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Abstract—TLS oracles allow a TLS client to offer selective
data provenance to an external (oracle) node such that the
oracle node is ensured that the data is indeed coming from
a pre-defined TLS server. Typically, the client/user supplies
their credentials and reveals data in a zero-knowledge manner
to demonstrate certain information to oracles while ensuring
the privacy of the rest of the data. Conceptually, this is a
standard three-party secure computation between the TLS
server, TLS client (prover), and the oracle (verifier) node;
however, the key practical requirement for TLS oracles to
ensure that data provenance process remains transparent to
the TLS server. Recent TLS oracle protocols such as DECO
enforce the communication pattern of server-client-verifier and
utilize a novel three-party handshake process during TLS to
ensure data integrity against potential tempering by the client.
However, this approach comes with a significant performance
penalty on the client/prover and the verifier and raises the
question if it is possible to improve the performance by putting
the verifier (as a proxy) between the server and the client
such that the correct TLS transcript is always available to the
verifier.

This work offers both positive and negative answers to
this oracle proxy question: We first formalize the oracle proxy
notion that allows the verifier to directly proxy client-server
TLS communication, without entering a three-party handshake
or interfering with the connection in any way. We then show
that for common TLS-based higher-level protocols such as
HTTPS, data integrity to the verifier proxy is ensured by
the variable padding built into the HTTP protocol semantics.
On the other hand, if a TLS-based protocol comes without
variable padding, we demonstrate that data integrity cannot
be guaranteed. In this context, we then study the case where
the TLS response is pre-determined and cannot be tampered
with during the connection. We propose the concept of context
unforgeability and show allows overcoming the impossibility.
We further show that ChaCha20-Poly1305 satisfies the concept
while AES-GCM does not under the standard model.

1. Introduction

Transport Layer Security (TLS) [1], [2] has been widely
used to establish a secure communication channel between
a client and a server, enabling secure data access (we refer

to such data as TLS-protected data). However, TLS relies on
symmetric encryption and both the client and the server can
obtain the key. This enables the client to build a ciphertext
for any data and falsely claim that it comes from the server.
Thus, TLS does not allow the client to prove the provenance
and integrity of the data to third parties, limiting the propa-
gation of data. In particular, many decentralized applications
on the blockchain need to access the TLS-protected data as
third parties. Due to the TLS limitation, we cannot rely on
each client to feed data into the blockchain. Therefore, a
type of service called Oracle [3], [4] was proposed to feed
TLS-protected data into blockchains while guaranteeing the
provenance and integrity of data.

A straightforward way to implement the service is to
allow a verifier to act as the client to access data from
the server. Unfortunately, this approach compromises the
client’s privacy, as the verifier can obtain additional private
information beyond the data. Therefore, a desirable way is
to allow the verifier to participate in the communication
between the client and the server to prevent the client
from modifying the data, but without obtaining additional
private information. In addition, some applications may also
not necessarily require the complete data but only need to
verify if the data meets a predetermined predicate. In such
cases, to maximize privacy protection, the client can use
zero-knowledge proofs to prove that the data satisfies the
predicate without disclosing the data to the verifier.

In Figure 1, we give a use case to explain how the
oracle works: There is an application on the blockchain
that activates a rental contract when ‘Alice’s balance in
bank A exceeds $50.’ Alice uses her password to request
the balance $100 from bank A, through a TLS connection.
The verifier participates in the TLS communication without
learning request and response messages but can check if
Alice’s balance in bank A exceeds $50. If so, the verifier
submits the confirmation information to the blockchain, and
then the rental contract is activated.

As bringing clients’ private data securely and selectively
to blockchains is a problem of immense interest, a few
academic [5], [6], [7], [8], [9], [10] and industrial [11], [12]
efforts in this direction are already available. Earlier works
typically involve modifying the TLS server-side code [7]
or utilizing trusted hardware [6]. While the approaches
remain an interesting theoretical probability, typical servers
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Bank A


Alice

TLS

{Req, Username: Alice, Password: 4523}

{Res, Username: Alice, Balance: $100}



Verifier



Blockchain

I confirm that Alice’s balance from Bank A exceeds $50.

Figure 1: A use-case example. Alice queries Bank A about
her balance via TLS. The verifier can attest to the blockchain
about Alice’s balance in bank A, by intervening in the TLS
communication.
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(a) 2PC-based TLS Oracle [5], [9], [10], [13].
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(b) Proxy-but-2PC based TLS Oracle [5], [8].

Figure 2: Design frameworks in the previous works. No
matter who sends the ciphertext to the server, a 2PC protocol
is used to prevent the client from forging a message.

are reluctant to use modified TLS, and the usage of trusted
hardware introduces additional trusted entities. Hence both
approaches see limited use.
(Proxy-but-)2PC-based TLS Oracle. In a seminal work,
Zhang et al. [5] proposed DECO, which overcomes this
practicality barrier without making any changes to the TLS
server-side code and using any trusted hardware. The core
reason why the client in TLS can forge the TLS data is that
the symmetric encryption and authentication key generated
in the TLS session is shared by the client and the server
(please see Section 2 for more details). DECO [5], essen-
tially splits the role of the client in typical TLS into two
parties, as shown in Figure 2a, so that the client cannot
learn the entire symmetric encryption and authentication
key. In particular, the client and the verifier collaboratively
communicate with the server using secure two-party com-
putation (2PC). Moreover, while the client and the verifier
collaborate, it is only the client that communicates with

the server as in TLS. We call this design as ‘2PC-based
TLS oracle’ protocol. Later, the subsequent works [9], [10],
[13] also follow the collaboration model but give improved
performance.

In addition, Zhang et al. [5] also discussed another
design framework, where the verifier acts as a proxy to
communicate with the sender but the verifier still needs
to perform 2PC with the client, as shown in Figure 2b.
We call this design as ‘proxy-but-2PC based TLS oracle’
protocol. Later, Lauinger et al. [8] proposed a solution in this
model that utilizes a garble-then-prove scheme to improve
efficiency.

We can see that the previous works all rely on heavy
2PC between the client and the verifier. A natural question
is ‘Is there a secure TLS oracle solution that can totally
avoid heavy 2PC between the client and the verifier?’
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Figure 3: Proxy-based TLS Oracle (this work). The client
and the server interact with each other as in TLS, but the
messages between them are forwarded by the verifier.

Proxy-based TLS Oracle. To answer this question, in this
work, we consider a pure proxy-based TLS oracle as shown
in Figure 3, where the verifier only needs to forward the
messages generated by the client and the server, without ad-
ditionally introducing any heavy computation, which directly
implies better performance. In addition, compared with the
(proxy-but-)2PC-based TLS oracles, the proxy-based TLS
oracle enables better compatibility across different TLS
versions, as the verifier only needs to forward messages.
Moreover, the proxy-based TLS oracle not only does not
modify server-side code but also achieves client-side non-
modification.

Given that Authenticated Encryption with Associated
Data (AEAD) is the core building block of TLS, we in-
vestigate the security of two AEAD schemes, AES-GCM
and ChaCha20-Poly1305, which are overwhelmingly used
in TLS 1.2/1.3 with an adoption rate of over 99% [14].
Based on the security of AEAD, we systematically conduct
an investigation that outlines the boundary between security
and insecurity of the proxy-based TLS oracle protocol.
Surprisingly, we find that the proxy-based TLS oracle can
be securely used in two prevalent situations, HTTPS (see
Section 6) and prefixed relevant data (see Section 7).

1.1. Contributions

Formalization. In Section 4, we provide an oracle ideal
functionality and formalize the notion of the above proxy-
based TLS oracle protocol that allows the verifier to directly
proxy client-server TLS communication. The definitions
allow us to analyze its security in this paper but can also
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be applied to different versions of TLS and a comparison
between oracle protocols. We consider them to be of inde-
pendent interest.
Impossibility. Based on the above definitions, we also prove
that if the underlying AEAD scheme satisfies key commit-
ment, the proxy-based TLS oracle protocol can securely re-
alize the oracle ideal functionality in Section 4. On the other
hand, in Section 5, we find that without the key commitment,
we can construct a server that allows an adversarial client
to forge a message to the verifier.

Therefore, we know that the key commitment is sufficient
and necessary to guarantee the security of the proxy-based
TLS oracle protocol. However, the AEAD schemes currently
used in TLS do not satisfy the key commitment, according
to previous research [15], [16], which means that the proxy-
based TLS oracle protocol is not secure without specific
constraints.
Possibility. Fortunately, we observe that the real-world ap-
plication scenarios provide some practical constraints such
that the proxy-based TLS oracle can be used securely.
HTTPS. In Section 6, we define a new notion called ‘variable
padding’ in Definition 6.1, and prove that when the plaintext
contains a sufficiently long variable padding, AES-GCM
and ChaCha20-Poly1305 satisfy the key commitment, which
means that the proxy-based TLS oracle is secure in this
case. Notably, we show that the TLS-based HTTPS protocol,
which is used in over 85% of all web pages [17], contains a
sufficiently long variable padding, and thus the proxy-based
TLS oracle protocol can be securely used on it.
Prefixed relevant data. In Section 7, we focus on the con-
straint where the response plaintext is prefixed and not
changeable by the client once the connection is established.
For example, in practice, the client cannot arbitrarily modify
his age, salary, social security number, etc. To analyze
the security in this case, we propose a new cryptographic
property, context unforgeability, and prove that AES-GCM
is not secure yet, ChaCha20-Poly1305 is secure with respect
to context unforgeability. In addition, we prove that as long
as the TLS uses a context-unforgeable AEAD scheme, the
proxy-based TLS oracle is secure in this case.
New AEAD Security Property. Besides being used for
analyzing the security of the proxy-based TLS oracle, the
newly proposed context unforgeability precisely bridges the
gap in the security analysis of AEAD, and thus may be of
independent interest.

2. Technical Overview

In practice, a client 𝒫 can retrieve a message 𝑚 from
a server 𝒲 via TLS. An Oracle protocol aims to allow the
client 𝒫 to prove to a verifier 𝒱 that the message 𝑚 is indeed
obtained from the server 𝒲 and satisfies a predetermined
requirement (e.g., age is greater than 18). In this work,
we assume that server 𝒲 is always honest, while client
𝒫 and verifier 𝒱 can be malicious. The key idea of our
work is to use verifier 𝒱 as a proxy to prevent client 𝒫

from tampering with the message 𝑚. Therefore, we also
assume that verifier 𝒱 reliably connects to server 𝒲, i.e.,
verifier 𝒱 can ensure that she indeed connects with server 𝒲
and the communication messages cannot be tampered with
by others (including client 𝒫). The assumption has been
accepted by other proxy-setting systems [18]. Based on the
above assumptions, we design a proxy-based oracle protocol
as illustrated in Figure 4 and obtain a series of theoretical
results summarized in Figure 5. Next, we will detail how
we obtain these results.

Server 𝒲 Verifier 𝒱 Client 𝒫

Two-party Handshake Phase

Transcript 𝒯 Transcript 𝒯

Record Phase
Request 𝑐𝑞 Request 𝑐𝑞

Response 𝑐𝑟 Response 𝑐𝑟

key/nonce key/nonce

Proof 𝜋

Figure 4: Our Proxy-based Oracle Protocol. The server and
the client perform as in TLS, but the messages are forwarded
by the verifier. Finally, the client sends a proof 𝜋 to the
verifier to convince her that there is a message 𝑚 that is
decrypted from 𝑐𝑟 and satisfies a predetermined requirement.
The detailed specification is defined in ΠProxy (see Figure 9).

