
Pando: Extremely Scalable BFT Based on Committee Sampling
Xin Wang

wangxin87@tsinghua.edu.cn

Tsinghua University

China

Haochen Wang

whc20@mails.tsinghua.edu.cn

Tsinghua University

China

Haibin Zhang
†

bchainzhang@aliyun.com

Yangtze Delta Region Institute of Tsinghua University

China

Sisi Duan
∗†

duansisi@tsinghua.edu.cn

Tsinghua University

China

ABSTRACT

Byzantine fault-tolerant (BFT) protocols are known to suffer from

the scalability issue. Indeed, their performance degrades drastically

as the number of replicas 𝑛 grows. While a long line of work has

attempted to achieve the scalability goal, these works can only scale

to roughly a hundred replicas.

In this paper, we develop BFT protocols from the so-called com-

mittee sampling approach that selects a small committee for con-

sensus and conveys the results to all replicas. Such an approach,

however, has been focused on the Byzantine agreement (BA) prob-

lem (considering replicas only) instead of the BFT problem (in the

client-replica model); also, the approach is mainly of theoretical

interest only, as concretely, it works for impractically large 𝑛.

We build an extremely efficient, scalable, and adaptively se-

cure BFT protocol called Pando in partially synchronous environ-

ments based on the committee sampling approach. In particular,

we devise novel BFT building blocks targeting scalability, includ-

ing communication-efficient and computation-efficient consistent

broadcast and atomic broadcast protocols.

Pando inherits some inherent issues of committee sampling-

based protocols: Pando can only achieve near-optimal resilience

(i.e., 𝑓 < (1/3 − 𝜖)𝑛, where 𝑓 is the number of faulty replicas and 𝜖

is a small constant), and Pando attains safety and liveness only prob-

abilistically. Interestingly, to make 𝜖 come close to 0 (near-optimal

resilience), 𝑛 needs to be sufficiently large but not impractically

large, e.g., 𝑛 > 500—just what we need for scalable BFT.

Our evaluation on Amazon EC2 shows that in contrast to existing

protocols, Pando can easily scale to a thousand replicas in the WAN

environment, achieving a throughput of 62.57 ktx/sec.

1 INTRODUCTION

Byzantine fault-tolerant (BFT) protocols—handling arbitrary fail-

ures and attacks—are nowadays the de facto model of permissioned

blockchains and are being increasingly used in permissionless

blockchains [4, 9]. However, BFT protocols are known to suffer

from the scalability doom, i.e., their performance degrades signif-

icantly as the number of replicas grows. In this regard, BFT is in

sharp contrast to permissionless blockchains that usually consist of

a large number of replicas, e.g., almost a million
1
in Ethereum [55].

1
Data source (accessed in Apr 2024): https://www.beaconcha.in/

†
corresponding author.

∗
Sisi is also with National Financial Cryptography Research Center, Shandong Institute

of Blockchain, and Zhongguancun Laboratory.

To overcome the scalability challenge, several approaches have

been introduced, including sharding-based BFT protocols that op-

erate in a number of BFT shards [3, 16, 44, 47, 57]. These proto-

cols, however, use an overly strong assumption requiring that each

shard does not have more than one-third or half faulty replicas;

meanwhile, cross-shard transactions cause consistency issues (re-

quiring, e.g., rollback) and significant communication overhead.

Conventional BFT approaches introduce techniques such as par-

allelism [49, 50] or de-coupling block transmission from consen-

sus [18, 24, 27, 31]. While these protocols mark significant mile-

stones for scalable BFT, they can support roughly a hundred replicas

only in the WAN environment. It is an open problem to scale BFT

to, say, 1,000 replicas.

The overhead of existing approaches, briefly. The main bottle-

necks for existing BFT approaches are the communication overhead

and the computational overhead. The communication becomes pro-

hibitively high as 𝑛 grows. Meanwhile, existing approaches use

threshold signatures (or a set of 𝑂 (𝑛) signatures) for quorum cer-

tificates (QCs) to lower the communication and the authenticator

complexity. The computational overhead they caused at a single

replica is proportionally higher when 𝑛 increases, thereby hurting

scalability.

