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Abstract. Understanding the maximum size of a code with a given minimum distance is a
major question in computer science and discrete mathematics. The most fruitful approach for
finding asymptotic bounds on such codes is by using Delsarte’s theory of association schemes.
With this approach, Delsarte constructs a linear program such that its maximum value is an
upper bound on the maximum size of a code with a given minimum distance. Bounding this
value can be done by finding solutions to the corresponding dual linear program. Delsarte’s
theory is very general and goes way beyond binary codes.

In this work, we provide universal bounds in the framework of association schemes that
generalize the Hamming bound and the Elias-Bassalygo bound, which can be applied to any
association scheme constructed from a distance function. These bounds are obtained by con-
structing new solutions to Delsartes dual linear program. We instantiate these results and we
recover known bounds for q-ary codes and for constant-weight binary codes but which didn’t
come from the linear program method. Our other contribution is to recover, for essentially
any Q-polynomial scheme, MRRW-type solutions to Delsarte’s dual linear program which are
inspired by the Laplacian approach of Friedman and Tillich instead of using the Christoffel-
Darboux formulas. We show in particular how the second linear programming bound can be
interpreted in this framework.

1. Introduction

Let τH denote the Hamming distance. For a subset of the boolean cube, i.e., a binary code C ⊆ Fn
2 ,

its minimum distance is dH
min(C) = min{τH (c − c′) ∶ c,c′ ∈ C with c ≠ c′}. We define A(n, d) as

being the maximum size of a binary code with some fixed minimum distance, i.e.,

A(n, d) def= max{∣C∣ ∶ C ⊆ Fn
2 , d

H
min(C) = d} .

We are interested in the maximum asymptotic rate of binary codes with a certain (relative)
minimum distance δ ∈ [0,1], i.e.,

R(δ) def= lim
n→∞

1

n
log2A(n, ⌊δn⌋).

There are many reasons why one can be interested in this quantity. Constructing binary codes with
large minimum distance is studied since the seminal work of Shannon [Sha48]. Understanding R(δ)
has important consequences for telecommunications, in particular to provide lower bounds on the
probability of undetected error and for finding optimal codes for error detection over the binary-
symmetric channel [SGB67]. Moreover, it is a fundamental question in discrete mathematics and
it is strongly related to sphere packings in Rn [KL78, CE03]. Finally, the fact that the best
bounds on R(δ) were found in the late 1970’s, and are quite far from what we expect, makes it a
particularly interesting question for mathematicians and computer scientists.
Another important question is to provide bounds on the size of constant-weight codes with a
certain minimum distance. These codes are subsets of Sn,2a

def= {x ∈ Fn
2 ∶ τh(x,0) = a}. We are
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interested in the following quantity(1),

A(n, d, a) def= max{∣C∣ ∶ C ⊆ Sn,2a , dH
min(C) = d} .

Again, we define the asymptotic rate of constant-weight codes of relative weight α with a certain
relative minimum distance δ,

R(δ,α) = lim
n→+∞

1

n
log2A(n, ⌊δn⌋, ⌊αn⌋).

Studying this quantity is interesting for its own sake but it is of additional importance because it
can be used to obtain bounds on R(δ) thanks to the Elias-Bassalygo relation,

(1) ∀α ∈ [0, 1
2
] , R(δ) ≤ 1 − h(α) +R(δ,α)

where h(x) def= −x log2 x − (1 − x) log2(1 − x) denotes the binary entropy.

1.1. An Overview of Some Different Bounds and Linear Programming Bounds. The
best lower bound on R(δ) is the so-called Gilbert-Varshamov bound [Gil52, Var57],

R(δ) ≥ RGV(δ)
def= 1 − h(δ).

It turns out that this bound corresponds to the minimum distance that is obtained by choosing a
random linear code of the appropriate size. We expect this bound to be tight even though in the
q-ary setting (when working in Fn

q ), there are codes that have a better minimum distance than
random linear codes of the same size as soon as q = p2 with p ≥ 7 [TVZ82] so the whole picture is
not entirely clear.
On the other hand, there are various upper bounds on R(δ). The simplest known upper bound is
the combinatorial Hamming bound. This bound was improved independently by Elias (attributed
to Elias in [SGB67]) and Bassalygo [Bas65] also by using combinatorial arguments. These bounds
are the following,

R(δ) ≤ RHamm(δ)
def= 1 − h(δ

2
) ,

R(δ) ≤ REB(δ)
def= 1 − h(1

2
− 1

2

√
1 − 2δ) .

The question of finding codes with minimum distance d can be generalized to the following ques-
tion: given a set X and some distance function τ over X, what is the maximum size of a subset
C ⊆ X such that each pair of distinct point of C have distance at least d? Delsarte introduced the
important notion of association schemes [Del73] that can in particular help solving this question.
More precisely, if (X, τ) satisfies certain conditions, then using the theory of association schemes,
Delsarte shows how to construct a linear program such that its maximum value will be a bound
on the maximum size of C with minimum distance at least d. An overview of Delsarte’s theory
can be found in [DL98].
When instantiated in the boolean cube, this linear program involves Krawtchouk polynomials and
MacWilliams identities. Its maximum objective ALP(n, d) satisfies A(n, d) ≤ ALP(n, d). Then, it
is possible to deduce upper bounds on ALP(n, d) by finding solutions to the associated dual linear
program. Again, as we are interested in asymptotic upper bounds, we write,

RLP(δ)
def= lim

n→+∞

1

n
log2ALP(n, ⌊δn⌋).

(1)The number of arguments of A(⋅) will make it clear whether we talk about bounds on general codes or on
constant-weight codes.
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Using Delsarte’s approach, McEliece, Rodemich, Rumsey and Welch [MRRW77] proved what is
now called the first linear programming bound,

R(δ) ≤ RLP(δ) ≤ RMRRW1(δ)
def= h(1

2
− 1

2

√
δ(1 − δ)) .

It turns out that Delsarte’s linear program approach can also be used to obtain bounds on the size
of constant-weight codes with a certain minimum distance. It yields a linear program involving
dual Hahn polynomials such that its optimum ALP(n, d, a) satisfies(2) A(n, d, a) ≤ ALP (n, ⌊d2 ⌋, a).
We denote the asymptotic value of this linear program,

RLP(δ,α) = lim
n→∞

1

n
log2ALP(n, ⌊δn⌋, ⌊αn⌋).

Again, by finding solutions to the associated dual linear program, it was shown in [MRRW77]
that,

R(α, δ) ≤ RLP (α,
δ

2
) ≤ RMRRW(α, δ)

def= 1

2
(1 −

√
1 − 4(

√
α(1 − α) − δ(1 − δ) − δ)

2
) .(2)

This bound is of particular importance because it can be combined with the Elias-Bassalygo
relation (Equation (1)) to prove the so-called second linear programming bound,

R(δ) ≤ RMRRW2(δ)
def= max

0≤α≤ 1
2

{1 − h(α) +RMRRW(α, δ)}

This bound is, for the last 47 years, the best known upper bound on R(δ) for any δ, but it is quite
far from the lower bound RGV(δ). Note that even if there were some improvements on R(δ,α)
for some parameters (see [Sam01] for example), these do not yield any improvements on R(δ) by
using Equation (1). Surprisingly, Rodemich proved [Rod80] (see also [Del94, Sam01, AB06]) a
lifting theorem which shows how to construct solutions to Delsarte’s dual linear program on the
boolean cube from a solution to the dual linear program for constant-weight codes. In particular,
Rodemich has shown how to use Equation (2) to prove,

RLP(δ) ≤ RMRRW2(δ)

without using the Elias-Bassalygo relation. In other words, the best (current) solution of the linear
program in the boolean cube leads to the second linear programming bound. An overview of these
different bounds on R(δ) is depicted in Figure 1.
While [MRRW77] restricts its bounds to the binary case, an interesting question is also to provide
bounds on the maximal size A(q)(n, d) of a code in Fn

q of minimum distance d and on the asymptotic
rate R(q)(δ) = lim

n→+∞
1
n
logqA

(q)(n, ⌊δn⌋) of codes in Fn
q , with q > 2 a prime power, as function of

their relative minimum distance δ. Unfortunately, Hamming spheres in Fn
q , in which constant-

weight codes are embedded, do not yield association schemes and Delsarte’s approach fails to
provide a linear program. Therefore there is no equivalent to the second linear programming
bound and an equivalent to Rodemich’s lifting theorem does not exist. However, other bounds
such as the first linear programming bound can easily be extended to the q-ary case [DL98, §F.],

R(q)(δ) ≤ R(q)LP(δ) ≤ R
(q)
MRRW1(δ)

def= hq (γq(δ)) where

hq(x)
def= −(1 − x) logq(1 − x)−x logq (

x

q − 1
) , γq(δ)

def= 1

q
(q − 1 − (q − 2)δ − 2

√
(q − 1)δ(1 − δ)) .

Furthermore, Hamming and Elias-Bassalygo bounds are also known in this setting by using the
same combinatorial arguments. For instance, the asymptotic Elias-Bassalygo bound in given in

(2)The factor two in the distance comes from the fact that the corresponding association scheme uses as its
distance function τH/2.
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Figure 1. Known upper bounds and the Gilbert-Varshamov lower bound on
the asymptotic rate of binary codes R(δ) as function of their relative minimum
distance δ.

the q-ary case by,

R(q)(δ) ≤ R(q)EB
def= 1 − hq (Jq(δ)) where Jq(δ)

def= (1 − 1

q
) ⋅ (1 −

√
1 − qδ

(q − 1)
) .

1.2. Understanding the Limits of the Linear Programming Approach. Delsarte’s linear
program approach is currently the most efficient one to provide bounds on R(δ). A natural
question is therefore whether the second linear programming bound is the best one that can be
achieved with this method. Also, there has recently been proposals for a hierarchy of linear
programs involving a generalized Delsarte’s linear program on the boolean cube that give the real
value R(δ) when going far enough in the hierarchy [CJJ22, LL23, CJJ23]. Unfortunately, these
linear programs are currently too complicated to find new bounds and understanding solutions of
Delsarte’s linear program could be useful for finding new solutions to these more general linear
programs.
More concretely, what do we know about RLP(δ)? The best upper bound is RLP(δ) ≤ RMRRW2(δ)
using the MRRW bound for constant-weight codes and Rodemich’s lifting theorem. On the other
hand, regarding lower bounds, the following bounds are known, which were proven respectively
by Samorodnitsky [Sam01] and by Navon and Samorodnitsky [NS05],

RLP(δ) ≥ RLWB1
LP

def= 1

2
(RGV(δ) +RMRRW1(δ)) ,

RLP(δ) ≥ RLWB2
LP

def= 1

2
h (1 − 2

√
δ(1 − δ)) .

In the attempt to understand the tightness of RLWB1
LP , Barg and Jaffe [BJ99] performed numerical

simulations for ALP(n, d) with n = 1000. Their numerical simulations have shown that RLP(δ) is
actually likely to be close to RMRRW2(δ). The above two lower bounds and this upper bound are
depicted in Figure 2.
In the case of constant-weight codes, the problem was less studied and the best bound is, to the
best of our knowledge, RLP(δ,α) ≤ RMRRW(δ,α).
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Figure 2. Best upper bound RMRRW2(δ) on Delsarte’s linear program instanti-
ated in the boolean cube and known lower bounds on this program as function of
the relative minimum distance δ.

1.3. The Laplacian Technique. The linear programming technique seems to have intrinsic lim-
itations so it is important to consider other approaches. In this attempt, an extensive line of
work started with the approach of Friedman and Tillich [FT05] which relied on graph theory and
Fourier analysis over the Hamming cube. Roughly speaking, [FT05] study the following: given
a linear code C, start from a random element of its dual and then walk on the Hamming cube
according to some distribution f . Then, it turns out than an upper bound over the size of C can
be found using a function satisfying

1{1} ⋆ f ≥ λf.(3)

for some real λ, where 1{1} denotes the indicator function of words with Hamming weight 1 and ⋆
is the canonical convolution product. The value λ is related to the minimum distance of C while
the obtained upper bound on C can be expressed as a function of the range of f . In short, Friedman
and Tillich find a function f with small range such that Equation (3) is satisfied for a large λ. They
recover the first linear programming bound with this approach seemingly orthogonal to Delsarte’s
linear program. Notice that the operation 1{1} ⋆ f consists in performing an extra random step
of Hamming distance 1 after applying f . Because the operation 1{1} ⋆ f is closely related to the
Laplacian of f , we call this approach the Laplacian technique.
Several other works [Sam01, NS05] have followed the Laplacian technique by using Equation (3) in
a crucial way. It has been shown among others that it can also be interpreted in terms of covering
radius of the dual graph and can even be extended to non-linear codes [NS07]. However, these
methods are all tailored for the first linear programming by using Fourier analysis in the boolean
cube. It is an open question (see [NS07] for instance) whether these methods can be adapted to
the second linear programming bound.