TLS relies on authenticated encryption with associated
data (AEAD), a symmetric-key primitive, to achieve in-
tegrity and confidentiality of exchanged messages. As shown
in Figure 4 (ignoring the verifier and the proof 𝜋), TLS
consists of a two-party handshake phase and a record phase.
After the two-party handshake phase, the server 𝒲 and the
client 𝒫 both obtain a key/nonce pair 1 of AEAD to encrypt
and decrypt the server’s messages. Then, in the record phase,
the server 𝒲 and the client 𝒫 communicate with each other
using the key/nonce pair generated by the handshake phase.
We can see that the client 𝒫 also holds the key/nonce pair of
AEAD. Therefore, the client 𝒫 can use the key/nonce pair to
encrypt another distinct message 𝑚′ to generate a ciphertext
𝑐′

𝑟, and falsely claim that 𝑐′
𝑟 is retrieved from server 𝒲. Note

that here we discuss the original TLS without the verifier as
a proxy.

To address the problem, previous works [5], [8], [9],
[10], [13] prevent client 𝒫 from obtaining the whole key by
splitting the key into two parts, each of which is obtained
by client 𝒫 and verifier 𝒱 respectively. Specifically, client 𝒫
and verifier 𝒱 collectively fulfill the role of the client in TLS

1. Here, we ignore the other key/nonce pair for encrypting and decrypting
the client’s messages, as this work mainly focuses on preventing the client
from forging the server’s messages.
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Proxy-based TLS Oracle Protocol (ΠProxy, Figure 9)
(Section 4)

Key commitment is necessary and sufficient to achieve ℱStd
Oracle. (Section 5)

(However, the AEADs in TLS do not satisfy key commitment. )

Key commitment is satisfied.
(Section 6)

ℱVP
Oracle can be securely realized.

(Section 6)

Context unforgeability is satisfied.
(Section 7)

ℱFix
Oracle can be securely realized.

(Section 7)

Without any restrictions (ℱStd
Oracle, Figure 8)

Used on application-layer protocols

With variably padded messages
(Definition 6.1) e.g., HTTPS

Without variably padded messages
e.g., Facebook Messager

Related data is fixed during query.
(ℱFix

Oracle, Figure 14)
Without any other restrictions.

(ℱVP
Oracle, Figure 8)

imply

Figure 5: Main contributions. We first give a proxy-based
TLS oracle protocol ΠProxy and a functionality ℱStd

Oracle
without any restrictions. Then, we observe that key com-
mitment is necessary and sufficient to achieve ℱStd

Oracle;
however, the AEADs used in TLS are not key committing
in general. Fortunately, real-world applications come with
different restrictions on the plaintext response: 1) Plaintexts
are variably padded (e.g., HTTPS), and we denote the func-
tionality as ℱVP

Oracle. 2) Relevant data is immutable during
the query (e.g., age), and we denote the functionality as
ℱFix

Oracle. When applying the AEADs in TLS to variably
padded messages when the padding is known by the verifier
in advance, we show that key commitment is satisfied, and
thus ℱVP

Oracle can be achieved. In addition, we prove that
regardless of whether the plaintexts are variably padded
or not, ChaCha20-Poly1305 in TLS satisfy a newly pro-
posed property, context unforgeability, which is sufficient to
achieve ℱFix

Oracle.

through a secure two-party computation (2PC) protocol.
However, compared with the original TLS protocol, intro-
ducing a 2PC protocol incurs significant extra costs, which
raises a question: Is it possible to avoid 2PC protocols?

Preliminary Attempt. We observe that in the attack above,
client 𝒫 uses the AEAD key/nonce pair to generate a new
ciphertext 𝑐′

𝑟 ≠ 𝑐𝑟, where 𝑐𝑟 is the original ciphertext
from server 𝒲. The essence of previous works [5], [8],
[9], [10], [13] is to ensure that client 𝒫 cannot obtain the
complete AEAD key before he commits the message. Our
preliminary attempt is to ensure that verifier 𝒱 can directly
obtain the ciphertext 𝑐𝑟 from server 𝒲, such that verifier 𝒱
can recognize any modifications on the ciphertext 𝑐𝑟. To this
end, we treat verifier 𝒱 as a proxy that forwards and records
the messages between server 𝒲 and client 𝒫, as shown in

Figure 4. In this way, the ciphertext 𝑐𝑟 cannot be modified
by client 𝒫. Moreover, verifier 𝒱 records the transcript 𝒯
generated during the handshake phase. Therefore, client 𝒫
can prove the following three statements:

1. He holds a key/nonce pair (𝑘, 𝑛) that can decrypt 𝑐𝑟 to
a message 𝑚;

2. The message 𝑚 satisfies a preset requirement;
3. The key/nonce pair (𝑘, 𝑛) is derived from the transcript

𝒯.
If the message 𝑚 does not involve privacy, client 𝒫 can

directly open the key/nonce pair (𝑘, 𝑛) and the message 𝑚 to
verifier 𝒱. However, if client 𝒫 intends to hide the message
𝑚, he needs to leverage a zero-knowledge proof scheme to
complete the proof, which still also results in high additional
costs.

Obviously, proving the first two statements is necessary.
However, an oracle task itself does not include proving
the third statement. Moreover, the hash function used in
TLS 1.2/1.3 to derive key/nonce is SHA256, which is not
SNARK (Succinct Non-interactive Argument Knowledge)-
friendly [19]. Therefore, to further reduce extra overhead,
we delve deeper into the potential of eliminating the proof
that the key/nonce pair is derived from the transcript 𝒯 (i.e.,
the above statement 3).
Eliminating the Proof of Key Origin. As shown by
the previous research [15], [16], the AEAD schemes used
by TLS do not satisfy the key commitment property
(see Lemma 3.1); an adversary can efficiently construct a
ciphertext 𝑐 and two distinct key/nonce pairs (𝑘1, 𝑛1) and
(𝑘2, 𝑛2), such that 𝑐 can be decrypted to two distinct mes-
sages 𝑚1 and 𝑚2 by using (𝑘1, 𝑛1) and (𝑘2, 𝑛2) respectively.
At first glance, in our proxy-based oracle protocol, client 𝒫
cannot launch the above attack, since client 𝒫 seems unable
to construct the ciphertext sent by server 𝒲. However, we
observe this is not true.

More specifically, client 𝒫 can obtain the key/nonce
pair (𝑘, 𝑛) once completing the handshake phase. Then,
client 𝒫 can construct a ciphertext 𝑐 such that it can be
decrypted into 𝑚 and 𝑚′ under key/nonce pair (𝑘, 𝑛) and
another key/nonce pair (𝑘′, 𝑛′) respectively. Moreover, 𝑚′

meets the predetermined requirement, while 𝑚 does not.
Subsequently, the client can change the record in server
𝒲 to 𝑚 through external interactions, so that server 𝒲
produces and sends the ciphertext 𝑐. Finally, client 𝒫 can use
(𝑘′, 𝑛′) to convince verifier 𝒱 that 𝑚′ satisfying the preset
requirement is the corresponding plaintext. For example, if
the message is about bank balance, client 𝒫 can adjust his
balance to 𝑚 = 10, and then he can prove that he has balance
𝑚′ = 1000 by using (𝑘′, 𝑛′). Please see Section 5 for more
details.
With Variable Padding. According to the above analysis,
we know that key commitment is necessary for a secure
proxy-based oracle protocol without proving that the key is
derived from a given transcript. Fortunately, we observe that
if the plaintext is well-formatted as seen in HTTPS (or more
formally, has a variable padding), the adversary cannot break
the key commitment. Intuitively, even if the adversary can
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generate (𝑐, 𝑘, 𝑛, 𝑚) and (𝑐, 𝑘′, 𝑛′, 𝑚′), the probability that
𝑚 and 𝑚′ are both well-formatted is negligible (please see
Section 6 for more details).

In practice, HTTPS (using TLS on the application layer
protocol HTTP) satisfies the above condition, since HTTP
headers are variably padded [20]. Therefore, our proxy-
based oracle protocol without proving the key origin and
2PC protocols is secure with HTTPS. While HTTPS is one
of the most popular protocols and thus the current results
are already sufficient to address a wide range of application
scenarios, we also discuss if our proxy-based oracle protocol
can be securely used for other protocols whose messages are
not variably padded.
Without Variable Padding. In the above attack, we assume
that client 𝒫 can arbitrarily modify the record in server 𝒲.
However, in some scenarios (e.g., ages, stock prices and
insurance numbers), client 𝒫 is not able to perform modifi-
cations. In these cases, the AEAD used in TLS only needs
to satisfy a weaker security property: given a ciphertext
𝑐, a key/nonce pair (𝑘, 𝑛) and the corresponding message
𝑚, the adversary cannot construct another key/nonce pair
(𝑘′, 𝑛′) such that 𝑐 can be decrypted to another message
𝑚′. In Section 7, we formally define this security prop-
erty as context unforgeability (CFY-security) and systemat-
ically investigate if the AEADs (including AES-GCM and
ChaCha20-Poly1305) used in TLS satisfy this new secu-
rity property. Specifically, we rigorously prove that AES-
GCM does not satisfy the context unforgeability, whereas
ChaCha20-Poly1305 does.
Hierarchical Security of AEAD. Besides designing an
efficient proxy-based oracle protocol, our newly proposed
security property, context unforgeability, bridges the gap
in the security analysis of AEAD, as shown in Figure 6.
Interestingly, combined with the previous properties, con-
text commitment [15], [21], [22] 2 and context undiscov-
erability [22], the hierarchical security of AEAD precisely
corresponds to the hierarchical security of hash functions.

3. Preliminary

We briefly outline the relevant background knowledge
on TLS, the definition and security properties of Authenti-
cated Encryption with Associated Data (AEAD), and Non-
interactive Zero-Knowledge Proof (NIZK).

3.1. TLS

Transport Layer Security (TLS) is a family of commu-
nication protocols designed to provide end-to-end security
over a computer network. Its most prominent use remains to
be HTTPS, the web-browsing protocol that sees day-to-day
use. TLS 1.3 is the latest protocol in the TLS family, defined
in August 2018 [1].

2. The works [15], [21] first proposed the key commitment problem.
Then Bellare et al. [23] extended to committing nonce and associated data,
and Menda et al. [22] summarized them as context commitment.

Collision Resistance

Hash

Second-preimage Resistance

Preimage Resistance

Context Commitment [15], [21], [22]

AEAD

Context Unforgeability (Our Work)

Context Undiscoverability [22]

Figure 6: Hierarchical Security of AEAD. Both hash and
AEAD can be abstracted as a map: 𝑥 → 𝑦; in AEAD,
𝑥 includes key 𝑘, nonce 𝑛, and associated data 𝐴, and 𝑦
refers to ciphertext 𝑐. The first level (collision resistance
and context commitment) refers to the fact that an adversary
cannot efficiently compute 𝑦 and two different 𝑥 and 𝑥′ such
that 𝑥 and 𝑥′ map to 𝑦. The second level (second-preimage
resistance and context unforgeability) refers to the fact that
given 𝑥 and 𝑦 where 𝑥 → 𝑦, an adversary cannot efficiently
compute 𝑥′ ≠ 𝑥 such that 𝑥′ also maps to 𝑦. The third level
(preimage resistance and context undiscoverability) refers to
that given 𝑦, an adversary cannot efficiently compute 𝑥 such
that 𝑥 maps to 𝑦.