Our approach. We propose Pando, an adaptively-secure and scal-

able BFT protocol in the partially synchronous model, where there

exists an unknown upper bound on message transmission and

processing [25]. We follow the framework that de-couples block

transmission from the agreement on the block order, as this model

is known to achieve high performance under high concurrency

of transactions [18, 24, 28]. As summarized in Table 1, our work

reduces the communication complexity of the underlying building

blocks in the model that de-couples block transmission from con-

sensus: transmission and consensus. Additionally, we also improve

the message complexity of the state transfer process (which is used

for data synchronization) from 𝑂 (𝑛2) to 𝑂 (^𝑛).
Our approach is inspired by a line of work on scalable Byzan-

tine agreement and Byzantine broadcast, where a small committee

of 𝑂 (^) replicas is selected among 𝑛 (sufficiently large) replicas.

Such protocols have been studied in both the synchronous set-

ting [1, 8, 14, 39, 53] and the asynchronous setting [6, 7]. For these

committee-based protocols, a possible workflow is to sample a com-

mittee, have the committee members reach an agreement, and then

ask the committee members to convey the results to all replicas.

However, such an approach works only in the static security model,

1

https://www.beaconcha.in/

protocols resilience transmission consensus timing

Narwhal [18]/Bullshark [31] 𝑓 < 𝑛/3 𝑂 (𝐿𝑛2 + ^𝑛4) 𝑂 (^𝑛3) partial sync.

Tusk [18] 𝑓 < 𝑛/3 𝑂 (𝐿𝑛2 + ^𝑛4) 𝑂 (^𝑛3) async.

Dumbo-NG [28] 𝑓 < 𝑛/3 𝑂 (𝐿𝑛2 + ^𝑛3) 𝑂 (^𝑛3) async.

Star [24] 𝑓 < 𝑛/3 𝑂 (𝐿𝑛2 + ^𝑛3) 𝑂 (^𝑛3) partial sync.

Pando (this work) 𝑓 < (1/3 − 𝜖)𝑛 𝑂 (𝐿𝑛2 + ^2𝑛2) 𝑂 (^2𝑛2) partial sync.

Table 1: Communication complexity of BFT systems that decouple block transmission from consensus on the order. 𝐿 is the

size of input (i.e., a block proposal) of every replica, ^ is the length of the cryptographic security parameter, and 𝜖 is a small

constant and can come close to 0 with appropriately chosen parameters. Following all prior work, we simply use 𝑂 (^) as the
committee size and doing so ensures the needed security bound. We assume all protocols instantiate the quorum certificates

(QCs) with a set of digital signatures. In practice, the size of QCs for all protocols (including ours) can be optimized using

aggregate signatures.

where the adversary is restricted to choosing the set of corrupted

replicas at the start of the protocol but fails to work in the adaptive

security model, where the adversary can choose the set of cor-

rupted replicas at any moment during the execution of the protocol

based on the state it accumulated. (For instance, PBFT [13] attains

adaptive security, while HoneyBadgerBFT [45] achieves static se-

curity only.) In fact, prior work on scalable Byzantine agreement

and Byzantine broadcast has been focused on the adaptive security

model, and it is less interesting to study statically secure protocols.

Also, note that the line of work has not explored practical BFT or

atomic broadcast protocols yet.

In this work, we design and implement the first practical committee-

based BFT protocol in the adaptive adversary model. Compared to

prior committee-based approaches, our approach utilizes the Cher-

noff bound in a novel manner to provide a new bound on committee

size. The core is to bound the committee size such that the fraction

of Byzantine replicas in the committee remains the same (except

with a small probability) as that in the entire system. Additionally,

our protocol gains in improved communication compared to all

prior work that de-couples block transmission from consensus. Our

work utilizes different techniques to optimize the communication

complexity of all three building blocks, as summarized below.