1.4. Contributions. Our first contribution is to give explicit solutions to Delsarte’s dual linear
programs that achieve a generalized Hamming bound which we also improve to a generalized Elias-
Bassalygo bound. This result is very general and can be applied to any P -polynomial association
scheme under mild conditions.
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In the case of the boolean cube, we find solutions to the dual linear program of Delsarte (explaining
our expression of “generalized” Elias-Bassalygo bound) that give,

RLP(δ) ≤ REB(δ).

This shows a simple example of Delsarte’s linear program solutions on the Hamming cube which are
very different from the MRRW solutions. Furthermore, it achieves a better bound thanRMRRW1(δ)
for small values of δ without the use of Rodemich’s lifting theorem. These solutions also show how
to overcome some of the difficulties presented in [Sam23a] on beating the first linear programming
bound with this approach.
With out framework, we can actually extend this to the q-ary setting, i.e., when considering codes
in Fn

q . In this case, Delsarte’s framework still applies and we obtain,

R
(q)
LP(δ) ≤ R

(q)
EB(δ).

One can then show that for any q, there exists a δ0 such that,

∀δ ∈ (0, δ0), R
(q)
EB(δ) < R

(q)
MRRW1(δ).

This gives, to the best of our knowledge, new solutions to the q-ary dual linear program which on
the first linear programming bound for small relative minimum distance δ.
In the case of constant-weight codes, we only have results for the binary case since this is the only
case where there is an associations scheme structure. We derive from our new solution to the dual
linear program the following bound,

RLP(δ,α) ≤ REB(δ,α)
def= h(α)−αh(x

α
)−(1−α)h( x

1 − α
) with x

def= α(1−α)(1 −
√

δ

α(1 − α)
) .

Again, it can be verified that for any α ∈ (0, 1
2
), REB(δ,α) < RMRRW(δ,α) for δ small enough

which again gives simple and sometimes better alternative solutions to this linear program.
Our second contribution is to find explicit MRRW type solutions to Delsarte’s linear program for
essentially any Q-polynomial scheme. We rely on functions f satisfying,

1{1} ⍟ f ≥ λf(4)

where ⍟ is not the canonical convolution of the association scheme derived from its underlying
adjacency matrices and P -polynomials, but the convolution product derived from Q-polynomials.
This can be seen as a direct “dual” generalization of Friedman and Tillich’ approach. We then show
that the function g = 1{1}⍟f⍟f−(λ−1)(f⍟f) gives a solution to the dual linear program. This is a
generalization of the observation of Samorodnitsky [Sam23b]. We also give an explicit construction
for “good” functions f satisfying Equation (4), that depends only on the Q-polynomials of the
association scheme, generalizing [LL22].
When correctly instantiated to Hamming spheres, we recover RMRRW(δ,α) so this technique can be
seen in some sense as a generalization of the Laplacian technique to the second linear programming
bound. One has to be careful though, because we work with the convolution product in the Q-
polynomial world. We somehow need to do the “in reverse” argument of the Laplace technique and
use a “dual” Laplacian technique. While this is very well defined in the framework of association
schemes, we don’t know how to interpret the operation 1{1} ⍟ f in terms of random walks on the
associated inherited graph from spheres or in terms of a covering radius in the dual space. The
fact that we require the Q-polynomial convolution for this generalization rather illustrates the
difficulties in finding such interpretations.
Because our results are meant to be as general as possible, we rely on the full machinery of associ-
ation schemes. We therefore present an extensive introduction to Delsarte’s theory of association
schemes before proving our results.



NEW SOLUTIONS TO DELSARTE’S DUAL LINEAR PROGRAMS 7

2. Notation and Preliminaries on Association Schemes

Basic Notation. The notation x def= y means that x is being defined as equal to y. Given a set S,
its indicator function will be denoted 1S . For a finite set S, we will denote by ∣S ∣ its cardinality.
Let Ja, bK be the set of integers {a, a+1, . . . , b}. We use the Kronecker delta notation δji = 1 if i = j
and δji = 0 otherwise.
Matrices are denoted in bold capital letters such as A. For a finite set S, let C(S2) be the set of
square matrices of order ∣S ∣ and whose coefficients belong to C. We will use the standard inner
product on C (S2), i.e., for A,B ∈ C (S2),

⟨A∣B⟩ def= tr (AB†) , ∥A∥ def=
√
⟨A∣A⟩

where B† denotes the conjugate transpose of B. For any fixed order over S and x, y ∈ S, we
write A(x, y) to denote the coefficient of A at row x and column y.

Our aim now is to present needed pre-requisites about association schemes. Almost all proofs are
omitted. They can be found in the classical literature about association schemes like [Del73, BI84,
DL98]. For the sake of completeness, we prove in Appendix A all the claimed results.

2.1. Equipartition Property and Association Schemes. Let X be a finite set of “points”
with ∣X∣ ≥ 2 and let τ ∶ X2 Ð→ J0, nK be a distance function. Given (X, τ, n), we will consider the
following adjacency matrices Di ∈ C(X2) for i ∈ J0, nK,

∀x, y ∈ X, Di(x, y)
def=
⎧⎪⎪⎨⎪⎪⎩

1 if τ(x, y) = 1
0 otherwise

.

Distance induced association schemes are triplets (X, τ, n) satisfying the following properties.

Definition 1 (Equipartition Property and Non-Degenerate Triplets). (X, τ, n) is said to satisfy
the equipartition property if for each i, j, k ∈ J0, nK, there exists a nonnegative integer pki,j such that,

∀x, z ∈ X such that τ(x, z) = k, ∣ {y ∈ X ∶ τ(x, y) = i and τ(y, z) = j} ∣ = pki,j .

Furthermore, a triplet (X, τ, n) satisfying the equipartition property is said to be non-degenerate
if pk+11,k ≠ 0 for all k ∈ J0, n − 1K.
The equipartition property ensures that the complex vector space generated by the adjacency
matrices Di is closed under matrix multiplication, i.e., it forms an associative algebra.

Proposition 1. Let (X, τ, n) satisfying the equipartition property and let (Di)i∈J0,nK denote the
associated adjacency matrices. We have,

∀i, j ∈ J0, nK, Di ⋅Dj = ∑
k∈J0,nKp

k
i,jDk.

The above proposition is extremely powerful, it shows that the vector space generated by the Di

inherits a lot of structure. In particular, by the symmetry of the distance τ , the pki,j verify,

∀i, j, k ∈ J0, nK, pki,j = pkj,i.

Therefore, it is readily seen that the complex vector space generated by the adjacency matrices Di

is an associative algebra which is commutative. Furthermore, the fact that the pki,j are defined via
the distance τ implies another strong property that will be useful:

(5) pki,j = 0 if k > i + j, or ∣j − i∣ > k or as soon as i, j, k > n.

We are now ready to properly define distance induced association schemes.
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Definition 2. A distance induced association scheme is a triplet (X, τ, n) where X is a finite
set, τ ∶ X2 Ð→ J0, nK is a distance and (X, τ, n) satisfies the equipartition property and is non-
degenerate.

Remark 1. General association schemes are defined via a collection of some relations (Ri)i∈J0,nK
over X2. Our definition restricts (which is enough for our purpose) to the case where the Ri are
defined via (x, y) ∈Ri if and only if τ(x, y) = i.

Remark 2. Association schemes that satisfy Equation (5) are called P -polynomial association
schemes. Any distance induced association scheme is P -polynomial. Conversely, for any P -
polynomial association scheme, one can construct a distance function τ such that it is distance
induced with respect to τ [Del73, §5.2]. Also, P -polynomial schemes satisfy the 3-term relation,

D1Dj = pj−11,j Dj−1 + pj1,jDj + pj+11,j Dj+1,

which is a key-equation.

The most common association schemes (and the ones that we will consider) are,

● The Hamming scheme: X is the hypercube Fn
q endowed with Hamming metric,

∀x,y ∈ Fn
q , τH(x,y)

def= ∣{i ∈ J1, nK ∶ xi ≠ yi}∣ .
● The Johnson scheme: given some a ∈ J0, nK, X = Sn,2a = {x ∈ Fn

2 ∶ τH(x,0) = a} is the
Hamming sphere of radius a in the Hamming cube. The association scheme (X, τJ, a) is
then defined with(3) τJ

def= τH/2.

2.2. Fundamental Parameters of Association Schemes. Let (X, τ, n) be a distance induced
association scheme. The corresponding matrices Di are real and symmetric. Moreover, from
Proposition 1 one can show that each Di has n + 1 distinct eigenvalues and that they share the
same eigenspaces. Let E0, . . . ,En be the projectors on these eigenspaces.
One can prove that there exists an ordering on the matrices (Ei)i∈J0,nK such that,

E0 =
1

∣X∣ ∑i∈J0,nKDi =
1

∣X∣
⋅ J where J is the full-one matrix.

The fundamental parameters of an association scheme are defined with respect to an ordering of
the matrices E0, . . . ,En. When we refer to an ordering E0, . . . ,En, we assume from now on that
it satisfies E0 = 1

∣X∣ ⋅ J.

Definition 3 (p-numbers). Let (X, τ, n) be a distance induced association scheme with an order-
ing E0, . . . ,En. Its underlying p-numbers pi(j) are defined as,

∀i ∈ J0, nK, Di = ∑
j∈J0,nKpi(j)Ej .

Let us now introduce the norms (with a normalization) of these matrices Di and Ej .

Definition 4. Let (X, τ, n) be a distance induced association scheme with an ordering E0, . . . ,En,
we define,

∀i ∈ J0, nK, vi
def= ∥Di∥2

∣X∣
and mi

def= ∥Ei∥2 = rank(Ei).

(3)One can check that for any x,y ∈ Sn,2
a , τH(x,y) is even hence τJ(x,y) is an integer.
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The vi (resp. mi) are called the valencies (resp. multiplicities) of the association scheme. From
Definition (1), one can obtain the following relation,

(6) ∀i ∈ J0, nK, vi = p0i,i.

Matrices (Di)i∈J0,nK and (Ei)i∈J0,nK generate the same Hilbert space which enables to define the
q-numbers, an analogue of the p-numbers where the Ei and Di are interchanged.

Definition 5 (q-numbers). Let (X, τ, n) be a distance induced association scheme with an order-
ing E0, . . . ,En. Its underlying q-numbers qi(j) are defined from the expansion of the orthogonal
projectors Ei in the basis of adjacency matrices (Dj)j∈J0,nK, i.e.,

∀i ∈ J0, nK, Ei =
1

∣X∣ ∑j∈J0,nK qi(j)Dj .

Notice that the p and q-numbers are real by symmetry of the Di, Ej and unicity of the decom-
position in theses bases. Furthermore, from the definition of E0 as 1/∣X∣∑i∈J0,nK Di and the fact
that D0 = Id = ∑i∈J0,nK Ei, we deduce that,

(7) ∀j ∈ J0, nK, q0(j) = 1 , p0(j) = 1.

One can show that the matrices (Di)i∈J0,nK are pairwise orthogonal with respect to the inner
product on matrices. Similarly the matrices (Ei)i∈J0,nK are pairwise orthogonal. This allows to
show a strong relation between the p and q-numbers.

Proposition 2. Let (X, τ, n) be a distance induced association scheme with an order-
ing E0, . . . ,En.

∀i, j ∈ J0, nK, mjpi(j) = viqj(i).

The above relation is the key to prove many formulas involving p and q-numbers. In particular,
using that q0, p0 are the constant functions equal to 1 by Equation (7), we get m0 = ∥E0∥2 = 1, v0 =
∥D0∥2/∣X∣ = 1 and finally,

(8) ∀i ∈ J0, nK, pi(0) = vi , qi(0) =mi.

2.3. Algebra Structure for Pointwise Multiplication and Q-Polynomial Schemes. We
have deduced from Proposition 1 that the vector space H generated by the Di is closed for the
standard matrix-product: it is an algebra. It is also closed under the pointwise multiplication
(M,N)↦M ○N be defined as,

M ○N(x, y) def= M(x, y)N(x, y).

Indeed the Di verify Di ○Dj = δji ⋅Di. But H is also generated by the Ei showing that we can
define an equivalent of the pki,j (regarding Proposition 1): the qki,j .