There are two main protocols in TLS. The handshake
protocol negotiates a symmetric key to be used in the record
protocol. The record protocol manages the transmission of
messages, using an authenticated encryption with associated
data (AEAD) cipher suite to ensure confidentiality and
integrity. An overview of TLS is available in Figure 7.
Authenticated Encryption with Associated Data. Nonce-
based authenticated encryption with associated data (AEAD)
schemes [24] are employed in TLS to ensure data confi-
dentiality and integrity. An AEAD scheme consists of the
following four algorithms:

• AEAD.Setup(1𝜆): takes a security parameter 𝜆, and
outputs a public parameter 𝑝𝑝 indicating the key space
𝒦, the nonce space 𝒩, the associated-data space 𝒜𝒟,
the plaintext space ℳ and the ciphertext space 𝒞;

• AEAD.Gen(𝑝𝑝): takes a public parameter 𝑝𝑝, and out-
puts a secret key 𝑘 sampled from 𝒦;

• AEAD.Enc𝑘(𝑛, 𝑎, 𝑚): takes a secret key 𝑘, a nonce 𝑛 ∈
𝒩, an associated data 𝑎 ∈ 𝒜𝒟 and a message 𝑚 ∈ ℳ,
and outputs a ciphertext 𝑐 ∈ 𝒞;

• AEAD.Dec𝑘(𝑛, 𝑎, 𝑐): takes a secret key 𝑘, a nonce 𝑛 ∈
𝒩, an associated data 𝑎 ∈ 𝒜𝒟 and a ciphertext 𝑐 ∈ 𝒞,
and outputs a message 𝑚 ∈ ℳ or ⟂ to indicate an
invalid ciphertext.

Cipher Suites in TLS. TLS supports a handful number of
cipher suites [1], with AES-GCM and ChaCha20-Poly1305
being the most popular and enabled in OpenSSL by de-
fault [25]. Notably, all cipher suites in TLS adopt a block-
based construction — the plaintext and the associated data

3. We note that there is a difference in the naming convention between
the TLS specification and relevant AEAD literature. The IV of TLS fed into
the AEAD scheme is more commonly referred to as a nonce in relevant
literature. We shall hence refer to it as a nonce in this paper, except in
scenarios relevant to the TLS specification.
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Server 𝒲 Client 𝒫

Diffie-Hellman Handshake MSMS

(CATS0, SATS0)(CATS0, SATS0)

CWK0 = 𝐻(key, CATS0)
CWIV0 = 𝐻(iv, CATS0)
SWK0 = 𝐻(key, SATS0)
SWIV0 = 𝐻(iv, SATS0)

𝑐1 = EncCWK0
(CWIV0 + 𝑠, Req)

Req

𝑐2 = EncSWK0
(SWIV0 + 𝑠, Res)

Res
⋯

Key update (TLS 1.3)

(CATS1, SATS1)(CATS1, SATS1)

Figure 7: An overview of a TLS session between a client
and a server. After establishing a master secret MS with
a Diffie-Hellman handshake in the handshake protocol,
the parties derive the 0-th client/server application secret
(CATS0, SATS0). They then derive the client write key
CWK, the client write IV 3CWIV, the server write key
SWK, and the server write IV SWIV. The values are used in
the communication, together with the sequence number 𝑠 to
ensure the uniqueness of each IV. Additionally, in TLS 1.3,
each party can also trigger a key update event that refreshes
the application secret.

are packed into a series of fixed-size blocks (𝑝1, 𝑝2, … , 𝑝𝑛)
and (𝑎1, 𝑎2, … , 𝑎𝑚), which is then processed by the algo-
rithm to produce the ciphertext.
AES-GCM. AES-GCM is the most widely used cipher suite
in TLS and the only cipher suite that must be implemented
by every application under the specification. In AES-GCM,
all the computation is done over the field GF(2128). The
ciphertext is obtained by

𝑐𝑖 = 𝑝𝑖 + 𝐸𝑘(𝑛 + 𝑖),

where 𝐸 is the AES block cipher.
AES-GCM also ensures authenticity by using an authen-

tication tag. The tag is computed by

𝑡 = 𝐸𝑘(𝑛) +
𝑚+𝑛+1

∑
𝑖=1

𝑠𝑖𝐸𝑘(0)𝑚+𝑛+2−𝑖.

where 𝑠 = (𝑎, 𝑐, 𝑚‖𝑛) is a concatenation of 𝑎, 𝑐 and their
length. For further information, we refer the reader to the
specification for clarity [26].
ChaCha20-Poly1305. ChaCha20-Poly1305 is an alternative
to AES-GCM. In ChaCha20-Poly1305, encryption is done
similarly to AES-GCM:

𝑐𝑖 = 𝑝𝑖 + 𝐻𝑘(𝑛 + 𝑖),

where 𝐻 is the ChaCha20 stream cipher.

However, the authentication tag computation in
ChaCha20 is different from AES-GCM due to the
usage of Poly1305. First, two 128-bit variables
(𝑟, 𝑠) = 𝐻𝑘(𝑛)[0 ∶ 256] are sampled from the stream
cipher, where 𝑣[𝑖 ∶ 𝑗] means the substring of 𝑣 starting at 𝑖
(0-based) with length (𝑗 − 𝑖). Then, the authentication tag
is computed by

𝑡 = 𝑠 +
𝑚+𝑛+1

∑
𝑖=1

𝑠𝑖𝑟𝑚+𝑛+2−𝑖,

where 𝑠 = (𝑎, 𝑐, 𝑚‖𝑛‖08) is the concatenation as in AES-
GCM. The computation of 𝑡 is done over GF(2130 − 5),
then truncated to 128 bits. For details, we refer the reader
to the RFC specification [27].
Key Update. TLS 1.3, the latest TLS version, also supports
an operation known as a key update. The operation allows
any party to refresh the secret (i.e., CATS𝑖 and/or SATS𝑖
in Figure 7) used on either or both sides. The new secret
is generated based on a hash of the old secret, and the new
keys and IVs are derived from the new secrets based on the
same rule as shown in Figure 7.

3.2. Context Attacks of AEAD

In the proxying oracle protocol, we need to discuss the
possibility that an adversarial prover deceives the verifier
by providing a symmetric key that does not correspond to
the one in the handshake yet still decrypts the ciphertext.
This corresponds to the concept of context discovery and
commitment attacks, first summarized by Menda et al. [22].
Here we outline a couple of specific definitions that will be
useful in our cases. We use the dagger symbol † to denote a
specification of the more general case discussed by Menda
et al.
Context Discovery Attack. A context discovery (CDY)
attack refers to the adversary’s capability to come up with
some part of the context (i.e. a key and/or a nonce) that
decrypts the given ciphertext without error, although not
necessarily to the original plaintext. Formally, it is defined
as:

Definition 3.1 (Context Discovery). Fix some AEAD pa-
rameter 𝑝𝑝 and a corresponding AEAD oracle Π. The game
CDY† is defined as:

1) The challenger samples a random ciphertext 𝑐 from
some ciphertext space and its corresponding decryption
context (𝑘, 𝑛, 𝑎).

2) The challenger sends (𝑐, 𝑎) to some adversary 𝒜.
3) The adversary wins if it outputs a valid context

(𝑘′, 𝑛′, 𝑎) that decrypts 𝑐 successfully.
The adversary’s 𝑞-advantage Δ𝒜

CDY† is defined as the prob-
ability it wins under 𝑞 queries to the AEAD oracle Π.

Context Commitment Attack. A context commitment
(CMT) attack refers to the adversary’s capability to come
up with some context (e.g. ciphertext) and provide two
interpretations of it. Formally, the game is defined as:
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Definition 3.2 (Context Commitment). Fix some AEAD
parameter 𝑝𝑝 and a corresponding AEAD oracle Π. The
game CMT† is defined as:

1) The challenger samples and sends (𝑘, 𝑛) to some ad-
versary 𝒜.

2) The adversary wins if it outputs a ciphertext 𝑐 and
two valid contexts (𝑘, 𝑛, 𝑎) and (𝑘′, 𝑛′, 𝑎) with (𝑘, 𝑛) ≠
(𝑘′, 𝑛′) that decrypts 𝑐 successfully.

The adversary’s 𝑞-advantage Δ𝒜
CMT† is defined as the prob-

ability it wins under 𝑞 queries to the AEAD oracle Π.

Rationale for the Definition. As Menda et al. [22] have
pointed out, there exist many variations of commitment
attacks with different limitations on the key, nonce and
associated data. Here we observe that in TLS the verifier
cannot access the key and the nonce but can access the
associated data. Therefore, the adversary (i.e., client 𝒫) can
only manipulate the key and the nonce. Based on the fact,
we pick the above definition that matches our scenario.
Nevertheless, we observe that our definition of CDY and
CMT is a specification of the granular security framework
proposed by Menda et al., and we defer the discussion of
the general abstraction to Appendix A.
Relationship between CMT and CDY. During the discus-
sion of the relationship between CMT and CDY, Menda
et al. proved that CMT security implies CDY security,
assuming that there is a non-negligible probability that a
ciphertext can be decrypted under two different contexts
(known as context compression). They also make an analogy
that CDY is to CMT as a preimage attack is to a collision
attack on a hash function. For a full discussion, we refer the
reader to their paper for details.

As we will see later in the paper, the required security
for AEAD in proxying is a little more lenient than CDY
but a little more strict than CMT. We will define an in-
between game, the context forgery (CFY) attack, and provide
a discussion of the relation between the three games in
Section 7.2.
Key Commitment Attacks. Notably, the two major cipher
suites in TLS, AES-GCM and ChaCha20-Poly1305, are not
key committing under this definition.

Lemma 3.1 (Key Commitment Attacks). For AEAD ∈
{𝐸-GCM, 𝐻-Poly1305}, where 𝐸 is an ideal cipher modeling
AES and 𝐻 is a random function modeling ChaCha20, there
exists an adversary that queries the oracle at most 𝑞 times
and wins CMT† with probability at least 2−32𝑞.

The concrete attack is well-studied and presented in
multiple works [15], [16], [22], which we invite the readers
to explore for more context.

3.3. Non-Interactive Zero-Knowledge Proof

Non-interactive zero-knowledge (NIZK) proof allows a
prover to demonstrate that something is true to a verifier
without him knowing any additional information. We follow
the formal definition of NIZK defined by Groth et al. [28]

as Functionality ℱNIZK. For a formal definition, we refer the
readers to Appendix B.

4. Proxy-based Oracle Protocol

4.1. Oracle Functionality

We define the oracle functionality ℱStd
Oracle in Figure 8.

The functionality ℱStd
Oracle consists of four phases. In the

handshake phase, client 𝒫 and server 𝒲 will reach an
agreement on whether to initiate the connection. At the same
time, the connection is only established successfully when
the verifier also agrees to establish it, which reflects that the
verifier acts as a proxy to relay messages between client 𝒫
and server 𝒲. This fact also applies to subsequent processes.
In the request phase, the functionality ℱStd

Oracle receives the
query 𝑄 from client 𝒫 and sends it to server 𝒲. In the
response phase, server 𝒲 obtains the response 𝑅 from the
environment ℰ, which reflects that the related data can be
modified. In the prove phase, the functionality ℱStd

Oracle sends
P(𝑅) to the verifier 𝒱.
Comparison with other works. Comparing our definition
of oracle functionality with other works [5], [8], we ob-
serve that the definition given by Zhang et al. allows the
verifier to assert the request of the client in addition to the
response. We consider this functionality redundant, since
in most HTTPS applications the server responds with a
well-formatted JSON string that allows the verifier to verify
the content without the request. For example, all of the 57
examples provided by reclaim, an industrial implementation
of the TLS oracle protocol [12], show that responses include
self-explanatory JSON strings that contain some form of
username/ID so that the verifier does not need the content
of the request to assert the validity of the proof.

Nevertheless, we recognize the possibility that especially
in home-brew protocols, there may exist a requirement to
assert the request of the client. We observe that it is possible
to achieve this assertion in TLS 1.3 with key update and
include a discussion on various methods in Appendix C.

4.2. Detailed Protocol

In Figure 9, we show the details of our proxy-based or-
acle protocol ΠProxy, which is parameterized by a predicate
P(⋅). There are a server 𝒲, a client 𝒫 and a verifier 𝒱.
The client 𝒫 aims to prove that P(𝑅) = 1 where 𝑅 is from
server 𝒲, to verifier 𝒱. To prevent client 𝒫 from altering
the data received from server 𝒲, we use verifier 𝒱 as a
proxy to relay the messages between server 𝒲 and client 𝒫.
Our protocol ΠProxy consists of four phases: (1) handshake
phase, (2) request phase, (3) response phase, and (4) prove
phase. Next, we detail the four phases, respectively.