• For the transmission process (for disseminating proposals), we

provide a communication-efficient consistent broadcast (CBC)

protocol [48], a crucial building block for the transmission pro-

cess of all the protocols of the same kind. Based on the im-

proved CBC protocol, we provide a transmission process that

achieves 𝑂 (𝐿𝑛2 + ^2𝑛2) communication, where 𝐿 is the size of

each replica’s input and ^ is the committee size. Each quorum

certificate (QC) generated by the transmission process consists

of only 𝑂 (^) digital signatures (or an aggregate signature with

𝑂 (^ + ^ log^) size) such that its communication cost does not

grow as 𝑛 increases. In contrast, all prior practical QC implemen-

tations consist of𝑂 (𝑛) signatures or an aggregate signature with

𝑂 (^ + 𝑛 log𝑛) size.
• For the consensus process (for agreement on the transaction

order), we provide a partially synchronous atomic broadcast pro-

tocol [10] that has 𝑂 (|𝑀 |𝑛 + ^2𝑛) communication and 𝑂 (^𝑛)
messages, where |𝑀 | is the size of input to the atomic broad-

cast protocol. Compared to prior work (e.g., HotStuff [56] has

𝑂 (|𝑀 |𝑛 + ^𝑛2) communication and𝑂 (𝑛) messages if QCs are in-

stantiated by digital signatures and PBFT [13] has𝑂 (|𝑀 |𝑛 +^𝑛2)

communication as well), our protocol gains in improved commu-

nication for 𝑛 > ^ . We use the new atomic broadcast protocol in

the consensus process that achieves 𝑂 (^2𝑛2) communication.

• Finally, we provide a simple yet efficient state transfer process

(for proposal synchronization) with 𝑂 (^𝑛) messages. Our state

transfer process is more efficient than prior constructions in-

volving all-to-all communication (and thus requiring 𝑂 (𝑛2) mes-

sages).

Note that our communication improvement focuses on the ^

term. The improvement is more evident with 𝑛 growing, especially

when we look at concrete complexity—which is validated via our

experiments.

Our contributions. We make the following contributions.

• We propose Pando, an adaptively secure and scalable BFT proto-

col. Compared to prior work that also de-couples block transmis-

sion from agreement on the order, our work optimizes both the

communication and computational cost of the three underlying

building blocks: transmission, consensus, and state transfer.

• Our work explores the new BFT design from the committee-

based approaches which to date have only been studied in the

theoretical community and focused on Byzantine agreement or

Byzantine broadcast only. The only price is that the protocol

requires 𝑓 < (1/3 − 𝜖)𝑛. Namely, the protocol achieves near-

optimal resilience only (due to the 𝜖 parameter). In Pando, the

value of 𝜖 can come close to 0, when 𝑛 and the committee size

get moderately large.

• We implement our protocol and evaluate its performance on

Amazon EC2. We show Pando can easily scale to 1,000 replicas

in the WAN network and achieve a throughput of 62.57 ktx/sec.

2 RELATEDWORK

Partially synchronous BFT. Partially synchronous BFT has been

widely studied in the literature [54]. Starting from PBFT [13], an

impressive number of practical BFT protocols are proposed (e.g.,

[5, 19, 20, 23, 33, 34, 37, 41]). HotStuff [56] provides a three-phase

solution that achieves linear message complexity, and many efforts

have been made to reduce the number of phases required [29, 32, 51,

52]. Our new atomic broadcast protocol in the consensus process

can be viewed as a hybrid of PBFT and HotStuff: the protocol

has three phases of communication similar to that in PBFT; the

2

locked blocks for safe view changes (i.e., leader election) follows

the HotStuff technique.

Beginning with Narwhal [18], Bullshark [31], Dumbo-NG [27],

and Star [24] use a framework that de-couples the transmission

of block proposals (also called the transmission process) from the

agreement on the order of the blocks (called the consensus process).

This paradigm has improved efficiency due to two factors: the

transmission process that carries message payload does not have to

wait for the consensus process to finish and is thus non-blocking;

the consensus process is lightweight as the input of each replica

consists of a set of certificates (digital signatures) instead of the

message payload. Our protocol also follows the framework.