Definition 6. Let (X, τ, n) be a distance induced association scheme with an ordering E0, . . . ,En.
The underlying Krein parameters qki,j are defined from the expansion of ∣X∣ ⋅ Ei ○ Ej in the ba-
sis (Ek)k∈J0,nK, i.e.,

∀i, j ∈ J0, nK, ∣X∣ ⋅Ei ○Ej = ∑
k∈J0,nK q

k
i,jEk.

The Krein parameters enjoy many interesting properties. For instance, they verify the following
relations,

(9) ∀x ∈ J0, nK, q0x,x =mx > 0,

(10) ∀x ∈ J0, nK, ∑
y∈J0,nK q

x
y,1 = q1(0),
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(11) ∀x, y ∈ J0, nK, mx ⋅ qxy,1 =my ⋅ qyx,1.

But most importantly, Krein parameters are nonnegative.

Proposition 3. ∀i, j, k ∈ J0, nK, qki,j ≥ 0.

Krein parameters also appear when considering the product of q-numbers.

Proposition 4. ∀i, k, ℓ ∈ J0, nK, qk(i)qℓ(i) = ∑m∈J0,nK qmk,ℓqm(i).
Krein parameters qki,j are the dual of the pki,j . However they are not in general integers. Further-
more, they don’t necessarily verify the “triangular inequality” relation as given in Equation (5).
However there is a non-trivial (and important) subset of distance induced association schemes for
which the Krein parameters verify this relation: Q-polynomial schemes.

Definition 7. A distance induced association scheme with an ordering E0, . . . ,En is said to be
Q-polynomial if it satisfies the following two conditions,

(1) qki,j = 0 if k > i + j, or ∣j − i∣ > k or as soon as i, j, k > n.
(2) qk+11,k ≠ 0 for all k ∈ J0, nK.

This property implies in particular the 3-term order relation,

∣X∣ ⋅E1 ○Ej = qj−11,j Ej−1 + qj1,jEj + qj+11,j Ej+1

which will be crucial in Subsection 3.4 to recover linear programming bounds from [MRRW77].

2.4. Fourier Transforms and Convolutions. We are now ready to introduce the Fourier trans-
form and its inverse (usually called P and Q-transforms). All the definitions of this subsection are
with respect to a fixed distance induced association scheme (X, τ, n) with an ordering E0, . . . ,En.

Definition 8. Given f ∶ J0, nK Ð→ C, we define its Fourier transform f̂ and its inverse Fourier
transform f̃ as follows,

f̂(x) def= ∑
y∈J0,nK f(y)py(x) , f̃(x) def= 1

∣X∣ ∑y∈J0,nK f(y)qy(x).
Simple examples of Fourier transform and its inverse are given by,

(12) 1̂{u} = pu , 1̃{u} =
1

∣X∣
qu.

When dealing with the Fourier transform and its inverse the following definition will be especially
useful.

Definition 9. Given f ∶ J0, nKÐ→ C, we define its associated D-matrix and E-matrix as follows,

Df def= ∑
x∈J0,nK f(x)Dx , Ef def= ∑

x∈J0,nK f(x)Ex.

First notice that since Di ○Dj = δjiDi and EiEj = δjiEi, we have,

Df ○Dg =Df ⋅g , Ef ⋅Eg = Ef ⋅g.

Moreover, notice that by the decompositions given in Definitions 3 and 5, we have defined f̂ and f̃
to ensure Df = Ef̂ and Ef =Df̃ which implies by unicity in the decomposition in bases (Di)i∈J0,nK
and (Ei)i∈J0,nK that,

(13) ̃̂
f = ̂̃f = f.

We can now define the convolution product and reverse convolution product between functions.
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Definition 10. Given f, g ∶ J0, nKÐ→ C, we define their convolution ⋆ and their reverse convolu-
tion ⍟ as follows,

(f ⋆ g)(x) def= ∑
y,z∈J0,nK f(y)g(z)p

x
y,z , (f ⍟ g)(x) def= 1

∣X∣ ∑
y,z∈J0,nK f(y)g(z)q

x
y,z.

The convolution and reverse convolution are defined to ensure Df⋆g =Df ⋅Dg and Ef⍟g = Ef ○Eg

which enables to prove the following proposition.

Proposition 5. Let f, g ∶ J0, nKÐ→ C, we have,

(1) f̂ ⋆ g = f̂ ⋅ ĝ , (2) f̃ ⍟ g = f̃ ⋅ g̃ , (3) (̂fg) = f̂ ⍟ ĝ , (4) (̃fg) = f̃ ⋆ g̃.

Proof. We write,

(1) Ef̂⋆g =Df⋆g =Df ⋅Dg = Ef̂ ⋅Eĝ = Ef̂ ⋅ĝ,
(2) Df̃⍟g = Ef⍟g = Ef ○Eg =Df̃ ○Dg̃ =Df̃ ⋅g̃,

(3) Use (̂f ⋅ g) =
̂
(̃̂f ⋅ ̃̂g) and apply (2),

(4) Use (̃f ⋅ g) =
̃
(̂̃f ⋅ ̂̃g) and apply (1),

where in (1) and (2) we conclude by using the unicity in the decomposition in bases (Di)i∈J0,nK
and (Ei)i∈J0,nK. □

Finally, the fact that the Krein parameters are nonnegative implies the following.

Proposition 6. Given f, g ∶ J0, nKÐ→ R≥0, we have f ⍟ g ≥ 0.

2.5. Codes and Dual Weight Distribution. Given a distance induced association scheme, our
aim is to provide upper bounds on the size of codes with a fixed minimum distance. These objects
are defined as follows.

Definition 11 (Code, distance distribution and minimum distance). Let (X, τ, n) denote a dis-
tance induced association scheme. Any subset C ⊆ X is called a code.
Given a code C, we define its weight distribution as,

∀t ∈ J0, nK, a(t) def= 1

∣C∣
⋅ ∣{(c, c′) ∈ C2 ∶ τ(c, c′) = t}∣ .

The minimum distance of C is then defined as,

dmin(C)
def= min{τ(c, c′) ∶ c, c′ ∈ C and c ≠ c′} =min{t ∈ J1, nK ∶ a(t) ≠ 0}.

Remark 3. We have normalized the weight distribution of codes to ensure a(0) = 1.

In the remainder of this section, we will use Dirac’s bra-ket notation for linear algebra. Dirac’s
notation is borrowed from quantum computing [NC10] and even though our work is unrelated
with quantum computing, this notation is in our opinion an especially elegant way of presenting
the results of this section, particularly the generalization of MacWilliams identities.
More concretely, let X = {x1, . . . , xN}. From any xi ∈ X we associate the column vector ∣xi⟩
whose ith entry is 1 while the others are 0. Then we write ∣v⟩ for any vector of the complex-vector
space generated by the ∣xi⟩ for i ∈ J1,NK. We write for example,

∣v⟩ =
⎛
⎜⎜
⎝

v1
⋮
vN

⎞
⎟⎟
⎠
=

N

∑
i=1
vi ∣xi⟩ .
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For a column vector ∣v⟩ =
⎛
⎜⎜
⎝

v1
⋮
vN

⎞
⎟⎟
⎠

, we also define the line vector,

⟨v∣ def= (v1 . . . vN) .

In particular, ⟨xi∣ is the line vector whose ith entry is 1 while the others are 0. With this notation,
the canonical inner product between vectors ⟨v∣w⟩ is the multiplication ⟨v∣ ⋅ ∣w⟩. Notice also that
any rank one matrix of C(X2) can now be written as ∣v⟩ ⋅ ⟨w∣ which we write ∣v⟩⟨w∣.
We now relate the weight distribution of a code C with the underlying Di matrices of the association
scheme.

Definition 12. Given a code C, let,

∣ψC⟩
def= 1√

∣C∣
∑
c∈C
∣c⟩ .

This vector relates the weight distribution of a given code and underlying adjacency matrices of
the association scheme. We have the following relation.

Proposition 7. Let (X, τ, n) be a distance induced association scheme, we have,

(14) ∀t ∈ J0, nK, a(t) = ⟨ψC ∣Dt ∣ψC⟩ .

Proof. With our notation, we have Dt = ∑x,x′∶τ(x,x′)=t ∣x⟩⟨x′∣ , which gives,

⟨ψC ∣Dt ∣ψC⟩ =
1

∣C∣ ∑c,c′∈C
∑

x,x′∈X
τ(x,x′)=t

⟨c∣ ⋅ ∣x⟩⟨x′∣ ⋅ ∣c′⟩ = 1

∣C∣ ∑c,c′∈C
∑
x∈X

τ(x,c′)=t

⟨c∣x⟩ = 1

∣C∣ ∑
c,c′∈C

τ(c,c′)=t

1

which concludes the proof by definition of a(t). □

The weight distribution of codes plays an important role in providing upper-bounds on their size
given their minimum distance, in particular their “dual” which is defined as follows.

Definition 13 (Dual weight distribution). Let (X, τ, n) denote a distance induced association
scheme with an ordering E0, . . . ,En. Given a code C, we define its dual weight distribution as,

a′(t) def= ⟨ψC ∣Et ∣ψC⟩ =
1

∣X∣ ∑x∈J0,nK ⟨ψC ∣ qt(x)Dx ∣ψC⟩ =
1

∣X∣ ∑x∈J0,nK qt(x)a(x).
Interestingly, the dual weight distribution turns out to be nonnegative, result which is known as
a MacWilliams identity.

Proposition 8. Let (X, τ, n) denote a distance induced association scheme with an order-
ing E0, . . . ,En. Let C ⊆ X. Its dual weight distribution verifies,

∀t ∈ J0, nK, a′(t) ≥ 0.

Proof. By definition the Et are projectors. Therefore we can write each Et = ∑i ∣vti⟩⟨vti ∣ for some
rank 1 projectors ∣vti⟩⟨vti ∣ . Plugging this expression into the definition of a′ leads to,

a′(t) = ⟨ψC ∣Et ∣ψC⟩ = ⟨ψC ∣∑
i

∣vti⟩⟨vti ∣ ∣ψC⟩ =∑
i

∣⟨ψC ∣vti⟩∣
2 ≥ 0

which concludes the proof. □
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2.6. Delsarte’s Linear Program of Association Schemes. Let (X, τ, n) be a distance induced
association scheme. In the attempt to provide bounds on the maximum size of a code C ⊆ X with
minimum distance at least d, Delsarte introduced [Del73] the following linear program

Delsarte’s Linear Program (DLP)

maximize ∑
t∈J0,nKu(t)

u(0) = 1
u(t) = 0 for t ∈ J1, d − 1K
u(t) ≥ 0 for t ∈ Jd,nK

∑
t∈J0,nKu(t)qi(t) ≥ 0 for i ∈ J0, nK.

Definition 14. Let (X, τ, n) be a distance induced association scheme with an ordering E0, . . . ,En

and d ∈ J0, nK. We define ALP(n, d) to be the maximum of the above linear program.

The following proposition justifies the introduction of Delsarte’s linear program to give upper
bounds on the size of a code given its minimum distance.

Proposition 9. Let C ⊆ X be a code with minimum distance at least d. We have,

∣C∣ ≤ ALP(n, d).

Proof. It is a simple consequence of the fact that the weight distribution a(t) of C verifies the
condition of Delsarte’s linear program, in particular the positivity of its dual weight distribution
(see Definition 13) given by Proposition 8. □

The above proposition shows that solving Delsarte’s linear program gives upper bounds for code
sizes. Finding the value of this linear program is a hard problem. In order to find upper bounds
on this linear program one has to look at the dual linear program which is a linear program such
that its minimum will be larger than ALP(n, d).
A simpler but essentially equivalent way of formulating the dual linear program is via the following
proposition (see for instance [DL98, III. B]) which finds solutions to the dual linear program - and
hence upper bounds ALP(n, d) - via the choice of some function.

Proposition 10. Let d ∈ J0, nK and f ∶ J0, nKÐ→ R be a function such that,

f̂ ≥ 0 , f̂(0) > 0 , ∀x ≥ d, f(x) ≤ 0.

Then,

ALP(n, d) ≤ ∣X∣ ⋅
f(0)
f̂(0)

.

Proof. Let u be a function that satisfies the constraints of the linear program and f that satisfies
the requirements of the proposition. Let,

∀i ∈ J0, nK, u′(i) def= ∑
t∈J0,nKu(t)qi(t) ≥ 0.

