon. Secure deniable authenti-
cated key establishment for internet protocols. Cryptology ePrint Archive, Report 2007/163,
2007. https://eprint.iacr.org/2007/163. (Cited on page 3.)

[MMP+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin Wesolowski.
A direct key recovery attack on SIDH. In Carmit Hazay and Martijn Stam, editors, Advances
in Cryptology – EUROCRYPT 2023, Part V, volume 14008 of Lecture Notes in Computer
Science, pages 448–471, Lyon, France, April 23–27, 2023. Springer, Heidelberg, Germany.
(Cited on page 4.)

[MP02] Wenbo Mao and Kenneth G. Paterson. On the plausible deniability feature of internet pro-
tocols. unpublished, https://web.archive.org/web/20220818192033/http://www.isg.
rhul.ac.uk/~kp/IKE.ps, 2002. (Cited on pages 3 and 15.)

33

https://signal.org/docs/specifications/pqxdh/
https://eprint.iacr.org/2007/163
https://web.archive.org/web/20220818192033/http://www.isg.rhul.ac.uk/~kp/IKE.ps
https://web.archive.org/web/20220818192033/http://www.isg.rhul.ac.uk/~kp/IKE.ps

[MP16a] Moxie Marlinspike and Trevor Perrin. The double ratchet algorithm, November 2016. https:
//www.signal.org/docs/specifications/doubleratchet/. (Cited on page 1.)

[MP16b] Moxie Marlinspike and Trevor Perrin. The X3DH key agreement protocol, November 2016.
https://signal.org/docs/specifications/x3dh/. (Cited on pages 1, 2, 4, 15, and 16.)

[Nao02] Moni Naor. Deniable ring authentication. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 481–498, Santa
Barbara, CA, USA, August 18–22, 2002. Springer, Heidelberg, Germany. (Cited on page 15.)

[OTR20] OTR team. OTR version 4, 2020. https://github.com/otrv4/otrv4/blob/master/otrv4.
md. (Cited on page 2.)

[Pas03] Rafael Pass. On deniability in the common reference string and random oracle model. In Dan
Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 316–337, Santa Barbara, CA, USA, August 17–21, 2003. Springer,
Heidelberg, Germany. (Cited on pages 3, 4, and 16.)

[Per16] Trevor Perrin. The XEdDSA and VXEdDSA signature schemes, October 2016. https:
//signal.org/docs/specifications/xeddsa/. (Cited on page 15.)

[RMA+23] Nathan Reitinger, Nathan Malkin, Omer Akgul, Michelle L. Mazurek, and Ian Miers. Is
cryptographic deniability Sufficientƒ non-expert perceptions of deniability in secure messaging.
In 2023 IEEE Symposium on Security and Privacy, pages 274–292, San Francisco, CA, USA,
May 21–25, 2023. IEEE Computer Society Press. (Cited on page 5.)

[Rob23] Damien Robert. Breaking SIDH in polynomial time. In Carmit Hazay and Martijn Stam,
editors, Advances in Cryptology – EUROCRYPT 2023, Part V, volume 14008 of Lecture Notes
in Computer Science, pages 472–503, Lyon, France, April 23–27, 2023. Springer, Heidelberg,
Germany. (Cited on page 4.)

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri,
editor, ACM CCS 2002: 9th Conference on Computer and Communications Security, pages
98–107, Washington, DC, USA, November 18–22, 2002. ACM Press. (Cited on page 8.)

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and Jintai Ding.
CRYSTALS-KYBER. Technical report, National Institute of Standards and Technol-
ogy, 2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022. (Cited on page 8.)

[UDB+15] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Goldberg, and
Matthew Smith. SoK: Secure messaging. In 2015 IEEE Symposium on Security and Privacy,
pages 232–249, San Jose, CA, USA, May 17–21, 2015. IEEE Computer Society Press. (Cited
on pages 3, 4, and 15.)

[UG15] Nik Unger and Ian Goldberg. Deniable key exchanges for secure messaging. In Indrajit
Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015: 22nd Conference on
Computer and Communications Security, pages 1211–1223, Denver, CO, USA, October 12–
16, 2015. ACM Press. (Cited on pages 3, 4, 15, and 16.)