As shown in Bullshark [31], Bullshark and Narwhal share almost

identical throughput in normal cases, and BullShark offers almost 2x

the throughput ofMir-BFT [49] at the same latency. Themost recent

partially synchronous BFT protocol that separates transmission

from consensus, Star [24], is shown to achieve 2.38x the throughput

of Narwhal when 𝑛 = 91. Therefore, we choose Star and Narwhal

for the performance comparison.

Asynchronous BFT. The celebrated FLP result [26] rules out the

possibility of deterministic consensus in asynchronous environ-

ments, so asynchronous must be probabilistically live. Asynchro-

nous BFT protocols have been extensively studied [21, 22, 35, 36,

42, 45, 58, 59]). Our transmission process is fully asynchronous.

Byzantine agreement and Byzantine broadcast at scale. King

and Saia presented a synchronous Byzantine agreement protocol

with 𝑂 (𝑛1.5) communication [39]. Abraham et al. [1] proposed a

binary Byzantine agreement with subquadratic communication

complexity. In the asynchronous setting, Blum, Katz, Liu-Zhang,

and Loss [7] presented a Byzantine agreement protocol achiev-

ing subquadratic communication complexity under the adaptive

adversary setting assuming 𝑓 < (1 − 𝜖)𝑛/3 (Note that this is inter-
changeable with our 𝑓 < (1/3 − 𝜖)𝑛 assumption). Additionally, a

line of work studies Byzantine broadcast, a problem limited to the

synchronous setting where 𝑓 < (1−𝜖)𝑛, and uses committee-based

approaches to optimize the communication [14, 53].

Proof-of-Stake (PoS). Algorand [15, 30] and Ethereum 2.0’s con-

sensus protocol [55] fall into the catogery of PoS protocols. Algo-

rand is one of the first practical committee-based PoS protocols.

The VRF-based committee sampling mechanism is followed and

extended by many works in the literature [1, 14, 53]. Ethereum’s

PoS utilizes the concept of the committee to aggregate the votes

(i.e., attestations) from replicas to improve performance. The ran-

dom coins of committee sampling are generated on-chain via the

beacon chain. In Delegated PoS (DPOS) [40], a committee is first

selected according to certain rules and the committee is in charge

of reaching an agreement and conveying the results to the repli-

cas. Such an approach, as mentioned in the introduction, fails to

achieve adaptive security. In contrast, our work is different from

all PoS protocols, being the first practical committee-based BFT

assuming the standard threshold adversary (the adversary does not

control more than a certain fraction of replicas) instead of the stake

threshold adversary (the adversary does not control more than a

certain fraction of the stake) in PoS [2, 54].

BFT with adaptive security. Protocols that are secure in the static

adversary model might not be adaptively secure [12, 17]. BFT using

statically secure threshold cryptography (e.g., threshold signatures

or threshold encryption) may not be adaptively secure. Indeed, de-

signing BFT in the adaptively secure model is more challenging.

Meanwhile, adaptive security may come with a price. For instance,

EPIC [42] and Hale [60] studied how to achieve adaptive secu-

rity in the asynchronous model and showed that while practical

asynchronous BFT in the adaptively secure model is possible, the

performance degrades up to 30% compared to its counterpart in the

static model.

3 SYSTEM MODEL AND BUILDING BLOCKS

BFT.We study Byzantine fault-tolerant state machine replication

(BFT) protocol. In a BFT protocol, clients submit transactions (re-

quests) and replicas deliver them. The client obtains a final response

to the submitted transaction from the replica responses.

A BFT system with 𝑛 replicas, {𝑃1, · · · , 𝑃𝑛}, can tolerate 𝑓 <

(1/3 − 𝜖)𝑛 Byzantine failures, which is optimal. Following prior

work on scalable Byzantine agreement, this paper considers near-

optimal resilience, i.e., 𝑓 < (1/3 − 𝜖)𝑛, where 𝜖 is a small constant

and 0 < 𝜖 < 1/3.
We consider a partially synchronous network where there ex-

ists a Global Stabilization Time (GST), after which the network

becomes synchronous. We consider a (weakly) adaptive adversary.