First,

∑
x∈J0,nKu

′(x)f̂(x) = ∑
y∈J0,nK

⎛
⎝ ∑x∈J0,nK qx(y)f̂(x)

⎞
⎠
u(y) = ∣X∣ ⋅ ∑

y∈J0,nK
̃̂
f(y)u(y) = ∣X∣ ⋅ ∑

y∈J0,nK f(y)u(y)
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where in the last equality we used Equation (13). Therefore, we write

u′(0)f̂(0) ≤ ∑
x∈J0,nKu

′(x)f̂(x) = ∣X∣ ⋅ ∑
x∈J0,nKu(x)f(x) ≤ ∣X∣ ⋅ u(0)f(0) = ∣X∣ ⋅ f(0).

In order to conclude, we just have to compute u′(0) = ∑t∈J0,nK u(t)q0(t) = ∑t∈J0,nK u(t) (see Equa-
tion (7)). From there,

∑
t∈J0,nKu(t) ≤ ∣X∣ ⋅

f(0)
f̂(0)

.

It ends the proof since this is true for any solution u of the linear program. □

Let us stress that finding functions f satisfying the above conditions corresponds to finding solu-
tions to Delsarte’s dual linear program.

3. Packing Bounds for Association Schemes

The best asymptotic upper bounds on the size of q-ary and constant-weight codes for a fixed min-
imum distance, i.e., packing bounds, were obtained in [MRRW77] via Delsarte’s Linear Program
(DLP), in particular using Proposition 10. The functions that achieve the first and second linear
programming bounds are rather involved and use the so-called Christoffel-Darboux formulas for
orthogonal polynomials.
Here, we present three different families of functions satisfying the conditions of Proposition 10.
The first function that we use is very simple as it is just a convolution of bounded indicator
functions but it recovers the well-known Hamming bound which holds in any distance induced
association scheme. We made the choice to present this function as our second family of functions
has been deduced from this quite simple choice. It takes a similar function to which we add
the coefficient (q1(x) − q1(d)). This is actually similar to the MRRW construction but here,
it is f that has bounded support(4) while the MRRW functions have f̂ with bounded support.
With these functions, we obtain a generalized Elias-Bassalygo bound. We are speaking here of
a “generalized” Elias-Bassalygo bound as when instantiated to the Hamming association scheme
we are precisely getting the bound known as Elias-Bassalygo. Our generalized Elias-Bassalygo
bound is very general, it only requires a distance induced association scheme which is not the case
of [MRRW77]-like bounds (see also [DL98]). Indeed, best known packing bounds obtained via
DLP are also asking the association scheme to be Q-polynomial.
This situation is well illustrated by our third choice of function which recovers [MRRW77] bounds
when instantiated to the Hamming and Johnson association schemes (our function slightly differs
from the one in [MRRW77]). Indeed, our third and ultimate function requires the underlying
association schemes to be Q-polynomial to verify conditions of Proposition 10. These functions
are close to the MRRW functions but are related to the Laplacian approach and makes the link
between the linear programming approach and the (dual) Laplacian approach.

3.1. Generalised Hamming Bound for the Linear Program. In the following theorem we
show that the Hamming bound, which exists in any distance induced association scheme, turns
out to be an upper bound for the Delsarte’s Linear Program (DLP).

Theorem 1 (Generalized Hamming Bound for DLP). Let (X, τ, n) be a distance induced associ-
ation scheme with an ordering E0, . . . ,En. For any d ∈ J1, nK, we have,

ALP(n, d) ≤
∣X∣

∑⌊
d−1
2 ⌋

x=0 vx

.

(4)In the sense that the support is restricted in J0, rK with r significantly smaller than n
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Proof. Our proof strategy will be to construct a good function f which satisfies the requirements
of Proposition 10. We choose,

f
def= 1≤⌊ d−12 ⌋

⋆ 1≤⌊ d−12 ⌋ where 1≤⌊ d−12 ⌋
def=
⌊ d−1

2
⌋

∑
x=0

1{x}.

We have,

f(x) = ∑
y,z∈J0,nK1≤⌊ d−12 ⌋(y)1≤⌊ d−12 ⌋(z)p

x
y,z =

⌊ d−1
2
⌋

∑
y,z=0

pxy,z.

Let h = 1≤⌊ d−12 ⌋. Since f = h ⋆ h, we have f̂ = (ĥ)2 which gives

f̂(x) =
⎛
⎝ ∑y∈J0,nK1≤⌊ d−12 ⌋(y)py(x)

⎞
⎠

2

=
⎛
⎜
⎝

⌊ d−1
2
⌋

∑
y=0

py(x)
⎞
⎟
⎠

2

.

We clearly have f̂ ≥ 0 and f̂(0) > 0. Also, using Equation (5), we have f(x) = 0 when x ≥
d ≥ 2 ⌊d−1

2
⌋. This means the conditions of Proposition 10 are satisfied. We now compute by

Equations (6) and (8),

f(0) =
⌊ d−1

2
⌋

∑
y,z=0

p0y,z =
⌊ d−1

2
⌋

∑
y=0

vy,

f̂(0) =
⎛
⎜
⎝

⌊ d−1
2
⌋

∑
y=0

py(0)
⎞
⎟
⎠

2

=
⎛
⎜
⎝

⌊ d−1
2
⌋

∑
y=0

vy
⎞
⎟
⎠

2

.

We can now use Proposition 10,

ALP(n, d) ≤ ∣X∣ ⋅
f(0)
f̂(0)

= ∣X∣

∑
⌊ d−1

2
⌋

y=0 vy

which concludes the proof. □

3.2. Generalized Elias-Bassalygo Bound for the Linear Program. Here, we start again
from a function f = 1u ⋆ 1u ≥ 0 and we do the following changes: we will take u which is a little
bit larger than ⌊d−1

2
⌋. This seems problematic since the function will be nonnegative for values

above d. To circumvent this, we also multiply by the function by the term (q1(x) − q1(d)). This
will ensure that the function f has the good sign conditions and we show that it is possible to
choose u above ⌊d−1

2
⌋ while at the same time preserbing the positivity of f̂ .

Theorem 2 (Generalized Elias-Bassalygo Bound for DLP). Let (X, τ, n) be a distance induced
association scheme with an ordering E0, . . . ,En and d ∈ J1, nK. Suppose that q1 is decreasing. Let,

(15) u ∈ {u0 ∈ J0, nK ∶ q1(u0)2
q1(0)

≥ q1(d) + 1}

Then,

ALP(n, d) ≤ (q1(0) − q1(d)) ⋅
∣X∣
vu
.

Proof. Again, our strategy is to find a good function to use in Proposition 10. The function f

that we use is,
f(x) def= (q1(x) − q1(d)) ⋅ (1{u} ⋆ 1{u})(x).

As q1 is decreasing and 1{u} ⋆ 1{u} ≥ 0, we have that f(x) ≤ 0 for x ≥ d.
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Let us compute f̂ . Let h = 1u ⋆ 1u. We compute by using Proposition 5,

ĥ = (1̂{u})
2 = p2u , q̂1 = ∣X∣ ⋅ 1{1}.

We have f = q1h − q1(d)h so using again Proposition 5, we obtain,

f̂ = q̂1 ⍟ ĥ − q1(d)ĥ,

from which we deduce,

(16) f̂ = ∣X∣ ⋅ 1{1} ⍟ p2u − q1(d) ⋅ p2u.

Let us admit for now that,

(17) f̂ ≥ p2u ≥ 0

which enables to apply Proposition 10.
We can now compute (with Equations (6) and (8)),

f(0) = (q1(0) − q1(d)) ⋅ (1{u} ⋆ 1{u})(0) = (q1(0) − q1(d)) ⋅ p0u,u = (q1(0) − q1(d)) ⋅ vu,

f̂(0) ≥ pu(0)2 = v2u > 0.

Plugging this into Proposition 10, we obtain,

ALP(n, d) ≤ ∣X∣ ⋅
f(0)
f̂(0)

≤ (q1(0) − q1(d)) ⋅
∣X∣
vu
.

To conclude it remains to prove Equation (17). To this aim, according to Equation (16), let us
give a lower bound on 1{1} ⍟ p2u. We have the following computation,

1{1} ⍟ p2u(x) =
1

∣X∣ ∑y∈J0,nKp
2
u(y)qxy,1

≥ 1

∣X∣
1

∑y∈J0,nK qxy,1
⎛
⎝ ∑y∈J0,nKpu(y)q

x
y,1

⎞
⎠

2

(By convexity of x↦ x2)

= ∣X∣
q1(0)

(1{1} ⍟ pu(x))
2(18)

where in the last equality we used Equation (10). Now we write,

E1{1}⍟pu = E1 ○Epu = E1 ○Du =
1

∣X∣
⎛
⎝ ∑j∈J0,nK q1(j)Dj

⎞
⎠
○Du =

q1(u)
∣X∣

Du =
q1(u)
∣X∣

Epu

from which we obtain 1{1} ⍟ pu = q1(u)
∣X∣ pu. Plugging this into Equation (18) leads to,

1{1} ⍟ p2u(x) ≥
q1(u)2

q1(0) ∣X∣
p2u(x) ≥

(q1(d) + 1)
∣X∣

p2u(x)

where in the inequality we used the assumption on u. Therefore, plugging this into Equation (16)
gives,

f̂ ≥ (q1(d) + 1)p2u − q1(d)p2u = p2u
which concludes the proof. □

Remark 4. When instantiating the above theorem, we will choose u satisfying Condition (15) but
which maximizes vu in order to to get the best upper bound as possible.
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3.3. The Dual Laplacian Argument. Here, we give general statements showing how to use a
function f satisfying,

1{1} ⍟ f̂ ≥ λf̂
and certain properties to find functions satisfying the requirements of Proposition 10. The proof
of the generalized Elias-Bassalygo bound is implicitly using this approach via the following claim.

Proposition 11. Let (X, τ, n) be a distance induced association scheme with an order-
ing E0, . . . ,En. Let d ∈ J0, nK and let f ∶ J0, nKÐ→ R such that,

(19) ∣X∣ ⋅ 1{1} ⍟ f̂ ≥ (q1(d) + 1)f̂ , f̂ ≥ 0 , f̂(0) > 0 , f ≥ 0

with q1 decreasing. Then we have,

ALP(n, d) ≤ (q1(0) − q1(d)) ⋅ ∣X∣ ⋅
f(0)
f̂(0)

.

Proof. We take g(x) def= (q1(x) − q1(d)) ⋅ f . We have g(x) ≤ 0 for x ≥ d since q1 is decreasing
and f ≥ 0. Furthermore, by assumption on f̂ ,

ĝ = ∣X∣ ⋅ 1{1} ⍟ f̂ − q1(d)f̂ ≥ f̂ ≥ 0.

This means g satisfies the constraints of Proposition 10. We also have, g(0) = (q1(0)−q1(d)) ⋅f(0)
and ĝ(0) ≥ f̂(0) > 0. Therefore we obtain,

ALP(n, d) ≤ ∣X∣ ⋅
g(0)
ĝ(0)

≤ (q1(0) − q1(d)) ⋅ ∣X∣ ⋅
f(0)
f̂(0)

which concludes the proof. □

Notice that in the previous proposition we asked the function f to be nonnegative which is quite
restrictive. Fortunately, we can apply the above strategy (in the choice of f) by enforcing its square
to appear in order to ensure the positivity. However, it is at the cost of an extra convolution on
the Fourier transform but it preserves the “eigenvalue property”, i.e., 1{1} ⍟ f̂ ≥ λ ⋅ f̂ , and more
importantly, it enables more functions.

Proposition 12. Let (X, τ, n) be a distance induced association scheme with an order-
ing E0, . . . ,En with q1 decreasing. Let d ∈ J0, nK and let f ∶ J0, nKÐ→ R such that,

(20) ∣X∣ ⋅ 1{1} ⍟ f̂ ≥ (q1(d) + 1)f̂ , f̂ ≥ 0 , f̂(0) > 0

Then we have,

ALP(n, d) ≤ (q1(0) − q1(d)) ⋅ ∣X∣ ⋅
f2(0)

(f̂ ⍟ f̂)(0)
.

Proof. The key point is to observe that,

∣X∣ ⋅ 1{1} ⍟ f̂ ⍟ f̂ ≥ (q1(d) + 1)(f̂ ⍟ f̂).

Indeed, let h def= ∣X∣ ⋅ 1{1} ⍟ f̂ − (q1(d) + 1)f̂ . Notice that by assumption h ≥ 0. Therefore,

∣X∣ ⋅ 1{1} ⍟ f̂ ⍟ f̂ − (q1(d) + 1)(f̂ ⍟ f̂) = h⍟ f̂ ≥ 0

by Proposition 6 since both h and f̂ are nonnegative. Recall now that by Proposition 5,

f̂ ⍟ f̂ = (̂f2).

