
Mempool Privacy via Batched Threshold Encryption:
Attacks and Defenses

Arka Rai Choudhuri1, Sanjam Garg2, Julien Piet2, and Guru-Vamsi Policharla2

1NTT Research
2University of California, Berkeley

Abstract
With the rising popularity of DeFi applications it is important
to implement protections for regular users of these DeFi plat-
forms against large parties with massive amounts of resources
allowing them to engage in market manipulation strategies
such as frontrunning/backrunning. Moreover, there are many
situations (such as recovery of funds from vulnerable smart
contracts) where a user may not want to reveal their trans-
action until it has been executed. As such, it is clear that
preserving the privacy of transactions in the mempool is an
important goal.

In this work we focus on achieving mempool transac-
tion privacy through a new primitive that we term batched-
threshold encryption, which is a variant of threshold en-
cryption with strict efficiency requirements to better model
the needs of resource constrained environments such as
blockchains. Unlike the naive use of threshold encryption,
which requires communication proportional to O(nB) to
decrypt B transactions with a committee of n parties, our
batched-threshold encryption scheme only needs O(n) com-
munication. We additionally discuss pitfalls in prior ap-
proaches that use (vanilla) threshold encryption for mempool
privacy.

To show that our scheme is concretely efficient, we imple-
ment our scheme and find that transactions can be encrypted in
under 6 ms, independent of committee size, and the communi-
cation required to decrypt an entire batch of B transactions is
80 bytes per party, independent of the number of transactions
B, making it an attractive choice when communication is very
expensive. If deployed on Ethereum, which processes close
to 500 transaction per block, it takes close to 2.8 s for each
committee member to compute a partial decryption and under
3.5 s to decrypt all transactions for a block in single-threaded
mode.

1 Introduction

A prominent application of cryptocurrencies and blockchain
technologies is in Decentralized Finance (DeFi) which aims

to provide financial services through a decentralized network
of parties. A significant amount of capital has been invested
in this space with a peak value peak of over $250 billion in
December 2021.1 This capital was drawn not just from retail
investors but also from major institutional players.

The traditional financial system has well documented evi-
dence [43] to prove that in the absence of regulations, market
manipulation strategies will be employed by insiders who
seek to financially exploit the average consumer. However,
despite the large amounts of capital locked in the DeFi space,
there is virtually no protections implemented for consumers
against miners/builders who can not only see the details of
all transactions submitted by clients to a memory pool (mem-
pool) but also control the order in which transactions will be
executed.

Although cryptocurrencies promise a fair and permission-
less platform where all users are on a level playing field,
the reality is far from this. Unsurprisingly, the DeFi space
is ripe for exploitation by greedy (although arguably ratio-
nal) miners who can frontrun/backrun/sandwich client trades
to extract additional value from the asymmetric information
available to them. This was first documented as “Miner Ex-
tractable Value” or MEV in [17]. Early work focused on de-
vising the best strategies to implement MEV [1,25,60,62,64].
Many studies since have shown it to be a widespread prob-
lem in blockchains [14, 31, 36, 50, 59]. In particular, an es-
timated 200,000,000 USD were lost on Ethereum in 2021
alone, mostly benefiting miners [47]. In the case of trading on
Decentralized Exchanges, the attacks mentioned above allow
a miner to extract financial gains at the expense of the users.

Alternatively, consider the situation where a user discovers
a bug in their smart contract that allows any party to drain all
of its funds. A natural course of action is to update the smart
contract with new code. But the diff between the old and new
code could reveal the bug to any party with access to the
mempool, allowing an attacker to exploit the bug before it is
fixed. This class of attack is actually widespread, and has been

1https://cointelegraph.com/news/defi-needs-to-start-creating-real-world-
value-if-it-wants-to-survive

1

https://cointelegraph.com/news/defi-needs-to-start-creating-real-world-value-if-it-wants-to-survive
https://cointelegraph.com/news/defi-needs-to-start-creating-real-world-value-if-it-wants-to-survive

observed and documented [51, 53]. In fact, with the recent
advancements in Large Language Models, researchers have
shown that fine-tuning can be carried out to identify bugs in
smart contracts [19]. Using the same strategy, it is conceivable
that an attacker could also automate this process. Finally,
revealing the content of transactions allow malicious miners
to selectively censor targeted groups of users or transactions.

Protecting the privacy of transactions in the mempool has
been a subject of active discussion [5, 39, 45, 48, 52, 57] and
threshold public key encryption [20, 22, 27] has emerged as
the de facto solution to this problem. A threshold public key
encryption system has a single public key, and distributes the
private key among n decryption servers such that at least a
threshold number (say k) are needed for decryption. At a high
level, threshold encryption is used as follows. First, a com-
mittee - corresponding to the decryption servers - is set up
such that the committe members are in possession of the (dis-
tributed) private key, and all users encrypt to the committee’s
public key. Miners can only see encrypted transactions in the
mempool and create blocks containing ciphertexts. After the
block has been confirmed, the committee jointly decrypts all
transactions that have been included and announces them to
all nodes in the network.

Existing solutions are insufficient to solve the problem of
mempool privacy for two main reasons. First, the proposed
solutions fail to account for a malleability attack, where an
adversary could create a related transaction ciphertext, submit
that instead, and learn information about a transaction which
has not been included on chain. This is a very realistic attack
as most users don’t run their own nodes and instead rely on
other untrusted nodes who submit transactions for them.

Second, the communication involved to decrypt ciphertexts
is O(nB) instead of O(B) without privacy, where n is the com-
mittee size and B is the block size (number of transactions
in a block). In a widely distributed network like blockchains,
the additional latency introduced in an already time-critical
system is untenable. We emphasize here that the metric of in-
terest is not the bandwidth available on a node but the latency
of the underlying broadcast/gossip network. In otherwords, it
is not how fast a committee member can upload their partial
decryptions to some server but how fast a message broadcast
by a committee member can reach all nodes on the network,
as all parties need to decrypt the ciphertexts. For concrete
numbers, we refer to [21], which shows that each kilobyte
over 20kB adds an 80ms delay to the time it takes for a mes-
sage to reach a majority of nodes.

Deployed systems [57] have attempted to handle this by
introducing a new encryption scheme similar to that of [23],
where clients encrypt to an epoch, and the decryption key
is the same for all ciphertexts in that epoch. However, this
makes unacceptable compromises to privacy, as ciphertexts
that are not included/withheld lose privacy despite not being
confirmed transactions. We refer to this property as pending
transaction privacy. We summarize a comparison against

prior work in Table 1 and elaborate on other possible attack
vectors in Section 3.

Our Model. To address the above two problems we introduce
a new security notion of batched-threshold-encryption which
protects the privacy of messages against adaptive chosen ci-
phertext attacks [7] and in addition demands that an entire
batch of ciphertexts can be decrypted non-interactively, and
with sub-linear communication. This translates to ensuring
that (i) each member of the committee can locally compute
partial decryption given only the batch of ciphertexts, and
these can later be combined by any party (even outside the
committee) to recover the messages; and (ii) the size of partial
decryption is sub-linear in the batch size.

Scheme Comm. Pending Tx
privacy Setup

Thresh. Enc.
[13, 24] O(nB) ✓ DKG

Ferveo [5] O(nB) ✓ DKG

McFly [23] O(n) ✗ DKG

Shutter [57] O(n) ✗ DKG

This Work O(n) ✓
MPC +

Epoch Setup

Table 1: A comparison of this work against prior work in
terms of communication to decrypt a batch of B transactions
and whether the scheme preserves the privacy of transactions
which were submitted but may not have been included in the
batch. DKG refers to a distirbuted key generation protocol and
MPC refers to a (more expensive) multi-party computation
protocol used during the setup phase and Epoch Setup refers
to a per epoch setup that can be carried out well before the
actual epoch takes place.

1.1 Our Contributions

In this work,

• We demonstrate the inefficacy of existing approaches in
protecting the privacy of transactions in the mempool,
highlighting the need for improved security definitions
and constructions. In particular, we show that the Shutter
Network [57] suffers from the issues highlighted in the
prior section. (Section 3)

• We undertake a formal study of encrypted mempools
and propose the notion of batched-threshold encryption,
which we argue is the appropriate security notion of
threshold encryption for mempool privacy. Additionally,
our definitions demands efficiency properties that aim

2

to model the limited bandwidth available in large-scale
distributed networks. (Section 6)

• We then provide the first concretely efficient construction
satisfying the batched-threshold encryption definition.
Importantly, to decrypt a batch of messages, the size of
partial decryption is independent of the batch size; in
fact, it is just one field element. The ciphertext size is 370
bytes for a 32 byte message, and only ≈ 3× larger than
the Cramer-Shoup threshold encryption scheme [12, 13],
which does not satisfy necessary efficiency requirements.
(Section 7). However, our scheme incurs a more expen-
sive setup (≈ 100×) along with a per epoch setup, which
can be carried out well before the actual epoch. We be-
lieve that this can be a favorable trade-off when the
number of transactions in a block is large, as our scheme
reduces the communication during the time-sensitive
phase (decryption) by several orders of magnitude. Con-
cretely, for a block of 512 transactions and a committee
size of 128, we reduce the communication by over 300×.
Moreover, this number will only grow larger as the num-
ber of transactions in a block increases. (Section 7)

• We created a Rust crate for our batched-threshold en-
cryption scheme. It takes < 6 ms to encrypt a ciphertext.
For an Ethereum deployment, which processes ≈ 500
transactions per block, it would take close to 2.8 ms to
compute a partial decryption and < 3.5 s to reconstruct
all messages. We emphasize that our scheme can take
advantage of multi-threaded architectures and Ethereum
nodes are likely to already have machines with multiple
cores. (Section 9)

2 Our Techniques

We now describe the main ideas underlying our work. Before
we describe our construction, we note that a common theme
when describing the shortcomings of prior approaches was the
lack of clearly defined security properties. Further, the security
needs to be defined while ensuring that any solution we pro-
pose is agnostic to the system (or blockchain) it is deployed
on. To this end, we define a new primitive called batched
threshold public key encryption (bTPKE) whose properties
(to be defined shortly) will prove sufficient in achieving mem-
pool transaction privacy. We elaborate below.

Batched Threshold Public Key Encryption At a high level,
this primitive specifies a public key for which some parties
that are designated as servers are given (threshold) shares of
the corresponding secret key. Users, who are not necessarily
servers, are then allowed to encrypt to the public key such
that: (i) a batch of B ciphertext are chosen by the servers to be
decrypted; (ii) each server broadcasts a short batch decryption
key (of size independent of B) that enables decryption of all

ciphertexts included in the batch; and (iii) the contents the
ciphertexts not included in the batch remain hidden.

Given the properties described for a bTPKE, it follows in
a straightforward manner how one can utilize the primitive to
realize the the guarantees for mempool privacy. Specifically,
in the mempool privacy setting, the miners correspond to
the bTPKE servers, and users encrypt transactions using the
bTPKE encryption scheme with the guarantee that encrypted
transactions that are not selected by miners in the batch hide
the underlying transaction. Further, the efficiency properties
of bTPKE ensure that this is indeed a feasible solution to
guarantee mempool transaction privacy. Note that, as desired,
the properties of the bTPKE are agnostic to how the batch
of ciphertexts to be decrypted are decided, and thus work for
any set of selected transactions.

In Section 6 we formalize the above described properties
via an ideal functionality FbTPKE, which is motivated by the
ideal functionality for threshold encryption schemes that are
secure against chosen ciphertext attack [13]. The main differ-
ence in our setting is that our ideal functionality incorporates
a notion of “epochs” such that users can encrypt messages to
a specific epoch, and a batch of ciphertexts to be decrypted
must all belong to the same epoch.