In the handshake phase, client 𝒫 and server 𝒲 perform
the TLS handshake protocol, and the communication mes-
sages are relayed by verifier 𝒱. Then, the client and the
server can obtain the pair of initial client/server application
key (CATS0, SATS0), and derive the client write key/IV
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This functionality interacts with a server 𝒲, a client
𝒫 (namely, prover), a verifier 𝒱 and an adversary 𝒮.
There is a public predicate P(⋅).
Functionality:
Handshake phase:

• Upon receiving ⟨RequestHS, 𝑠𝑖𝑑⟩ from client 𝒫,
send ⟨RequestHS, 𝑠𝑖𝑑⟩ to adversary 𝒮 and verifier
𝒱;

• Upon receiving OK from adversary 𝒮 and verifier
𝒱, send ⟨RequestHS, 𝑠𝑖𝑑⟩ to server 𝒲;

• Upon receiving ⟨ResponseHS, 𝑠𝑖𝑑, OK⟩ from
server 𝒲, send ⟨ResponseHS, 𝑠𝑖𝑑, OK⟩ to
adversary 𝒮 and verifier 𝒱;

• Upon receiving OK from adversary 𝒮 and verifier
𝒱, send ⟨ResponseHS, 𝑠𝑖𝑑, OK⟩ to client 𝒫;

Request phase:
• Upon receiving ⟨Request, 𝑠𝑖𝑑, 𝑄⟩ from client 𝒫,

send ⟨𝑠𝑖𝑑, |𝑄|⟩ to adversary 𝒮;
• Upon receiving OK from adversary 𝒮 and verifier

𝒱, send ⟨𝑠𝑖𝑑, 𝑄⟩ to server 𝒲;
Response phase:

• Upon receiving ⟨Response, 𝑠𝑖𝑑, 𝑅⟩ from server 𝒲,
send ⟨𝑠𝑖𝑑, |𝑅|⟩ to adversary 𝒮 and verifier 𝒱;

• Upon receiving OK from adversary 𝒮 and verifier
𝒱, send ⟨𝑠𝑖𝑑, 𝑅⟩ to client 𝒫;

Prove phase:
• Upon receiving ⟨Prove, 𝑠𝑖𝑑⟩ from client 𝒫, send

⟨𝑠𝑖𝑑⟩ to adversary 𝒮;
• Upon receiving OK from adversary 𝒮, send

⟨𝑠𝑖𝑑, P(𝑅)⟩ to verifier 𝒱.

Functionality ℱStd
Oracle

Figure 8: Standard Oracle Functionality. The functionality
ℱVP

Oracle is the same except that the server’s response is
variable-padding (see Definition 6.1).

pair (CWK0, CWIV0) and the server write key/IV pair
(SWK0, SWIV0) (see Section 3.1 for more details). Later,
(CWK0, CWIV0) and (SWK0, SWIV0) would be updated,
so we use (CWK𝑖, CWIV𝑖) and (SWK𝑖, SWIV𝑖) to denote
the currently used key/IV pairs.

In the request and response phases, client 𝒫 and server
𝒲 still follow the specification of TLS to generate the
request ciphertext 𝑐 under (SWK𝑖, SWIV𝑖) and the response
ciphertext 𝑐′ under (CWK𝑖, CWIV𝑖). The verifier 𝒱 is re-
sponsible for relaying the two ciphertexts.

In the prove phase, the client 𝒫 invokes ℱNIZK to gen-
erate a proof 𝜋′ proving that he holds a client write key/IV
pair (CWK𝑖, CWIV𝑖) such that the response ciphertext 𝑐′

can be decrypted to 𝑚 using (CWK𝑖, CWIV𝑖) and P(�̃�) = 1
where �̃� is the pertinent message extracted from 𝑚. If the
proof 𝜋′ is valid, the verifier 𝒱 outputs 1, otherwise, outputs
0.

Protocol ΠProxy

There are a server 𝒲, a client 𝒫 (that is, prover), and a
verifier 𝒱, and server 𝒲 behaves the same as in TLS. A
predicate P(⋅) is to decide if the response from 𝒲
satisfies some conditions (e.g., age is greater than 18).
Handshake phase:

• The client 𝒫 and server 𝒲 run TLS handshake
protocol (see Section 3.1 for more details) via
verifier 𝒱 (i.e., the messages generated during
handshake protocol execution are forwarded by 𝒱)
to obtain the pair of initial client and server
application keys (CATS0, SATS0);

• The client 𝒫 and server 𝒲 both compute
(CWK0, CWIV0) ← TLS.Derive(client, CATS0)
and
(SWK0, SWIV0) ← TLS.Derive(server, SATS0);

Request phase:
• The client 𝒫 computes

𝑐 ← AEAD.EncSWK𝑖
(SWIV𝑖, 𝑎, 𝑄), where 𝑖 is

initialized as 0 and increases by 1 with each key
update (described below), and 𝑎 is the associated
data in TLS 1.3;

• The verifier 𝒱 forwards (𝑐, 𝑎) to server 𝒲;
Response phase:

• Get the query 𝑄 = AEAD.DecCWK𝑖
(CWIV𝑖, 𝑎, 𝑐),

and obtains the response 𝑅 according to the current
dataset;

• Generate 𝑐′ = AEAD.EncCWK𝑖
(CWIV𝑖, 𝑎, 𝑅) and

sends (𝑐′, 𝑎′) to verifier 𝒱;
• After receiving the response ciphertext (𝑐′, 𝑎′) from

server 𝒲, verifier 𝒱 forwards (𝑐′, 𝑎′) to client 𝒫;
• The client 𝒫 computes

𝑚 = AEAD.DecCWK𝑖
(CWIV𝑖, 𝑎′, 𝑐′), if 𝑚 ≠⟂, the

process continues, otherwise it aborts;
Prove phase:

• The client 𝒫 proves that the response satisfies the
conditions defined by the predicate P(⋅) as follows:
– The client 𝒫 generates a proof 𝜋′ by invoking

ℱNIZK (see Figure 15) to prove that he knows 𝑚,
�̃� and (CWK𝑖, CWIV𝑖) such that
𝑚 = AEAD.DecCWK𝑖

(CWIV𝑖, 𝑎′, 𝑐′) and �̃� is
extracted from 𝑚, and sends 𝜋′ to verifier 𝒱;

– If 𝜋′ is verified successfully, verifier 𝒱 outputs
1, otherwise 0.

Figure 9: Proxy-based Oracle Protocol

5. Protocol Vulnerability against Unrestricted
Setting

While it is tempting to reason the protocol’s security on
general TLS connections, unfortunately, as we confirm the
intuition of previous works [5], [8], the proxy-based oracle
protocol is not secure if we only consider the oracle with
unrestricted setting ℱStd

Oracle. We present our findings below.
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Theorem 5.1. When the underlying AEAD is vulnerable to
key-committing attacks (see Lemma 3.1), there exists some
server 𝒲 and predicate P(𝑚) such that the proxy-based
oracle protocol ΠProxy does not realize the functionality
ℱStd

Oracle.

Proof. Recall that in key-committing attack (see Defini-
tion 3.2), the adversary (i.e., the client 𝒫) can generate a
ciphertext 𝑐 and two contexts (𝑘, 𝑛, 𝑎) and (𝑘′, 𝑛′, 𝑎), where
(𝑘, 𝑛) ≠ (𝑘′, 𝑛′), such that the ciphertext 𝑐 can be suc-
cessfully decrypted under the two contexts. At first glance,
the key-committing attack is not applicable to our scenario,
as it is the server that generates the response ciphertext
𝑐. However, since the client 𝒫 can obtain (𝑘, 𝑛) after the
handshake phase and the associated data 𝑎 can be known
beforehand according to the specification of TLS [1], [2],
the client 𝒫 can manipulate the data stored by the server
through a side channel to build a ciphertext 𝑐. For instance,
the client’s balance in some bank can be manipulated by
withdrawing or saving funds. Specifically, we then construct
an attacker 𝒜 that does the following:

1) 𝒜 starts the protocol. It starts handshaking with the
server 𝒲 through verifier 𝒱 to obtain (𝑘, 𝑛).

2) 𝒜 builds a ciphertext 𝑐 and another context (𝑘′, 𝑛′) ≠
(𝑘, 𝑛), such that 𝑚 = Dec𝑘(𝑛, 𝑎, 𝑐) and 𝑚′ =
Dec𝑘′(𝑛′, 𝑎, 𝑐) through traditional key commitment at-
tacks (see Lemma 3.1).

3) 𝒜 modifies the server-side data to 𝑚 via side-channel
methods, such that the verifier 𝒱 receives and records
the response ciphertext 𝑐.

4) 𝒜 uses (𝑘′, 𝑛′) to finish the subsequent proof to con-
vince the verifier 𝒱 that 𝑚′ is the corresponding plain-
text.

A real-life attack scenario can also be found in the famous
Facebook attack [15]. In the Facebook attack, the attacker
constructs a specific ciphertext after the handshake, when it
knows the symmetric key that will be used in the commu-
nication. It has the server store this ciphertext, which it will
decrypt later using a different key other than the one in the
handshake.
Nevertheless, not all hope is lost. We observe that the attack
in the theorem exploited the fact that the AEAD scheme in
TLS is not key-committing. In fact, as we will see in the
theorem below, ΠProxy realizes ℱStd

Oracle if and only if the
underlying AEAD is key-committing.

Theorem 5.2. Given a secure AEAD with key commitment
security (see Lemma 3.1), protocol ΠProxy shown in Figure 9
can securely realize the oracle functionality ℱStd

Oracle defined
in Figure 8 in the ℱNIZK-hybrid model, against a static
active adversary who can corrupt client 𝒫 or verifier 𝒱.

Proof. We will show that for any adversary 𝒜, we can
construct a simulator 𝒮 that can simulate the view of the
corrupted client 𝒫 and the corrupted verifier 𝒱, such that
any PPT environment ℰ cannot distinguish the execution in
the ideal world from that in the real world.

Corrupted client 𝒫: We construct the simulator 𝒮𝐶 for the
corrupted client in Figure 10. Next, we prove that the
simulated execution in the ideal world is indistinguishable
from that in the real world.

Handshake phase:
• Upon receiving the handshake request from 𝒜,

sends ⟨RequestHS, 𝑠𝑖𝑑⟩ to ℱStd
Oracle, and sends OK

later;
• Upon receiving ⟨ResponseHS, 𝑠𝑖𝑑, OK⟩, simulates

server 𝒲 to generate the handshake transcript
while simulating verifier 𝒱 to forward the
transcript;

• Derive (CWK0, CWIV0) and (SWK0, SWIV0), as
the simulator simulates the secret information of
server 𝒲;

Request phase:
• Once receiving the request ciphertext (𝑐, 𝑎) from

𝒜, compute 𝑄 = AEAD.DecSWK𝑖
(SWIV𝑖, 𝑎, 𝑐);

• Send ⟨Response, 𝑠𝑖𝑑, 𝑄⟩ to ℱStd
Oracle and

subsequent responds OK to ℱStd
Oracle;

Response phase:
• Once receiving ⟨𝑠𝑖𝑑, 𝑅⟩ from ℱStd

Oracle, compute
𝑐′ = AEAD.EncCWK𝑖

(CWIV𝑖, 𝑎′, 𝑅) and sends
(𝑐′, 𝑎′) to adversary 𝒜;

Prove phase:
• If receiving 𝜋′ from adversary 𝒜, send OK to

ℱStd
Oracle.