Also, (̂f2)(0) = (f̂ ⍟ f̂)(0) ≥ f̂(0)2 > 0. This means that we have,

∣X∣ ⋅ 1{1} ⍟ (̂f2) ≥ (q1(d) + 1)(̂f2) , (̂f2) = f̂ ⍟ f̂ ≥ 0 , (̂f2)(0) > 0 , f2 ≥ 0.
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We can therefore use the previous proposition with f2. We obtain,

ALP(n, d) ≤ (q1(0) − q1(d)) ⋅ ∣X∣ ⋅
f2(0)

(f̂ ⍟ f̂)(0)

which concludes the proof. □

3.4. MRRW Bounds Using the Laplacian Method. The last proposition of the above sub-
section can be used to derive packing bounds which turn out to be known as MRRW bounds.
Indeed, when instantiated to the Hamming and Johnson association schemes we exactly recover
bounds from [MRRW77].

Theorem 3 (MRRW Bound for DLP). Let (X, τ, n) be a distance induced association scheme
with an ordering E0, . . . ,En which is also Q-polynomial and let d ∈ J0, nK. Furthermore, suppose
that q1 is decreasing. Let r⊥ be an integer in J0, nK such that,

q1(d) + 1 ≤ q1(r⊥).

We suppose that there exists x ∈ J1, nK such that qx(r⊥) ≤ 0 and we define,

r
def= min{x ∈ J1, nK ∶ qx(r⊥) ≤ 0} =min{x ∈ J1, nK ∶ pr⊥(x) ≤ 0} .

Then,
ALP(n, d) ≤ (q1(0) − q1(d)) ⋅ ∑

x∈J0,r−1Kmx.

To prove this theorem we will rely on the following function.

Proposition 13. Let (X, τ, n) be a distance induced association scheme with an ordering
E0, . . . ,En which is also Q-polynomial. Let f be the function such that,

∀x ∈ J0, nK, f̂(x) def=
⎧⎪⎪⎨⎪⎪⎩

qx(r⊥)
mx

if x ∈ J0, r − 1K
0 otherwise

where r and r⊥ are defined as in Theorem 3. Then,

(i) f̂ ≥ 0, (ii) f̂(0) > 0, and (iii) ∣X∣ ⋅ 1{1} ⍟ f̂ ≥ q1(r⊥) ⋅ f̂ .

Proof. By assumption on r we have for all x ∈ J0, r − 1K, qx(r⊥) ≥ 0 showing that f̂ is nonnegative.
Furthermore, f̂(0) = q0(r⊥)/m0 = 1. Let us now show that condition (iii) holds. First,

∀x ∈ J0, r − 2K, (1{1} ⍟ f̂)(x) =
1

∣X∣ ∑
y∈J0,r−1K f̂(y)q

x
1,y

= 1

∣X∣ ∑
y∈J0,r−1K

qx1,y

my
qy(r⊥)

= 1

∣X∣ ∑
y∈J0,r−1K

qy1,x

mx
qy(r⊥) (By Equation (11))

= 1

∣X∣
1

mx
q1(r⊥)qx(r⊥)

= q1(r
⊥)f̂(x)
∣X∣

where we used Proposition 4 combined with the fact that the scheme is supposed to be Q-
polynomial (see Definition 7) and the qki,j are equal to 0 if one i, j, k is greater than the sum
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of the other two. Furthermore, using once again this assumption,

(1{1} ⍟ f̂)(r − 1) =
1

∣X∣
(qr−11,r−2f̂(r − 2) + qr−11,r−1f̂(r − 1) + qr−11,r f̂(r))

= 1

∣X∣
(
qr−11,r−2

mr−2
qr−2(r⊥) +

qr−11,r−1

mr−1
qr−1(r⊥))

= 1

∣X∣
(
qr−21,r−1

mr−1
qr−2(r⊥) +

qr−11,r−1

mr−1
qr−1(r⊥)) (By Equation (11))

≥ 1

∣X∣mr−1
(qr−21,r−1qr−2(r⊥) + qr−11,r−1qr−1(r⊥) + qr−11,r qr(r⊥))

= 1

∣X∣mr−1
q1(r⊥)qr−1(r⊥) =

q1(r⊥)f̂(r − 1)
∣X∣

where we used for the inequality qr−11,r qr(r⊥) ≤ 0 coming from the definition of r and the positivity
of the qki,j (see Proposition 3). Finally,

(1{1} ⍟ f̂)(r) = ∑
y∈J0,r+1K f̂(y)q

r
1,y = f̂(r − 1)qr1,r−1 ≥ 0

and ∀x > r, (1{1} ⍟ f̂)(x) = 0. From there, we deduce that,

∀x ∈ Jr, nK, (1{1} ⍟ f̂)(x) ≥ 0 =
q1(r⊥)
∣X∣

f̂(x)

which concludes the proof. □

Proof of Theorem 3. First, the equality when defining r⊥ comes from Proposition 2. Let us now
take f as defined in the above proposition. Recall that by assumption,

q1(d) + 1 ≤ q1(r⊥).

We can therefore apply Proposition 12 (here is used the assumption that q1 is a decreasing function)
with the above function f . We get,

f̂ ⍟ f̂(0) = 1

∣X∣ ∑x∈J0,nK f̂(x)
2q0x,x =

1

∣X∣ ∑
x∈J0,r−1K f̂(x)

2mx

where in the last equality we used Equation (9). Furthermore,

f2(0) = ̃̂f(0)2 = 1

∣X∣2
⎛
⎝ ∑y∈J0,nK f̂(y)qy(0)

⎞
⎠

2

= 1

∣X∣2
⎛
⎝ ∑
y∈J0,r−1K f̂(y)my

⎞
⎠

2

(By Equation (8))

≤ 1

∣X∣2
⎛
⎝ ∑
y∈J0,r−1Kmy

⎞
⎠
⎛
⎝ ∑
y∈J0,r−1K f̂(y)

2my

⎞
⎠

where in the last inequality we used the Cauchy-Schwartz inequality. From there, we get by
applying Proposition 12,

ALP(n, d) ≤ (q1(0) − q1(d))∣X∣
f2(0)

(f̂ ⍟ f̂)(0)
≤ (q1(0) − q1(d)) ⋅ ∑

y∈J0,r−1Kmy

which concludes the proof. □
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4. Applications: Packing Bounds for q-ary and Constant-Weight Binary Codes

We are interested in this section to give upper bounds on the size of q-ary and constant-weight
binary codes, i.e., subsets of Fn

q and Sn,2a (words of Hamming weight a in Fn
2 ), for a fixed mini-

mum distance. Bounds will also be presented asymptotically in n and in order to describe them
compactly let us introduce some notation. We define A(q)(n, d) (resp. A(n, d, a)) to be the largest
possible codes of Fn

q (resp. Sn,2a ) with minimum Hamming distance at least d. Next we define,

R(q)(δ) def= lim
n→+∞

1

n
logqA(n, ⌊δn⌋) (resp. R(δ,α) def= lim

n→+∞

1

n
log2A(n, ⌊δn⌋, ⌊αn⌋))

Upper bounds over R(q)(δ) will involve the q-ary entropy,

hq ∶ x ∈ [0,1]z→ −(1 − x) logq(1 − x) − x logq (
x

q − 1
) .

This function gives the asymptotic behaviour of the binomial coefficients as shown in the following
elementary lemma which will be at the core of all asymptotic results of this section.

Lemma 1. Let t def= ⌊τn⌋, we have,
1

n
logq (

n

t
)(q − 1)t =

n→+∞
hq(τ) + o(1).

4.1. Hypercube Case. We instantiate in this subsection packing-bounds from the previous sec-
tion in the Hamming scheme (Fn

q , τH, n) where τH denotes the Hamming distance. This association
scheme comes with a canonical ordering E0, . . . ,En. We give in what follows all the fundamental
parameters of this association scheme with respect to this ordering as well as required properties
to apply Theorems 1, 2 and 3. We refer the reader to [DL98].
First, (Fn

q , τH, n) is a distance induced association scheme which is also Q-polynomial.
Its valencies and multiplicities are given by,

(21) ∀i ∈ J0, nK, vi =mi = (
n

i
)(q − 1)i.

The p and q-numbers of the Hamming scheme involve Krawtchouk polynomials Kn,q
k which are

defined as follows,

∀k ∈ J0, nK, Kn,q
k (X)

def= ∑
j∈J0,kK(−1)

j(q − 1)k−j(X
j
)(n −X
k − j

)

where (X
i
) def= X(X − 1)⋯(X − i + 1)/i!. More precisely, p and q-numbers are the integers given by

the evaluation of the Krawtchouk polynomials over J0, nK, i.e.,

∀i, k ∈ J0, nK, qk(i) = pk(i) =Kn,q
k (i).

Then it is readily seen that,

∀i ∈ J0, nK, q1(i) = (q − 1)(n − i) − i = (q − 1)n − qi

which is a decreasing function as required in Theorems 2 and 3. We denote A(q)LP(n, d) the maximum
value of the associated linear program (as per Subsection 2.6) and we define,

R
(q)
LP(δ)

def= lim
n→+∞

1

n
logqA

(q)
LP (n, ⌊δn⌋) .

We immediately deduce from Proposition 9 that,

A(q)(n, d) ≤ A(q)LP(n, d) , R(q)(δ) ≤ R(q)LP(δ).

Hamming Bound. By using the valencies of (Fn
q , τH, n) and Theorem 1 we easily recover the

Hamming bound.
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Theorem 4 (Hamming Bound for A(q)LP(n, d)). For any q, n ≥ 2 and d ≥ 1,

A(q)(n, d) ≤ A(q)LP(n, d) ≤
qn

∑
⌊ d−1

2
⌋

x=0 vx

= qn

∑
⌊ d−1

2
⌋

x=0 (q − 1)x(
n
x
)
,

which implies asymptotically,

R(q)(δ) ≤ R(q)LP(δ) ≤ 1 − hq (δ/2) .

Elias-Bassalygo Bound. Let us now instantiate to the hypercube our generalized Elias-
Bassalygo bound of Theorem 2. As we show we indeed recover the bound classically known
as Elias-Bassalygo.

Theorem 5 (Elias-Bassalygo Bound for A(q)LP(n, d)). For any q, n ≥ 2 and d ∈ J0, ⌊n(q −1)/q⌋K, we
have,

A(q)(n, d) ≤ A(q)LP(n, d) ≤ qd ⋅
qn

(n
u
)(q − 1)u

, where u
def= ⌊nq − 1

q
⋅ (1 −

√
1 − qd − 1
(q − 1)n

)⌋ .

It implies asymptotically for any δ ∈ [0, (q − 1)/q],

R(q)(δ) ≤ R(q)LP(δ) ≤ 1 − hq (Jq(δ)) , where Jq(δ)
def= q − 1

q
⋅ (1 −

√
1 − qδ

(q − 1)
) .

Proof. Our strategy is to apply Theorem 2. First q1 is indeed a decreasing function. Now, let us
compute,

u ∈ {u0 ∈ J0, nK ∶ q1(u0)2
q1(0)

≥ q1(d) + 1} which maximizes (n
u
)(q − 1)u.

We have the following computation,

q1(0) (q1(d) + 1) = (q − 1)n ((q − 1)n − qd + 1) = ((q − 1)n)2 (1 −
qd − 1
(q − 1)n

)

Since d ≤ n(q − 1)/q, the right hand side term is non negative and we therefore have

q1(u0)2 ≥ q1(0) (q1(d) + 1)⇔ (q − 1)n − qu0 ≥ (q − 1)n
√

1 − qd − 1
(q − 1)n

showing that we have to choose u smaller than,

⌊n q − 1
q
⋅ (1 −

√
1 − qd − 1
(q − 1)n

)⌋ .

We can choose u as above as y ↦ (n
y
)(q−1)y is an increasing function over

r
0, ⌊n q−1

q
⌋
z

. Applying
Theorem 2, we obtain,

A
(q)
LP(n, d) ≤ (q1(0) − q1(d))

qn

vu
= qd ⋅ qn

(n
u
)(q − 1)u

.

The asymptotic result easily follows from Lemma 1. □

MRRW1 Bound. We now instantiate the bound from Theorem 3 to the Hamming scheme. We
recover the bound from [MRRW77, Eq. (2.6)] but in the q-ary setting ([MRRW77] restricts to the
case q = 2 but it was generalized for example in [DL98]).