Construction For simplicity, in this overview, we will high-
light the main ideas underlying our bTPKE construction in
the setting that there is a single server that is honest. We defer
the extension to the threshold setting with multiple servers to
Section 7, where we use the threshold to emulate the single
honest server. As a further simplification, we first describe a
scheme that provides the weak form of security where privacy
is guaranteed only against adversaries that only see cipher-
texts (indistinguishability of chosen plaintext), but not their
decryption. We will then describe the shortcomings of this
construction, and then strengthen it to achieve the desired
security guarantees.

Our construction is based on polynomial-commitment
schemes, where such a scheme allows a user to generate a
“commitment” com to a polynomial p(X) such that the user
at a later point can provide a short proof of opening with re-
spect to com to pairs (x,y) given the polynomial p with the
guarantee that p(x) = y. We now describe the template of our
bTPKE construction: (i) the public-key will correspond to the
commitment com of an unspecified degree B polynomial, i.e.
the polynomial will be determined by the transactions and
the reader can think of com as a commitment to an arbitrary
polynomial that will be explained correctly later; (ii) each
user will sample a pair (xi,yi) and “encrypt” their message mi
to only be decrypted using the proof of opening of (xi,yi) with
respect to com; and (iii) finally, the server given B ciphertexts,
each with their corresponding (xi,yi) pair, uses a trapdoor to
explain com to be a commitment to a degree B polynomial
p(X) such that for each i ∈ [B] p(xi) = yi - since a degree B
polynomial is fully determined by B+1 points, the server can
simply broadcast a single pair (0,p(0)) which allows all par-

3

ties to reconstruct p(X) via polynomial interpolation using the
points {(0,p(0)),(x1,y1), · · · ,(xB,yB)}. Once p(X) is recon-
structed, as discussed from the properties of the polynomial
commitment scheme, anyone with access to the polynomial
p(X) can compute the proof of openings to (xi,yi) and thus
decrypt the ciphertexts. We now fill in the details of the tem-
plate using the KZG polynomial commitment scheme [38].
We first briefly describe the commitment scheme below.

In the KZG scheme, the commitment to a degree B
polynomial p(X) given the common reference string crs =

(g,gτ,gτ2
, · · · ,gτB

) is simply the deterministic value com =
gp(τ). Here g is the generator of a multiplicative group G, and
the committer is able to compute gp(τ) given the crs, with-
out knowledge of τ - which is the trapdoor hidden from the
committer. Given a pair (x,y) such that y = p(x), the proof of
opening is a group element π = gq(τ) that is a commitment to
q, which is a polynomial such that q(X) = (p(X)−y)/(X−x).
If the group is appropriately equipped with a pairing operation
e(·, ·) (see Section 5 for details on groups and pairing opera-
tions), verification of the proof of opening is done by checking
the equality e(com/gy,g) = e(π,gτ/gx). The binding prop-
erty of the scheme guarantees that if τ is hidden from the
committer, for any pair (x′,y′) such that p(x′) ̸= y′, one can-
not find a group element π′ that satisfies the aforementioned
verification check.

Given the discussed properties from the KZG polynomial
commitment scheme, specifically the verification check, we
use ideas present in the construction of the Boneh-Franklin
Identity Based Encrytion (IBE) scheme [11] (also recently
used in the context of encryption under signature verifi-
cation [23, 44]). Specifically, the public key is the CRS
(g,gτ,gτ2

, · · · ,gτB
) and a random group element com = gα

treated as a “commitment” to a polynomial yet to be deter-
mined. The server is in possession of the trapdoors α and
τ. To encrypt a message M with respect to the public key
com, a user first samples a pair (x,y), and then computes the
ciphertext as

ct= (x,y, (gτ/gx)ρ, H(e(com/gy,g))ρ⊕M)

where H is a hash function (modeled as a random oracle in our
security proofs), and ρ is a randomly sampled value. Given
B ciphertexts {(xi,yi,ci,1,ci,2)}i∈[B]

2, the server explains the
commitment com by interpolating the unique degree B poly-
nomial p(X) using the B+1 points (x1,y1), · · · ,(xB,yB) and
(τ,α) (where we view α = p(τ) by treating com as a KZG
commitment). The server then simply broadcasts the batch
decryption key (0,p(0)).

To decrypt, any user in possession of the B ciphertexts
{(xi,yi,ci,1,ci,2)}i∈[B] and (0,p(0)), performs the following
steps in order: (i) reconstructs the polynomial p(X) using the
B+1 points in its possession; for each i ∈ [B], (ii) computes
the proof of opening πi with respect to com and the pair

2For simplicity, we assume that the B xi are all distinct.

(xi,yi); and (iii) compute mi as H(e(π,ci,2))⊕ ci,1. From the
correctness of the KZG verification, it is easy to see that the
decryption procedure does indeed reconstruct the B encrypted
messages. Further, the server was only required to send 2
elements to enable the decryption of a batch of B ciphertexts.

Any ciphertext with (x̃, ỹ) not selected as a part of the B
ciphertexts will (with high probability) be such that p(x̃) ̸= ỹ
if (x̃, ỹ) is sampled randomly. Thus, by the binding property
of the KZG commitment scheme, com, given p(X), cannot be
opened to the pair (x̃, ỹ) ensuring that the ciphertext encrypted
using (x̃, ỹ) remains hidden.

First, an observant reader may note that in the use cases
envisioned, the security argued above is insufficient since the
adversary can “maul” ciphertexts to break any privacy guaran-
tees upon obtaining the batch decryption key. For instance, an
adversary can simply flip bits in the ci,2 component of ct, and
perhaps more devastatingly, since the batch decryption key
solely depends on the pair (x,y), the adversary can execute
a “copy attack” by copying the pair (x,y) from an honest
ciphertext to generate a new ciphertext such that given the
batch decryption key, the adversary can decrypt the honest
ciphertext even if was not included in the batch of ciphertexts
to be decrypted. As we will describe shortly in Section 3,
prior works often fail to address these pitfalls.

Second, note that while the binding of the KZG scheme
guarantees that ciphertexts with pairs (x̃, ỹ) that won’t be
included in the B ciphertexts cannot be decrypted, our use
case requires a stronger property - namely that even given
a ciphertext with a pair (x,y) that will be included in the B
ciphertexts, an adversarial user should not be able to decrypt
the ciphertext (i.e. compute opening proof) until the server
broadcasts the batch decryption key. This latter requirement
requires the use of a variant of KZG that is randomized, and a
subsequent strengthening of the ‘KZG assumption’ to argue
security.

In the remainder of this section, we describe how we handle
the first type of malleability issues, and defer details regarding
the “randomized KZG” to the technical sections.

Adding Non-Malleability Adding non-malleability to ci-
phertexts corresponds closely to securing encryption scheme
against chosen ciphertext attacks, and in this work we shall
follow the same approach. To prevent an adversarial mauling
of the ci,2 component, we use the folkore approach used in the
context of adding non-malleability to El-Gamal encryption
(see [56]) by additionally attaching a non-interactive proof
of knowledge to our ciphertext ct proving knowledge of the
encryption randomness ρ in the exponent. By assuming that
the proof of knowledge extractor is an online extractor (see
remark below), this approach prevents the malleability of the
(ci,1,ci,2) component of ct. This unfortunately doesn’t protect
the aforementioned “copy attack” since the adversary can
replace (ci,1,cti,2) with a fresh ciphertext while keeping (x,y)
the same. We handle this in a similar fashion by changing
the way y is generated, and having the prover explain the

4

generation of y. Specifically, the user still samples x at ran-
dom, but for y the user first samples a random exponent s,
computes y = H(S) where S = gs and then provide a non-
interactive proof of knowledge of s such that S = gs. Thus our
final ciphertext is of the form

ct= (x,S,y, (gτ/gx)ρ, H(e(com/gy,g)ρ)⊕M,Π1,Π2),

where Π1 and Π2 correspond to the non-interactive proofs
of knowledge discussed above. Intuitively, for any ciphertext
such that Π1 and Π2 verify, the adversary is able to explain
the y that is used, and the message that is encrypted. It turns
out that this intuition can be formalized, and is sufficient to
provide the security guarantees of our primitive. Note that the
above description was intended to provide only the key ideas
in our construction, and we refer the reader to Section 7 for
the full details.

Remark 1. We note that for our implemented solution to be
efficient, we use the non-interactive version of Schnorr pro-
tocol [54] to prove knowledge of discrete log. Unfortunately,
it was observed in [56] that proving security of the folklore
El-Gamal construction, even in the random oracle model, is
problematic using the Schnorr protocol. At a very high level,
this stems from the fact that the Schnorr protocol necessi-
tates rewinding for extraction, which is incompatible with
the decryption queries of an adversary mounting a chosen
ciphertext attack (see [56] for details). This is in fact more
broadly an issue with any proof of knowledge protocol that
requires rewinding, and thus in our construction we assume
the existence of a ‘straight-line extractor’ to circumvent this
issue. We justify our instantiation of the Schnorr protocol
by noting that in the Random Oracle Model in conjunction
with the Algebraic Group Mode (AGM), Schnorr does indeed
have straight line extraction and can be used to prove that
the folklore ‘Schnorr signed El Gamal’ is chosen ciphertext
secure [28]. The ideas in that work directly extend to our
setting as well.

3 Pitfalls in prior work

In this section we describe a flaw in the Shutter Network [57]
that allows an adversary to compromise transactions privacy
by exploiting the malleability of the encryption scheme. We
believe that this not only necessitates the need for a formal
security model, but also informing the various choices in our
construction.

The Shutter Network [57] uses it’s own construction of
threshold encryption for mempool privacy. Indeed it is more
efficient than other proposals in the space (such as Ferveo [5]
or MEVade [49]), and has been integrated to work on top
of Ethereum without requiring changes to the base protocol.
However, we found a few flaws in its design and implementa-
tion that render it insecure in its current form.

We begin by describing shutter’s encryption scheme. We
note that at the time of writing this paper, we were not able to
find a whitepaper containing a specification of their scheme
and had to infer details of their protocol from their GitHub
repository. 3

Shutter works in epochs, each corresponding to a set of
encrypted transactions. At the beginning of the protocol, an
eon-secret key ske ∈ F is secret shared amongst the committee
and they publish an eon-public key pke = hske . For each epoch,
a unique epoch id eid ∈G1 is broadcast to users. Then, users
encrypt transactions as follows:

• C1 = hr for r← F

• C2 ← H(e(eid,pke)
r)⊕M. Here, M could be replaced

with an encapsulation key which is in turn used to en-
crypt a long message.

The user then sends (C1,C2) as the encryption of their transac-
tion. In order to decrypt, the committee members each release
shares of a private epoch key sk= eidske . Then, anyone can
decrypt as M = H(e(sk,C1))⊕C2. We now describe some
flaws with this design.

• First observe that ciphertexts can easily be mauled by
flipping some bits, and they remain valid ciphertexts.
Any party who intercepts a user’s transaction can modify
the ciphertexts, have it be included on chain and learn
the transaction without the transaction being included
on chain. Thus, this already violates the IND-CCA2
requirements.

• Next, Shutter’s efficiency gains compared to Ferveo and
MEVade come from sharing a decryption key for all
transactions submitted during the same epoch: every
transaction encrypted to that epoch can be decrypted
once the key is released, regardless of whether the trans-
action was actually included on chain. This means trans-
actions that are stuck in the mempool and don’t make
it on chain before the end of the epoch will be revealed
even though they won’t be executed. For the optimistic
roll-up version of Shutter [58], a malicious collator (the
entity in charge of selecting a batch of transactions)
could withhold transactions from the batch, and still be
able to decrypt them once the key is published.

