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Abstract. Quantum computers can efficiently model and solve several
challenging problems for classical computers, raising concerns about po-
tential security reductions in cryptography. NIST is already considering
potential quantum attacks in the development of post-quantum cryptog-
raphy by estimating the quantum resources required for such quantum
attacks. In this paper, we present quantum circuits for the NV sieve al-
gorithm to solve the Shortest Vector Problem (SVP), which serves as the
security foundation for lattice-based cryptography, achieving a quantum
speedup of the square root. Although there has been extensive research
on the application of quantum algorithms for lattice-based problems at
the theoretical level, specific quantum circuit implementations for them
have not been presented yet. Notably, this work demonstrates that the
required quantum complexity for the SVP in the lattice of rank 70 and di-
mension 70 is 243 (a product of the total gate count and the total depth)
with our optimized quantum implementation of the NV sieve algorithm.
This complexity is significantly lower than the NIST post-quantum se-
curity standard, where level 1 is 2157, corresponding to the complexity
of Grover’s key search for AES-128.
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1 Introduction

As outlined in IBM’s roadmap7, when a stable and robust quantum computer
with more than 10,000 qubits is developed, public-key algorithms (such as Rivest,
Shamir, Adleman (RSA) and Elliptic curve cryptography (ECC)) may be de-
crypted within polynomial time through Shor algorithm [1]. Additionally, while
classical computers may require a search count of O(2k) for k-bit data, Grover’s

search algorithm can achieve results with O(
√
2k) iterations.

The progression of quantum computing poses a significant threat to contem-
porary cryptographic systems. Therefore, migration to a secure cryptography
system (e.g., post-quantum cryptography) and the analysis of potential quan-
tum attacks are very important issues.

Among the post-quantum cryptography categories, lattice-based cryptogra-
phy such as Learning With Error (LWE) is gaining attention. NIST finalist also
includes many lattice-based cryptography (e.g., Kyber, Dilithium, and Falcon).
There are many ways to reduce the quantum complexity of lattice-based cryptog-
raphy. However, practical quantum attacks on lattice-based cryptography remain
under-researched compared to block cipher [2,3,4,5,6].

As mentioned earlier, analyzing potential quantum attacks on various cryp-
tographic algorithms is crucial for establishing robust post-quantum security. In
this context, our work proposes a quantum implementation of the NV Sieve al-
gorithm to address the Shortest Vector Problem (SVP) in lattice-based cryptog-
raphy. Moreover, we present an implementation that considers the optimization
of quantum resources, and we estimate the quantum cost of Grover’s search for
our quantum NV Sieve approach.

1.1 Our Contribution

This paper makes several contributions, which can be summarized as follows.

1. Applying Grover’s Search to Quantum NV Sieve Algorithm on
Lattice-based Cryptography.
This work firstly presents the quantum NV Sieve algorithm for solving the
SVP on quantum computers. By applying Grover’s algorithm to the iterative
search process in the NV sieve, solutions that satisfy the condition can be
found with a quantum advantage (a speedup of square root).
For practical utility as an exact algorithm for solving SVP, it is necessary
to target lattices with dimensions greater than 50. Thus, we implement the
quantum NV Sieve algorithm, focusing on lattices with dimensions and ranks
greater than 50.

2. Detailed Resource Estimation of Quantum NV Sieve.
Quantum NV Sieve can have multiple solutions in the search process. In this
case, an optimal number of Grover iterations is required, and the quantum

7 https://www.ibm.com/quantum/roadmap
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cost is affected by the number of iterations. Considering this, we provide a
detailed estimation of the quantum resources required for the quantum NV
sieve when multiple solutions exist8.

3. Optimized Implementation of Quantum NV Sieve for High-dimensional
Lattice.
We attempt quantum circuit optimization to obtain an oracle that requires
fewer quantum resources. We efficiently implement the quantum NV Sieve
logic for high-dimensional lattices by applying the Quantum Carry Save
Adder (QCSA) with the Takahashi adder, thereby optimizing the number of
qubits and T -depth. In particular, there is a significant decrease in terms of
T -depth compared to previous work [7].

4. Expanding the Research Scope of Cryptanalysis for Lattice-based
Cryptography.
We expand the scope of research by applying Grover’s search, rather than the
commonly used quantum walks, as a cryptanalysis approach to lattice-based
cryptography.

1.2 Organization

The remainder of this paper is organized as follows. In Section 2, related works,
such as lattice-based cryptography and Shortest Vector problem (SVP), are cov-
ered. In Section 3, the quantum implementation for NV Sieve to solve SVP is
introduced. In Section 4, the resource estimation, quantum cost for Grover’s
search and further discussion of our implementation are provided. Finally, Sec-
tion 5 concludes our paper.

1.3 Extended Version of ICISC’23

In this paper, we extend our previous work published in ICISC’23 [8]. In ICISC’23,
small rank and dimension of the lattice were targeted, and an optimal imple-
mentation was not applied. On the other hand, this work targets real-level lat-
tice where NV Sieve algorithm is used, and we achieve low quantum resources
through an optimal quantum implementation.