Theorem 6 (MRRW1-type Bound for A(q)LP(n, d)). Let integers q, n ≥ 2 and d ∈ J1, ⌊n(q − 1)/q⌋K.
Let r = ⌈ζd−1⌉, where ζd−1 is the first zero of Kn,q

d−1(X). Then,

A(q)(n, d) ≤ A(q)LP(n, d) ≤ qd ⋅
r−1
∑
x=0
(q − 1)x(n

x
),
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which implies asymptotically for any δ ∈ [0, (q − 1)/q],

R(q)(δ) ≤ R(q)LP(δ) ≤ hq (γq(δ)) where γq(δ)
def= 1

q
(q − 1 − (q − 2)δ − 2

√
(q − 1)δ(1 − δ)) .

Proof. Our goal is to apply Theorem 3. First, notice that q1(d) + 1 ≤ q1(d − 1) so we choose
r⊥ = d − 1. Let r = ⌈ζr⊥⌉ where ζr⊥ denotes the first zero of Kn,q

r⊥ (X) in [0, n]. We know that the
zeros of this polynomial are all in this interval and are simple. Furthermore, there is always an
integer between any two consecutive zeros [CS90]. Therefore, as Kn,q

r⊥ (0) = vr⊥ > 0, we obtain by
continuity,

qr(r⊥) =
mr

vr⊥
pr⊥(r) =

mr

vr⊥
Kn,q

r⊥ (r) ≤ 0,

∀x ∈ J0, r − 1K, qx(r⊥) = mx

vr⊥
pr⊥(x) =

mx

vr⊥
Kn,q

r⊥ (x) > 0.

This shows that r⊥ and r satisfy the conditions of Theorem 3, which gives,

A
(q)
LP(n, d) ≤ (q1(0) − q1(d)) ⋅

r−1
∑
x=0

mr = qd ⋅
r−1
∑
x=0
(q − 1)x(n

x
).

We now prove the asymptotic part of the proposition for a fixed δ ∈ (0, (q−1)/q). The asymptotic
part of the proposition follows from the asymptotic expansion of ζx (which denotes the first root
of Kn,q

x (X)). Indeed, given x ∈ J0, nK such that x/n Ð→
n→+∞

α ∈ [0, (q − 1)/q], we have [DL98, §IV.
F],

ζx
n
=

n→+∞
γq(α) + o(1).

In our case, r⊥/n = (d − 1)/n Ð→
n→+∞

δ ∈ [0, (q − 1)/q] (where d = ⌊δn⌋). Therefore r/n =

⌈ζr⊥⌉/n Ð→
n→+∞

γq(δ). We can conclude using Lemma 1 that R(q)LP(δ) ≤ hq(γq(δ)). □

Discussion. We now recap in Figure 3 the asymptotic upper bounds over R(q)(δ) obtained in
Theorems 4, 5 and 6 in the binary case, i.e., q = 2. We have also added the best known upper bound
on R(δ): the second linear programming bound from [MRRW77, Eq. (1.4)]. As we mentioned in
the introduction, the latter was obtained in [MRRW77] via an upper bound over constant-weight
binary codes and not directly via the linear program derived from the Hamming scheme. More
precisely, [MRRW77] used first the following bound (which turns out to be the key inequality to
obtain the Elias-Bassalygo bound via combinatorial arguments),

∀a ∈ J0, ⌊n/2⌋K, A(2)(n, d) ≤ 2n

(n
a
)
A(n, d, a).

Therefore, providing upper bounds on A(2)(n, d) can be reduced to finding upper bounds on
A(n, d, a) and then optimizing over the radius a. To obtain good bounds on A(n, d, a), [MRRW77]
relied on the linear program derived from the Johnson sphere. We will proceed similarly in the
next subsection by instantiating Theorems 1, 2 and 3 in this context.

Though the second linear programming bound was obtained thanks to a solution of the linear
program derived from the Johnson scheme, Rodemich [Rod80] showed how to turn the latter into
a solution of the linear program derived this time from the Hamming scheme. In other words,
Rodemich’s result shows that there exists a better solution of the linear program in the Hamming
scheme than the one obtained in [MRRW77] and ours. However this result only holds in the binary
setting. Indeed, in the q-ary setting the Johnson scheme does not yield an association scheme,
and therefore Delsarte’s approach does not apply, i.e., there are no linear program to solve. But
it can be proved that the Elias-Bassalygo bound is better for any q than the bound derived from
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0.1 0.2 0.3 0.4 0.5
δ

0.2

0.4

0.6

0.8

1.0
R (2)(δ)

MRRW1
Elias-Bassalygo
Hamming
MRRW2

Figure 3. Upper bounds over R(2)(δ) via the linear program with the Hamming
(Theorem 4), Elias-Bassalygo (Theorem 5), MRWW1 (Theorem 6) bounds and
MRRW2 being the second linear programming bound [MRRW77, Eq. (1.4)].

Theorem 6 (which corresponds to the first linear programming bound of [MRRW77] instantiated
in the q-ary case). In other words, as Rodemich’s idea does not apply when q > 2, our work
has exhibited for this setting and small minimum distances, a solution which is better than all
previously known solutions of the linear program derived from the Hamming scheme. By way of
illustration we give in Figure 4 the asymptotic upper bounds over R(q)(δ) obtained in Theorems
4, 5 and 6 for some q > 2.

0.2 0.4 0.6 0.8 1.0
δ

0.2

0.4

0.6

0.8

1.0

R (q)(δ)

MRRW1
Elias-Bassalygo
Hamming

Figure 4. Upper bounds over R(q)(δ) via the linear program with the Hamming
(Theorem 4), Elias-Bassalygo (Theorem 5) and MRWW1 (Theorem 6) for q = 121.

4.2. Johnson Sphere and Relation to the Hamming Cube. We consider now the Johnson
scheme (Sn,2a , τJ = τH/2, a) where Sn,2a denotes the set of words of Hamming weight a ∈ J0, ⌊n/2⌋K
in the Hamming cube Fn

2 . It is a distance induced scheme with a canonical ordering E0, . . . ,Ea

which is also Q-polynomial [DL98]. Its valencies and multiplicities are given by,

∀i ∈ J0, aK, vi = (
a

i
)(n − a

i
) , mi = (

n

i
) − ( n

i − 1
).
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The q-numbers of the Johnson schemes involve Hahn polynomials Hn
k which are defined as,

∀k ∈ J0, aK, Hn,a
k (X)

def= mk ∑
j∈J0,kK(−1)

j
(k
j
)(n+1−k

j
)

vj
(X
j
),

where the vj depend on a. More precisely, the q-numbers are then the integers given by the
evaluation of the Hahn polynomials over J0, aK, i.e.,

(22) ∀i, k ∈ J0, aK, qk(i)
def= Hn,a

k (i).

We have in particular,

(23) q1(i) = (n − 1)(1 −
ni

a(n − a)
)

which is a decreasing function as required in Theorems 2 and 3. We consider the linear pro-
gram associated to this association scheme and we denote ALP(n, d, a) (as per Subsection 2.6) its
maximum value. Let,

RLP(δ,α)
def= lim

n→∞

1

n
log2ALP(n, ⌊nδ⌋, ⌊nα⌋)

be its asymptotic value. We have,

A(n, d, a) ≤ ALP (n, ⌊
d

2
⌋ , a) , R(δ,α) ≤ RLP(δ/2, α).

The factor two in the distance comes from the fact that in the association scheme (Sn,2a , τJ, a),
the distance is half of the hamming distance while A(n, d, a) and R(δ,α) are defined with respect
to the Hamming distance.

Hamming Bound. By using the valencies of (Sn,2a , τJ, a) and Theorem 1 we easily recover the
Hamming bound.

Theorem 7 (Hamming Bound for ALP(n, d, a)). Fix integers n, a, d, where a ∈ J0, ⌊n/2⌋K and d ∈J1, nK. We have,

ALP(n, d, a) ≤
(n
a
)

∑
⌊ d−1

2
⌋

x=0 vx

=
(n
a
)

∑
⌊ d−1

2
⌋

x=0 (
a
x
)(n−a

x
)
,

which implies asymptotically for any α ∈ (0,1/2) and δ ∈ (0, α(1 − α)),

R(2δ,α) ≤ RLP(δ,α) ≤ h2(α) − (αh2 (
δ

2α
) + (1 − α)h2 (

δ

2(1 − α)
)) .

Elias-Bassalygo Bound. We now instantiate to the Hamming sphere Sn,2a our generalized Elias-
Bassalygo bound of Theorem 2. To the best of our knowledge the following upper bound on the
linear program was not known.

Theorem 8 (Elias-Bassalygo Bound for ALP(n, d, a)). Fix integers n, a, d, where a ∈ J0, ⌊n/2⌋K
and d ∈ J0, a(n − a)/nK. We have,

ALP(n, d, a) ≤ (n − 1)
nd

a(n − a)
⋅
(n
a
)

(a
u
)(n−a

u
)
, where u

def= ⌊a(n − a)
n

(1 −
√

1 − nd

a(n − a)
+ 1

n − 1
)⌋

which implies asymptotically for any α ∈ (0,1/2) and δ ∈ [0, α(1 − α)],

R(2δ,α) ≤ RLP(δ,α) ≤ h2(α) − (αh2 (
K(δ,α)

α
) + (1 − α)h2 (

K(δ,α)
1 − α

))

where K(δ,α) def= α(1 − α) (1 −
√

1 − δ
α(1−α)).
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Proof. Our strategy is to apply Theorem 2. First q1 is indeed a decreasing function. Now, let us
compute,

u ∈ {u0 ∈ J0, nK ∶ q1(u0)2
q1(0)

≥ q1(d) + 1} which maximizes (a
u
)( u

n − a
).

We have,

q1(0) (q1(d) + 1) = (n − 1)2 (1 −
nd

a(n − a)
+ 1

n − 1
) .

Since d ∈ J0, a(n − a)/nK, the right hand side is nonnegative and

q1(u0)2 ≥ q1(0) (q1(d) + 1)⇔ 1 − nu0
a(n − a)

≥
√

1 − nd

a(n − a)
+ 1

n − 1
showing that we have to choose u smaller than,

⌊a(n − a)
n

(1 −
√

1 − nd

a(n − a)
+ 1

n − 1
)⌋ .

We can choose u as above as y ↦ (a
y
)(n−a

y
) is an increasing function over

r
0, ⌊a(n−a)

n
⌋
z

. Applying
Theorem 2 ends the first part of the proof. The asymptotic result easily follows from Lemma 1. □

MRRW Bound. We end our instantiations by the bound from Theorem 3 to the Johnson scheme.
We recover the bound from [MRRW77, Eq. (2.16)].

Theorem 9 (MRRW1-type Bound for ALP(n, d, a)). Fix integers n, a, d, where a ∈ J0, ⌊n/2⌋K
and d ∈ J0, a(n − a)/nK. Let r be an integer such that,

ζ(1)r ≤ (d − 1) < ζ(1)r−1,

where ζ(1)x is the first zero of Hn,a
r (X). We have

ALP (n, d, a) ≤ (q1(0) − q1(d))
r−1
∑
x=0

mr,

which implies asymptotically for any α ∈ [0,1/2] and δ ∈ [0, α(1 − α)],

R(2δ,α) ≤ RLP(δ,α) ≤ h2(B(δ,α) with B(δ,α) def= 1

2
(1 −

√
1 − 4(

√
α(1 − α) − δ(1 − δ) − δ)

2
) .

Proof. Fix integers n, d, a. We write q1(d − 1) − q1(d) = n(n−1)
a(n−a) ≥ 1 which implies,

q1(d) + 1 ≤ q1(d − 1).

For each x ∈ J0, aK, let ζ(1)x < ζ(2)x < ⋅ ⋅ ⋅ < ζ(a)x be the zeros of Hn,a
x (X) in [0, a]. We know that the

zeros of Hn,a
x (X) and Hn,a

x+1(X) are interlaced, i.e.,

(24) ζ(i−1)x < ζ(i)x+1 < ζ
(i)
x .

Furthermore, we know that there exists an integer in the open interval (ζ(i)x+1, ζ
(i)
x ) [MRRW77, §B].

Therefore, by supposing that there exists x such that ζ(1)x < d − 1, we can choose the minimum r

such that,

ζ(1)r ≤ (d − 1) < ζ(1)r−1 < ζ
(2)
r

where in the last inequality we used Equation (24). Let also r⊥ def= d − 1. Since, as shown above
r⊥ < ζ(2)r we have Hn,a

r (x) ≤ 0 for x ∈ [ζ(1)r , r⊥] as Hn,a
r (0) =mr > 0 and the zeros of Hn,a

r (X) are
simple. In particular, qr(r⊥) = Hn,a

r (r⊥) ≤ 0. Moreover, we know that ζ(1)x > ζ(1)r for x ∈ J0, r − 1K.
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Therefore as Hn,a
x (0) =mx > 0, we have that for all x ∈ J0, r − 1K, qx(r⊥) = Hn,a

x (r⊥) ≥ 0. One can
therefore use Theorem 3 to obtain,

ALP(n, d, a) ≤ (q1(0) − q1(d))
r−1
∑
x=0

mx.