3.1 Disclosure
Upon disclosing our findings to the Shutter team and the
Cryptographers who designed Shutter’s protocol – Stefan
Dziembowski (University of Warsaw and IDEAS NCBR) and
Sebastian Faust (TU Darmstadt) – we received the following
responses:

3https://github.com/shutter-network/shutter/blob/
42b2338ed4970bc0df95fa6bdf6b752b57d8ce2f/shlib/shcrypto/
encryption.go#L50

5

https://github.com/shutter-network/shutter/blob/42b2338ed4970bc0df95fa6bdf6b752b57d8ce2f/shlib/shcrypto/encryption.go#L50
https://github.com/shutter-network/shutter/blob/42b2338ed4970bc0df95fa6bdf6b752b57d8ce2f/shlib/shcrypto/encryption.go#L50
https://github.com/shutter-network/shutter/blob/42b2338ed4970bc0df95fa6bdf6b752b57d8ce2f/shlib/shcrypto/encryption.go#L50
https://github.com/shutter-network/shutter/blob/42b2338ed4970bc0df95fa6bdf6b752b57d8ce2f/shlib/shcrypto/encryption.go#L50
https://github.com/shutter-network/shutter/blob/42b2338ed4970bc0df95fa6bdf6b752b57d8ce2f/shlib/shcrypto/encryption.go#L50

From the Shutter team:

We thank the authors for finding and disclosing the
malleability vulnerability in our implementation,
which we have fixed thereupon. We are aware of
the lack of pending transaction privacy in our proto-
col, but consider it prohibitively difficult to exploit
in the practical scenarios we are focusing on. This
is because the fact that transactions are encrypted
largely prevents targeted attacks, because modern
blockchains and rollups usually include transac-
tions very quickly,4 and because leaked transac-
tions are prohibited from being included in future
blocks. In one variant of our protocol intended for
a different setting,5 we achieve pending transac-
tion privacy, but at the cost of a communication
overhead linear in the number of transactions. Nev-
ertheless, we agree with the authors that achieving
pending transaction privacy in an efficient manner
is very valuable.

From the Cryptographers:

Thanks for looking at Shutter’s implementation and
informing us about its issues! We address them
below. About the “stuck in the mempool” problem -
you are right - Shutter assumes that the transactions
make it to the blockchain before the decryption key
is published (how big of a problem it is depends on
the concrete application).

About malleability: the formal cryptographic de-
scription of the Shutter protocol we prepared in
2021 did not suffer from this problem. In fact, we
were well aware of the non-malleability require-
ment, so we based Shutter on non-malleable ID-
based threshold encryption. The bug you found was
introduced during Shutter programming. We take
it as a lesson on the importance of interaction be-
tween the cryptographers and software developers
during the entire system development process. The
development team has fixed the issue in the mean-
time. We will also publish the Shutter description
(as it was designed in 2021) in a paper that we will
put on the Cryptology Eprint archive soon. Thanks
again!

4 Related Work

Trusted-Execution. One could explore Trusted-Execution
based solutions where the enclave contains the secret key

4https://arxiv.org/pdf/2201.05574.pdf
5https://github.com/gnosischain/specs/blob/

6e454e5ebb0655495e2584c355f81609cc2d7c11/shutter/low-level.
md

of a public-key encryption scheme and clients can encrypt
their transactions to this public key. The TEE then decrypts
and publishes a block of transactions, which gets included
on-chain. Given that over $1 billion USD of MEV has been
extracted,6 and that TEEs have been repeatedly shown to be
exploitable,7 it is not reasonable to expect that this approach
is secure in the long-term.

Cryptographic. Here, clients use cryptography to hide the
content of their transaction until it is included in a block i.e.
execution is confirmed and ordering has been fixed. The three
main approaches considered are timelock encryption [10],
threshold encryption [5,39,45,48,57] and witness encryption
[29].

In timelock encryption, transactions lose privacy if they are
not included within a given window of time and also need
wasteful computation to be carried out leading to additional
delays.

Threshold encryption with adaptive chosen ciphertext secu-
rity [12, 13], provides the required privacy guarantees but the
communication is proportional to the number of transactions
times the committee size for decryption, which is a bottleneck
for scaling these systems.

Finally, witness encryption is typically considered to be
impractical but a recent work by Döttling et al. [23] showed
that you can build signature based witness encryption even
for aggregate and threshold BLS signatures where a signature
on some public message is the decryption key. Now users
can encrypt transactions to a predictable block number and
committee members can sign this block number. Thus it is
guaranteed that a key to decrypt the ciphertext will appear (in
the form of a signature on the block number) at some point in
the future. Although this allows for encryption to the future,
it is not clear how to ensure that transactions which are not
included on-chain will not be decrypted.

In contrast, our work achieves the best of threshold encryp-
tion and signature based witness encryption as the communi-
cation to decrypt an entire block of transactions is independent
of the block size and privacy of transactions that have not been
included is still preserved.

Order-fairness. An alternate approach to reducing MEV in-
volves attaining consensus amongst miners on the order of
incoming transactions to the mempool. This method aims to
limit transaction reordering, thus limiting a miner’s potential
for extracting MEV. Themis [40] and Aequitas [41] illustrate
the principle of decentralized order fairness. These methods,
however, can only guarantee a weak form of order-fairness,
dubbed batch order-fairness, which does not entirely elim-
inate MEV. A protocol suite for maintaining order fairness
based on linearizability has been proposed in Wendy [42],
although it only ensures coarse order-fairness and does not
wholly rule out all possible reorderings.

6See https://explore.flashbots.net for flasbhots statistics.
7https://sgx.fail

6

https://arxiv.org/pdf/2201.05574.pdf
https://github.com/gnosischain/specs/blob/6e454e5ebb0655495e2584c355f81609cc2d7c11/shutter/low-level.md
https://github.com/gnosischain/specs/blob/6e454e5ebb0655495e2584c355f81609cc2d7c11/shutter/low-level.md
https://github.com/gnosischain/specs/blob/6e454e5ebb0655495e2584c355f81609cc2d7c11/shutter/low-level.md
https://explore.flashbots.net
https://sgx.fail

MEV-resistant DEX. Several strategies for redefining DEXs
transaction processing model have been proposed. McMe-
namin et al. [46] and Heimbach et al. [35] offer game-theoretic
defenses against MEV extraction through frequent batch auc-
tions and setting slippage tolerance, respectively. Off-chain
communication [16] and multi-party computation [4] have
been suggested as means to eliminate arbitrage. A unified
AMM to mitigate attacks is proposed by A2MM [63]. De-
spite improved guarantees, these models are more complex
and potentially more vulnerable to smart contract bugs. Fur-
thermore, they do not restrict MEV across different DEXs.

5 Preliminaries

We use [n] to denote the set {1,2, . . . ,n}. The security param-
eter is denoted by λ ∈ N. A function f : N→ N is said to be
polynomial if there exists a constant c such that f (n) ≤ nc

for all n ∈ N, and we write poly(·) to denote such a function.
A function f : N→ [0,1] is said to be negligible if for every
c ∈N, there exists N ∈N such that for all n > N, f (n)< n−c,
and we write negl(·) to denote such a function. A probability
is noticeable if it is not negligible, and overwhelming if it is
equal to 1−negl(λ) for some negligible function negl(λ). For
a set S , we write s← S to indicate that s is sampled uniformly
at random from S . For a random variable D , we write d←D
to indicate that d is sampled according to D. An algorithm
A is PPT (probabilistic polynomial-time) if its running time
is bounded by some polynomial in the size of its input. For
two ensembles of random variables {D0,λ}λ∈N, {D1,λ}λ∈N,
we write D0 ≈c D1 to indicate that for all PPT A , it holds that∣∣∣∣ Pr

d←D0,λ
[A(d) = 1]− Pr

d←D1,λ
[A(d) = 1]

∣∣∣∣≤ 1
2
+negl(λ).

We use e to denote an efficiently computable non-
degenerate bilinear pairing from the groups (G1,G2) to a
target group GT and use F to denote the associated field. We
will represent the Shamir secret sharing of an element x as
[x], with i-th share represented as [x]i. We note that while we
overload the previously discussed notation [n], the notation
for secret shares will be clear from the context.

The random oracle model. In the random oracle model
(ROM), parties are given oracle access to some function H
that is sampled uniformly at random from the space of all
functions H : X → Y , where X and Y are finite non-empty
sets. That is, parties can query their oracle on an input x ∈ X
and receive in return H(x) ∈ Y . When proving security of
a protocol in the random oracle model, the simulator Sim is
able to “control” the oracle, observing queries made by the
adversary and simulating responses.

Lagrange Polynomials. We will use Li(x) = Π
d−1
j=0, j ̸=i

(x−x j)

(xi−x j)

to denote the i-th lagrange polynomial for polynomials of
degree ≤ d over a sufficiently large field, corresponding to

a domain Ω = {x0,x1, . . . ,xd}. These polynomials have the
property that f (τ) = ∑

d
i=0 Li(τ) f (xi) for any point τ /∈ Ω in

the field.

Non-interactive Zero-Knowledge proofs. Let L be an NP-
language and R the corresponding NP-relation. A Simulation
Extractable-NIZK for R consists of the following algorithms:

• Setup(1λ)→ (crs, td): Takes as input a security parameter,
and outputs a common reference string crs and trapdoor td.

• Prove(crs,x,w) → π: Takes as input crs and any pair
(x,w) ∈ R and outputs a proof π for the statement x ∈ L .

• Verify(crs,x,π)→ b: Takes as input crs, statement x and
proof π and outputs a bit b indicating whether verification
has passed or failed.

• SimProve(crs, td,x)→ π: Takes as input crs, trapdoor td
and statement x and outputs a simulated proof π.

We will drop the crs term wherever implicit. An SE-NIZK
satisfies satisfies the following properties:

• Perfect Completeness. An SE-NIZK satisfies perfect
completeness if for any (x,w) ∈ R , we have

Pr
[

(crs, td)← Setup(1λ)
π← Prove(crs,x,w)

: Verify(x,π) = 1
]

= 1

• Proof of knowledge (and soundness). For every PPT ad-
versary A , there is a PPT extractor Ext such that

Pr

 (crs, td)← Setup(1λ)
(x,π)← A(crs)

w← Ext(crs)
:

Verify(x,π) = 1
(x,w) /∈ R

≤ negl(λ)

• Computational Zero-knowledge. There exists a simula-
tor Sim such that for all stateful distinguishers A the
following probabilities are equal:∣∣∣∣∣Pr

 (crs, td)← Setup(1λ)
(x,w)← A(crs)

π← Prove(crs,x,w)
:

(x,w) ∈ R
A(π) = 1

−
Pr

 (crs, td)← Setup(1λ)
(x,w)← A(crs)

π← SimProve(crs, td,x)
:

(x,w) ∈ R
A(π) = 1

∣∣∣∣∣
≤ negl(λ)

• Weak Simulation-Extractability. For every PPT adversary
A , there exists a PPT extractor Ext such that

Pr

[
(crs, td)← Setup(1λ)

(x,π)← ASimProve

w← Ext
:

Verify(x,π) = 1
∧(x,w) /∈ R

∧x /∈ Q

]
≤ negl(λ)

7

where A has oracle access to SimProve(crs, td, ·), and
Q is a list of queries made by the adversary.

We will also demand that the proof is straight-line extractable.
This means that the extractor can, on input a valid proof and
(potentially) the list of random-oracle queries made by the
adversary (prover), extract a witness with overwhelming prob-
ability without rewinding the prover.

6 Model and Definitions

To define the security and efficiency requirements of our
batched-threshold encryption scheme we extend the IND-
CCA2 threshold encryption definition from [13]. First we
specify the syntax for batched-threshold encryption.

• Setup(1λ,n, t,B) → {pk,(sk1, . . . ,skn)}: On input
threshold t for n parties, and batch size B, outputs the
public key pk along with secret keys for each party.