2 Preliminaries

2.1 Lattice-Based Cryptography

Lattice Lattice (L) is a set of points made up of a linear combination of basis
vectors (B). Since it is made up of points, there can be more than one shortest

8 Detailed resource estimation while varying the parameters (e.g. iteration, γ, etc.) of
the NV sieve remains for our future work.
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vector (e.g. x,−x ∈ L ). Equation 1 represents a lattice, and x is an integer, and
(b1, ..., bn) means the basis vector.

L(b1, ..., bn) = Σn
i=1(xi · bi, xi ∈ Z) (1)

Basis As noted earlier, the lattice is based on basis vectors. A basis (B) is a
set of vectors that can constitute all lattice points. The vector (arrow sign) in
Figure 1 represents the basis in the lattice. Each vector (bi) that constitutes
the basis vector has a length of m and consists of a total of components n.
The length of each vector and the number of vectors that make up the basis
vector, respectively, are called Dimension (m) and Rank (n). Generally, a full-
rank lattice is used (i.e., m = n).

It is important to note that the basis vector comprising a single lattice is
not unique. As depicted in Figure 1, basis vectors corresponding to the same
lattice points differ within a lattice. When a lattice is constructed using a vector
generated by the multiplication of one basis vector with another, the two distinct
basis vectors give rise to an identical lattice.

Fig. 1: Two different bases generating the same lattice.

However, these basis vectors can be categorized into good basis and bad
basis. A good basis typically comprises short vectors, while a bad basis is of-
ten created by repeatedly multiplying the good basis by a matrix, such as an
unimodular matrix9. Consequently, deriving a bad basis from a good basis is
relatively straightforward, requiring only several matrix multiplications. In con-
trast, the inverse process of extracting a good basis from a bad one poses a
significant challenge10. In lattice-based cryptography, the bad basis serves as the
public key, while the good basis acts as the private key. Since they generate the
same lattice, constructing public and private keys in this manner significantly
complicates decryption in lattice-based cryptography.

9 https://en.wikipedia.org/wiki/Unimodular_matrix
10 This is similar to generating a public key from a private key in public key cryptog-

raphy (i.e., obtaining a private key by factorizing a large public key).
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2.2 Shortest Vector Problem (SVP)

The Shortest Vector Problem (SVP), fundamental to lattice-based cryptography,
involves finding the shortest nonzero vector within a lattice. Miklo’s Ajtai [9]
demonstrates that SVP is an NP-hard problem.

SVP finds the shortest vector using the lattice vector as input. However, the
solution is not uniquely determined, since a vector can have another vector of
equal magnitude. The challenge of solving SVP becomes difficult when a bad
basis vector is input. With a good basis as input, there is a higher likelihood
that the shortest vector is already present within the input basis. On the con-
trary, the use of a bad basis leads to the opposite result. The problem becomes
increasingly complex with the growing rank of the lattice, defined by the number
of constituent vectors.

Lattice-based cryptography typically involves lattices with ranks of 500 or
higher, making its solution extremely difficult. Additionally, as noted earlier,
deriving a good basis (i.e., private key) from a bad basis (i.e., public key) is
challenging due to information asymmetry. In essence, the intricacy of lattice-
based cryptography is primarily attributed to its reliance on one-way processes
- easy in one direction but difficult in the reverse. To compromise such crypto-
graphic systems, one must solve the underlying lattice problems. In short, by
solving SVP, a lattice problem, lattice-based cryptographic schemes like LWE
are threatened.

Solving SVP on low-dimensional

using exact algorithm

Lattice reduction

using approximate algorithm

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

High-dimensional lattice

(Rank ≥ 100)

Low-dimensional lattice

(Rank ≤ 60)

Approximate method is used
for lattice reduction

. Using exact algorithms.
Finding the exact shortest vector.

Fig. 2: Flow chart of approximate and exact algorithms for solving SVP.

Algorithms to Solve SVP To solve the lattice problems, approximate and
exact algorithms must be used together (see Figure 2). In that, after the ap-
proximate algorithm is applied, to solve SVP, an exact algorithm is needed and
important to find the shortest vector in the low-dimensional lattice. Approximate
algorithms that reduce the high-dimensional to the low-dimensional lattice (e.g.
Lenstra, Lenstra and Lovász (LLL) [10], block Korkine-Zolotarev (BKZ) [11])
have been widely studied. Also, sieve algorithms, such as AKS [12] and NV
Sieve [13], have been proposed to solve SVP, which underpin lattice-based cryp-
tography. These exact algorithms generally target low-dimensional lattices with
a rank of about 50 ∼ 60.
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2.3 Survey on the Exact Algorithms for SVP

Prominent exact algorithms in the field include AKS and NV Sieve. AKS, recog-
nized as one of the earliest exact algorithms, suffers from drawbacks such as the
numerous parameters and high time and space complexities. Therefore, AKS is
largely impractical.

In response to the limitations of AKS, the NV Sieve algorithm was devel-
oped. It addresses the shortcomings of its predecessor by offering reduced time
and space complexities, enhanced practicality, and the actual implementation.
Building on the NV Sieve framework, several other Sieve algorithms have been
introduced, as evidenced by studies such as Wang et al. [14], Zhang et al. [15],
Laarhoven et al. [16], Becker et al. [17], and Micciancio et al. [18].