However, we still need to ensure that there exists x ∈ J0, aK such that ζ(1)x < d − 1. To this aim we
will use the asymptotic of ζ(1)x for n large enough. First, we choose d def= ⌊δn⌋ and a

def= ⌊αn⌋. Let
us suppose that x/n Ð→

n→+∞
β ∈ [0, α]. We know from [DL98, §F] that,

ζx
n
=

n→+∞
ζ(β) + o(1),

where,

ζ(β) def= α(1 − α) − β(1 − β)
1 + 2
√
β(1 − β)

.

Furthermore, we know that ζ maps the interval [0, α] onto [0, α(1 − α)]. We also know that ζ
admits an inverse ζ−1 that maps [0, α(1−α)] to [0, α] and it is an increasing function. Recall that
we supposed δ ∈ [0, α(1 − α)] where a = ⌊αn⌋. Therefore, the minimum r for which we can ensure
(for n large enough) ζ(1)r < d − 1 is such that r/n Ð→

n→+∞
β where,

β = B(δ,α) def= ζ−1(δ) = 1

2
(1 −

√
1 − 4(

√
α(1 − α) − δ(1 − δ) − δ)

2
) .

Therefore, when δ ∈ [0, α(1 − α)], we obtain as asymptotic bound,

RLP(δ,α) ≤ h2 (B(δ,α))

which concludes the proof. □

Discussion. We depict in Figure 5 the asymptotic upper bounds over R(δ,α) obtained in Theo-
rems 7, 8 and 9 for some relative radius α. As it can be noticed the generalized Elias-Bassalygo
bounds gives better result than the MRRW-like bound from Theorem 9. It turns out that this
result holds for δ close to 0 for any relative radius α. Indeed, we can compute

B(δ,α) =
δ→0+

α − 1 + 2
√
α − α2

1 − 2α
δ + o(δ)

which gives,

RMRRW(δ,α)
def= h2(B(δ,α)) =

δ→0+
h2(α) −

(log2(1 − α) − log2 α)(1 + 2
√
α − α2)

1 − 2α
δ + o(δ).

On the other hand, we have K(δ,α) =
δ→0+

δ
2
+ o(δ) and h2(δ) =

δ→0+
−δ log2 δ − o(δ log2 δ) which gives

REB(δ,α)
def= h2(α) − αh2 (

K(δ,α)
α

) − (1 − α)h2 (
K(δ,α)
1 − α

) =
δ→0+

h2(α) + δ log2(δ) + o(δ log2(δ)).

One can see here, that REB(δ,α) decreases faster for δ Ð→ 0+ than for the MRRW
bound RMRRW(δ,α), and this holds for any α ∈ (0, 1

2
).
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Figure 5. Upper bounds on RLP (δ,α) via the linear program with the Hamming
(Theorem 7), Elias-Bassalygo (Theorem 8) and MRRW (Theorem 9) for a relative
radius α = 0.15.
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Appendix A. Proofs on Claimed Results about Association Scheme

Our aim in this appendix is to provide a self-contain section proving all results from Subsections 2.1
to 2.3. We recall here definitions and propositions of these subsections instead of referring to
them for ease of reading. Furthermore, we will use Dirac’s bra-ket notation as introduced in
Subsection 2.5.

Recall that where are given (X, τ, n), where X is a finite set and τ ∶ X2 Ð→ J0, nK is a distance.
Furthermore, we consider the following adjacency matrices Di ∈ C(X2) for i ∈ J0, nK,

Di(x, y)
def=
⎧⎪⎪⎨⎪⎪⎩

1 if τ(x, y) = 1
0 otherwise

.

In other words,

(25) Di = ∑
x,y∈X

τ(x,y)=i

∣x⟩⟨y∣ .

We have defined distance induced association schemes as triplets (X, τ, n) satisfying the equipar-
tition and non-degenerate properties which are defined as follows.

Definition 1 (Equipartition Property and Non-Degenerate Triplets). (X, τ, n) is said to satisfy
the equipartition property if for each i, j, k ∈ J0, nK, there exists a nonnegative integer pki,j such that,

∀x, z ∈ X such that τ(x, z) = k, ∣ {y ∈ X ∶ τ(x, y) = i and τ(y, z) = j} ∣ = pki,j .

Furthermore, a triplet (X, τ, n) satisfying the equipartition property is said to be non-degenerate
if pk+11,k ≠ 0 for all k ∈ J0, n − 1K.
From the symmetry of τ we easily get the following equation,

(26) ∀i, j, k ∈ J0, nK, pki,j = pkj,i.

The equipartition property ensures that the complex vector space generated by the adjacency
matrices Di is closed under matrix multiplication, i.e., it forms an associative algebra.

Proposition 1. Let (X, τ, n) satisfying the equipartition property and let (Di)i∈J0,nK denote the
associated adjacency matrices. We have,

∀i, j ∈ J0, nK, Di ⋅Dj = ∑
k∈J0,nKp

k
i,jDk.

Proof. According to Equation (25) we have the following computation,

Di ⋅Dj = ∑
x,y,x′,y′∈X

τ(x,y)=i and τ(x′,y′)=j

∣x⟩⟨y∣ ⋅ ∣x′⟩⟨y′∣

= ∑
x,z,y′∈X

τ(x,z)=i and τ(z,y′)=j

∣x⟩⟨y′∣

= ∑
k∈J0,nK ∑

x,y′∈X
τ(x,y′)=k

∑
z∈X

τ(x,z)=i and τ(z,y′)=j

∣x⟩⟨y′∣

= ∑
k∈J0,nK ∑

x,y′∈X
τ(x,y′)=k

pki,j ∣x⟩⟨y′∣

where in the last equality we used the definition of the pki,j given in Definition 1. To conclude the
proof it remains to use Equation (25). □
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We are now ready to properly define distance induced association schemes.

Definition 2. A distance induced association scheme is a triplet (X, τ, n) where X is a finite
set, τ ∶ X2 Ð→ J0, nK is a distance and (X, τ, n) satisfies the equipartition property and is non-
degenerate.

A.1. Polynomial Relations. According to Proposition 1 and Equation (26), the associated ma-
trices Di’s from a given association scheme (X, τ, n) commute. Therefore these adjacency matrices
(over C) are diagonalizable in the same basis (they are all diagonalizable as D†

i =Di by symmetry
of the distance τ). We can actually prove that they also share the same eigenspaces.
Notice that τ is ranging over J0, nK and it satisfies the triangular inequality (it is a distance) from
which we deduce the crucial equation,

(27) pki,j = 0 if k > i + j, or ∣j − i∣ > k or as soon as i, j, k > n.

Notice that together with Proposition 1 it implies the fundamental relation,

(28) ∀k ∈ J0, nK, D1Dk = pk−11,k Dk−1 + pk1,kDk + pk+11,k Dk+1.

But, as (X, τ, n) is non-degenerate, i.e., pk+11,k ≠ 0,

(29) Dk+1 =
1

pk+11,k

(D1Dk − pk−11,k Dk−1 − pk1,kDk) .

In particular, D2 is some polynomial of degree 1 in D1 (D0 is the identity matrix). We can then
extend this result to the other Di’s as shown in the following proposition.

Proposition 14. Let (X, τ, n) be a distance induced association scheme with adjacency matri-
ces (Di)i∈J0,nK. Then, for all i ∈ J0, nK, there exists a polynomial Pi ∈ R[X] of degree i with leading
coefficient (∏i−1

j=1 p
j+1
1,j )

−1
such that

Di = Pi (D1)
We call these polynomials the fundamental P -polynomials of the association scheme (X, τ, n).

Proof. This proposition follows from a straightforward induction using Equation (29) and the fact
that (X, τ, n) is non-degenerate. □

A.2. Eigenstates and Eigenvalues of the Di’s: Introducing the Ei’s. The polynomial
relation from Proposition 14 shows that the Di’s share common eigenspaces in addition to be
co-diagonalizable. Furthermore, combining this result with Proposition 1 (in particular Equa-
tion (27)) shows that the Di’s can be decomposed as the sum of n + 1 orthogonal projectors.

Proposition 15. Let (X, τ, n) be a distance induced association scheme with associated adjacency
matrices (Di)i∈J0,nK. There exist orthogonal projectors (Ei)i∈J0,nK and distinct (λi)i∈J0,nK ∈ Rn+1

such that,
∀i ∈ J0, nK, Di = ∑

j∈J0,nKPi(λj)Ej

where the Pi’s are the fundamental P -polynomials of the association scheme (X, τ, n).
Furthermore, one can choose

E0 =
1

∣X∣ ∑
x,y∈J0,nK ∣x⟩⟨y∣ .

Proof. First, D1 is diagonalizable because D†
1 = D1 and its eigenvalues are real. Therefore there

exist real numbers λ0 > λ1 > ⋯ > λm and orthogonal projectors E0, . . . ,Em such that,

(30) D1 = ∑
j∈J0,mKλjEj .
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From Proposition 14 we deduce that (notice that E2
j = Ej and EiEj = 0 for i ≠ j),

(31) ∀i ∈ J0, nK, Di = Pi(D1) = ∑
j∈J0,mKPi(λj)Ej

where the Pi’s are the fundamental P -polynomials. They have degree i and leading coeffi-
cient (∏i−1

j=1 p
j+1
1,j )

−1
. Let us show that m = n to conclude the proof.

First, m ≥ n. Indeed, by the decomposition from Proposition 1 and using Equation (27) we get,

(32) D1Dn = pn−11,n Dn−1 + pn1,nDn.

Let,
Q

def= P1Pn − pn−11,n Pn−1 − pn1,nPn ∈ R[X].
This polynomial has degree ≤ n + 1. Furthermore, plugging Dn = Pn(D1) and D1 = P1(D1)
into Equation (32) shows that Q(D1) = 0. Therefore, from the fact that the Ei’s are orthogonal
projectors and Equation (30),

∀i ∈ J0,mK, Q(λi) = 0.
But the degree of Q is ≤ n + 1 showing that m ≤ n. Let us show now that n ≤ m. Assume by
contradiction that m < n. Let R(X) def= ∏m

i=0(X − λi). By Equation (30),

R(D1) = 0.

By writing R(X) =Xm +∑m−1
j=0 ajX

j , we obtain

R(D1) =Dm
1 +

m−1
∑
j=0

ajD
j
1.

By definition, Pm has leading coefficient (∏m−1
j=1 pj+11,j )

−1
. Therefore, by using Dm = Pm(D1) (see

Equation (31)) with the fact that the Ej ’s are orthogonal projectors, we obtain for some bj ’s,

R(D1) =
⎛
⎝

m−1
∏
j=1

pj+11,j

⎞
⎠
Dm +

m−1
∑
j=0

bjDj .

It shows R(D1) ≠ 0 which is a contradiction. Indeed, (X, τ, n) is non-degenerate: by definition
the pj+11,j ’s are non-zero.
To conclude the proof let us show (up to a re-ordering) that we have,

E0 =
1

∣X∣ ∑x,y∈X
∣x⟩⟨y∣ = 1

∣X∣
J.

First, notice that J = ∑i∈J0,nK Di. Therefore, J belongs to the space generated by the Di’s which
is also generated by the Ei’s. It shows that we can write J = ∑i∈J0,nK βiEi and we can suppose
that β0 ≠ 0. As the Ei’s are orthogonal projectors we get,

(33) E0 =
1

β0
JE0 = E0J.

In particular E0 and J commute. On the other hand, as J2 = ∣X∣ J, we also have,

JE0 =
1

∣X∣
J2E0 =

1

∣X∣
J (E0J) =

β

∣X∣
J

where β is the sum of all the entries of E0. We deduce by combining the above equation and
Equation (33) that E0 is a scalar multiple of J. Using now that E2

0 = E0 shows that E0 = 1/∣X∣J
which concludes the proof. □

The fundamental parameters of an association scheme are defined with respect to an ordering
of the matrices (Ei)i∈J0,nK. In what follows we will only enforce an ordering such that, E0 =
1/∣X∣∑x,y∈J0,nK ∣x⟩⟨y∣ which is possible as shown in the above proposition.
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Definition 3 (p-numbers). Let (X, τ, n) be a distance induced association scheme with an order-
ing E0, . . . ,En. Its underlying p-numbers pi(j) are defined as,

∀i ∈ J0, nK, Di = ∑
j∈J0,nKpi(j)Ej .