• ESetup(1λ,n, t,B)→{epk,com,(td1, . . . , tdn)}: An op-
tional, per epoch setup, which has the same inputs as
Setup and outputs strings epk,com ∈ {0,1}∗ which is
published and trapdoor information (td1, . . . , tdn) for
each member of the committee.

• Enc(pk,epk,com,m)→ ct: Takes as input a message m,
epoch setup epk,com, and a public key pk and encrypts
m to output a ciphertext ct.

• BatchDec((ct1, . . . ,ctB),ski, tdi)→ di: Takes as input B
ciphertexts (ct1, . . . ,ctB), and a secret key ski and out-
puts a partial decryption di or outputs ⊥.

• Combine(pk,epk,com(ct1, . . . ,ctB),{di}i∈S) →
(m1, . . . ,mB): Takes as input the public key pk, epoch
setup epk,com and t + 1 partial decryptions where
S⊆ [n] and |S|= t+1, and output messages (m1, . . . ,mB)
or ⊥.

Efficiency. We impose various efficiency constraints on
the above algorithms. Setup and ESetup must run in time
poly(n, t,B,λ). Enc must run in O(1) time. BatchDec must
be non-interactive i.e., each party computes it’s partial de-
cryption independently. It must also run in time poly(B,λ)
and the size of each partial decryption must be sub-linear in
the batch size (o(B)) and independent of number of parties.
Finally, Combine must run in time poly(B,n,λ).

The ideal functionality. We now describe an ideal functional-
ity (Fig. 1) similar to [13] which models an idealized encryp-
tion service. Note that to closely model applications we have
in mind, the interaction with the ideal functionality proceeds

in epochs. Further, note that the batch of ciphertexts to be
decrypted can be determined in an arbitrary manner.8

Note that the ideal functionality already incorporates the
progression of the protocol through epochs by specifying
epoch ids (eid). Any protocol that securely emulates this ideal
functionality, does not leak information about the ciphertexts
not decrypted in the epoch. The definition further ensures that
there is no leakage of any long term secret information in the
protocol across epochs. Indeed, the protocol we describe will
be shown to securely emulate the ideal functionality.

FbTPKE

Parties: Clients who encrypt messages (U1, . . . ,Um) and
Servers (S1, . . . ,Sn).
Parameters: Space of receipts C ⊂ {0,1}∗, number of
servers n, threshold 0 < t ≤ n, and batch size B.

Setup. If all servers send (Setup,(S1, . . . ,Sn)) then no-
tify all servers that setup was successful, else, send ⊥ to
all servers. Adversary specifies a distribution Γ over C .

If setup was successful:

EpochSetup. Maintain two lists of epoch ids Lr and Lc.
If any t+1 parties send (ESetup,eid), and eid /∈Lr∪Lc,
then add eid to Lr.

Encryption. When a client U sends (Enc,m,eid), sam-
ple a receipt c← Γ and store (c,m,eid). Announce c to
all parties.

BatchDecryption. When t + 1 servers send
(Dec,(c1, . . . ,cB),eid), if tuples of the form
{(ci,mi,eid)}i∈[B] have been previously stored,
and eid ∈ Lr, then send the corresponding messages
{mi}i∈[B] to the servers. Remove eid from Lr and add it
to Lc.

Figure 1: Ideal Functionality for Threshold Public-Key En-
cryption scheme.

7 Construction

We build a concretely efficient scheme for batch-threshold
encryption where the communication to decrypt an entire
block of B ciphertexts is independent of the number of trans-
actions and only requires each member of the committee to
send one field element. Both our ciphertexts and public key
have constant size and do not grow with the batch size nor
the number of parties in the committee. We present our con-
struction assuming a trusted dealer that runs the Setup and

8In secure computation, this is often explicitly modeled by the environ-
ment. Since we do not discuss composability in this work, we refrain from
formally defining the environment for improved readability, and implicitly
use the fact that the environment determines the batch of ciphertexts to be
decrypted.

8

ESetup algorithms, and distributes necessary information to
the committee. In Section 8 we briefly describe how one can
use (specialized) multiparty computation (MPC) to emulate
the trusted dealer using the committee.

Before we describe of our construction we first recall the
KZG polynomial commitment scheme [38]. Specifically, we
use the randomized version of the KZG scheme, with the
randomizing polynomial degree set to be 1. Intuitively, we
do not require a higher degree randomizing polynomial be-
cause we use the polynomial commitment scheme in an ’all or
nothing’ manner - we only require the underlying polynomial
in the commitment be hiding until a single opening proof is
provided, which in our case will correspond to revealing the
entire polynomial.

KZG Commitment Scheme [38]. The setup consists of
a crs = (g,gτ,gτ2

, . . . ,gτB
, g̃,h,hτ, h̃) for randomly sampled

generators g ̸= g̃ ∈G1, h ̸= h̃ ∈G2 and dloggg̃ = dloghh̃. The
commitment to a polynomial of degree ≤ B is computed
as com = g̃rgp(τ), where r←$ F. To open the polynomial at
a point x∗ to the value y∗, the prover publishes π = (π1 =
gq(τ),π2 = gr), where q(x) = (p(x)−y∗)/(x−x∗). The proof
is verified by checking that

e(com/gy∗ ,h) = e(π1,hτ/hx∗) · e(π2, h̃). (1)

For convenience of notation we will separate the crs into two
separate crs1 = (g,gτ,gτ2

, . . . ,gτB
,h,hτ) and crs2 = (g̃, h̃). We

note that from the above description, to compute the opening
to the polynomial it suffices to be in possession of the poly-
nomial p, and gr, i.e. it is not required to know r to compute
π. We will utilize this observation in our construction.

Setup. Now to build the desired batched-threshold encryp-
tion scheme we use the KZG commitment scheme as follows.
The committee runs a setup procedure for a batch size B,
and publishes crs1 = (g,gτ,gτ2

, . . . ,gτB
,h,hτ). The commit-

tee also holds Shamir secret shares of the trapdoor – La-
grange coefficients (L0(γ),L1(γ), . . . ,LB(γ)) on the domain
ΩL = {x0,x1, . . . ,xB}, for some γ /∈ ΩL. Note that the batch
size B is an upper limit and dummy ciphertexts can always
be inserted to appropriately pad any batch of size < B.

For our concrete instantiation, whenever an FFT is to
be carried out, we use domains that form a smooth mul-
tiplicative subgroup such as the roots of unity (Ω =
{1,ω,ω2, . . . ,ωB−1}) in a prime field. However, for the La-
grange polynomials we use ΩL = {1,ω,ω2, . . . ,ωB−1,τ}.
Looking ahead, we have to interpolate a polynomial over the
points Ω∪{γ} in order to produce KZG opening proofs over
all points in Ω [26], but this can still be done in O(B logB)
time as the domain is almost smooth. The idea is to first
interpolate a quotient polynomial q(x) over the smooth sub-
set Ω. Then we observe that the polynomial we are inter-
ested can be computed using O(B) multiplications as f (x) =
q(x)(x− γ)+ f (γ).

EpochSetup. For each epoch, the committee samples a fresh
crs2 = (g̃, h̃) such that dloggg̃ = dloghh̃ and publishes a ran-
dom group element com= gαg̃r for which they hold shares
of αLB(γ), and r.

Remark 2. We note that to compute αLB(γ), EpochSetup
requires the “secret state” LB(γ) (dependent on τ sampled
in Setup). When emulating the trusted dealer via an MPC,
at the end of Setup, the committee members will have also
possess shares of LB(γ) which will allow for the subsequent
computation of the shares of αLB(γ) for each instance of
EpochSetup via an MPC. This ensures distributed transfer of
the secret state LB(γ) between the two setups without affecting
efficiency. In our trusted dealer description, we assume this
state is maintained between the two setups.

Encrypt. Now to encrypt a message we rely on the fact that
the opening proof π is hard to compute. Taking a closer look
at the KZG verification equation, we observe that if the en-
cryptor exponentiates the left hand side of Eq. (1) by ρ for any
x∗ ∈Ω,y∗ ∈ F, then this is a uniformly random element that
can be used to mask the message. However, the committee
must still be able to decrypt the ciphertext and we do this by
providing hints – (hτ/hx∗)ρ and h̃ρ as part of the ciphertext.

Decrypt. To decrypt, it is sufficient to produce a proof π of
opening the commitment to y∗ at x∗. Here we note that the
shares of the powers of τ, and α actually form a trapdoor
that allows the committee to equivocate the commitment,
and hence open it to any point (x∗,y∗) of their choice. As
described in Fig. 2, the committee will choose a batch of
transactions and decrypts them by equivocating the commit-
ment according to the ciphertexts.

In more detail, a threshold number of parties in the com-
mittee agree on a batch of ciphertexts {ct1, . . . ,ctB} to be de-
crypted for some particular epoch. The committee then finds
the unique degree-B polynomial p(x) satisfying the following
constraints, where tgi corresponds to the y value sampled
during Encrypt:

• {p(ωi) = tgi}B−1
i=0

• p(τ) = dlog(com)

and output p(γ), where com is that epoch’s setup and γ /∈ΩL.
Given p(γ), the polynomial p(x) can be recovered, allowing
anyone to generate the first term of opening proof (π1). We
note that this can be computed non-interactively as p(γ) =
∑

B
i=0 p(xi)Li(γ) and the parties have shares of LB(γ)p(τ) and
{Li(γ)}B−1

i=0 along with {p(xi)}B−1
i=0 in the clear. Since shamir

secret sharing is linearly homomorphic, the committee can
compute shares of p(γ) locally as

[p(γ)] =
B−1

∑
i=0

p(xi)[Li(γ)]+ [LB(γ)p(τ)].

9

In addition, each member of the committee also sends shares
of g̃r computed as g̃[r], which allows π2 to be recovered. Thus,
reconstruction only requires one field element and one group
element to be sent by each party. For simplicity of exposition,
we use a trusted dealer in Fig. 2, to handle the Setup and
EpochSetup phases. In Section 8 we discuss how the dealer
can be emulated using secure multi-party computation.

CCA2 security. It is easy to see that simply masking the
message with randomness leaves it susceptible to man-in-the-
middle attacks. We handle this by making y∗ the output of a
one way function and having the encryptor attach a simulation-
extractable NIZK proving knowledge of the pre-image of
the one way function and the randomness ρ used, and the
ciphertext is a tag in the NIZK. The one way function we
use is based on the discrete log problem and the NIZK is a
very efficient sigma protocol (proof of knowledge of discrete
logarithm).

8 Emulating the Dealer

In this section we discuss how the committee can use secure
multi-party computation to emulate the trusted dealer.

8.1 Setup
The Setup requires the committee to secret share the Lagrange
coefficients – L0(γ),L1(γ), . . . ,LB−1(γ) defined on the domain
ΩL = {1,ω, . . . ,ωB−1,τ}, for some γ /∈ ΩL. In addition they
also publish crs1 = (g,gτ,gτ2

, . . . ,gτB
,h,hτ). The MPC first

samples a secret sharing of a random value τ and computes
it’s powers τ2, . . . ,τB−1 using standard techniques [18]. In
fact, all terms can be computed in constant rounds using [3].
Given shares of the powers of τ, the parties can locally expo-
nentiate their share and announce {g[τi]}i∈[B−1]. The crs can
now be computed by carrying out Lagrange interpolation in
the exponent.

We now describe an MPC protocol to distribute shares of
the i-th Lagrange coefficient Li(γ). Recall that for a domain
Ω = {x0,x1, . . . ,xB}, Li(γ) = Π j ̸=i

γ−x j
xi−x j

. We separate this into
two cases:

• (xi = ωi) Here, a secret value (τ) only shows up once in
the numerator and once in the denominator. Thus, this
only requires computing one inversion and one multipli-
cation of a secret shared value. Again, these can be done
using standard techniques.