Such an adversary can selectively corrupt the replicas while the

protocol is running but cannot perform "after-the-fact-removal"

and retroactively erase the messages the replica sent before they be-

come corrupted. Additionally, we assume "atomic sends" [7] where

an honest replica 𝑃𝑖 can send a message to multiple replicas and the

adversary can corrupt 𝑃𝑖 either before or after it sends the message

to all receivers.

We follow prior works [10, 13, 51, 56] and define several nota-

tions. A Byzantine quorum is a set of replicas. If we consider a

system with 𝑛 replicas and 𝑓 Byzantine failures, a Byzantine quo-

rum consists of ⌈𝑛+𝑓 +1
2
⌉ replicas, or simply 2𝑓 + 1 out of 𝑛 = 3𝑓 + 1

replicas. A set of signatures generated by a Byzantine quorum is

called a quorum certificate (QC) or a certificate.

In this work, we sample a set of _ = 𝑂 (^) committee members,

where ^ is the length of the security parameter. Following prior

protocols, we consider _ = ^ for simplicity. Our protocol ensures

that except with negligible probability, the number of faulty replicas

in each committee is 𝑡 < ⌊^−1
3
⌋. Slightly abusing the notation, we

also use the term QC in the committee to denote ^ − 𝑡 signatures
from committee members.

A BFT protocol satisfies the following properties with probability

1 − negl(^), where negl(^) is a negligible function in ^.

• Safety: If a correct replica delivers a transaction 𝑡𝑥 before deliver-

ing 𝑡𝑥 ′, then no correct replica delivers a transaction 𝑡𝑥 ′ without
first delivering 𝑡𝑥 .

• Liveness: If a transaction 𝑡𝑥 is submitted to all correct replicas,

then all correct replicas eventually deliver 𝑡𝑥 .

BFT protocols do not need to expose an explicit order for blocks

of transactions, but the concrete constructions may assign an order

to each block. In this work, we use height to denote the order of

a block. Namely, in a chain of blocks, the height of each block is

3

the number of blocks on the chain rooted by the genesis block. For

a QC 𝑞𝑐 , we use the function ℎ𝑒𝑖𝑔ℎ𝑡 (𝑞𝑐) to denote the height of

the block for 𝑞𝑐 . Each replica uses a tree-based data structure to

store the blocks proposed by all the replicas. Block 𝑏 extends 𝑏′ if 𝑏
extends the branch led by 𝑏′.
Atomic broadcast. We also use atomic broadcast as a building

block. Atomic broadcast is only syntactically different from BFT;

in atomic broadcast, a replica a-broadcasts messages and all repli-

cas a-deliver messages. An atomic broadcast protocol satisfies the

following properties with probability 1 − negl(^).
• Safety: If a correct replica a-delivers a message 𝑚 before a-

delivering 𝑚′, then no correct replica a-delivers a message 𝑚′

without first a-delivering𝑚.

• Liveness: If a correct replica a-broadcasts a message𝑚, then all

correct replicas eventually a-deliver 𝑚.

Here, we restrict the API of atomic broadcast such that only

a single replica a-broadcasts a transaction. One can alternatively

allow all replicas to a-broadcast transactions.

3.1 Building Blocks

Consistent broadcast (CBC). We review the definition of consis-

tent broadcast (CBC). A CBC protocol is specified by c-broadcast

and c-deliver such that the following properties hold:

• Validity: If a correct replica 𝑝 c-broadcasts a message𝑚, then 𝑝

eventually c-delivers𝑚.

• Consistency: If two correct replicas c-deliver two messages𝑚

and𝑚′, then𝑚 =𝑚′.
• Integrity: For any message𝑚, every correct replica c-delivers

𝑚 at most once. Moreover, if the sender is correct, then𝑚 was

previously c-broadcast by the sender.