To date, only the theoretical complexity of applying the Sieve algorithm on
quantum computers using Grover’s search has been calculated [19]. Practical
implementations of these quantum adaptations are still lacking. Therefore, in
this paper, we implement the quantum NV Sieve, and discuss the quantum
advantages that arise from applying Grover’s search.

2.4 Classical NV Sieve Algorithm

Overview of the Classical NV Sieve Algorithm Algorithm 1 briefly shows
the process of NV Sieve11.

Algorithm 1: NV Sieve algorithm for finding short lattice vectors

Input: A reduced basis (B) in lattice (L) using the LLL algorithm, a sieve factor γ
( 2
3
< γ < 1), an empty set S, and a number N

Output: A non-zero short vector

1: for i = 1 to N do
2: S ← Sampling B using sampling algorithm
3: end for
4: Remove all zero vectors from S.
5: S0 ← S
6: Repeat
7: S0 ← S
8: S ← latticesieve(S, γR) using Algorithm 2.
9: Remove all zero vectors from S.
10: until S becomes an empty set.
11: return v0 ∈ S0 such that ||v0|| =min||v||, v ∈ S0

First, a set S is generated by randomly sampling the basis received as input.
Next, the latticesieve is repeatedly performed with S and γ as input. After
this, the output vectors with zero vectors removed are stored in S0, and the

11 In our research, the NV Sieve algorithm is chosen as the exact algorithm to address
the SVP in efficiency.
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process is repeated until S becomes an empty set. Finally, it is completed by
returning the shortest vector among the vectors belonging to S0. The purpose
of NV Sieve is as follows:

– Minimizing the loss for short vectors: The goal of NV Sieve is to find
the shortest vector that excludes zero vectors while losing as few vectors as
possible. The input is the basis vector of the lattice reduced through the
approximate algorithm (i.e. LLL), and the output is the shortest vector, not
the zero vector. For this, a point on the lattice called c is randomly selected.
Then, an additional computation is performed using c. c is a sufficient num-
ber of points on the lattice belonging to γR < x < R12.

– Reducing the search range (γR): The range is reduced by the sieve factor
γ to obtain a vector shorter. Here, R means the maximum length among the
vectors belonging to the vector set received as input.

|0⟩ H
|0⟩+|1⟩√

2

|1⟩ H
|0⟩−|1⟩√

2

(a) Hadamard

x x

(b) NOT

x x

y x⊕ y

(c) CNOT

x x

y y

z xy ⊕ z

(d) Toffoli

Fig. 3: Quantum gates.

2.5 Quantum Circuit

Qubits A qubit is the basic unit of computation in a quantum computer and
can have probabilities of 0 and 1 in the superposition state (|ψ⟩). This attribute
allows k qubits to represent 2k states. While qubits inherently exist in a state of
superposition and are processed accordingly, they collapse to a singular classical
value upon measurement. Additionally, multiple qubits are affected by each other
through entanglement, and quantum computing utilizes this characteristic.

Quantum Gates Quantum gates operate as logical gates in quantum circuits.
By applying a quantum gate to a qubit, the state of the qubit can be con-
trolled. There are several quantum gates (see Figure 3). Each gate can be used
to configure superposition, entanglement, and inversion. Therefore, these gates
are instrumental in executing a range of computational tasks, including addition
and multiplication on quantum circuits.

12 γR, the sieve factor, is a geometric element in the range of 2
3
< γR < 1, and the

closer it is to 1, the better. The reduction range of the lattice is determined by the
corresponding sieve factor.
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2.6 Grover’s Search Algorithm

Grover’s search algorithm is a quantum search algorithm for tasks with k-bit
complexity and has O(

√
2k) complexity (O(2k) for classical computer). The k-bit

data for the target of the search must exist in a state of quantum superposition13,
given by:

H⊗k |0⟩⊗k (|ψ⟩) =
( |0⟩+ |1⟩√

2

)
=

1

2k/2

2k−1∑
x=0

|x⟩ (2)

Grover’s search algorithm is composed of two main modules (Oracle and
Diffusion operator):

1. Oracle is a quantum circuit designed to implement the logic necessary to
return a solution to the problem at hand. It achieves this by inverting the
decision qubit at the circuit’s conclusion as follows. The crucial aspect of
Grover’s search with low cost lies in the optimal implementation of the quan-
tum circuit that constitutes Oracle.

f(x) =

{
1 if Oracleψ(k) = Solution

0 if Oracleψ(k) ̸= Solution
(3)

2. Diffusion operator serves to amplify the probability of the solution returned
by the Oracle. By repeating this process, the observing the correct solution
is increased, referred to as Grover iteration. However, it is often omitted
from resource estimations [5,20], as its overhead is considered minimal and
therefore negligible.

3 Quantum NV Sieve for Solving SVP

3.1 System Overview

In this section, we briefly describe proposed methods. Figure 4 illustrates the
overview of the system of our quantum NV Sieve. As mentioned earlier (Section
2.4), the NV Sieve minimizes vector loss by searching for multiple vectors and
identifying short vectors within a specified range, serving as a lattice reduction
method. We apply Grover algorithm to the process that searches for random
vectors c in the lattice to reduce search complexity. In order to implement the
NV Sieve on Grover’s search, a quantum oracle is required, and we propose an
optimal implementation for it along with the quantum cost.