34

https://www.signal.org/docs/specifications/doubleratchet/
https://www.signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
https://github.com/otrv4/otrv4/blob/master/otrv4.md
https://github.com/otrv4/otrv4/blob/master/otrv4.md
https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/xeddsa/
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

[UG18] Nik Unger and Ian Goldberg. Improved strongly deniable authenticated key exchanges for
secure messaging. Proceedings on Privacy Enhancing Technologies, 2018(1):21–66, January
2018. (Cited on pages 3, 4, and 16.)

[Ung21] Nik Unger. End-to-End Encrypted Group Messaging with Insider Security. PhD thesis,
University of Waterloo, Ontario, Canada, 2021. https://hdl.handle.net/10012/17196.
(Cited on page 15.)

[VGIK20] Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk. On the crypto-
graphic deniability of the Signal protocol. In Mauro Conti, Jianying Zhou, Emiliano Casal-
icchio, and Angelo Spognardi, editors, ACNS 20: 18th International Conference on Applied
Cryptography and Network Security, Part II, volume 12147 of Lecture Notes in Computer
Science, pages 188–209, Rome, Italy, October 19–22, 2020. Springer, Heidelberg, Germany.
(Cited on pages 3, 4, 6, 7, 14, 18, 19, 20, and 36.)

[YGS23] Tarun Kumar Yadav, Devashish Gosain, and Kent E. Seamons. Cryptographic deniability:
A multi-perspective study of user perceptions and expectations. In Joseph A. Calandrino
and Carmela Troncoso, editors, 32nd USENIX Security Symposium, USENIX Security 2023,
Anaheim, CA, USA, August 9-11, 2023, pages 3637–3654. USENIX Association, 2023. (Cited
on page 5.)

[YZ10] Andrew Chi-Chih Yao and Yunlei Zhao. Deniable internet key exchange. In Jianying Zhou
and Moti Yung, editors, ACNS 10: 8th International Conference on Applied Cryptography
and Network Security, volume 6123 of Lecture Notes in Computer Science, pages 329–348,
Beijing, China, June 22–25, 2010. Springer, Heidelberg, Germany. (Cited on page 3.)

[YZ13] Andrew Chi-Chih Yao and Yunlei Zhao. OAKE: a new family of implicitly authenticated
Diffie-Hellman protocols. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 2013: 20th Conference on Computer and Communications Security, pages 1113–
1128, Berlin, Germany, November 4–8, 2013. ACM Press. (Cited on pages 2, 3, 36, 38, and 39.)

A Comparing prior definitions to our model
This section discusses in more detail how our model captures the idea of prior definitions from the litera-
ture (sketched by Table 3). Keep in mind that whenever we write Chall we refer to the challenge oracles for
both roles (i.e. ChallInit, ChallResp), and similarly for ChallHon and ChallHonInit, ChallHonResp.

The following deniability models are not concerned with user messages. Though, we expect that they
can be adapted similar to our model to handle key exchange protocols with user messages.

A.1 Concurrent and partial deniability [DGK06]

Deniability in the context of key exchange was introduced by Di Raimondo, Gennaro and Krawczyk [DGK06],
namely concurrent deniability and partial deniability. Let us first focus on concurrent deniability [DGK06,
Definition 2]. Both definitions are simulation-based definitions, i.e. a distinguisher has to decide if it is
presented with values sampled from the real distribution or the simulated distribution. In either case,
key pairs for all honest users and auxiliary info (which may depend on the keys) are sampled first. On a
technical note, the probability of the distinguisher succeeding is taken over the randomness in generating
the keys (and consequentially the sampling of the auxiliary info) and the random coins of the adversary.
Note that the distinguisher gets access to the auxiliary info as well.