• (xi = τ) Although this is not needed in the setup phase, it
will be needed later in the epoch setup phase. This case
is slightly trickier as (τ) appears multiple times in the
denominator. However, upon expanding the denominator
in symbolic manner, the denominator is just a linear
combination of the powers of τ. Since the parties already
have a secret sharing of the powers of τ, they can locally

Batched-Threshold Encryption

Parameters: A pairing friendly group (G1,G2,GT).

• Setup(1λ,n, t,B): A trusted dealer runs the setup for
NIZK and the commitment scheme and sets pk =
(crsNIZK,ck,crs1 = (g,gτ,gτ2

, . . . ,gτB
,h,hτ)), and dis-

tributes shares of (L0(γ),L1(γ), . . . ,LB−1(γ)) to the com-
mittee, setting for each i ∈ [n], ski = {[L j(γ)]i}B−1

j=0 . Out-
put (pk,(sk1, . . . ,skn)).

• ESetup(1λ,n, t,B): The trusted dealer samples
α,δ,r ←$ F and sets crs2 = (g̃ = gδ, h̃ = hδ) and
com = gαg̃r. They also secret share αLB(γ) (see
Remark 2) and gr with the committee members.
Output (epk,td1, . . . ,tdn) where epk = crs2 and
for each i ∈ [n], tdi = ([αLB(γ)]i, [r]i). Additionally
commitments {ci = Com([r]i;ηi)}i∈[n] to {[r]i}i∈[n] are
published and the opening ηi to ci is given to the i-th
committee member.

• Enc(pk,epk,com,m): To encrypt a message M for a
particular epoch with com as the epoch setup, sample
s←$ F and compute S← gs and tg← H(S) where tg ∈
F. Finally, sample a random value x̂ ∈Ω and output the
following as ct:

– ct(1) = H(e(com/gtg,h)ρ)⊕M

– ct(2) = (hτ/hx̂)ρ

– ct(3) = h̃ρ

– S

– x̂

– φ = NIZK{s,ρ | gs = S ∧ ct(2) = hρ(τ−x̂)

∧ct(3)∧ ct(1) ∧ x̂}

• BatchDec((ct0, . . . ,ctB−1),ski,tdi): A threshold
number of parties in the committee agree on a
batch of ciphertexts {ct0, . . . ,ctB−1} such that ev-
ery ciphertext has a valid proof φi, e(g̃,ct(2)i) =

e(gτ−x̂i ,ct
(3)
i), and {x̂0, . . . , x̂B−1} = Ω \ {γ}, where

cti = (ct
(1)
i ,ct

(2)
i ,Si, x̂i,φi). The i-th party then outputs

[p(γ)]i =
B−1

∑
j=0

p(xi)[L j(γ)]i +[LB(γ)p(τ)]i,

and g[r]i along with a proof φ′ = NIZK{ηi, [r]i | ci =
Com([r]i;ηi)∧g[r]i} . Shares with φ′ not verifying are
discarded.

• Combine(pk,(ct1, . . . ,ctB),{di}i∈S): Recover the poly-
nomial p(x) and gr (using error-correction for p(x)
if necessary) and produce KZG proofs of opening
{πi = (gqi(τ),gr)}B−1

i=0 for all points in Ω, where qi(x) =
(p(x)− tgi)/(x− xi) and tgi = H(Si). Output

{Mi = ct
(1)
i ⊕H(e(π1

i ,ct
(2)
i) · e(π2

i ,ct
(3)
i))}B−1

i=0 .

Figure 2: Protocol for batched-threshold encryption

10

compute shares of the denominator, effectively reducing
to the case above.

8.2 Epoch Setup
The epoch setup is much more simple and can be carried
out for multiple epochs simultaneously, which also reduces
the communication [6]. The parties only need to establish
sharings of random values α,δ,r, after which shares can be
locally exponentiated with appropriate group elements and
announced to recover com, g̃, h̃. Finally, they carry out one
multiplication to obtain shares of αLB(γ). To ensure that the
correct shares of gr are revealed during partial decryption, we
publish commitments to shares of r, using a publicly verifiable
secret sharing protocol [30, 34, 37, 55]. During batch decryp-
tion, we provide a proof that [gr] was computed correctly (if
cheating is detected).

Although the MPC protocols described above are a straight-
forward application of prior work, we expect them to be rea-
sonably efficient. We also note that an important direction for
future work is to optimize these protocols by exploiting the
structure of the function being evaluated.

9 Implementation and Evaluation

To evaluate the concrete performance of our batched-
threshold encryption scheme we implemented a per-
formant version of our scheme in Rust. We use the
arkworks [2] library for implementations of pairing-friendly
curves and associated algebra and the merlin library
to handle the Fiat-Shamir transform. Our code can be
found at https://github.com/guruvamsi-policharla/
batch-threshold-encryption.

Setup. All of our experiments for performance bench-
marks Table 2 were run on a 2019 MacBook Pro with a
2.4 GHz Intel Core i9 processor and 16 GB of DDR4 RAM
in single threaded mode. Next, for the committee churn ex-
periments, we adapted the implementation from [32] to our
setting and simulated a WAN on the Google Cloud Platform
using the NetEm package with a delay time of 200 ms, jitter
time of 20 ms and a rate of 10 mbit per second. For the com-
mittee nodes we used an e2-small instance with 2 GB RAM
in single threaded mode.

Algebra. We use BLS12-381 as our pairing friendly curve
and the BLAKE3 hash function as our random oracle.

Dealer. We implement the Setup and EpochSetup protocols
using a trusted dealer for a committee of size 16. However,
these can be replaced with efficient secure multi-party compu-
tation protocols. We note that the Setup protocol is run only
once per committee and the EpochSetup can be carried out by
the committee during downtime where they are not issuing
partial decryptions.

Evaluation. We now evaluate the performance of our batched-
threshold encryption scheme. In particular, we aim to answer
three main questions and provide insights about bottlenecks
in different parts of the protocol.

• How long does it take to encrypt a message? What is the
size of corresponding ciphertexts?

• How long does it take for a committee member to com-
pute partial decryptions and how does it vary with batch
size? How does it vary with committee size?

• How long does it take to recover all messages using
partial decryptions and how does it vary with batch size?

Encryption. As is evident from the protocol description
Fig. 2, a constant number of operations are required to en-
crypt a message, independent of committee/batch size. Our
experiments show that it takes less than 6 ms to encrypt a
32 byte message. The ciphertext consists of 1 G1 element, 2
G2 elements, 3 F elements, a 2 byte description of x̂, and a
string proportional to the message length (32 bytes), resulting
in a total size of 370 bytes with group element compression.
This is ≈ 3× larger than the threshold Cramer-Shoup CCA2
secure encryption scheme [12, 13] which consists of 4 group
elements in a non-pairing friendly group (128 bytes) such
as [9].

Partial Decryption. Here, each party in the committee checks
a zero-knowledge proof, and then computes it’s partial de-
cryption. We observe that over 99% of the cost comes from
verifying the proofs of knowledge of discrete log and pairing
checks needed for CCA2 security. This warrants the investi-
gation of zero-knowledge proofs that can be verified faster in
batches. Table 2 confirms that the time taken grows linearly
in the size of the batch of transactions being decrypted. If our
scheme was deployed on Ethereum, which processes roughly
500 transactions per block, it would take approximately 2.8 s
to verify and compute a partial decryption. Each partial de-
cryption is 80 bytes (one F element and one G1 element).

Batch size Partial decrypt (ms) Reconstruct (ms)

8 41.5 41.9

32 173.4 165.0

128 678.11 781.4

512 2818.6 3472.2

Table 2: Benchmarks of time taken to compute partial decryp-
tions and to reconstruct messages as the batch size grows.

Reconstruct. Here, any party (without secrets) can recover
the messages given all the partial decryptions. The bottleneck
here is the O(B logB) group operations, and O(B) pairings

11

https://github.com/guruvamsi-policharla/batch-threshold-encryption
https://github.com/guruvamsi-policharla/batch-threshold-encryption

needed to produce all KZG opening proofs using [26]. We
provide timings in Table 2. Again, if our scheme were to be
deployed on Ethereum, it would cost less than 3.5 s to de-
crypt 512 transactions in single-threaded mode and this can
be fully parallelized. We note that we implement an optimistic
decryption protocol where all the shares received from the
committee are valid. If certain shares are invalid, the recon-
struction protocol will need to use a more expensive error
correction protocol such as [61].

Varying Committee Size. Given that the only component
that scales with committee size is the size of the Fast Fourier
transform to reconstruct p(γ) and gr in Fig. 2, increasing the
committee size when batch size is large (512 say), does not
have a noticeable impact on the reconstruction time which is
dominated by the cost of producing KZG opening proofs.

Incentive Mechanism. Finding a good committee where a
majority of parties behave honestly can be quite challenging.
The Shutter network, which has deployed threshold encryp-
tion, aims to solve this through decentralized governance via
a ShutterDao, where the committee members are chosen by
stakeholders in the system. To ensure liveness, one can reward
nodes and penalize malicious behavior via stake slashing. We
note that this is similar to the case where if too many block
validators go offline in Ethereum, the blockchain comes to a
standstill.

Denial of Service. Unfortunately, transaction privacy comes
with the additional challenge of potential denial of service
attacks We present a few approaches to handle this below.
However, these approaches are application specific and should
be addressed more carefully in future work that aims to deploy
encrypted mempools.

A general strategy to prevent “spam” is to demand proofs
from users that transactions are valid. These proofs can be
quite efficient when designed for specific applications. Con-
sider for instance, a DEX such as Uniswap on an L2, and the
client wishes to exchange tokens. Here, it may be sufficient to
encrypt just the amounts and token names along with a range
proof showing that they indeed own enough tokens. Another
option is to implement some kind of penalty for submitting
invalid transactions, which raises the cost of launching a de-
nial of service attack. Note that sender addresses need not be
encrypted, which allows for “blacklisting” of repeat offenders.

Remark 3. Not all transactions in the mempool need privacy.
For instance, a peer-to-peer transfer can be submitted in the
clear to the mempool as the recipient would receive the same
amount, irrespective of the ordering of the block. Since trans-
actions with mempool privacy are more expensive they can
be priced differently, and those with a need for privacy can
opt in.

9.1 End-to-End Performance.
In this section, we compare the end to end performance of
our batched-threshold encryption scheme with Ferveo [5],
MEVade [49], McFly [23] and Shutter Network [57]. We
consider the constant sized ciphertexts scheme from McFly
which relies on the committee holding shamir shares of the
secret key. The other scheme has ciphertext size linear in the
committee size, which is impractical in the blockchain setting.

We provide concrete performance figures in Table 3 for
our work and contrast them with Ferveo [5], MEVade [49],
McFly [23] and Shutter Network [57]. We also provide bench-
marks on how expensive committee changes are in Table 4.

Setup. All schemes apart from ours, only need a random
value to be secret shared at the beginning of the protocol. In
addition, our protocol needs to carry out multiplication and
inversions in MPC. To estimate the cost of this we point to
prior work [15] which provides benchmarks for a protocol run
over a WAN with 50 parties. The depth of our setup circuit is
3 as the powers of tau can be computed in depth 1 using [3],
and the lagrange coefficients need an additional 2 rounds (one
for inverse and one for multiplication). The number of gates
is O(B) which is < 10000 for a batch size of 512. From Table
5 of [3], we can see that a circuit of depth 20, and 1 million
gates can be computed in under 3 minutes for the WAN con-
figuration. This provides a very conservative upper bound on
the setup protocol and the cost grows linearly with the number
of parties. We note here that these protocols will abort when a
party behaves maliciously. There are other guaranteed output
delivery MPC protocols, albeit with more rounds but similar
communication [33], that can identify misbehaving parties,
allowing them to be penalized. One could run the protocols
with abort, optimistically, and if parties abort, then they can
run the guaranteed output delivery protocol.