3.2 Quantum Implementation of NV Sieve’s Core Logic

Target Core Logic of the NV Sieve. Algorithm 2 shows the latticesieve
algorithm in NV Sieve. To find short vectors by reducing the size of the lattice,

8



Lattice Cryptography
Based on the difficulty of solving SVP

Quantum Citcuit

Solving SVP on Quantum Computer

Quantum NV Sieve Grover's Search

Exact algorithm on
low-dimensional lattice

To reduce search complexity
Get quantum advantage

Fig. 4: System overview for quantum NV Sieve.

the core logic to find the vector c is implemented as a quantum circuit (see
Figure 5).

Vectors after

The c's space

( R < x < R)

v

v2

v1

v3

v5

v4

c1

c3

c2

v

v
v

v

R

R

v - c

Fig. 5: The core logic in NV Sieve (∃c ∈ C||v − c|| ≤ γR).

1. First, initialize C and S′. Afterward, the vectors with a length shorter than
γR are stored in S′

13 Thanks to quantum advantage, all targets are computed simultaneously.
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Algorithm 2: The latticesieve algorithm in NV Sieve

Input: A subset S in L and sieve factor γ (0.666 < γ < 1)
Output: S′ (Short vector, not zero vector)

1: Initialize C, S′ to empty set.
2: R← maxv∈S ||v||
3: for v ∈ S do
4: if ||v|| ≤ γR then
5: S′ ← S′ ∪ {v}
6: else
7: if ∃c ∈ C||v − c|| ≤ γR then
8: S′ ← S′ ∪ {v − c}
9: else
10: C ← C ∪ {v}
11: end if
12: end if
13: end for
14: return S′

2. However, there will be vectors longer than γR. For this, the process as in
line 7 of Algorithm 2 is performed to minimize the loss for short vectors on
the lattice, which is the goal of NV Sieve.
A vector longer than γR is subtracted from a point on the lattice called c. If
the result is shorter than γR, then it is stored in S′. If the length is longer
than γR, it is stored in C.

3. Finally, by returning S′, some shorter vectors than γR are selected. By per-
forming this process repeatedly, sufficiently short vectors are obtained, and
the shortest vector among them is found.

4. In summary, the core logic of the NV Sieve, which is our target operation
for the oracle, is ∃c ∈ C||v − c|| ≤ γR.

3.3 Quantum Implementation of NV Sieve

This section describes step-by-step the quantum implementation of NV Sieve.
Algorithm 3 and Figure 6 show all the steps of the quantum NV Sieve. We apply
Grover’s search to find a random vector c. After subtracting between the two
vectors v and c, check whether the vector exists within the reduced lattice range.
For this, two’s complement is required, and it is implemented keeping in mind
that conditional statements cannot be used in quantum computers.

1. Initialization: We set dim to dimension+2, and rank to rank. sqr bitsize
equals 2 · dim. Also, carry, qflag, cflag, zero, and γ ·Rsqr is initialized.

2. STEP 1. Input settings: Qv and Qc are the qubits for the lattice vectors
v and c. H gates are applied to all the quantum registers (Qc) for c. Also,
γ · Rsqr is allocated to Qγ·Rsqr . It is used to check that the output vector

can satisfy the condition. By using squared values γR2, we do not need the
square-root operation to calculate the vector size.
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Algorithm 3: The quantum NV Sieve on the quantum circuit.

Input: Reduced lattice vector({v0, ..., vn}), dimension and rank of the lattice, A subset
S in L and sieve factor γ ( 2

3
< γ < 1)

Output: {c0, ..., cn}
1: Initiate quantum and classical registers (carry, qflag, cflag, γ ·Rsqr, zero, cn.)
2: Let Qv and Qc be the qubits for lattice vectors v and c ▷ Qc is the search target
3: Let Qγ·Rsqr be the qubits for square of γ ·R

4: // STEP 0: Extend dim and rank for addressing the overflow
5: dim← dimension+2, rank ← rank
6: sqr bitsize← 2 · dim

7: // STEP 1: Input setting (Qv, Qc, Qγ·Rsqr)
8: Qv0 , · · · , Qvn ← v0, · · · , vn ▷ Using X gate
9: All(H)|Qc

10: Qγ·Rsqr ← γ ·Rsqr ▷ 0 ≤ i < sqr bitsize

11: // STEP 2: Upscaling to address overflow
12: for i in rank do
13: UPSCALING(Qv[i], vflag[i])
14: end for

15: // STEP 3: Two’s complement for subtraction using adder
16: for i in rank do
17: COMPLEMENT pos(Qc[i], qflag[i], zero) ▷ Outputs are Qc

18: end for

19: // STEP 4: Qv +Qc (= Qv −Qc)
20: for i in rank do
21: TAKAHASHI ADDER(Qv[i], Qc[i]) ▷ Store to Qc[i], [21]
22: end for

23: // STEP 5: Two’s complement for correct squaring
24: for i in rank do
25: COMPLEMENT neg(Qc[i], qflag[rank + i], zero)
26: end for