35

https://hdl.handle.net/10012/17196

Type of Deniability OA OF OD Comment
concurrent deniability [DGK06] Reg, Init, Chall ∅ aux
partial deniability [DGK06] Reg, Init, Chall Userx,y aux qU = 1
peer deniability [CF11] Reg, RegHon, Init, Chall Userx,y , SK ∅ AuxPrep = ⊥, session keys not deniable

peer-and-time deniability [CF11] Reg, RegHon, Init, Chall SK ∅ AuxPrep has transcripts,
session keys not deniable

deniability (against
malicious adv.) [HKKP22] Reg, Init, Chall ∅ ∅ AuxPrep = ⊥

deniability (against
semi-honest adv.) [HKKP22] RegHon, ChallHon ∅ ∅ AuxPrep = ⊥

outsider deniability [DFG+13] ChallPassive ∅ ∅ AuxPrep has valid transcripts
deniability [BFG+22, BFG+21] ChallPassive SK SKs AuxPrep = ⊥
HP-deniability [YZ13] ChallPassive ∅ ∅ AuxPrep = ⊥
DENY false and
DENY true [CHDN+24] ChallPassive SK SKs AuxPrep = ⊥

deniability [JS08] Reg, Init, Chall ∅ aux AuxPrep has secret keys
deniability [Jia14] Reg, Init, Chall ∅ aux AuxPrep has secret keys, valid transcripts
deniability [JCL+22] Reg, Init, Chall ∅ aux AuxPrep has secret keys, valid transcripts

Table 3: Relation between our model and prior work: How to achieve deniability notions similar to those in the literature.
Challenge oracles not suffixed by a role refer to the oracles for both roles. Deniability [BFG+22, BFG+21], outsider deniability
[DFG+13], DENY false and DENY true [CHDN+24] are game-based definitions; the others are simulation-based.

In the real case, the adversary may then interact with oracles representing the honest users in an arbi-
trary manner; the output consists of the previously sampled public keys and auxiliary info, the randomness
that the adversary used, the transcripts between the adversary and all oracles, and the session keys of
all completed sessions. The astute observer notices the similarity to our game-based model with b = 0
for OA = {Reg, Init, Chall} (with syntactic changes). In the simulated case, a simulator (who depends
on the adversary) is given the same input as the adversary (i.e. the public keys, the auxiliary info, and
the randomness that the adversary used) and needs to produce indistinguishable output. Note that the
distinguisher receives the auxiliary info as well.

The proof technique for this definition suggested by [DGK06] and used thenceforth [CF11, VGIK20,
HKKP22, JCL+22] is that the simulator executes the adversary and answers in place of the oracle. Sub-
sequent work [JS08, Jia14] follows this approach and directly tasks the simulator to answer in place of the
oracles. The advantage of this technique is that the final transcript then contains identically distributed
messages by the adversary. Our game-based definition covers this case with b = 1 by using the Fake algo-
rithm for simulation. To be more precise, the Fake algorithm of our game-based definition depends only on
the currently challenged session and does not have a shared state over all invocations. The authors believe
that this is also intended by [DGK06], who focus on concurrent sessions, where the simulation needs to
happen regardless of other sessions. However, they need the simulator to have an overall state to manage
the queries of the adversary.

Hence, we capture the idea of their concurrent deniability with OA = {Reg, Init, Chall}, OF = ∅,
OD = {aux}, and arbitrary AuxPrep.

Their partial deniability [DGK06, Definition 3] allows the simulator to access an oracle acting as the
challenged user partnered with another user. So we capture the idea of their partial deniability with
OA = {Reg, Init, Chall}, OF = {Userx,y}, OD = {aux}, arbitrary AuxPrep, and qU = 1, i.e. per
session for which the Fake algorithm is queried it can start one session with the target user (who is then
partnered with a new, honest user).

36

A.2 Peer deniability and peer-and-time deniability [CF11]

Peer deniability and peer-and-time deniability [CF11] are simulation-based notions: The former is based
on partial deniability [DGK06] and the latter is a strengthening of peer deniability. Neither definition uses
auxiliary info.

A.2.1 Peer deniability

Starting from partial deniability [DGK06], peer deniability [CF11, Definition 9] is conceptually close with
a few important differences:

• Peer deniability does not guarantee deniability of session keys. Hence, in line 7 of Figure 2 the
distinguisher does not get access to the session keys computed by the Chall oracle.

• The simulator can access polynomially many sessions to create messages, i.e. qU is not fixed to 1.