Simulator 𝒮𝐶

Figure 10: Simulation for Corrupted Client.

• Hyb0: The execution in the real world.
• Hyb1: The same as Hyb0 except that the handshake

transcript is generated by the simulator 𝒮 rather than
by server 𝒲. This hybrid is perfectly indistinguishable
from Hyb0, as server 𝒲 in Hyb0 uses a uniformly
random secret to generate the handshake transcript.
Note that since the handshake transcript is changed, the
corresponding (CWK𝑖, CWIV𝑖, SWK𝑖, SWIV𝑖) is also
changed.

• Hyb2: The same as Hyb1 except that the simulator 𝒮
obtains the query 𝑄 from the ciphertext 𝑐 and then
uses 𝑄 to obtain the response 𝑅 from ℱStd

Oracle. This
hybrid is perfectly indistinguishable from Hyb1 due to
the correctness of AEAD.

• Hyb3: The same as Hyb2 except that the output of
verifier is changed to the output from ℱStd

Oracle. This
hybrid is computationally indistinguishable from Hyb2
due to the key commitment of AEAD.

The indistinguishability between Hyb0 ∼ Hyb2 is natural.
Next, we detail why Hyb3 and Hyb2 are indistinguishable.
Specifically, we show that if there is an adversary 𝒜 such
that environment ℰ can distinguish Hyb3 and Hyb2, we can
construct an environment ℰ′ to break the key commitment
of AEAD.
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Handshake phase:
• Once receiving ⟨RequestHS, 𝑠𝑖𝑑⟩ and

⟨ResponseHS, 𝑠𝑖𝑑, OK⟩ from ℱStd
Oracle, simulate the

handshake transcript generated by client 𝒫 server
𝒲;

• Derive (CWK0, CWIV0) and (SWK0, SWIV0), as
the simulator 𝒮 simulates the secret information of
server 𝒲 and client 𝒫;

Request phase:
• Once receiving ⟨𝑠𝑖𝑑, |𝑄|⟩ from ℱStd

Oracle, generates a
query 𝑄 of length |𝑄|, and encrypts it to
ciphertext 𝑐 under (CWK𝑖, CWIV𝑖), and then
sends 𝑐 to 𝒜;

• Once reading (𝑐, 𝑎) from the output tape of 𝒜,
sends OK to ℱStd

Oracle;
Response and prove phase:

• Once receiving ⟨𝑠𝑖𝑑, |𝑅|⟩ from ℱFix
Oracle, sends OK

to ℱStd
Oracle;

• Generate a ciphertext 𝑐′ according to |𝑅| and send
it to 𝒜, if read 𝑐′ from the output tape of 𝒜,
sends OK to ℱStd

Oracle in place of 𝒜;
• Once receiving ⟨𝑠𝑖𝑑⟩ from ℱStd

Oracle, send OK to
obtain P(𝑅);

• Rewind 𝒜 to the second step of this phase, and
then perform the following:
– Generates a message �̃� such that P(�̃�) = P(𝑅),

and then pads �̃� to 𝑚 of length |𝑅|;
– Encrypts 𝑚 to ciphertext 𝑐′ under

(SWK𝑖, SWIV𝑖) and sends 𝑐′ to 𝒜 to simulate
the response of server 𝒲;

– Use ((SWK𝑖, SWIV𝑖), 𝑚) as witness to generate
a proof 𝜋’ to simulate client 𝒫;

Simulator 𝒮𝑉

Figure 11: Simulation for Corrupted Verifier.

Assuming that the environment ℰ chooses a response 𝑅
such that P(𝑅) = 0 for server 𝒲, verifier 𝒱 in Hyb3 will
output 0 with probability 1. Therefore, when ℰ obtains 1
from verifier 𝒱, the environment ℰ learns that the execution
is in Hyb2. The environment ℰ′ runs a copy of ℰ and
simulates the simulator 𝒮 (internally running a copy of 𝒜)
and ℱStd

Oracle for ℰ. More specifically, when 𝒜 queries a
random oracle (used in handshake), ℰ′ simulates 𝒮 to output
randomnesses to simulate (CWK𝑖, CWIV𝑖, SWK𝑖, SWIV𝑖).
Then ℰ′ simulates ℱStd

Oracle to send ⟨𝑠𝑖𝑑, 𝑄⟩ to ℰ, and
obtains a response 𝑅 where P(𝑅) = 0. Then, ℰ′ simu-
lates 𝒮 to send (𝑐′, 𝑎′) to 𝒜. The environment ℰ’ also
needs to simulate ℱNIZK and receive the proving request
including the witness (𝑐′, 𝑅′, (SWK′

𝑖 , SWIV′
𝑖)), from 𝒜. If

𝑅 ≠ 𝑅′ and (SWK𝑖, SWIV𝑖) ≠ (SWK′
𝑖 , SWIV′

𝑖), ℰ′ uses
𝑐′, (𝑅′, (SWK′

𝑖 , SWIV′
𝑖)) and (𝑅, (SWK𝑖, SWIV𝑖)) to break

key commitment of AEAD.
Corrupted verifier: We construct the simulator 𝒮𝑉 for the
corrupted verifier in Figure 11. Next, we prove that the

simulated execution in the ideal world is indistinguishable
from that in the real world.

• Hyb0: The execution in the real world.
• Hyb1: The same as Hyb0 except that the handshake

transcript is generated by the simulator 𝒮 rather than
by server 𝒲 and client 𝒫. This hybrid is perfectly
indistinguishable from Hyb0, as server 𝒲 and client
𝒫 in Hyb0 use uniformly random secrets to gen-
erate the handshake transcript. Note that since the
handshake transcript is changed, the corresponding
(CWK𝑖, CWIV𝑖, SWK𝑖, SWIV𝑖) is also changed.

• Hyb2: The same as Hyb1 except that the query 𝑄
changes to the one chosen by the simulator. This hybrid
is computationally indistinguishable from Hyb1 due to
the CPA-security of AEAD.

• Hyb3: This hybrid is the same as Hyb2 except that
the messages 𝑚 and �̃� are generated by the simulator
𝒮 according to P(𝑅). The hybrid is computationally
indistinguishable from Hyb2 due to the CPA-security
of AEAD, and the completeness and zero-knowledge
property of ℱNIZK.

6. Variable Padding and HTTPS Server

The previous section shows that key commitment is neces-
sary and sufficient for a secure oracle protocol. However,
with all that being said, key committing is simply not a
property present in the current TLS protocol. Fortunately,
we find that all HTTPS responses contain an HTTP header
at the start of the plaintext, which can be used to prevent
key-committing attacks. In this section, we define a notion
called variable padding to capture the padding-like structure
existing in HTTPS responses. Furthermore, we prove that
when considering plaintexts with variable padding, both
AES-GCM and ChaCha20-Poly1305 are secure against key-
committing attacks. Next, we first give more details about
variable padding.

6.1. Variable Padding

HTTP/1.1 200 OK
Date: Sat, 30 Dec 2023 18:52:39 GMT
Server: Apache/2.4.52 (Ubuntu)
Last-Modified: Mon, 11 Dec 2023 01:10:39 GMT
ETag: "25c9-60c319a24a0d5-gzip"
Accept-Ranges: bytes
Vary: Accept-Encoding
Access-Control-Allow-Origin: *
Content-Length: 9673
Connection: close
Content-Type: text/html

Figure 12: An HTTP response header from an Apache server

Figure 12 contains a typical response header from an Apache
server. The sample header has 308 bytes of text — enough
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for 19 blocks of AES. Albertini et al. [16] have shown that
AEAD schemes can be made key-committing with 4 blocks
of fixed padding. However, we observe that an adversarial
prover in our game has some wiggle room for the header, be-
cause it may be able to determine parameters such as HTTP
status code and response date. Nevertheless, we find its
capability highly constrained, since all of these parameters
have limited ranges of value. For instance, the HTTP status
code has only 63 variations. If we take a rather generous
time window of one hour between the response of the server
and the receival of the verifier, then the response date has
no more than 3600 different variations. This motivates us to
define the concept of variable padding: padding with limited
variations controlled by the adversary.

Definition 6.1 (Variable padding). Consider a set 𝑆 that
consists of only 𝜆-bit strings. We say that a string 𝑚 is
variably padded by 𝑆, if the 𝜆-bit prefix of 𝑚 is in 𝑆.

For instance, consider the sample header in Figure 12. We
can easily verify that the first 54 bytes consist of only
the status code and the date as the variable parameters.
Therefore, we can assert that there exists a 54-byte string
set 𝑆 with |𝑆| = 63 × 3600, such that all response plaintext
produced by this particular server is variably padded by the
set 𝑆.
Application to Generic HTTPS Servers. While to achieve
the tightest security bound, the specific padding and length
should be analyzed on a per-server basis, we can neverthe-
less demonstrate a generic bound based on the HTTP status
code and date header.

Corollary 6.1. All valid HTTP responses are variably
padded by a 54-byte string set 𝑆 with |𝑆| = 63𝑡, assuming
the response follows good practice and is received within 𝑡
seconds.

This corollary is verified by noticing that
1) RFC 7231 requires any server with a reasonable clock

to send the date header, and states ‘it is good practice
to send header fields that contain control data first, such
as… Date on responses.’ Notably, both Apache and
Nginx, the two popular HTTP server implementations,
have Server and Date as the first two response headers.

2) The HTTP header with a date takes at least 54 bytes.

6.2. Key Commitment with Variable Padding

Next, we consider an adversarial prover’s advantage with
a variably padded plaintext, in AES-GCM and ChaCha20-
Poly1305. Since the verifier has access to the ciphertext
transcript, the attacker at a bare minimum needs to come
up with some ciphertext 𝑐 and two pairs of key and
nonce ((𝑘, 𝑛), (𝑘′, 𝑛′)) such that both Dec𝑘(𝑛, 𝑎, 𝑐) and
Dec𝑘′(𝑛′, 𝑎, 𝑐) give a plaintext variably padded by some 𝑆.
Analysis on AES-GCM. We first formalize the adversary’s
advantage in AES-GCM.

Theorem 6.1 (AES-GCM Key commitment with variable
padding). Assume 𝐸 is an ideal block cipher with 𝑙-bit block

size and (Enc, Dec) is a GCM scheme defined on 𝐸. The
adversary’s advantage of constructing a ciphertext 𝑐, an as-
sociated data 𝑎, and two pairs of key and IV ((𝑘, 𝑛), (𝑘′, 𝑛′))
such that both Dec𝑘(𝑛, 𝑎, 𝑐) and Dec𝑘′(𝑛′, 𝑎, 𝑐) give a plain-
text variably padded by some 𝜆-bit string set 𝑆 within 𝑞
queries to 𝐸 is at most 𝜖 = 𝑞2|𝑆|2

2𝜆−2𝑙+2 ( 2𝑙

2𝑙−𝑏−1)
𝑏+1

, where
𝑏 = ⌊𝜆

𝑙 ⌋.