27: // STEP 6: Duplicating qubit for squaring
28: Dup Qc ← Qc

29: // STEP 7: Squaring elements of vectors (Qc and Dup Qc)
30: for i in rank do
31: output[i] = MUL(Qc[i], Dup Qc[i])
32: end for

33: // STEP 8: Addition for squared results to obtain the size of the vector
34: result← QCSA(output) ▷ [22]

35: // STEP 9: Two’s complement with sqr bitsize
36: COMPLEMENT compare(result[0 : sqr bitsize], qflag[2 · (rank − 2)], zero)

37: // STEP 10: Size comparison between Qγ·Rsqr and (||Qv −Qc||)2
38: TAKAHASHI ADDER(Qγ·Rsqr , result[0 : sqr bitsize])

39: // STEP 11: Measurement
40: All(Measure)|Qc

41: return {c0, ..., cn}

11



Fig. 6: Overall Quantum Circuit for Quantum NV Sieve.

3. STEP 2. Upscaling: Algorithm 4 shows the upscaling process in the
quantum circuit. In the upscaling step, for Qv and Qc, we duplicate the
upper data bit into the two empty upper qubits. This approach expands the
range while preserving the data and its sign intact. For example, a value
1100(2) becomes 111100(2), maintaining the same value. To achieve this, we
store the value of the third-highest qubit (the MSB of the data) into the
qflag and then replicate it into the top two qubits using a CNOT gate.

Algorithm 4: Quantum implementation for UPSCALING function

Input: (Qv[i], vflag) or (Qc[i], cflag), and dim
Output: Qv[i] or Qc[i]

1: // Copy the MSB to the upper 2 qubits using CNOT gate
2: CNOT|(Qv[i][dim− 3], vflag[i])
3: CNOT|(vflag[i], Qv[i][dim− 2])
4: CNOT|(vflag[i], Qv[i][dim− 1])

5: CNOT|(Qc[i][dim− 3], cflag[i])
6: CNOT|(cflag[i], Qc[i][dim− 2])
7: CNOT|(cflag[i], Qc[i][dim− 1])

8: return Qv[i] or Qc[i]

4. STEP 3. Two’s complement for positive value:
Algorithm 5 shows the two’s complement for a positive value. For the sub-
traction operation, we apply the complement operation to the operand be-
fore using an adder. In this step, the complement operation is performed

12



Algorithm 5: Quantum implementation for COMPLEMENT pos function

Input:Qc[i], qflag[i], zero
Output: Qc or Qc

1: // Copy the MSB of Qc to qflag to check the sign bit
2: CNOT(Qc[dim− 1], qflag)

3: // Invert qflag to take complement only when positive
4: X|qflag

5: // Invert Qc

6: for i in dim do
7: CNOT|(qflag,Qc[i])
8: end for

9: // Create a new array of qubits and append qflag to LSB
10: NEW Qc = []
11: NEW Qc.append(qflag)

12: // Append 0 so that it has the same length as Qc

13: for i in dim− 1 do
14: NEW Qc.append(zero[i])
15: end for

16: // Addition for LSB + 1
17: TAKAHASHI ADDER(NEW Qc, Qc)

18: return Qc or Qc

13



only for positive vector elements. Therefore, it is crucial to identify the most
significant bit. However, conditional statements cannot be used in quantum
implementations. Thus, we utilize a qflag to ensure that the complement
operation is carried out only when the value is positive. After copying the
value of the most significant qubit in qflag, we apply the X gate to it. If
the target qubit is positive, the value of qflag will be inverted to 1 in this
process. Consequently, using qflag as a control qubit allows the application
of one’s complement operation, effectively flipping the entire data (only for
positive cases). To complete the two’s complement operation, we add 1 to
the Least Significant Bit (LSB). For this purpose, we create a new qubit
(New Qc), to which we add qflag to the lowest qubit and fill the rest with
zeros (except for LSB). When this qubit is added to the qubits that are ap-
plied to one’s complement, the two’s complement is calculated. Additionally,
we employ the Takahashi adder [21]14 to add the new qubit to the target
qubit (one’s complement applied).

5. STEP 4. Qv−Qc: In this step, the subtraction operation between the two
vectors is performed by adding the complemented Qc and Qv. The Takahashi
adder is also employed in this process to perform the addition.

6. STEP 5. Two’s complement for negative value: STEP 5 is dedicated
to applying the two’s complement operation exclusively to negative numbers,
for accurate square operations. For example, performing a square operation
directly on 1110(2) would result in a square of -2, which yields 14. However,
by applying the two’s complement first and then squaring, the square of
0010(2) is 4. Therefore, we obtain the correct squared result. Algorithm 6
demonstrates the two’s complement operation for negatives. It is largely
similar to the operation for positives, with the key difference that the MSB
is already 1 for negatives, thus omitting the application of the X gate on
qflag.

7. STEP 6. Duplication of squaring: In quantum implementation, opera-
tions on the same qubit cannot be performed. So, the value of Qc is stored
in Dup Qc[i] for the square operation. For this, we use a CNOT gate, and
the CNOT gate acts as a copying value of a controlled qubit into the empty
(target) qubit.