• They give the attacker access to a corruption oracle, which allows the attacker and the simulator to
learn the secret key(s) of the corrupted parties. We model the corruption oracle with the RegHon
and SK oracles: The former allows the adversary to learn the secret key of a honestly generated
key pair, and the latter for the Fake algorithm.15 However, we retain the Reg oracle from partial
deniability [DGK06]. In consequence, the Fake algorithm cannot rely on the SK oracle, just like the
simulator cannot rely on learning the peer’s secret key from the set of corrupted parties (maybe the
adversary does not corrupt the party in question).

Hence, we capture the idea of their definition by setting OA = {Init, Reg, RegHon, Chall}, OF =
{Userx,y, SK}, OD = ∅, and AuxPrep = ⊥. Additionally, we remove K as argument to D in line 7 of
Figure 2.

A.2.2 Peer-and-time deniability

Peer-and-time deniability [CF11, Definition 10] strengthens peer deniability (above) by restricting the
simulator (i.e. the Fake oracle): The simulator has to finish interacting with the Userx,y oracle before
interacting with the adversary. This ensures that the victim doesn’t produce incriminating messages
dependent on the adversary’s input.

For our game-based approach we split up the simulator into many calls to Fake, each producing a
single message. Hence, we cannot directly adapt the notion of Fake first interacting with a user oracle
as preparation, and replying to the adversary only afterwards. We note, however, that peer-and-time
deniability does not use auxiliary info, allowing us to repurpose the auxiliary info in our game-based
definition: Originally, the simulator uses some strategy to query its oracle in an arbitrary manner. We
encode this strategy into the AuxPrep algorithm and give aux only to Fake (and not to A).

Both approaches (the simulator having access to an oracle before interacting with the adversary and
our tailored sampling of auxiliary info) provide auxiliary info to Fake that the distinguisher is not aware
of. Therefore, the Fake algorithm can use that info without the distinguisher noticing.

Hence, we capture the idea of their definition by setting OA = {Init, Reg, RegHon, Chall}, OF =
{SK}, OD = ∅, and AuxPrep follows the simulator’s strategy for querying Userx,y. Additionally, we
remove K as argument to D in line 7 of Figure 2 and aux as argument to A in line 6 in Figure 2.

15Strictly speaking, they give all corrupted secret keys to the simulator, while we give only the peer’s secret key to the Fake
algorithm. However, the authors do not see how a third party’s secret key would be of help.

37

A.3 Deniability against malicious and semi-honest adversaries [HKKP22]

Deniability against malicious and semi-honest adversaries [HKKP22, Definition 7.1] are two simulation-
based notions based on [DGK06]. Neither case allows any auxiliary information.

To capture the idea of their definition against malicious adversaries, we follow the same approach as
for [DGK06] and set OA = {Reg, Init, Chall}, OF = ∅, OD = ∅, and AuxPrep = ⊥. To capture the idea
of their definition against semi-honest adversaries, we limit the adversary to accessing the oracles which
enforce adherence to the protocol flow. Hence, we set OA = {RegHon, ChallHon}, OF = ∅, OD = ∅,
and AuxPrep = ⊥.

A.4 Outsider deniability [DFG+13]

Outsider deniability [DFG+13, Definition 2.5] is a game based-notion. Their notion gives the adversary
access to an execute oracle (which yields a transcript) and a test oracle, which - depending on the secret
bit - yields either a real transcript and session key or simulated values. Unlike our Fake algorithm, their
simulator produces the complete transcript at once. Their notion is concerned with a passive adversary
and a transcript should be simulatable with public data only. They do not allow auxiliary info, nor does
the distinguisher get the adversary’s randomness.

Hence, to capture the idea of their definition we set OA = {ChallPassive}, OF = ∅, OD = ∅, and
AuxPrep contains valid transcripts (substituting for the execute oracle). Additionally, we remove r as
argument to D in line 7 of Figure 2.