TheComProve()/ComVerify() oracle.We follow prior works [1,

14, 53] and define a ComProve()/ComVerify() oracle as a commit-

tee sampling function. We present in Algorithm 1 the functionality

of ComProve() and ComVerify() [53]. ComProve() is parametered

by the total number of replicas and amining probability 𝑝𝑚𝑖𝑛𝑒 . It is

specified by two functionalities: ComProve() and ComVerify(). In
particular, a replica 𝑃𝑖 can query ComProve(𝑚, 𝑖) to check whether
it is an eligible member of the committee, where 𝑚 is the desig-

nated input. The query of the ComProve() function is also called

a mining attempt. Upon receiving a mining attempt for the first

time, ComProve() flips a random coin and returns a binary result.

It returns 1 with mining probability 𝑝𝑚𝑖𝑛𝑒 . If 1 is returned, 𝑃𝑖 is part

of the committee. After 𝑃𝑖 has successfully made a mining attempt,

ComVerify(𝑚, 𝑖) returns the same answer for all future identical

queries to any replica.

In this work, we use the notation 𝐶
𝑦
𝑥 to denote the commit-

tees, where the subscript 𝑥 specifies the corresponding process

(i.e., transmission, consensus, or state transfer) and epoch num-

ber, and the superscript 𝑦 denotes the instance number. For in-

stance, 𝐶
𝑗
𝑡,𝑒 denotes the committee used in the transmission pro-

cess for the 𝑗-th instance in epoch 𝑒 . In this case, we can instanti-

ate the ComProve() and ComVerify() functions as follows: replica
𝑃𝑖 queries ComProve(𝑡 | |𝑒 | | 𝑗, 𝑖) to learn whether it is a commit-

tee member where | | denotes concatenation; after 𝑃𝑖 queries the

Algorithm 1 TheComProve() andComVerify() oracle.𝑚 is a tuple

that consists of the designated inputs of the function.

1: public parameters: let 𝑝𝑚𝑖𝑛𝑒 be the mining probability

2: local parameters: let call𝑖 ← ⊥ for any 𝑖 ∈ [𝑛]
3: function ComProve(𝑚, 𝑖)
4: if call𝑖 = ⊥ then

5: let 𝑏 ← 1 with probability 𝑝𝑚𝑖𝑛𝑒 or 0 otherwise

6: call𝑖 ← 𝑏

7: end if

8: return call𝑖

9: end function

10: function ComVerify(𝑚, 𝑗)
11: return call𝑗

12: end function

ComProve() function, any replica 𝑃𝑘 queries ComVerify(𝑡 | |𝑒 | | 𝑗, 𝑖)
to verify whether 𝑃𝑖 is a member of 𝐶

𝑗
𝑡,𝑒 .

We can instantiate ComProve() and ComVerify() with the Veri-

fiable Random Function (VRF). In particular, depending on the com-

mittee size, we set up a difficulty parameter 𝐷 . When 𝑃𝑖 generates

a VRF evaluation for 𝑡 | |𝑒 | | 𝑗 when it queries ComProve(𝑡 | |𝑒 | | 𝑗, 𝑖).
𝑃𝑖 belongs to 𝐶

𝑗
𝑡,𝑒 if the VRF evaluation is lower than 𝐷 . When

𝑃𝑖 sends some message to other replicas, 𝑃𝑖 also includes the VRF

evaluation to the replicas. When 𝑃𝑘 queries ComVerify(𝑡 | |𝑒 | | 𝑗, 𝑖),
the function returns true if the VRF evaluation is lower than 𝐷 .

4 MOTIVATION AND OVERVIEW

4.1 Review of Existing De-coupling Approaches

Figure 1: The Star framework [24].

Narwhal [18], Dumbo-NG [28], Bullshark [31], and Star [24]

all employ a framework that de-couples block dissemination from

the agreement on block order. Such a framework usually involves

three processes: a transmission process where each replica creates

a proposal, sends to all replicas, and collects matching signatures

from a sufficiently large fraction of replicas to form a quorum cer-

tificate (QC)—each QC proves that the corresponding transactions

are valid and available; a consensus process where replicas reach an

agreement on the order of the QCs (so the order of the transactions

can be finalized); after an agreement is reached, replicas that do

not hold the proposals run state transfer with other replicas.

As an example, we show the Star framework in Figure 1 (as Star

outperforms other protocols). In Star, the transmission process is a

pipelining mode of weak consistent broadcast (wCBC) instances.