Proof. Fix some pair of keys (𝑘, 𝑘′), some pair of nonces
(𝑛, 𝑛′) and some pair of padding (𝑠, 𝑠′). Consider the bad
event BAD where there exists some ciphertext 𝑐 satisfying
Dec𝑘(𝑛, 𝑎, 𝑐) has prefix 𝑠 and Dec𝑘′(𝑛′, 𝑎, 𝑐) has prefix 𝑠′.
Let us upper-bound this probability Pr(BAD). Denote 𝜆 =
𝑙 ⋅ 𝑏 + 𝜆𝑟 so that the padding spans across 𝑏 blocks and 𝜆𝑟
extra bits in total.
Denote 𝑣[𝑖 ∶ 𝑗] to be the substring of 𝑣 starting at 𝑖 (0-
based) with length (𝑗 −𝑖). We know that for some ciphertext
𝑐, Dec𝑘(𝑛, 𝑎, 𝑐) has prefix 𝑠 and Dec𝑘′(𝑛′, 𝑎, 𝑐) has prefix
𝑠′. Therefore, the following equation set holds:

𝐸𝑘(𝑛 + 1) + 𝑠[0 ∶ 𝑙] = 𝑐[0 ∶ 𝑙]
= 𝐸𝑘′(𝑛′ + 1) + 𝑠′[0 ∶ 𝑙],

𝐸𝑘(𝑛 + 2) + 𝑠[𝑙 ∶ 2𝑙] = 𝑐[𝑙 ∶ 2𝑙]
= 𝐸𝑘′(𝑛′ + 1) + 𝑠′[𝑙 ∶ 2𝑙],

⋮
𝐸𝑘(𝑛 + 𝑏) + 𝑠[(𝑏 − 1)𝑙 ∶ 𝑏𝑙] = 𝑐[(𝑏 − 1)𝑙 ∶ 𝑏𝑙]

= 𝐸𝑘′(𝑛′ + 𝑏) + 𝑠′[(𝑏 − 1)𝑙 ∶ 𝑏𝑙],
𝐸𝑘(𝑛 + 𝑏 + 1) + 𝑠[𝑏𝑙 ∶ 𝜆] = 𝑐[𝑏𝑙 ∶ 𝜆]

= 𝐸𝑘′(𝑛′ + 𝑏 + 1) + 𝑠′[𝑏𝑙 ∶ 𝜆],

Because 𝐸 is an ideal cipher, both 𝐸𝑘 and 𝐸𝑘′ are permuta-
tions of size 2𝑙. Intuitively, the equation set above tells us
that 𝑏 blocks and 𝜆𝑟 extra bits of 𝐸𝑘′ are fixed for any given
𝐸𝑘 (see Figure 13).

… … …𝜆𝑟

0 𝑛 (𝑛 + 𝑏) 2𝑙 − 1

2𝑙 elements

𝐸𝑘:

… … …𝜆𝑟

0 𝑛′ (𝑛′ + 𝑏) 2𝑙 − 1

𝐸𝑘′ :

Figure 13: A representation of 𝐸𝑘 and 𝐸𝑘′ as permutations.
The shaded part in 𝐸𝑘′ is uniquely determined from the
shaded part in 𝐸𝑘.

Therefore, we can bound the size of 𝐸𝑘′ such that the
equation set above is satisfied given any 𝐸𝑘. Given that 𝑏
blocks and 𝜆𝑟 extra bits in one block are fixed by 𝐸𝑘, the
upper bound of ∣𝐸𝑘′ ∣ is given by

∣𝐸𝑘′ ∣ ≤ 2𝑙−𝜆𝑟(2𝑙 − 𝑏 − 1)!.
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Hence the probability of BAD happening is at most when
a uniformly random random 𝐸𝑘′ from (2𝑙)! possibilities
satisfies the equation set

Pr(BAD) ≤
2𝑙−𝜆𝑟(2𝑙 − 𝑏 − 1)!

(2𝑙)!
<

2𝑙−𝜆𝑟

(2𝑙 − 𝑏 − 1)𝑏+1

=
1

2𝜆 (
2𝑙

2𝑙 − 𝑏 − 1
)

𝑏+1

Now the total probability is bounded by the summation of
all different keys, the adversary tests and all different nonces
and prefixes:

Δ𝒜 < (
𝑞
2
) ⋅ 22𝑙 ⋅ (

|𝑆|
2

) ⋅ Pr(BAD)

<
𝑞2|𝑆|2

2𝜆−2𝑙+2 (
2𝑙

2𝑙 − 𝑏 − 1
)

𝑏+1

.

Plugging in the generic HTTP padding with 𝜆 = 8×56 bits,
|𝑆| = 63𝑡 and a generous 𝑡 = 3600 s gives us 𝜖 ≤ 2−158𝑞2.
Therefore, the protocol is highly secure, even on HTTPS
servers with minimal features.
Analysis on ChaCha20-Poly1305. Similarly, below we
demonstrate the security of ChaCha20-Poly1305.

Theorem 6.2 (ChaCha20-Poly1305 Key commitment with
variable padding). Assume 𝜌 ∶ ℤ|𝑘| × ℤ|𝑛| → ℤ𝑙 is an
ideal random function representing the ChaCha20 stream
and (Enc, Dec) is a Poly1305 scheme defined on 𝐸. The
adversary’s advantage of constructing a ciphertext 𝑐, an as-
sociated data 𝑎, and two pairs of key and IV ((𝑘, 𝑛), (𝑘′, 𝑛′))
such that both Dec𝑘(𝑛, 𝑎, 𝑐) and Dec𝑘′(𝑛′, 𝑎, 𝑐) give a plain-
text variably padded by some 𝜆-bit string set 𝑆 within 𝑞
queries to 𝐸 is at most 𝜖 = 𝑞2|𝑆|2

2𝜆−2𝑙+2 .

Proof. Following a similar analysis, we can bound the prob-
ability of getting a bad random function to

Pr(BAD) =
22𝑙−𝜆

22𝑙 =
1

2𝜆 .

Therefore, the overall probability is bounded by

Δ𝒜 < (
𝑞
2
) ⋅ 22𝑙 ⋅ (

|𝑆|
2

) ⋅ Pr(BAD) <
𝑞2|𝑆|2

2𝜆−2𝑙+2 .

An application of the above analysis gives us the desired
security property.

Theorem 6.3. Assume TLS uses either AES-GCM or
ChaCha20-Poly1305. Fix some set variable padding 𝑆 of
polynomial size. Let ℱVP

Oracle denote the same functionality
as ℱStd

Oracle, except that the server’s response is guaranteed to
be variably padded by 𝑆. Protocol ΠProxy shown in Figure 9
can securely realize the oracle functionality ℱVP

Oracle defined
in Figure 8 in the ℱNIZK-hybrid model, against a static
active adversary who can corrupt client 𝒫 or verifier 𝒱.

The proof follows a direct application of the above analysis
on AES-GCM and ChaCha20-Poly1305 to Theorem 5.2.

7. Extending beyond HTTPS: without variable
padding

We have shown that proxying is secure over HTTPS thanks
to the variable padding. Nonetheless, exploring the potential
usage of proxying over home-bake protocols is still an in-
teresting topic from a theoretical perspective. We have seen
that proxying is not secure given any home-bake protocol:
the Facebook attack [15] is a practical counter-example.
Therefore, we must restrict the adversarial prover’s power to
some extent. In this section, we explore the scenario where
the prover must fix the server’s response before the protocol.
This is common in many daily scenarios. For instance, an
adversarial prover should not be able to change his age
depending on the handshake secret.

The predicate P(⋅) and the boolean value Mode𝑝 are
the same as in ℱStd

Oracle (see Figure 8). The data related
to 𝒫, denoted as Data𝒫.
Functionality:

• Send ⟨RequestRecord, 𝑠𝑖𝑑, 𝒫⟩ to server 𝒲, if
receiving ⟨ResponseRecord, 𝑠𝑖𝑑, Data𝒫⟩ from
server 𝒲, store Data𝒫 and continue, otherwise,
wait and ignore the subsequent messages;

Handshake and Request phase:
• The same as in ℱStd

Oracle (see Figure 8);
Response phase:

• Upon receiving ⟨Response, 𝑠𝑖𝑑, OK⟩ from server
𝒲, obtain response 𝑅 from Data𝒫 according to
the request message 𝑄, and send ⟨𝑠𝑖𝑑, |𝑅|⟩ to
adversary 𝒮 and verifier 𝒱;

• Upon receiving OK from adversary 𝒮 and verifier
𝒱, send ⟨𝑠𝑖𝑑, 𝑅⟩ to client 𝒫;

Prove phase:
• The same as in ℱStd

Oracle (see Figure 8).

Functionality ℱFix
Oracle

Figure 14: Oracle Functionality with Fixed Dataset (the
differences from ℱStd

Oracle are marked with underline). Com-
pared to ℱStd

Oracle shown in Figure 8, ℱFix
Oracle stores client

𝒫’s data (i.e., Data𝒫), in order to ensure that Data𝒫 will
not be changed once the execution starts; ℱFix

Oracle generates
response 𝑅 from Data𝒫 rather than obtaining it from server
𝒲.

We formalize the intuition as functionality ℱFix
Oracle in Fig-

ure 14. Unlike the functionality ℱStd
Oracle, the functionality

ℱFix
Oracle obtains the data related to client 𝒫, denoted as

Data𝒫, from the environment ℰ, before the handshake
phase. Then, in the response phase, the functionality ℱFix

Oracle
applies the query 𝑄 to Data𝒫 to obtain the response 𝑅. This
reflects that Data𝒫 is fixed before the handshake phase and
cannot be modified later.
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7.1. Context Forgery Attack

What we are considering is akin to a forgery attack: our
adversarial attacker must come up with an additional expla-
nation of the ciphertext provided by the server. We notice
that Menda et al.’s work on the CDY attack on AEAD [22]
is closely related to our problem. An adversarial prover 𝒫
can change his plaintext from 𝑀 to 𝑀′ while fixing the
ciphertext 𝐶, and then run a context discovery attack on
(𝑀′, 𝐶) with the hope of finding a valid key/nonce pair.
Meanwhile, we observe that an adversarial 𝒫 has more
knowledge than what is described under the CDY model
since he knows the original context (i.e., key/nonce pair)
of the ciphertext. He also has a different goal in mind: he
cannot just find any context that decrypts the ciphertext —
he has to find one that is different from the original context.
Based on these differences, we propose a new model named
context forgeability (CFY) and relate this to the second-
preimage attack on a hash function, similar to how CDY is
to CMT as a preimage attack is to a collision attack.
More formally, we can define the context forgery attack
game as:

Definition 7.1 (Context Forgery). Fix some AEAD param-
eter 𝑝𝑝 and a corresponding AEAD oracle Π. The game
CDY† is defined as:

1) The challenger samples a random ciphertext 𝑐 from
some ciphertext space and its corresponding decryption
context (𝑘, 𝑛, 𝑎).

2) The challenger sends (𝑐, 𝑘, 𝑛, 𝑎) to some adversary 𝒜.
3) The adversary wins if it outputs a valid context

(𝑘′, 𝑛′, 𝑎) with (𝑘, 𝑛) ≠ (𝑘′, 𝑛′) that decrypts 𝑐 suc-
cessfully.

The adversary’s 𝑞-advantage Δ𝒜
CDY† is defined as the prob-

ability it wins under 𝑞 queries to the AEAD oracle Π.

Analysis on AES-GCM. AES-GCM is known for various
commitment weaknesses [15], and it is not difficult to intuit
that it is not secure in this scenario. Since a CDY attack
implies a CFY attack assuming context compression, using
ideas that Menda et al. [22] proposed for the CDY attack to
give a similar attack for CFY.

Theorem 7.1. There is an attack under CFY† that breaks
𝐸-GCM with probability at least 𝑞

233 , assuming 𝐸 is an 128-
bit ideal block cipher.

Proof. For simplicity, let us consider a message with one
block of ciphertext and no associated data. If we obtain
some key 𝑘, nonce 𝑛 and the only ciphertext block 𝑐 from
the input, the tag 𝑡 follows the definition of GCM

𝑡 = 𝐸𝑘(𝑛) + 𝐸𝑘(0)2𝑐 + 𝐸𝑘(0).
Now suppose we sample some other key 𝑘′ ≠ 𝑘, we can
find the nonce 𝑛′ such that with ciphertext 𝑐, we compute
the same tag 𝑡 by solving this equation

𝑡 = 𝐸𝑘′(𝑛′) + 𝐸𝑘′(0)2𝑐 + 𝐸𝑘(0).
It suffices to notice that 𝐸𝑘′ is reversible and hence we can
solve for 𝑛′ for every 𝑘′. In AES-GCM the nonce must

end with (031‖1), so this particular 𝑛′ has 1
232 probability

of satisfying the requirement. Observing that this try of 𝑘′

uses two queries of 𝐸 we can bound the success probability
of 𝑞 queries to 𝑞

233 .