Epoch Setup. We assume that the setup for many epochs is
carried out at once. Each epoch requires one multiplication
and 3 secret shared random values for α,δ and r. However, in
this case we additionally demand that the sharing of gr is a
publicly verifiable secret sharing [30, 34, 37, 55] as malicious
parties should not be able to cause the protocol to abort after
execution. For this particular task, a 50 node network, [37]
takes less than 18 seconds on a LAN. We note here that the
communication is actually quite small (< 1 MB) and most of
the time is spent on computation. Thus, we expect that one can
also scale this to a WAN setting without incurring much more
overhead. Moreover the epoch setups can be paralellized and
carried out well before the actual epoch. It is expected that
this number will come down with faster implementations of
hidden order groups. This cost can be further amortized when
generating many sharings using techniques from [6].

Practical findings. We used average transaction and block
sizes, as well as selected a standard curve, to provide real
estimates of the cost of our system. In particular, we analyze
average transaction size increase, as well as the gas cost of

12

Parameter Ferveo/MEVade McFly Shutter This Work

Ciphertext size |G1|+ |G2| |GT |+ |G2| |G2|+S 2|G2|+ |G1|+3|F|+S+2
Block decryption broadcast size nB|G1| n|G1| n|G1| n(|G1|+ |F|)

Change in transaction size 12% 23% 10% 30%
Ciphertext storage gas cost (USD) 15,120 ($0.7) 30,240 ($1.4) 13,440 ($0.6) 42,000 ($1.9)

|Partial Decryptions| 3MB 6KB 6KB 10KB
|Partial Decryptions|/|Block Size| 500% 1% 1% 2%

Table 3: Ciphertext size and total decryption broadcast size for n committee members, B transactions per block, in terms of S the
size in bytes of the encapsulation key, and |G1|, |G2|, |GT |, |F| the size in bytes of the representation of elements from each group
and field. Concrete numbers obtained with the BLS12-381 curve, using the average transaction and block size on Ethereum in
2023. We use the ETH/USD rate on January 1, 2024 for conversions. The last two rows use a committee size of 128 and a block
of 512 transactions to give real-world communication cost estimates.

encryption, and the communication cost of decryption. These
values are summarized in Table 3. We find:

• Our setup phase is more expensive than prior works,
who only need to establish one publicly verifiable se-
cret sharing. But we conservatively expect this overhead
to be under 100×. Moreover, our full setup is only run
once for a given committee, and our per-epoch setup can
be done in advance, and only requires communication
between the committee members, where good network
connections can be established. Whereas during decryp-
tion, the partial decryptions need to be broadcast to the
entire network, via gossiping which is typically much
slower. Thus, we optimize the latter at the expense of
the former. The size of the decryption shares needed to
reveal all transactions in a block is only 2% of the size
of a block using batched-threshold encryption, versus
500% using Ferveo9, making propagation to all nodes in
the blockchain prohibitively slow.

• During batched decryption, each committee member
broadcasts one group element from G1 and one field
element. This is roughly the same as McFly and Shut-
ter’s (our message size is roughly double), but we ad-
ditionally provide transaction privacy. Ferveo provides
pending transaction privacy but the amount of informa-
tion that needs to be broadcast is B× larger. In a setting
with n = 128 and B = 512 transactions, we only require
a total broadcast of 10KB, versus 3MB for Ferveo. [21]
showed that each kilobyte adds ≈ 80 ms to the block
propagation time. This implies that Ferveo adds an over-
head of ≈ 250 s for block propogation, whereas we add
just 0.8 s.

• Our ciphertext is slightly larger than prior works, but
still constant size. In practice, we require 400 bytes for
our ciphertext, which represents $2 additional spent gas,
while Ferveo costs $0.7, McFly $1.4, and Shutter $0.6.

9For a block size of 512, using the average size of an Ethereum transaction

Committee churn. When a party joins or leaves the com-
mittee, the old committee needs to securely "transfer" the
secrets it holds to the new committee. This can be done using
a dynamic pro-active secret sharing protocol such as [32]. We
adapt their code to our setting and provide benchmarks in
Table 4. Due to the structure of the protocol in [32], the setup
phase, in one-shot, generates correlations required for the re-
fresh of n/2 correlations. Even if we only need to refresh one
secret, as is the case in prior work, such as Ferveo, we still
have to pay the price of generating n/2 correlations during the
setup phase. However, the refresh phase is the time taken to
refresh one secret, but again this can be trivially parallelized
across the total number of secrets that need to be refreshed.
Extrapolating from Table 4, for a blocksize of 512, with a
committee size of 64, tolerating 31 corruptions, and assuming
each node can refresh 8 secrets in parallel (needs 8 threads),
it would take less than 2 minutes on a WAN and under 4
minutes on a LAN.

Network Setup (s) Refresh (s)

LAN 6.24 0.22

WAN 8.21 1.5

Table 4: Time taken to change a committee with 64 parties us-
ing the protocol from [32] on a LAN and WAN network. Here
Setup refers to the time taken to establish n/2 correlations
used to "transfer" ownership of shamir secret shared values to
a new committee. Refresh refers to the time taken to transfer
one secret to the new committee.

In conclusion, we believe that our work represents an impor-
tant step towards achieving mempool privacy in blockchains.
Although the (epoch) setup is more expensive than prior work,
we believe it offers a desirable tradeoff when the committee
changes are infrequent viz. orders of magnitude less commu-
nication in the time-sensitive decryption step in exchange for
a more expensive setup.

13

10 Acknowledgments

We thank the USENIX Security Symposium reviewers for
their valuable feedback. Research supported in part by
DARPA under Agreement No. HR00112020026, AFOSR
Award FA9550-19-1-0200, NSF CNS Award 1936826, and
research gifts/awards by Visa Inc, BAIR Commons Meta
Fund, Stellar Development Foundation, a J.P. Morgan Faculty
Research Award, a Berkely Center for Responsible, Decen-
tralized Intelligence (RDI) Fellowship and a Bakar Fellows
Spark Award.

References

[1] Guillermo Angeris, Alex Evans, and Tarun Chitra. A
note on bundle profit maximization. Stanford University,
2021.

[2] arkworks contributors. arkworks zksnark ecosystem.
https://arkworks.rs, 2022.

[3] Judit Bar-Ilan and Donald Beaver. Non-cryptographic
fault-tolerant computing in constant number of rounds
of interaction. In Piotr Rudnicki, editor, 8th ACM PODC,
pages 201–209. ACM, August 1989.

[4] Carsten Baum, Bernardo David, and Tore Kasper Fred-
eriksen. P2DEX: privacy-preserving decentralized cryp-
tocurrency exchange. In Kazue Sako and Nils Ole Tip-
penhauer, editors, Applied Cryptography and Network
Security - 19th International Conference, 2021.

[5] Joseph Bebel and Dev Ojha. Ferveo: Threshold decryp-
tion for mempool privacy in BFT networks. Cryptol-
ogy ePrint Archive, Report 2022/898, 2022. https:
//eprint.iacr.org/2022/898.

[6] Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-
secure MPC with linear communication complexity. In
Ran Canetti, editor, TCC 2008, volume 4948 of LNCS,
pages 213–230. Springer, Heidelberg, March 2008.

[7] Mihir Bellare, Anand Desai, David Pointcheval, and
Phillip Rogaway. Relations among notions of security
for public-key encryption schemes. In Hugo Krawczyk,
editor, CRYPTO’98, volume 1462 of LNCS, pages 26–
45. Springer, Heidelberg, August 1998.

[8] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. Cryptology
ePrint Archive, Report 2018/046, 2018. https://
eprint.iacr.org/2018/046.

[9] Daniel J. Bernstein. Curve25519: New Diffie-Hellman
speed records. In Moti Yung, Yevgeniy Dodis, Aggelos
Kiayias, and Tal Malkin, editors, PKC 2006, volume

3958 of LNCS, pages 207–228. Springer, Heidelberg,
April 2006.

[10] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben
Fisch. Verifiable delay functions. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part I,
volume 10991 of LNCS, pages 757–788. Springer, Hei-
delberg, August 2018.

[11] Dan Boneh and Matthew K. Franklin. Identity-based
encryption from the Weil pairing. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 213–229.
Springer, Heidelberg, August 2001.

[12] Dan Boneh, Kevin Lewi, Hart William Montgomery,
and Ananth Raghunathan. Key homomorphic PRFs and
their applications. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 410–428. Springer, Heidelberg, August 2013.

[13] Ran Canetti and Shafi Goldwasser. An efficient thresh-
old public key cryptosystem secure against adaptive
chosen ciphertext attack. In Jacques Stern, editor, EU-
ROCRYPT’99, volume 1592 of LNCS, pages 90–106.
Springer, Heidelberg, May 1999.

[14] Agostino Capponi, Ruizhe Jia, and Ye Wang. The evo-
lution of blockchain: from lit to dark. arXiv preprint,
2022.

[15] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi,
Ryo Kikuchi, Yehuda Lindell, and Ariel Nof. Fast large-
scale honest-majority MPC for malicious adversaries.
In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages
34–64. Springer, Heidelberg, August 2018.

[16] Michele Ciampi, Muhammad Ishaq, Malik Magdon-
Ismail, Rafail Ostrovsky, and Vassilis Zikas. Fairmm:
A fast and frontrunning-resistant crypto market-maker.
IACR Cryptology ePrint Archive, 2021.

[17] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li,
Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and
Ari Juels. Flash boys 2.0: Frontrunning in decentral-
ized exchanges, miner extractable value, and consensus
instability. In 2020 IEEE Symposium on Security and
Privacy, pages 910–927. IEEE Computer Society Press,
May 2020.

[18] Ivan Damgård and Jesper Buus Nielsen. Scalable and
unconditionally secure multiparty computation. In Al-
fred Menezes, editor, CRYPTO 2007, volume 4622 of
LNCS, pages 572–590. Springer, Heidelberg, August
2007.

[19] Isaac David, Liyi Zhou, Kaihua Qin, Dawn Song,
Lorenzo Cavallaro, and Arthur Gervais. Do you still
need a manual smart contract audit?, 2023.

14

https://arkworks.rs
https://eprint.iacr.org/2022/898
https://eprint.iacr.org/2022/898
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046

[20] Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti
Yung. How to share a function securely. In 26th ACM
STOC, pages 522–533. ACM Press, May 1994.

[21] Christian Decker and Roger Wattenhofer. Information
propagation in the bitcoin network. In IEEE P2P 2013
Proceedings, pages 1–10, 2013.

[22] Yvo Desmedt and Yair Frankel. Threshold cryptosys-
tems. In Gilles Brassard, editor, CRYPTO’89, volume
435 of LNCS, pages 307–315. Springer, Heidelberg, Au-
gust 1990.

[23] Nico Döttling, Lucjan Hanzlik, Bernardo Magri, and
Stella Wohnig. McFly: Verifiable encryption to the fu-
ture made practical. Cryptology ePrint Archive, Report
2022/433, 2022. https://eprint.iacr.org/2022/
433.

[24] Taher ElGamal. On computing logarithms over finite
fields. In Hugh C. Williams, editor, CRYPTO’85, vol-
ume 218 of LNCS, pages 396–402. Springer, Heidelberg,
August 1986.

[25] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy
Clark. Sok: Transparent dishonesty: front-running at-
tacks on blockchain. In International Conference on
Financial Cryptography and Data Security, 2019.

[26] Dankrad Feist and Dmitry Khovratovich. Fast amor-
tized KZG proofs. Cryptology ePrint Archive, Report
2023/033, 2023. https://eprint.iacr.org/2023/
033.