A.5 Deniability [BFG+22, BFG+21]

Deniability [BFG+21, Definition 11] is a game-based notion of 1-out-of-2 deniability against semi-honest
adversaries in the big brother model. They tailor the deniability notion to their use case of a replacement
for Signal’s initial handshake: They argue that Bob’s pre-key bundle does not need to be deniable since
it is not bound to any peer or any session. Hence, it suffices for Alice’s message to be simulatable by Bob
to achieve 1-out-of-2 deniability.

Note that they consider Bob, who prepares the pre-key bundle, the responder, while we consider Bob
the initiator.

Furthermore, they merge the adversary and the distinguisher into one algorithm A. Syntactically, this
has the consequence that the adversary-distinguisher already learns all secret keys while having access to
the challenge oracle. Since the adversary-distinguisher is semi-honest, we are not aware how the knowledge
of secret keys could help the adversary-distinguisher.

While they give a Fake algorithm, their Fake algorithm syntactically differs from ours: It directly
produces a complete transcript and session key. Semantically this is equivalent for the use within our
ChallPassive oracle. They do not use auxiliary info.

All in all, to capture the idea of their definition we set OA = {ChallPassive}, OF = {SK}, OD =
{SKs}, and AuxPrep = ⊥, where the SK oracle only responds to queries for the secret keys of the initiator
Bob.

A.6 HP-deniability [YZ13]

HP-deniability (short for honest-player-deniability) [YZ13, Definition 6.1] is a simulation-based definition
that targets passive adversaries and exposes “pre-computed and stored session-states” to the distinguisher.
In [YZ13] the authors stress that this ephemeral state is not necessarily equivalent to the random coins
used for the session. We observe that some protocols, e.g. X3DH and PQXDH, instruct parties to delete

38

their ephemeral secrets after use. Hence, it is not generally obvious which information should be included
in this ephemeral session state, but appears to be protocol-specific.

All in all, to capture the idea of their definition we set OA = {ChallPassive}, OF = ∅, OD = ∅, and
AuxPrep = ⊥. Additionally, we need an extra game variable to save the ephemeral session state in: It is
initialized in line 1 of Figure 2, populated in line 100 at the end of the ChallPassive oracle in Figure 8,
and is given to the distinguisher in line 7 of Figure 2.

A.7 DENY false and DENY true [CHDN+24]

The DENY false notion adapts the idea of deniability [BFG+22, BFG+21] to the formalization from
[CHDN+24]. Similarly, it is another game-based notion of 1-out-of-2 deniability against semi-honest ad-
versaries in the big brother model. The DENY true notion extends DENY false by additionally giving the
adversary-distinguisher access to the responder’s state. They remark that the DENY false notion intuitively
models the responder trying to frame the initiator, and the DENY true notion adds that the responder, who
frames the initiator, cooperates with the judge by handing over his or her ephemeral state after the pro-
tocol run. As for HP-deniability [YZ13], we remark that some protocols, e.g. X3DH and PQXDH, require
users to delete ephemeral data after completing the protocol run. Hence, it appears that the ephemeral
session state needs to be defined and included on a per-protocol basis. They do not use auxiliary info.

All in all, to capture the idea of their definition we set OA = {ChallPassive}, OF = {SK}, OD =
{SKs}, and AuxPrep = ⊥, where the SK oracle only responds to queries for the secret keys of the initiator
Bob.

A.8 Deniability [JS08]

Deniability [JS08] is a simulation-based definition that allows adversarial corruptions. Note that adversary,
simulator, and distinguisher all learn the corrupted secret keys. Hence, we model this non-adaptively by
encoding the adversary’s corruption strategy into AuxPrep, which then yields the corresponding secret keys
to all three algorithms A, Fake, and D. While their definition leaves it implicit, we assume they allow the
adversary to create keys maliciously.

To capture the idea of their definition we set OA = {Reg, Init, ChallInit, ChallResp}, OF = ∅,
OD = {aux}, and AuxPrep yields secret keys according to a given corruption strategy.

A.9 Deniability [Jia14]

Deniability [Jia14] is similar to the notion of [JS08] but additionally allows access to valid transcripts for
all three algorithms A, Fake, and D.

To capture the idea of their definition we set OA = {Reg, Init, ChallInit, ChallResp}, OF = ∅,
OD = {aux}, and AuxPrep yields secret keys according to a given corruption strategy and valid protocol
transcripts.