It is easy to observe that the above attack generalizes to
any length of associated data and ciphertext. For a de-
tailed discussion, we refer the reader to the relevant context
discovery attack by Menda et al. [22]. Moreover, research
of AES-GCM polyglot ciphertext that decrypts to different
meaningful plaintext under different keys is an interesting
topic studied by many papers [15], [22].
Analysis on ChaCha20-Poly1305. To analyze game CFY†

under ChaCha20-Poly1305, we first abstract its authentica-
tion tag computation mechanism as

𝑡 = poly(𝑟) + 𝑠,

where poly is a polynomial whose coefficient depends only
on the concatenation of the associated data and the cipher-
text, and (𝑟, 𝑠) = 𝐻(𝑘, 𝑛)[0 ∶ 256] is the secret generated by
the ChaCha20 pseudorandom function, where 𝑣[𝑖 ∶ 𝑗] means
the substring of 𝑣 starting at 𝑖 (0-based) with length (𝑗 − 𝑖).
We then demonstrate its security in CFY†.

Theorem 7.2. The adversary’s advantage in CFY† when
attacking 𝐻-Poly1305 is no more than 𝑞

2128 , where 𝑞 is the
number of queries the adversary made to 𝐻 and 𝐻(𝑘, 𝑛) is
a 512-bit random oracle.

Proof. We start by fixing some key and nonce (𝑘′, 𝑛′)
the adversary has queried for the first time. Observe that
since 𝐻 is a random oracle, Pr (𝐻(𝑘′, 𝑛′) = ℎ) is a uni-
form distribution regardless of any prior queries. Therefore,
(𝑟′, 𝑠′) = 𝐻(𝑘′, 𝑛′)[0 ∶ 256] is also uniformly distributed
over the whole range.
Now observe that in order for (𝑘′, 𝑛′) to satisfy the tag
requirement, we have

poly(𝑟′) + 𝑠′ = 𝑡 = poly(𝑟) + 𝑠.

Rearrange and we have

𝑠′ − 𝑠 = poly(𝑟) − poly(𝑟′).

Observe that for some fixed 𝑠, 𝑠′ − 𝑠 is still uniformly dis-
tributed over ℤ/2128ℤ. Denote Δ𝑝(𝑟′) = poly(𝑟)−poly(𝑟′).
We can bound the probability of (𝑘′, 𝑛′) satisfying the tag
requirement Pr(BAD) by

Pr(BAD) = ∑
𝑖∈ℤ/2128ℤ

Pr(𝑠′ − 𝑠 = 𝑖) Pr(Δ𝑝(𝑟′) = 𝑖)

=
1

2128 ∑
𝑖∈ℤ/2128ℤ

Pr(Δ𝑝(𝑟′) = 𝑖) =
1

2128

Since the attacker makes 𝑞 queries, we bound the probability
of success to 𝑞

2128 .

Protocol Security Under CFY. We demonstrate that the
proxying protocol ΠProxy realizes ℱFix

Oracle as long as the
underlying AEAD is secure under CFY†.
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Theorem 7.3. Given a secure AEAD with context unforge-
ability security under CFY†, protocol ΠProxy shown in Fig-
ure 9 can securely realize the oracle functionality ℱFix

Oracle
defined in Figure 14 in the ℱNIZK-hybrid model, against a
static active adversary who can corrupt client 𝒫 or verifier
𝒱.

Proof. The simulation and the hybrid argument are similar
to those in Theorem 5.2. Next, we only detail the main
difference that arises in the indistinguishability between
Hyb2 and Hyb3 for corrupted client 𝒫.
Assuming that there is an environment ℰ that can distinguish
Hyb3 and Hyb2, we can construct an environment ℰ′ to
break the context forgeability security of AEAD. Similarly,
the environment ℰ chooses a dataset Data𝒫 and a query
𝑄 such that applying 𝑄 to it yields a response 𝑅 with
property P(𝑅) = 0. The verifier 𝒱 in Hyb3 will output 0
with probability 1. Therefore, when ℰ obtains 1 from verifier
𝒱, the environment ℰ learns that the execution is in Hyb2.
The environment ℰ′ runs a copy of ℰ and simulates the sim-
ulator 𝒮 (internally running a copy of 𝒜) and ℱFix

Oracle for ℰ.
The environment ℰ′ can obtain Data𝒫 and the query 𝑄 from
ℰ. After applying the query 𝑄 on Data𝒫, ℰ′ can obtain the
response 𝑅. Then, ℰ′ sends 𝑅 to the CFY challenger 𝒞CFY,
and receives (𝐶, 𝐾, 𝑁) from the challenger 𝒞CFY. When 𝒜
queries random oracle for (SWK𝑖, SWIV𝑖), ℰ′ sends (𝐾, 𝑁)
as response. The environment ℰ′ needs to simulate ℱNIZK,
and receive the proving request, which includes the witness
(𝐶, 𝑅′, (𝐾′, 𝑁′)) (i.e., (𝐶, 𝑅′, SWK′

𝑖 , SWIV′
𝑖)), from 𝒜. If

(𝑅 ≠ 𝑅′) and (𝐾, 𝑁) ≠ (𝐾′, 𝑁′), ℰ′ sends (𝑅′, 𝐾′, 𝑁′) to
break CFY.

7.2. Relationship between CMT, CFY and CDY

An interesting observation is that a similar hierarchy exists
concerning CDY, CFY and CMT just like the hash func-
tion. CMT-security implies CFY-security, and CFY-security
implies CDY-security assuming context compression. We
provide our insight in the following two corollaries:

Corollary 7.1. For some AEAD Π and any adversary 𝒜
that wins the CFY† game with advantage Δ𝒜

CFY† , there exists
an adversary ℬ that wins the CMT† game with advantage
Δℬ

CMT† = Δ𝒜
CFY† .

The relationship between CFY and CDY, on the other hand,
is not so clear-cut. While a CDY attack on an AEAD scheme
often implies a CFY attack, it is not universally true. In the
case where there exists a bijection between (𝐾, 𝑁, 𝑀, 𝐴) and
𝐶, a CDY attack may be easy but a CFY attack will be
impossible. However, similar to the analysis of Menda et al.
on CDY, we can bound the advantage of the adversary with
context compression:

Corollary 7.2. For some AEAD Π and any adversary 𝒜
that wins the CDY† game with advantage Δ𝒜

CDY† , there exists

an adversary ℬ that wins the CFY† game with advantage
Δℬ

CFY† such that

Δℬ
CFY† ≥

1
2

(1 − Pr[BadCtx])Δ𝒜
CDY† ,

where BadCtx is the event that for a randomly sampled
(𝐾, 𝑁, 𝑀, 𝐴), the resulting ciphertext 𝐶 can only be de-
crypted when the associated data is 𝐴.

We defer a formal proof on the generalized case under
Menda et al.’s framework to Appendix A.

8. Discussion

Multi-Round Support. We observe that the NIZK proof of
the protocol does not reveal the key/nonce pair used in the
communication. Therefore, our protocol naturally supports
the client and the server communicating in multiple rounds
after a handshake connection, as in the original TLS.
In practice, when the data do not involve privacy, the client
can choose to directly reveal the key/nonce pair and data to
the verifier, rather than using the NIZK proof. In this case,
we note that TLS 1.3 supports a key update mechanism
that allows us to refresh the key/nonce pair for subsequent
communications without needing another handshake.
Side-Channel Connection. Our protocol does not stop an
adversarial client from connecting to the server simultane-
ously without proxying through the verifier. In fact, when the
web server is not restricted in its response, there is an attack
using a side channel connection (see Theorem 5.1), and we
prove that the HTTPS response format can be used to defend
against the attack. Moreover, in our scenario, the purpose
of the client is to have the data obtained from the server
validated by the verifier so that the data can be submitted
to the blockchain. Therefore, the client has no motivation to
bypass the verifier when he tries to acquire the data to be
verified.

9. Related Work

AEAD Commitment Security. It is known that a lot of
AEAD schemes do not have the most robust commitment
security. One prominent example of an exploit is the attack
on Facebook Messenger by Dodis et al. [15]. Commitment
security on AEAD has received a lot of research since
around that time [21], [29]. Menda et al. provided a general-
ization and analysis on the topic [22], which we leverage in
this paper. Albertini et al. analyzed several possible ways to
generate polyglot ciphertext and provided possible patches
to fix popular AEAD schemes [16].
Our work builds and extends on the framework by Menda
et al. [22] and gives it a practical scenario — TLS proxying
oracle. With this toolset, we are able to reason the security
of proxying and give concrete security bounds with proof.
TLS Proxy & Oracle Protocols. Using TLS under multi-
party scenarios has been investigated a number of times
under different scenarios [30], [31], [32], [33]. TLS oracle
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protocols have also recently been studied by a variety of
academic papers. Earlier results often include modifying
the TLS server to some extent and using trusted hardware
which are considered not universal [6], [7]. DECO by Zhang
et al. [5] in 2020 is one of the first papers that combines
a TLS oracle with zero-knowledge proof to preserve user
privacy over a general TLS server. Janus by Lauinger et
al. [8] demonstrates an efficient two-party computation that
optimizes the performance of zero-knowledge proof by the
client. A work in a similar direction by Xie et al. [9] uses
the garble-then-prove technique instead. DIDO by Chan et
al. [10] proposes further optimization based on TLS 1.3.
Nevertheless, we notice that all these researches require
a three-party handshake at the beginning of the protocol
so that the verifier can inject randomness to preserve data
integrity, which impacts their performance.
We consider our work parallel to this line of work since we
do not specify which particular zero-knowledge proof pro-
tocol we should use, but rather point out an improvement in
theory that allows us to eliminate the three-party handshake
under common circumstances. Integrating proxying and an
efficient zero-knowledge proof protocol is an interesting
system work left for the future.
Meanwhile, there is also significant industry effort on this
topic. The recent reclaim protocol [12] provides an im-
plementation that is based purely on proxying without the
three-party handshake but provides no security proof of the
integrity of the data. Thus we also consider our work to be
a theoretical discussion of the industry effort that validates
its usage under common scenarios but also points out its
limitations.