8. STEP 7. Squaring Qc: Figure 7 illustrates the squaring operation using
Quantum CSA with Takahashi adder. First, a Toffoli gate is applied on
two qubits assigned with identical values to multiply each element by one
another. Subsequently, the results are stored in dim qubits, each of which
has a length of sqr bitsize. According to line 8 of Algorithm 7, values are
stored in the indices corresponding to each element. This process is repeated
for all qubits and yields the arrays of dim qubits. Then, utilizing QCSA

14 It is an in-place adder and requires fewer qubits than other adders [23,24].
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Algorithm 6: Quantum implementation for COMPLEMENT neg function

Input:Qc[i], qflag[i], zero
Output: Qc or Qc

1: // Copy the MSB of Qc to qflag to check the sign bit
2: CNOT(Qc[dim− 1], qflag)

3: // Invert Qc (no need X gate for qflag)
4: for i in dim do
5: CNOT|(qflag,Qc[i])
6: end for

7: // Create new array of qubits and append qflag to LSB
8: NEW Qc = []
9: NEW Qc.append(qflag)

10: // Append 0 so that it has the same length as Qc

11: for i in dim− 1 do
12: NEW Qc.append(zero[i])
13: end for

14: // Addition for LSB + 1
15: TAKAHASHI ADDER(NEW Qc, Qc)

16: return Qc or Qc

with the Takahashi adder applied, all results are summed at the same time.
This results in an array of qubits with a length of sqr bitsize. When this
process is repeated for the rank of times, the squaring for all vector elements
is completed.

15



Multiplication

with Toffoli gate
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Fig. 7: Squaring using QCSA with Takahashi adder.

Algorithm 7: Quantum implementation for MUL function

Input:Qc[i], Dup Qc[i]
Output: output[0 : sqr bitsize]

1: // Setting for multiplication
2: Let a be Qc[i].
3: Letb be Dup Qc[i].
4: input = [[0 for i in do(sqr bitsize)] for j in do (dim)]

5: // Multiply all elements of Qc[i] and Dup Qc[i] using Toffoli gate
6: for i in dim do
7: for j in dim do
8: Toffoli|(a[i], b[j], input[i][i+ j])
9: end for
10: end for

11: // Addition of the results for each element at once
12: output = QCSA(input)

13: return output[0 : sqr bitsize]

9. STEP 8. Addition of squared results: The square of the vector’s mag-
nitude is computed by summing the squared results of each element of the
vector. For this purpose, the Quantum CSA is utilized to aggregate all the
resultant values at a time.
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10. STEP 9. Two’s complement: The two’s complement for positive value
is calculated. Although the logic is identical to the Algorithm 5, a notable
distinction is that the range is set to sqr bitsize.

11. STEP 10. Comparison of sizes (Qγ·Rsqr
and (||Qv−Qc||)2): Finally, the

result of STEP 9, with the complement applied, is compared with Qγ·Rsqr
.

For comparison, the Takahashi adder is used to add the two values. If the
MSB of the derived result is 0, it indicates that Qc has been found, which can
bring the vector Qv into the range by making it a short vector. Conversely,
if the MSB is 1, then it means that vector that meets the conditions does
not exist.

4 Experiment and Evaluation

4.1 Experiment Environment

In this section, we present the quantum cost of our quantum NV Sieve imple-
mentation. For this, we use ProjectQ, which is an open-source quantum pro-
gramming tool. It provides ClassicalSimulator which simulates quantum circuits
and ResourceCounter which estimates the quantum resources (e.g. qubits, gates,
etc.).

4.2 Result of Quantum NV Sieve

Table 1 shows the results of each step of our implementation for the quantum
NV Sieve. STEP is in Algorithm 3, and the expression of the complement of x is
x. We set the rank and dimension to 5 as a toy example to show the correctness
of our oracle. So rank remains 5 and dim becomes 7 to handle the overflow. In
STEP 1, the quantum registers set the lattice vectors (i.e., test vector). In STEP
2, the vectors are upscaled, but the value is the same as in STEP 1. In STEP 3,
we perform the complement operation of Qc when the vector element is positive
(no operations are performed on Qv and Qγ·Rsqr

). In STEP 4, the subtraction is

performed on Qv and Qc (Qv+Qc). In STEP 5, the complement operation with
negative elements is used. In STEP 7, the squaring operation is performed for
each element. In STEP 8, we calculate the squares of the vector sizes. In STEP
10 and 11, we get the result of quantum NV Sieve with the above test vector. It
is -40 in decimal and 11111111011000(2) in the quantum state (measured). The
two values are the same, and this means that our oracle can derive the correct
vector. Also, the MSB being 1 signifies that the result vector is not the short
vector (if we use another test vector, MSB as 0 can be derived).
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Table 2: Resource Estimation of quantum NV Sieve oracle (R10D10 means the
rank and the dimension of the lattice are 10).