Remark 5. The matrices Ei’s are the orthogonal projectors over the (common) eigenspaces of the
adjacency matrices Di’s. Therefore they sum to the identity, i.e., ∑i∈J0,nK Ei = Id. But D0 = Id
which shows from the decomposition in Definition 3 that,

(34) ∀j ∈ J0, nK, p0(j) = 1.

The p-numbers are well defined as matrices (Di)i∈J0,nK and (Ei)i∈J0,nK generate the same Hilbert
space of dimension n + 1.

Proposition 16. We have,

p1(j)pi(j) = pi−11,i pi−1(j) + pi1,ipi(j) + pi+11,i pi+1(j)

Proof. First, by using Definition 3,

D1 ⋅Di = ∑
j,ℓ∈J0,nKp1(j)pi(ℓ)Ei ⋅Eℓ = ∑

j∈J0,nKp1(j)pi(j)Ej

where we used in the last equality that Ei ⋅Ej = δji ⋅Ei as orthogonal projectors. Recall now that
from Equation (28),

∀j ∈ J0, nK, D1Di = pi−11,i Di−1 + pi1,iDi + pi+11,i Di+1

= ∑
j∈J0,nK (p

i−1
1,i pi−1(j) + pi1,ipi(j) + pi+11,i pi+1(j))Ej .

It ends the proof by using the unicity of the decomposition given in the basis (Ei)i∈J0,nK. □

The fact that the (Di)i∈J0,nK and (Ei)i∈J0,nK generate the same Hilbert enables to define the q-
numbers, an equivalent of the p-numbers (according to Definition 3), where the Ei’s and Di’s are
interchanged.

Definition 5 (q-numbers). Let (X, τ, n) be a distance induced association scheme with an order-
ing E0, . . . ,En. Its underlying q-numbers qi(j) are defined from the expansion of the orthogonal
projectors Ei in the basis of adjacency matrices (Dj)j∈J0,nK, i.e.,

∀i ∈ J0, nK, Ei =
1

∣X∣ ∑j∈J0,nK qi(j)Dj .

Notice that the q-numbers are uniquely defined as for p-numbers and they are real numbers
as E†

i = Ei and D†
i =Di.

Remark 6. In Proposition 15 we chose an ordering such that

(35) E0 =
1

∣X∣ ∑
x,y∈J0,nK ∣x⟩⟨y∣ .

Here the Dj’s are adjacency matrices associated to a metric. In particular they sum to ∣X∣ ⋅E0.
Therefore it is necessary that,

∀j ∈ J0, nK, q0(j) = 1.

It may be tempting to conjecture that the q-numbers verify also a 3-term order recurrence as the
one given for the p-numbers in Proposition 16. It will turn out that such relation is crucial for
our purpose. However, we first need to define an equivalent of the pℓi,j ’s: the qℓi,j ’s. There will be
defined in Subsection A.4 and they are known as Krein parameters. To this aim let us study the
orthogonality relations of the Di’s and Ei’s.
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A.3. Orthogonality Relations. It turns out (by symmetry of the underlying distance τ) that
the Di’s are orthogonal, i.e., ⟨Di∣Dj⟩ = 0, but also the Ei’s, i.e., ⟨Ei∣Ej⟩ = 0, as orthogonal
projectors.
Recall that we have defined their norms (with a normalization) as follows.

Definition 4. Let (X, τ, n) be a distance induced association scheme with an ordering E0, . . . ,En,
we define,

∀i ∈ J0, nK, vi
def= ∥Di∥2

∣X∣
and mi

def= ∥Ei∥2 = rank(Ei).

The p and q-numbers were derived from matrices Di’s and Ei’s. They satisfy the following
“orthogonality” relations.

Proposition 17. For any i, j ∈ J0, nK,
∑

k∈J0,nKpi(k)pj(k)mk = δji ⋅ vi ⋅ ∣X∣ and ∑
k∈J0,nK qi(k)qj(k)vk = δ

j
i ⋅mi ⋅ ∣X∣

Proof. We just have to use Definitions 3, 5 and the orthogonality of the Di’s and Ej ’s. □

Furthermore, p and q-numbers are related as follows.

Proposition 2. Let (X, τ, n) be a distance induced association scheme with an order-
ing E0, . . . ,En.

∀i, j ∈ J0, nK, mjpi(j) = viqj(i).

Proof. First, by Definition 3 and orthogonality of the Ej ’s,

(36) ∀j ∈ J0, nK, ⟨Di∣Ej⟩ = pi(j)∥Ej∥2 = pi(j)mj and ⟨Ej ∣Di⟩ =
1

∣X∣
qj(i)∥Di∥2 = qj(i)vi.

To end the proof we just have to use the fact that ⟨A∣B⟩ = ⟨B∣A⟩ and that the pi(j)’s and qi(j)’s
are real numbers. □

A.4. Algebra Structure for Pointwise Multiplication. In the above subsections we investi-
gated the structure of distance induced association schemes via the complex complex commutative
algebra H generated by its underlying adjacency matrices Di’s. As we have shown, it turns out
that H is also generated by matrices Ei’s which are orthogonal as the Di’s. However, though H
forms a an algebra for the standard matrix-product, it is also (surprisingly) closed under the
pointwise multiplication (M,N)↦M ○N where,

M ○N(x, y) =M(x, y)N(x, y).

Indeed the Di’s verify the following relation

(37) Di ○Dj = δji ⋅Di

and we have the following proposition which in particular gives an equivalent of the pℓi,j ’s.

Proposition 18. We have,

∣X∣ ⋅Ei ○Ej = ∑
k∈J0,nK q

k
i,jEk, where qki,j

def= 1

∣X∣ ∑m∈J0,nK qi(m)qj(m)pm(k).
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Proof. First,

Ei ○Ej = ∑
x,y∈J0,nK ⟨x∣Ei ∣y⟩ ⟨x∣Ej ∣y⟩ ∣x⟩⟨y∣

= 1

∣X∣2 ∑
x,y∈J0,nK

⎛
⎝ ∑k∈J0,nK ⟨x∣ qi(k)Dk ∣y⟩

⎞
⎠
⎛
⎝ ∑ℓ∈J0,nK ⟨x∣ qj(ℓ)Dℓ ∣y⟩

⎞
⎠
∣x⟩⟨y∣ (By Definition 5)

= 1

∣X∣2 ∑
m∈J0,nK ∑

x,y∈J0,nK
τ(x,y)=m

qi(m)qj(m) ∣x⟩⟨y∣

Therefore,

Ei ○Ej =
1

∣X∣2 ∑
m∈J0,nK qi(m)qj(m)Dm =

1

∣X∣2 ∑
m,ℓ∈J0,nK qi(m)qj(m)pm(ℓ)Eℓ

which concludes the proof. □

The numbers qki,j ’s are analogous to the pki,j ’s but when decomposing in the basis given by the Ei’s
and considering the pointwise multiplication. It turns out that the qki,j ’s are known as the Krein
parameters of the underlying association scheme and they indeed share the same kind of property.
It is readily verified that from Proposition 18 that the qℓi,j ’s are symmetric, i.e.,

∀i, j, k ∈ J0, nK, qki,j = qkj,i.

Furthermore, Krein parameters verify numerous relations. In the following proposition we give
some of them which are useful four our purpose.

Proposition 19. Let (X, τ, n) be a distance induced association scheme with an order-
ing E0, . . . ,En. We have, for all x, y ∈ J0, nK,

(1) q0x,x =mx > 0 , (2) ∑
y∈J0,nK q

x
y,1 = q1(0) , (3) mx ⋅ qxy,1 =my ⋅ qyx,1.

Proof. Let us first prove (1). By Proposition 18,

q0x,x =
1

∣X∣ ∑m∈J0,nK qx(m)qx(m)pm(0)
= 1

∣X∣ ∑m∈J0,nK qx(m)qx(m)
vm
m0

q0(m) (By Proposition 2)

= 1

∣X∣ ∑m∈J0,nK qx(m)qx(m)vm (m0 = rank(E0) = 1 by Equation (35))

=mx
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where in the last equality we used Proposition 17. We prove now (2). First, according to Propo-
sition 18,

∑
y∈J0,nK q

x
y,1 = ∑

y,m∈J0,nK q1(m)qy(m)pm(x)

= ∑
m∈J0,nK q1(m)pm(x)

1

vm

⎛
⎝ ∑y∈J0,nKmypm(y)

⎞
⎠

= ∑
m∈J0,nK q1(m)pm(x)

1

vm

⎛
⎝ ∑y∈J0,nKmypm(y)p0(y)

⎞
⎠

(By Equation (34))

= ∑
m∈J0,nK q1(m)pm(x)

δm0 vm
vm

(By Proposition 17)

= q1(0)

where in the last equality we used that p0 is constant and equal to 1 as shown in Equation (34).
Let us now finish the proof by proving (3). According once again to Proposition 18,

qyx,1 = ∑
m∈J0,nK q1(m)qx(m)pm(y).

Therefore, according to Proposition 2,

qyx,1 = ∑
m∈[0,n]

q1(m) pm(x)
mx

vm
qy(m)

vm
my
= mx

my
qxy,1

which ends the proof. □

More surprisingly, Krein parameters are also positive (which is crucial for our purpose, in particular
to prove Proposition 6) as shown in the following proposition.

Proposition 3. ∀i, j, k ∈ J0, nK, qki,j ≥ 0.

Proof. Let ∣ψ⟩ ∈ C(X). Let us introduce the following linear operator,

∆
def= ∑

x∈X
⟨ψ∣x⟩ ∣x⟩⟨x∣

We have the following computation,

∥Ei∆Ej∥2 = tr (∆†Ei∆Ej) = ∑
y∈X
⟨y∣∆†Ei∆Ej ∣y⟩

= ∑
y∈X
⟨ψ∣y⟩ ⟨y∣Ei (∑

x∈X
⟨ψ∣x⟩ ∣x⟩⟨x∣)Ej ∣y⟩

= ∑
y,x∈X

⟨ψ∣y⟩ ⟨ψ∣x⟩Ei(y, x)Ej(x, y)

= ∑
y,x∈X

⟨ψ∣y⟩ ⟨ψ∣x⟩Ei(x, y)Ej(x, y) (E†
i = Ei and Ei is real)

= ∑
k∈J0,nK ∑y,x∈X q

k
i,j⟨ψ∣y⟩ ⟨ψ∣x⟩Ek(x, y)(38)

Furthermore, we have,

∥Ek ∣ψ⟩ ∥2 = ⟨ψ∣Ek ∣ψ⟩ = ⟨ψ∣
⎛
⎝ ∑x,y∈X

Ek(x, y) ∣x⟩⟨y∣
⎞
⎠
∣ψ⟩ = ∑

y,x∈X
qki,j⟨ψ∣y⟩ ⟨ψ∣x⟩Ek(x, y)

Plugging this into Equation (38) shows that,

∥Ei∆Ej∥2 = ∑
k∈J0,nK q

k
i,j∥Ek ∣ψ⟩ ∥2



36 ANDRÉ CHAILLOUX AND THOMAS DEBRIS–ALAZARD

Given k0 ∈ J0, nK, we choose ∣ψ⟩ such that Ek0 ∣ψ⟩ ≠ 0 and Ek ∣ψ⟩ = 0. It is possible since the Ei’s
are orthogonal projectors. Plugging such ∣ψ⟩ in the above equation shows that,

∥Ei∆Ej∥2 = qk0

i,j∥Ek0 ∣ψ⟩ ∥2 ≥ 0

where i, j, k0 ∈ J0, nK are arbitrary. It concludes the proof. □

Krein parameters also appear when considering the product of q-numbers.

Proposition 4. ∀i, k, ℓ ∈ J0, nK, qk(i)qℓ(i) = ∑m∈J0,nK qmk,ℓqm(i).
Proof. By Definition 5 Equation (37) and orthogonality of the Di’s whose square norm is vi,

qk(i)qℓ(i) =
1

∥Di∥2
⟨∣X∣ ⋅Ei ○ ∣X∣ ⋅Eℓ,Di⟩ =

1

∣X∣ ⋅ vi
⟨∣X∣ ⋅Ei ○ ∣X∣ ⋅Eℓ,Di⟩

Now using Proposition 18,

qk(i)qℓ(i) =
1

vi
∑

m∈J0,nK q
m
k,ℓ⟨Em,Di⟩ =

1

vi
∑

k∈J0,nK q
m
k,ℓ vi qm(i)

where in the last equality we used Equation (36). It concludes the proof. □
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