[27] Yair Frankel. A practical protocol for large group ori-
ented networks. In Jean-Jacques Quisquater and Joos
Vandewalle, editors, EUROCRYPT’89, volume 434 of
LNCS, pages 56–61. Springer, Heidelberg, April 1990.

[28] Georg Fuchsbauer, Antoine Plouviez, and Yannick
Seurin. Blind schnorr signatures and signed ElGamal en-
cryption in the algebraic group model. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part II, vol-
ume 12106 of LNCS, pages 63–95. Springer, Heidelberg,
May 2020.

[29] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Wa-
ters. Witness encryption and its applications. In Dan
Boneh, Tim Roughgarden, and Joan Feigenbaum, edi-
tors, 45th ACM STOC, pages 467–476. ACM Press, June
2013.

[30] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky.
Practical non-interactive publicly verifiable secret shar-
ing with thousands of parties. In Orr Dunkelman and Ste-
fan Dziembowski, editors, EUROCRYPT 2022, Part I,
volume 13275 of LNCS, pages 458–487. Springer, Hei-
delberg, May / June 2022.

[31] Arthur Gervais, Ghassan O Karame, Karl Wüst,
Vasileios Glykantzis, Hubert Ritzdorf, and Srdjan Cap-
kun. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security,
2016.

[32] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova,
Bryan Parno, and Yifan Song. Storing and retrieving
secrets on a blockchain. In Goichiro Hanaoka, Junji
Shikata, and Yohei Watanabe, editors, PKC 2022, Part I,
volume 13177 of LNCS, pages 252–282. Springer, Hei-
delberg, March 2022.

[33] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed
output delivery comes free in honest majority MPC.
In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part II, volume 12171 of LNCS, pages
618–646. Springer, Heidelberg, August 2020.

[34] Jens Groth. Non-interactive distributed key generation
and key resharing. Cryptology ePrint Archive, Report
2021/339, 2021. https://eprint.iacr.org/2021/
339.

[35] Lioba Heimbach and Roger Wattenhofer. Eliminating
sandwich attacks with the help of game theory. arXiv
preprint, 2022.

[36] Aljosha Judmayer, Nicholas Stifter, Philipp Schindler,
and Edgar R. Weippl. Estimating (miner) extractable
value is hard, let’s go shopping! IACR Cryptology ePrint
Archive, 2021.

[37] Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukher-
jee, Hamza Saleem, and Sri Aravinda Krishnan Thya-
garajan. Non-interactive vss using class groups and
application to dkg. Cryptology ePrint Archive, Paper
2023/451, 2023. https://eprint.iacr.org/2023/
451.

[38] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their ap-
plications. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 177–194. Springer, Hei-
delberg, December 2010.

[39] Alireza Kavousi, Duc V. Le, Philipp Jovanovic, and
George Danezis. Blindperm: Efficient mev mitigation
with an encrypted mempool and permutation. Cryp-
tology ePrint Archive, Paper 2023/1061, 2023. https:
//eprint.iacr.org/2023/1061.

[40] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels,
and Sreeram Kannan. Themis: Fast, strong order-
fairness in byzantine consensus. IACR Cryptology
ePrint Archive, 2021.

15

https://eprint.iacr.org/2022/433
https://eprint.iacr.org/2022/433
https://eprint.iacr.org/2023/033
https://eprint.iacr.org/2023/033
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2023/451
https://eprint.iacr.org/2023/451
https://eprint.iacr.org/2023/1061
https://eprint.iacr.org/2023/1061

[41] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and
Ari Juels. Order-fairness for byzantine consensus. In
International Cryptology Conference, 2020.

[42] Klaus Kursawe. Wendy, the good little fairness wid-
get: Achieving order fairness for blockchains. In Pro-
ceedings of the 2nd ACM Conference on Advances in
Financial Technologies, 2020.

[43] Tom CW Lin. The new market manipulation. Emory
LJ, 66:1253, 2016.

[44] Varun Madathil, Sri Aravinda Krishnan Thyagarajan,
Dimitrios Vasilopoulos, Lloyd Fournier, Giulio Mala-
volta, and Pedro Moreno-Sanchez. Cryptographic
oracle-based conditional payments. In NDSS. The Inter-
net Society, 2023.

[45] Dahlia Malkhi and Pawel Szalachowski. Maximal ex-
tractable value (mev) protection on a dag, 2022.

[46] Conor McMenamin, Vanesa Daza, and Matthias Fitzi.
Fairtradex: A decentralised exchange preventing value
extraction. arXiv preprint, 2022.

[47] Julien Piet, Jaiden Fairoze, and Nicholas Weaver. Ex-
tracting godl [sic] from the salt mines: Ethereum miners
extracting value, 2022.

[48] Julien Piet, Vivek Nair, and Sanjay Subramanian.
Mevade: An mev-resistant blockchain design. In 2023
IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC), pages 1–9. IEEE, 2023.

[49] Julien Piet, Vivek Nair, and Sanjay Subramanian.
Mevade: An mev-resistant blockchain design. In IEEE
International Conference on Blockchain and Cryptocur-
rency (ICBC), 2023.

[50] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying
blockchain extractable value: How dark is the forest?
arXiv preprint, 2021.

[51] Dan Robinson. Ethereum is a dark for-
est. https://www.paradigm.xyz/2020/08/
ethereum-is-a-dark-forest, 2020. Accessed:
2022-02-16.

[52] Antoine Rondelet and Quintus Kilbourn. Threshold
encrypted mempools: Limitations and considerations,
2023.

[53] samczsun. Escaping the dark forest. https:
//samczsun.com/escaping-the-dark-forest/,
2020. Accessed: 2022-02-16.

[54] Claus-Peter Schnorr. Efficient signature generation by
smart cards. Journal of Cryptology, 4(3):161–174, Jan-
uary 1991.

[55] Berry Schoenmakers. A simple publicly verifiable secret
sharing scheme and its application to electronic. In
Michael J. Wiener, editor, CRYPTO’99, volume 1666
of LNCS, pages 148–164. Springer, Heidelberg, August
1999.

[56] Victor Shoup and Rosario Gennaro. Securing threshold
cryptosystems against chosen ciphertext attack. Journal
of Cryptology, 15(2):75–96, March 2002.

[57] Shutter Network contributors. The shutter network.
https://shutter.network, 2021.

[58] Shutter Network contributors. Rolling shutter: Mev
protection built into layer 2. https://blog.shutter.
network/announcing-rolling-shutter/, 2022.

[59] Christof Ferreira Torres, Ramiro Camino, et al. Frontrun-
ner jones and the raiders of the dark forest: An empirical
study of frontrunning on the ethereum blockchain. In
30th USENIX Security Symposium, 2021.

[60] Ye Wang, Yan Chen, Shuiguang Deng, and Roger Wat-
tenhofer. Cyclic arbitrage in decentralized exchange
markets. Available at SSRN 3834535, 2021.

[61] Lloyd R Welch and Elwyn R Berlekamp. Error correc-
tion for algebraic block codes, December 30 1986. US
Patent 4,633,470.

[62] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin
Livshits, and Arthur Gervais. On the just-in-time discov-
ery of profit-generating transactions in defi protocols.
In 2021 IEEE Symposium on Security and Privacy (SP),
2021.

[63] Liyi Zhou, Kaihua Qin, and Arthur Gervais. A2mm:
Mitigating frontrunning, transaction reordering and con-
sensus instability in decentralized exchanges. arXiv
preprint, 2021.

[64] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V
Le, and Arthur Gervais. High-frequency trading on
decentralized on-chain exchanges. In 2021 IEEE Sym-
posium on Security and Privacy (SP), 2021.

A Security Proof

We prove security with guaranteed output delivery against a
fully malicious adversary corrupting up to t < n/3 members
of the committee and any number of users creating cipher-
texts. We note that it is also possible to upgrade the protocol
to t = n/2 using standard techniques of publishing commit-
ments to secret keys of parties and proving that partial de-
cryptions were computed correctly. For instance, one could
use the KZG commitment scheme itself and prove that the
computation was carried out using a zkSNARK such as the

16

https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest
https://samczsun.com/escaping-the-dark-forest/
https://samczsun.com/escaping-the-dark-forest/
https://shutter.network
https://blog.shutter.network/announcing-rolling-shutter/
https://blog.shutter.network/announcing-rolling-shutter/

Halo2/STARK [8] proof systems. Although this would make
the decryption procedure more expensive, one can always op-
timistically decrypt without proofs and if it fails, then demand
proofs. By introducing appropriate penalities such as slashing
of stake, we can ensure that incorrect partial decryptions are
rarely sent – similar to validators on Ethereum attesting to
incorrect state transitions.

In order to highlight the core technical ideas without dis-
tractions, we focus on the t = n/3 case. In the process, we
introduce a new assumption that is closely related to the as-
sumption introduced in [38]. We call this the q-strong Bilinear
Diffie Hellman Triple Assumption to indicate that there are
additional triples given to the adversary beyond that in q-SDH
and “Bilinear” to indicate that the Adversary needs to output
a value in the target group.

Definition 4 (q-SBDHT Assumption). Let a, b,c and d be
sampled uniformly at random from F. Given as input a tuple
(g,ga,ga2

, . . . ,gan
,gb,gd ,hd ,hac,hcd), for every probabilistic

polynomial time algorithm A ,

Pr[A(g,ga,ga2
, . . . ,gan

,gb,gd ,ha,hd ,hac,hcd)

→ e(g,h)bc]≤ negl(λ).

We briefly discuss the need for the new assumption, and
discuss why the ‘KZG assumption’, i.e. the q-strong Diffie
Hellman (q-SDH) assumption does not suffice for our setting.
Specifically, in the KZG polynomial commitment scheme,
the q-SDH is used to argue evaluation binding, which states
that even for a (potentially adversarially) chosen polynomial
commitment, the adversary cannot produce two accepting
evaluation proofs for two distinct evaluations at the same
evaluation point, i.e. adversary cannot find a commitment c, a
tuple x,y,y′,π,π′ with y ̸= y′ such that: (i) π attests that y is a
valid evaluation of x with respect to c; and (ii) π′ attests that y′

is a valid evaluation of x with respect to c. Whereas we require
that for an honestly generated commitment, if the adversary
does not know the polynomial used in the commitment, it
cannot generate a valid proof for any pair (x,y), even if y
was such that p(x) = y, where p was the polynomial that
was committed. We thus view the above assumption as a
strengthening of q-SDH), necessary for our construction

Theorem 5. The protocol in Fig. 2 securely emulates the
FbTPKE ideal functionality (Fig. 1) in the dealer model against
any static PPT adversary A corrupting < n/3 parties, given
any weakly simulation-extractable NIZK, and provided the
q-SBDHT assumption holds in the programmable random
oracle model.