Case #CNOT #1qCliff #T T -depth (Td) Full depth (FD) Qubit (M) Td-M FD-M

R10D10 216.1767 213.9067 215.7118 27.6037 211.5264 212.5454 220.1491 224.0718

R20D20 218.9097 216.6143 218.4212 28.4470 214.2190 215.2640 223.7110 229.4830

R30D30 220.5672 218.2624 220.0695 28.9454 215.2810 216.9202 225.8656 232.2012

R40D40 221.7859 219.4808 221.2880 29.3531 216.0566 218.1329 227.4860 234.1896

R50D50 222.6998 220.3885 222.1958 29.6165 216.6674 219.0527 228.6692 235.7201

R60D60 223.4836 221.1729 222.9802 29.8595 217.1715 219.8329 229.6924 237.0044

R70D70 224.1348 221.8228 223.6301 210.0660 217.6005 220.4848 230.5508 238.0853

Table 1: Results from each step of quantum NV Sieve to check whether it has
been implemented correctly (Rank and Dimension are 5; rank = 5, dim = 7,
and sqr bitsize = 14).

STEP (Alg. 3) Quantum variable Values

STEP 1

Qv {1, 3, 1, 1, 5}

Qc {8, 1, 4, 4, 6}

Qγ·Rsqr 32

STEP 2

Qv {1, 3, 1, 1, 5}

Qc {8, 1, 4, 4, 6}

Qγ·Rsqr 32

STEP 3 Qc (when positive) {−8,−1,−4,−4,−6}

STEP 4 Qv +Qc {−7, 2,−3,−3,−1}

STEP 5 Qv +Qc (when negative) {7, 2, 3, 3, 1}

STEP 6 Dup Qc {7, 2, 3, 3, 1}

STEP 7 Qc ·Dup Qc(Squaring for each element) {49, 4, 9, 9, 1}

STEP 8 SumQc 72

STEP 9 SumQc (when positive) -72

STEP 10 (γ ·R)2 +SumQc -40

STEP 11
Output 11111111011000(2) (-40)

MSB 1 (not short vector)
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Table 3: Quantum cost for Grover’s search on quantum NV Sieve.
Case #Total gates T -depth (Td) Full depth (FD) Qubit (M) Quantum cost Td-M FD-M

R10D10 218.1267 28.6073 212.5264 212.5456 230.6532 · r 221.1529 225.0720

R20D20 220.8481 29.4470 215.2190 215.2640 235.0664 · r 224.7110 232.4830

R30D30 222.5012 29.9454 216.2810 216.9202 237.7823 · r 226.8656 233.2012

R40D40 223.7199 210.3531 217.0566 218.1329 239.7765 · r 228.4860 235.1895

R50D50 224.6308 210.6165 217.6674 219.0527 241.2938 · r 229.6692 236.7201

R60D60 225.4150 210.8595 218.1715 219.8329 242.5865 · r 230.6924 238.0044

R70D70 226.0655 211.0660 218.6005 220.4848 243.6661 · r 231.5509 239.0853

4.3 Resource Estimation of Quantum NV Sieve

Table 2 shows the resources of the quantum NV Sieve oracle according to the
case (rank and dimension of the lattice). From R10D10 to R20D20, the quantum
resources increase the most. This is a natural phenomenon because it is a sec-
tion where the rank and dimension are doubled. Therefore, each time rank and
dimension increase by 10, and the amount of increased resources decreases. This
can be seen more clearly in quantum costs, which we will see in the next section.

The NV Sieve algorithm, which we target as an exact algorithm, is meaningful
when it involves at least 50 ranks and dimensions. In general, the ranks and
dimensions typically used in cryptographic algorithms are over 500. In such large-
sized lattices, approximate algorithms (e.g., LLL, BKZ) are employed to reduce
the lattice size. Typically, these reductions bring the dimension down to around
50-60. Therefore, our implementation must target lattices with dimensions of at
least 50. Consequently, in Table 2, the important part to observe is from R50D50

to R70D70.
The parts with the high complexity of our oracle are STEP 7 and STEP 8 in

Algorithm 3, where the square operation is performed with the Toffoli gate. The
Toffoli gate is used only in the squaring and in the part that calculates the square
of the size of the vector. Therefore, we estimate the T -depth in STEP 7 and STEP
8. In particular, in the part where the multiplication of each qubit for the square
operation is performed, it can be seen that the T -depth consistently increases
by 70 as the rank and the dimension are expanded by 10. As the dimension
and the rank increase, the number of target qubits to calculate also increases
regularly. Therefore, the T -depth increases regularly in the multiplication part.
Additionally, this part would be resource intensive if schoolbook multiplication
was performed. However, we achieve a low T -depth using Quantum CSA 15,
despite the high dimension and the rank of the lattice. Additionally, we further
reduce T -depth by not using the reverse part in QCSA for qubit reuse. This is
because the operand in the square operation process is not a value that is used
again in our implementation.

Our previous work [7] shows T-depth of 1,756 in R2D4. This means that our
implementation achieves less T -depth even with much higher dimensions and
ranks, while our previous work has a high T -depth even with small dimensions.

15 The T -depth of our Toffoli gate is 4.
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That is, our implementation is optimized in terms of T -depth (T -depth of this
work: 210.0660 in R70D70, T -depth of [7]: 210.7780 in R2D4). In addition, to save
the number of qubits used, the Takahashi adder is used, which does not require
ancilla qubits. This reduces the value of Td-M and FD-M .