A.10 Deniability [JCL+22]

Deniability [JCL+22], follows the ideas of [Jia14]. Additionally, they give the adversary access to a Reveal
oracle, which yields the session key. We do not need this extra oracle since our model provides the session
key to the adversary and distinguisher directly.

We can capture the idea of their definition as for [Jia14].

39

ChallPassive(U, V, infocreate, µ⃗):

88 πU .oid← U ; πU .pid← V

89 πV .oid← V ; πV .pid← U

90 πU .role← initiator; πV .role← responder
91 m1 ← (create, infocreate)
92 (µ1, . . . , µnm)← µ⃗

93 for i ∈ [1, 3, . . . , nm − 1] //until nm if nm is odd

94 if b = 0
95 (πU , mi+1)←$ Run(skU , p⃗k, πU , mi, µi)
96 (πV , mi+2)←$ Run(skV , p⃗k, πV , mi+1, µi+1)
97 else
98 (πU , mi+1)←$ FakeOF (p⃗k, πU , mi, µi, aux)
99 (πU , mi+2)←$ FakeOF (p⃗k, πU , mi+1, µi+1, aux) //all Fake invocations share a state

100 Q[πU]← (mi)nm
i=1; K[πU]← πU .K

101 return (Q[πU], K[πU])

Figure 8: The challenge oracle for passive adversaries.

B Extending the model to passive adversaries
For the sake of completeness, we extend our model to passive adversaries by adding a ChallPassive
oracle, which the adversary may have access to via OA, given in Figure 8.

In consequence, we also need to adapt Definition 3.1 to allow ChallPassive ∈ OA. We obtain
deniability against passive adversaries by setting {ChallPassive} = OA, allowing at most qC queries to
the ChallPassive oracle. The ChallPassive limits the adversary to passively observing transcripts,
without the opportunity to actively participate in the protocol execution or learning a party’s secret keys.

It is easy to see that deniability against semi-honest adversaries implies deniability against passive
adversaries.

40

	Introduction
	Related Work
	(Non-)Interactive distinguisher
	Deniable Key Exchange
	Signal's initial handshake
	Deniability of Signal's initial handshake
	Deniable Secure Messaging

	Contributions

	Preliminaries
	Notation
	Signatures
	Diffie–Hellman Key Exchange
	Key Encapsulation Mechanisms (KEMs)
	Authenticated Encryption with Associated Data (AEAD)
	Key Exchange Protocols

	Our deniability model
	AuxPrep: Sampling auxiliary information
	O_A: capabilities of the adversary
	Initiator and receiver deniability
	Malicious adversaries
	Semi-honest Adversaries
	Combining different adversarial capabilities
	Adaptive Corruptions

	O_F: capabilities of the Fake algorithm
	Partial deniability (oracle (parameterized by x,y))
	1-out-of-2 or 1-out-of- deniability (SK oracle)

	O_D: capabilities of the distinguisher
	Big brother model
	Auxiliary info known to the distinguisher

	Comparability of deniability notions

	Deniability of Signal's initial handshake
	X3DH
	Obtaining the DH shared secrets
	Obtaining a signature on Bob's semi-static key
	Big Brother distinguishers
	Theorems for X3DH

	PQXDH
	Obtaining a signature on Bob's semi-static and ephemeral keys
	Obtaining the KEM shared secret
	Theorems for PQXDH

	Conclusion and Future Work
	References
	Comparing prior definitions to our model
	Concurrent and partial deniability CCS:DiRGenKra06
	Peer deniability and peer-and-time deniability EPRINT:CreFel11
	Peer deniability
	Peer-and-time deniability

	Deniability against malicious and semi-honest adversaries JC:HKKP22
	Outsider deniability ESORICS:DFGMMO13
	Deniability PKC:BFGJS22,EPRINT:BFGJS21
	HP-deniability CCS:YaoZha13
	DENYfalse and DENYtrue USENIX:CHDNRV24
	Deniability FC:JiaSaf08
	Deniability Jiang14
	Deniability JiangCLWX22

	Extending the model to passive adversaries