10. Conclusion

In this paper, we formalize the notion of a proxy TLS oracle
protocol that does not enter any communication between the
client and the server like previous works. We first reason
for its limitation on arbitrary TLS protocols, confirming the
intuition of previous works.
We then point out its potential use scenarios with common
protocols. We proved that the proxy protocol is secure under
an application layer protocol that consists of a variable
padding, such as HTTPS. Given that HTTPS is the over-
whelmingly popular protocol over the Internet, we believe
that the proxy protocol provides a much simpler design with
little trade-off.
We further explore the scenario where the application layer
does not provide variable padding, such as various home-
brew protocols. We showed that if the adversary cannot
tamper with the response after establishing the connection,
such as in the scenario with age verification, context un-
forgeability (CFY) of the underlying AEAD is sufficient to
demonstrate security. We further analyzed the cipher suites
in TLS, and found that AES-GCM does not satisfy the
property, but ChaCha20-Poly1305 does.
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Appendix A.
Granular Security Framework for Key Com-
mitment

In the work by Menda et al. [22], the concept of the setting
of an attack Σ = (ts, S, P) is defined to capture the differ-
ence between key commitment attacks. The context selector
S is a distribution that allows the challenger to sample a
context to use as the input to the adversary. The target
selector ts is a function that picks the info the adversary
has access to. The predicate P is a boolean function that
specifies the winning condition. While this definition is very
abstract at first glance, we will give a formalization of the
traditional key commitment property at the end to show how
it fits into the two security games proposed in their work.
Context Discovery Attack. The game CDY[Σ] against an
adversary 𝒜 is defined as:

game CDY[Σ](𝒜)
𝑐

$
← S, 𝑎 ← 𝒜(ts(𝑐))

(𝐶, 𝐾, 𝑁, 𝐴) ← Merge(ts(𝑐), 𝑎)
𝑀 ← AEAD.Dec𝐾(𝑁, 𝐴, 𝐶)
if 𝑀 =⟂ then

return false
end if
return P(𝐶, 𝐾, 𝑁, 𝐴)

end game
To summarize, the game samples some context (e.g. valid
ciphertext) from 𝑆, feeds the targeted information ts(𝑐) to
the adversary, and then gets the result from the adversary
as 𝑎. It then puts (ts(𝑐), 𝑎) together to see if it decrypts
correctly. If it does, the game returns the predicate on it.
Otherwise, it returns false.
Context Commitment Attack. The game CMT[Σ] on some
adversary 𝒜 is defined as:

game CMT[Σ]
𝑐

$
← S, 𝑎 ← 𝒜(ts(𝑐))

(𝐶, (𝐾1, 𝑁1, 𝐴1), (𝐾2, 𝑁2, 𝐴2)) ← Merge(𝑐, 𝑎)
𝑀1 ← AEAD.Dec𝐾1

(𝑁1, 𝐴1, 𝐶)
𝑀2 ← AEAD.Dec𝐾2

(𝑁2, 𝐴2, 𝐶)
if 𝑀1 =⟂ or 𝑀2 =⟂ then

return false
end if
return P((𝐾1, 𝑁1, 𝐴1), (𝐾2, 𝑁2, 𝐴2))

end game
To summarize, the game samples some pre-determined con-
text (potentially nothing), feeds it to the adversary, and then
asks the adversary to come up with a ciphertext that has
two different interpretations. If the adversary succeeds, the
game returns the predicate. Otherwise, it returns false.
Context Forgery Attack. Similarly, we can define our
context forgery attack game CFY[Σ] using this security
framework.

game CFY[Σ]
𝑐

$
← S, 𝑎 ← 𝒜(ts(𝑐))

(𝐶, 𝐾1, 𝑁1, 𝐴1) ← 𝑐, (𝐾2, 𝑁2, 𝐴2) ← 𝑎
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𝑀 ← AEAD.Dec𝐾2
(𝑁2, 𝐴2, 𝐶)

if 𝑀 =⟂ then
return false

end if
return P((𝐾1, 𝑁1, 𝐴1), (𝐾2, 𝑁2, 𝐴2))

end game
Specification of the Attack Game. We observe that the
definitions CDY†, CFY† and CMT† in the paper are a spec-
ification of the above game definitions under the security
framework. Namely,

CDY† = CDY[S = (𝑈(𝑘), 𝑈(𝑛)), ts = (𝐶, 𝐴), P =⟂],
CFY† = CFY[S = (𝑈(𝑘), 𝑈(𝑛)), ts = (𝐶, 𝐾, 𝑁, 𝐴),

P = ((𝐾1, 𝑁1) ≠ (𝐾2, 𝑁2))],
CMT† = CFY[S = (𝑈(𝑘), 𝑈(𝑛)), ts = (𝐾, 𝑁),

P = ((𝐾1, 𝑁1) ≠ (𝐾2, 𝑁2))].

Security Implications. Here we formally prove the rela-
tionship between CFY, CMT and CDY under the granular
security framework.

Theorem A.1 (Relationship between CFY and CMT). For
some AEAD Π and any adversary 𝒜 that wins the CFY[Σ]
game with advantage Δ𝒜

CFY[Σ], there exists an adversary ℬ
that wins the CMT[Σ] game with advantage Δℬ

CMT[Σ] =
Δ𝒜

CFY[Σ].

Proof. We give a straightforward construction of ℬ:
1) ℬ samples a set of valid parameter (𝐾, 𝑁) and encrypts

a random plaintext (𝑀, 𝐴) to the ciphertext 𝐶. It then
runs 𝒜 on (𝐾, 𝑁, 𝑀, 𝐴, 𝐶) and waits for the output.

2) In the case that 𝒜(𝐾, 𝑁, 𝑀, 𝐴, 𝐶) outputs, ℬ de-
livers the output together with the original tuple
(𝐾, 𝑁, 𝑀, 𝐴, 𝐶).

We observe that when 𝒜 outputs a context that satisfies Σ
under CFY, ℬ also outputs a pair of context that satisfies Σ
under CDY. Hence, we get the bound

Δℬ
CMT[Σ] = Δ𝒜

CFY[Σ].

Theorem A.2 (Relationship between CFY and CDY). For
some AEAD Π and any adversary 𝒜 that wins the CDY[Σ]
game with advantage Δ𝒜

CDY[Σ], there exists an adversary ℬ
that wins the CFY[Σ] game with advantage Δℬ

CFY[Σ] such
that

Δℬ
CFY[Σ] ≥

1
2

(1 − Pr[BadCtx])Δ𝒜
CDY[Σ],

where BadCtx is the event that for a randomly sampled
(𝐾, 𝑁, 𝑀, 𝐴), the resulting ciphertext 𝐶 can only be de-
crypted under Σ(𝐾, 𝑁, 𝐴).

Proof. This proof is similar to the proof of the relationship
between CDY and CMT by Menda et al. Here we first give
a construction of ℬ:

1) ℬ receives (𝐾, 𝑁, 𝑀, 𝐴, 𝐶) as the input. It feeds the
necessary input in (𝐾, 𝑁, 𝑀, 𝐴, 𝐶), selected by Σ to 𝒜
and waits for the output.

2) In the case that 𝒜(Σ(𝐾, 𝑁, 𝑀, 𝐴, 𝐶)) outputs, ℬ deliv-
ers the output.

We then analyze the advantage of ℬ.
In the event of BadCtx, ℬ will fail since no solution satisfies
the constraint of CFY.
On the other hand, if BadCtx does not occur, there exists
a set 𝑆 = {Σ(𝐾, 𝑁, 𝐴)|Σ(𝐾, 𝑁, 𝐴) decrypts 𝐶} with |𝑆| ≥ 2.
Since the input (𝐾, 𝑁, 𝑀, 𝐴, 𝐶) is randomly sampled, we can
bound the probability of any specific set of parameters

Pr[Σ(𝐾, 𝑁, 𝐴) = (𝑘, 𝑛, 𝑎)|𝐶 = 𝑐] =
1
|𝑆|

.

Hence the advantage of ℬ, Δℬ
CFY[Σ]∧¬BadCtx, is

∑
Σ(𝐾,𝑁,𝐴)∈𝑆

(1 −
1
|𝑆|

) Pr[𝒜(Σ(𝑀, 𝐴, 𝐶)) = Σ(𝐾, 𝑁, 𝐴)].

Since

∑
Σ(𝐾,𝑁,𝐴)∈𝑆

Pr[𝒜(Σ(𝑀, 𝐴, 𝐶)) = Σ(𝐾, 𝑁, 𝐴)] = Δ𝒜
CDY[Σ],

Therefore, Δℬ
CFY[Σ]∧¬BadCtx = (1 − 1

𝑆 )Δ𝒜
CDY[Σ].

We conclude that the overall advantage is

Δℬ
CFY[Σ] = (1 − Pr[BadCtx])(1 −

1
𝑆

)Δ𝒜
CDY[Σ]

≥
1
2

(1 − Pr[BadCtx])Δ𝒜
CDY[Σ].

Appendix B.
Definition of Non-Interactive Zero-Knowledge
Proof

Formally, given an NP language ℒ and its corresponding
efficiently decidable binary relation ℛ, we say a statement
𝑥 ∈ ℒ if there exists a witness 𝑤 such that (𝑥, 𝑤) ∈ ℛ.
In NIZK, a prover can generate a proof 𝜋 to prove the
knowledge of 𝑤 satisfying (𝑥, 𝑤) ∈ ℛ. Through verifying
𝜋, a verifier can learn if the prover possesses a valid 𝑤
without knowing the information about 𝑤. Functionality
ℱNIZK defined by Groth et al. [28] is shown in Figure 15.

Appendix C.
Discussion on Query Restriction

As we described in Section 4, restriction on the user request
is not a common requirement in many applications. Here
we discuss a few ways that it can be implemented in the
protocol. We note that similar to the server response, the
proxy protocol is generally not secure over any unrestricted
assertion of the user request. However, under very specific
application scenarios when restriction on the user request is
necessary, it can usually be meaningfully implemented and
proven by leveraging one of the methods below.
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Parameters: The non-interactive zero-knowledge function-
ality ℱℒ

NIZK allows proving of statements in an NP language
ℒ. It maintains a set of statement/proof pairs 𝑄, initialized
to ∅. Let ℛ be an efficiently decidable binary relation for
the NP language ℒ.
Functionality:
Prove: Upon receiving ⟨PROVE, 𝑠𝑖𝑑, 𝑥, 𝑤⟩:

1) If (𝑥, 𝑤) ∉ ℛ then return ⟨PROOF, 𝑠𝑖𝑑, 𝑥, ⊥⟩;
2) Else send ⟨PROVE, 𝑠𝑖𝑑, 𝑥⟩ to 𝒜 and receive the reply

⟨PROOF, 𝑠𝑖𝑑, 𝑥, 𝜋⟩. Do 𝑄 = 𝑄 ∪ {(𝑥, 𝜋)} and return
⟨PROOF, 𝑠𝑖𝑑, 𝑥, 𝜋⟩;

Verify: Upon receiving⟨VERIFY, 𝑠𝑖𝑑, 𝑥, 𝜋⟩:
1) If (𝑥, 𝜋) ∉ 𝑄 then send ⟨VERIFY, 𝑠𝑖𝑑, 𝑥, 𝜋⟩ to 𝒜 and

then receive the reply Res;
2) If Res = ⟨WITNESS, 𝑠𝑖𝑑, 𝑥, 𝜋, 𝑤⟩ ∧ (𝑥, 𝑤) ∈ ℛ then let

𝑄 = 𝑄 ∪ (𝑥, 𝜋);
3) Return ⟨VERIFY, 𝑠𝑖𝑑, 𝑥, 𝜋, (𝑥, 𝜋) ∈ 𝑄⟩.

Functionality ℱNIZK

Figure 15: ℱNIZK functionality

With TLS 1.3. We observe that by leveraging the TLS 1.3
key update mechanism, we can achieve a partial reveal on
the user request that allows the client to prove his request
without revealing the secret in the request. Specifically, it
can be achieved by:

1) The client establishes a connection with the server
through the verifier and completes the handshake.

2) The client transmits non-sensitive information (e.g.
HTTP request header) to the server.

3) The client performs a key update.
4) The client transmits sensitive information to the server.
5) The client performs another key update.
6) The client transmits the remainder of the request to the

server and receives the response.
In this way, the client can do a full reveal of the keys used
in non-sensitive information only to the verifier.
With Variable Padding. Similar to the reasoning in Sec-
tion 6, the restriction on the user request can be easily
implemented when the user request has a variable padding,
such as the scenario with HTTPS when the URL is of
sufficient length.
With Hybrid. In many common home-brew protocols (such
as Facebook Messenger), the user’s access is established
via transmitting an access token. Assuming that there are
only polynomially many tokens available at a time and they
are generated by a random oracle, we can assert that a
computationally bounded adversary can only access a token
not belonging to him with negligible probability via a hybrid
argument, and thus the system can be effectively treated as
only having tokens belonging to the adversary. Although
this line of proof looks more like reasoning on system
security, it restricts the adversary’s capability of finding a
valid token that he does not own, thus also restricting him
from sending/forging a token that does not belong to him.
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