4.4 Quantum Cost of Quantum NV Sieve

Figure 8 and Table 3 show the quantum cost of our quantum NV Sieve on
Grover’s search. While calculating the quantum cost [25] of Grover’s search, the
total number of gates (#gates) and Full depth (FD) mentioned in Table 2 must
be multiplied by iteration (i.e., #gates · FD · r).

10 20 30 40 50 60 70

Rank and Dimension (Full-rank lattice) →

235.066

237.782

239.776

241.294

242.587

243.666

Q
u
a
n
tu
m

C
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t
→

1
Fig. 8: Quantum cost for quantum NV Sieve on Grover’s search (r = 1)

Figure 8 shows the quantum cost and the increase according to rank and di-
mension. As shown in Table 3, when rank and dimension increase, the increment
in the number of quantum resources decreases. In addition, it usually targets a
lattice with rank and dimension of about 50 ∼ 60 and can be attacked at a
quantum cost of about 242.

Even if the number of iterations increases, the number of iterations in a
multi-solution problem is not that large, and so it is not expected to deviate
significantly from the cost of the current attack.

Furthermore, research on LLL which is one of the approximate algorithms,
is conducted on quantum simulator. If applied to a lattice reduced through their
technology, it is believed that our implementation for solving SVP will be more
realistic and operate more powerfully.

4.5 Further Discussions

Comparison with Quantum Cost of Other Quantum Attacks A direct
comparison is challenging since the target problem is different from the sym-
metric key problem, and the target lattice is not the entire lattice. Taking into
account this fact, the quantum NV Sieve can be a quantum attack that solves
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the fundamental problem of lattice-based cryptography with a quantum cost of
approximately 243. This is approximately the square root of the cost of Grover’s
search for a 64-bit symmetric key cipher.

Additional Optimizing Point of the Quantum Implementation It is
believed that by employing a Toffoli gate with a lower T -depth, our T -depth
can be further reduced. Additionally, while using the Draper adder in QCSA,
although it may increase the number of qubits required, it is expected to yield
a lower circuit T -depth.

Considerations for the Complexity of NV Sieve The factors that affect
the complexity of NV Sieve’s algorithm are as follows.

1. Multiple solutions In our approach, unlike key search using Grover’s
search, multiple solutions may exist16. For the multi-solution scenario in

Grover’s algorithm, the number of iterations (r = ⌊π4 ·
√

N
M ⌋) required dif-

fers from that of the one-solution Grover’s search (N is a search space, M
is the number of solutions, [26,27]). In this work, we primarily focus on pre-
senting a correct and optimized oracle and estimating the cost associated
with Grover’s search.

2. Search space (N): It is decided by rank and dimension (N = 2rank·dimension).
As N increases, the difficulty of solving the NV Sieve increases. It is related
to the number of points in c. There is a sufficiently large number of points
(e.g. v, c) on the lattice. Among this, we need to find a point c that can be
used to create a vector with a length shorter than γR, and it is important to
find the number of c. Because it is difficult to find c in a high-rank lattice, the
size of the set of target basis vectors affects the complexity of the algorithm.

3. Length (R) of the longest vector among input vectors (v): The input
vectors fall within the range γ < v < R. Consequently, the maximum length
(R) in the input vector set is determined (e.g., rank and dimension are 2,
then R is 2

√
2). The complexity will vary depending on the condition of the

value of R which determines the search space.

Quantum Query Complexity In noted above, the quantum query complexity
of the NV Sieve algorithm varies with several parameters, such as N , R r, γ, etc.
However, if the oracle is appropriately implemented, and the optimal number of
iterations is determined, it follows the theoretical complexity of Grover’s search

16 Contrary to the traditional Grover’s search that identifies a single solution, the NV
Sieve yields multiple outcomes. That is, it may produce multiple short vectors that
meet the condition in the quantum NV Sieve. Therefore, determining the correct
Grover iteration is another important issue.
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(see Equation ??). In this scenario, the number of solutions, denoted as M , is
significantly smaller than the entire search space N .

Consequently, the quantum query complexity is expected to be O(
√
N). From

a query complexity perspective, this suggests a quantum advantage over classical
computers.

5 Conclusion

In this work, we introduce the quantum NV Sieve algorithm as a solution to
the Shortest Vector Problem (SVP), a pivotal challenge in lattice-based cryp-
tography. Furthermore, we aim to achieve a lattice of 50 ∼ 60 dimensions, which
are commonly used in algorithms to solve SVP. By applying Grover’s search
algorithm to the vector search component of the existing NV Sieve, our imple-
mentation achieves a significant advantage in search (i.e., query) complexity.
Notably, for optimal implementation, we employ QCSA with Takahashi adder,
achieving a substantial reduction in depth compared to our previous work. This
means that our approach facilitates a more efficient quantum circuit, even in
higher-dimensional lattices than our previous implementation.

This work shows that the required quantum complexity for the SVP on the
lattice of rank 70 and dimension 70 is 243 (a product of total gate count and
total depth) with our optimized quantum implementation of the NV sieve algo-
rithm. This complexity is significantly lower than the NIST post-quantum secu-
rity standard, where level 1 is 2157, corresponding to the complexity of Grover’s
key search for AES-128.

Ultimately, our work contributes to expanding the scope of research in the
field of cryptanalysis by applying Grover’s search to the cryptanalysis of lattice-
based cryptography.
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