Remark 6. We note that the n/3 threshold arises from the
fact that adversarial committee members may send incorrect
shares during the batch decryption procedure. One can also
allow the adversary to corrupt < n/2 parties and prove that
the protocol emulates the ideal functionality with abort. To

achieve guaranteed output delivery in this setting we can
use standard techniques (at the cost of concrete efficiency)
of attaching proofs that all parties carried out their local
computation correctly, thereby allowing us to successfully
recover secrets from threshold secret sharing, even if n/2−1
corrupt parties behave maliciously and provide incorrect
shares.10

We begin by describing the simulator Sim who simulates
all interaction between the adversary and the honest parties
using only the ideal functionality. Sim first specifies Γ to be
the distribution of an encryption of a random message, under a
randomly chosen public key. Next, the Sim as a part of Setup:
(i) uses the NIZK simulator to sample crsNIZK; (ii) Elements
of crs are sampled honestly; and (iii) sends random field
elements as the corrupt party shares. During EpochSetup, Sim:
(i) samples com as a random group elements; (ii) sets crs2
using knowledge of δ; (iii) a random field elements for corrupt
party shares of [αLB(γ)]; (iv) samples a random value ri for
each corrupt party share; and (v) generates commitments for
corrupt party shares as ci =Com(ri), whereas for the shares of
honest parties, Sim commits to ci = Com(0). Sim remembers
all queries made by the adversary to the Random Oracle.
Unless specified, if the query has not been previously made,
it lazily samples the response and remembers it. If the same
query is made again, it uses the same response as before.
We will prove security in the programmable Random Oracle
model. For convenience we define a set of previously seen
honest party ciphertexts L . Every time the simulator sees a
ciphertext ct= (ct(1),ct(2),ct(3),S, x̂,φ), it updates the set as
L = L ∪{(ct(1),ct(2),ct(3),S, x̂)} (dropping the proof). For
convenience we write L =L∪{ct}while implicitly dropping
the proof. When simulating Encryption, there are two cases:

• For all ciphertexts created by honest parties, Sim receives
a receipt ct (say) from the ideal functionality. It aborts
if ct ∈ L , else Sim forwards the receipt to the adversary,
by dropping the attached proof φ, and replacing it with a
simulated proof φ′.

• For any ciphertext ct= (ct(1),ct(2),ct(3),S, x̂,φ) created
by corrupt parties, Sim first verifies the NIZK proof φ

and the pairing checks and discards the ciphertext if
either fails. Next, it checks if there exists some ct′ =
(ct′(1),ct′(2),ct′(3),S′, x̂′) ∈ L such that

– ct′(2) = ct(2), ct′(3) = ct(3), and H(S′) = H(S)

– ct′(1) ̸= ct(1)

and aborts if so. Once both the above checks pass, it
runs the extractor and receives the randomness ρ used

10In order to verify proofs of correct local computation, the statements
need to be ‘public’. Proving correct computation over private shares is often
done by broadcasting private shares to the committee by encrypting to the
committee member in question, but as this is not relevant to our contribu-
tion, we ignore such details from this work and refer the reader to relevant
multiparty computation works for more details.

17

to prepare the ciphertext. Sim then extracts the mes-
sage M = ct(1)⊕H(e(com/gtg,h)ρ) and sends this to
the ideal functionality.

Finally, to simulate the BatchDecryption protocol, Sim re-
ceives the entire batch of messages (M1, . . . ,MB) from the
ideal functionality. Sim samples a random element as p(γ),
and then given the tags for the corresponding ciphertexts can
computed expected corrupt party shares of p(γ), and then re-
verse sample honest party shares such that they reconstruct
to p(γ). To compute the randomness that explains com with
respect to the polynomial p - determined by the tags and p(γ)
- Sim computes gr′ = (com/gp(τ))1/δ, where gp(τ) can be com-
puted from crs1. Now, given gr′ and the sampled shares sent
to the corrupt party, Sim again reverse samples honest shares
of gr′ . Note that it cannot compute honest shares of r′ in the
clear, but as stated before, the proof generation only requires
gr′ . It finally simulates the NIZK φ′. This allows the simulator
to generate the output of the BatchDecryption protocol.

When the number of corrupt parties is t < n/3, the simu-
lator can always recover the polynomial via Reed-Solomon
error correction [61] and gr can be recovered by dropping
shares which do not come with valid proofs. Thus for ev-
ery ciphertext cti in the batch of ciphertexts being decrypted,
Sim can compute the corresponding KZG proof πi. When
recovering the messages there are two cases:

• For any ciphertext cti created by a corrupt party, Sim
follows the protocol from Fig. 2 honestly.

• For any ciphertext cti that came as the receipt for an
honest party’s ciphertext from the ideal functionality,
Sim computes e(π1

i ,ct
(2)
i) · e(π2

i ,ct
(3)
i) but this time, it

aborts if this point has been previously queried to the
random oracle. If the point has not been queried, then it
then programs the random oracle output to be Mi⊕ct

(1)
i .

We now describe a sequence of hybrids that are indistin-
guishable from each other starting from the batch-decryption
protocol Fig. 2 in the real world and ending in the ideal world
where a simulator handles all interaction between the parties
and the ideal functionality.

H0: The real world where the adversary interacts with the
honest parties and executes the protocol described in
Fig. 2.

H1: The simulator emulates the trusted dealer and executes
the Setup and EpochSetup sub protocols faithfully. For
all Random Oracle queries made by the adversary, Sim
queries the random oracle in the protocol and forwards
responses. This hybrid has an identical distribution to
the previous hybrid.

H2: In this hybrid, whenever a corrupt party creates a cipher-
text ct, Sim first verifies the NIZK proof and discards

the ciphertext if it fails. Next, it checks if there exists
some ct′ = (ct′(1),ct′(2),ct′(3),S′, x̂′) ∈ L such that

• ct′(2) = ct(2), ct′(3) = ct(3), and H(S′) = H(S)

• ct′(1) ̸= ct(1)

and aborts if so. Sim then decrypts the ci-
phertext using the trapdoor τ as M = ct(1) ⊕
H(e(com/gtg,(ct(2))(τ−x̂)−1

)). We will also be
simulating the NIZK proofs using SimProve.

We will now argue that Sim aborts with negligible proba-
bility. Note that because the NIZK is weakly simulation-
extractable, despite being able to query an oracle for
proofs on an arbitrary set of statements, if the adversary
produces a valid proof φ∗ for a statement x̄∗, then with
overwhelming probability, one of the following must be
true:

• x̄∗ ∈ Q, where Q is the set of queries made by the
adversary

• the PPT extractor Ext outputs the witness w∗ cor-
responding to x̄∗

Thus, if we view the ciphertexts from honest parties as
the set of queries the adversary has made, then any ci-
phertext output by the adversary is either identical to
a ciphertext from an honest party (ignoring the proof)
or there exists an extractor that outputs dlogg(S) and
dloghτ−x̂(ct(2)). In the reduction that follows, we will
need to extract witnesses from (potentially) many cipher-
texts, which could lead to an exponential runtime in the
number of ciphertexts. By demanding that the extractor
is straight-line we avoid this problem.

Now observe that all honest party ciphertexts are created
using a randomly sampled instance of the discrete log
problem and if Sim aborts, it means all parts of the ci-
phertext except for ct(1) and the NIZK proof match some
honest party’s ciphertext, which implies that we are in
the latter case and hence, there exists an extractor which
outputs dlogg(S) and dloghτ−x̂(ct(2)). We will now use
this extractor to solve the discrete log problem.

In the reduction, we insert the discrete-log challenge in
one of the honest party ciphertexts c̃t and simulate the
NIZK proof using SimProve. With non-negligible prob-
ability the adversary produces a ciphertext ct such that
all parts of the ciphertext are the same as c̃t except for
c̃t(1) as described above. Then, by running the extractor
on the adversary we have a solution of the discrete-log
challenge.

Hence, Sim aborts with negligible probability and this
hybrid is computationally indistinguishable from the
previous hybrid.

18

A similar argument can be made for φ′ where Sim can
check if the revealed share of gri does not match the
share received by the adversary during epoch setup. The
details follow in an identical manner, where one can use
the extracted opening to break the binding property of
the commitment scheme.

H3: This hybrid is identical to the previous, except that Sim
outputs the commitments to the honest parties to be com-
mitments to 0. During batch decryption, Sim uses the
correct honest shares to compute g[g]i , but uses the simu-
lated NIZK proof φ′ to “explain the incorrect opening”.

H4: This hybrid is identical to the previous hybrid, except
now Sim uses a different strategy to decrypt ciphertexts
from the adversary. Here, the simulator runs the extrac-
tor to recover the randomness ρ used by the adversary
to create the ciphertext and recovers the message as
M = ct(1)⊕H(e(com/gtg,h)ρ). Note that this strategy
fails in the case where the adversary is able to maul
the ciphertext to produce a related ciphertext i.e. the
scenario where the simulator in the previous hybrid
aborts because then there does not exist an extractor.
But as we argued in the previous hybrid, this happens
with negligible probability. Furthermore, the messages
recovered using the two strategies are identical with
overwhelming probability due to the soundness of the
NIZK which guarantees that ciphertext is well-formed
and hence e(com/gtg,(ct(2))(τ−x̂)−1

) = e(com/gtg,h)ρ.

H5: In this hybrid, we begin simulating BatchDecryption as
follows. First note that Sim knows the shares [αLB(γ)]
and [r] held by the corrupted parties and knows the trap-
door δ as it simulated EpochSetup. Given a batch of mes-
sages (M1, . . . ,MB), the simulator samples a uniformly
random value for p(γ) and recovers p(X). It then com-
putes gr such that that it remains consistent with the
p(γ) it just sampled as gr = (com · g−p(τ))δ−1

. This in-
formation is sufficient to fully determine the shares of
gr and p(γ) that honest parties should announce in order
to remain consistent with the shares held by corrupt par-
ties. Finally, for all honest party ciphertexts it programs
the random oracle, aborting if necessary as described
above. We now argue that Sim aborts with negligible
probability.

Claim 7. If the q-SBDHT assumption holds, then for all
PPT adversary A and for all x∗,y∗,

Pr[A((g, g̃,h, h̃,gτ, . . . ,gτn
,gαg̃r,

hτ,h(τ−x∗)ρ, h̃ρ))→ e(gα−y∗ g̃r,h)ρ)]≤ negl(λ)

where τ,α,r and ρ are sampled uniformly at random
from F.

Proof. Suppose the above claim was false. Then, we
construct an adversary A ′ such that

Pr[A(g,ga,ga2
, . . . ,gan

,gb,gd ,ha,hd ,hac,hcd)

→ e(g,h)bc]≥ poly(λ),

thereby violating the q-SBDHT assumption.

A ′ provides A with an instance such that τ = a+ x∗,
gαg̃r = gb+y∗ , ρ = c and δ = d. First note that we have
all the powers of a in the exponent, and xi is public
so we can compute all powers of τ in the exponent.
Correcntess is easy to see for the remaining terms.
When this instance is given to A , it makes poly(λ) Ran-
dom Oracle queries and as a guess for e(gα−y∗ g̃r,h)ρ),
A ′ outputs a randomly chosen query. Note that since,
e(gα−y∗ g̃r,h)ρ) = e(g,h)bc, A ′ chooses the correct query
with probability at least 1/poly(λ), thus violating the q-
SBDHT assumption.

Thus, from Claim 7, the adversary queries the random or-
acle at the bad point e(gα−y∗ g̃r,h)ρ with at most negligi-
ble probability and hence this hybrid is computationally
indistinguishable from the previous hybrid.

H6: Sim now simulates ciphertexts generated by honest par-
ties. It does so by encrypting a random message, under
the public key. From Claim 7, H(e(gα−y∗ g̃r,h)ρ))≈c U
as the adversary queries the point e(gα−y∗ g̃r,h)ρ, with
negligible probability. Hence this hybrid is computation-
ally indistinguishable from the previous hybrid.

H7: Sim no longer uses any inputs from honest parties and
the receipts of ciphertexts from the ideal functionality
have a distribution identical to encryptions under a ran-
dom message. After extracting messages from adversary
ciphertexts, it sends them to the ideal functionality and
when batch decryption is invoked the simulator uses the
batch of messages it received from the ideal functionality
to simulate the communication during batch decryption.
Thus this final hybrid has an identical distribution to the
previous hybrid.

19

	Introduction
	Our Contributions

	Our Techniques
	Pitfalls in prior work
	Disclosure

	Related Work
	Preliminaries
	Model and Definitions
	Construction
	Emulating the Dealer
	Setup
	Epoch Setup

	Implementation and Evaluation
	End-to-End Performance.

	Acknowledgments
	Security Proof