The protocol is epoch-based and each epoch consists of 𝑛 parallel

wCBC instance. In each instance, each replica 𝑃𝑖 broadcasts its

4

proposal to the replicas and expects to collect a weak quorum

certificate (wQC) of 𝑓 + 1 matching signatures. In each epoch, at

least 𝑛 − 𝑓 wQCs are expected to be collected. In the consensus

process, the 𝑛 − 𝑓 wQCs are used as input to the consensus process.

As the input of the consensus process consists of only wQCs instead

of the message payload, the consensus process does not become the

bottleneck of the system anymore. Star uses PBFT or Dashing [24]

as the consensus process. Finally, after an agreement on the order

of the wQCs is reached in the consensus process, replicas that have

not received the corresponding proposals need to synchronize with

other replicas via a state transfer process.

Star, Narwhal, Bullshark, and Dumbo-NG utilize different proto-

cols in different processes. Narwhal and Bullshark utilize the direct

acyclic graph (DAG) data structure and CBC in the transmission

process. Dumbo-NG uses a pipeline mode of CBC that is slightly

different from that in Star. In the consensus process, Narwhal uses

HotStuff, and Bullshark employs a partially synchronous variant of

DAG-Rider [38].

While Star, Narwhal, and Bullshark do not specify in detail the

state transfer processes, in these protocols, each replica requests the

missing proposals from all other replicas. Dumbo-NG uses erasure

coding to achieve a more communication-efficient approach (called

"retrieval" in the paper). All these state transfer approaches involve

all-to-all communication and achieve 𝑂 (𝑛2) messages.

The feature that separates block proposals from consensus makes

such protocols achieve great scalability. For example, when de-

ployed in WAN with 91 replicas (using m5.xlarge instances on

AWS), Star achieves throughput of 256 ktx/sec, significantly higher

than conventional protocols.

4.2 The Scalability Bottlenecks

If we further scale the existing system to a larger number of replicas,

performance may degrade significantly due to both communication

overhead and computational overhead.

Communication overhead.Most existing protocols rely on all-

to-all communication, so it is not surprising that the performance

degrades significantly as 𝑛 further grows. In the transmission pro-

cess, the all-to-all communication for block proposal (due to 𝑛

parallel CBC instances) seems to be unavoidable. However, collect-

ing 𝑂 (𝑛) signatures and including them in the proposal may again

consume high network bandwidth and degrade the performance

as 𝑛 increases. Additionally, the input to the consensus process

consists of 𝑂 (𝑛) QCs and each QC consists of 𝑂 (𝑛) signatures. As
𝑛 grows, the communication overhead to the consensus process

becomes more significant. Note that even if we use an aggregate

signature to replace a set of 𝑂 (𝑛) digital signatures, the communi-

cation cost of each signature is 𝑂 (^ + 𝑛 log𝑛), which still grows as

𝑛 increases.

Threshold signatures at scale. Threshold signature is a com-

mon technique to lower the communication complexity of the

protocols and optimize system performance. Many protocols use

threshold signatures to reduce the size of each QC from 𝑂 (^𝑛)
to 𝑂 (^) [11, 24, 28, 36, 43, 51, 56, 61]. However, threshold signa-

tures may suffer from performance degradation as 𝑛 grows. We

conducted experiments on a machine with an Intel i7 CPU with

2.80GHz, 8-core, and 16GB memory. We compared two schemes:

threshold signatures
2
and ECDSA signatures. We vary 𝑛 from 91

(tolerating 30 failures) to 1501 (tolerating 500 failures) and assess the

latency of creating one partial signature (resp., one ECDSA signa-

ture) and verification of 𝑛− 𝑓 partial signatures (resp., 𝑛− 𝑓 ECDSA

signatures). As summarized in Table 2, the latency of threshold

signatures, especially the verification function, grows significantly

as 𝑛 grows. In contrast, the latency for ECDSA signatures is con-

sistently lower. Notably, in practice, verifying partial signatures

is usually executed "in parallel" as the partial signatures are sent

concurrently by the replicas. However, the overhead created by

threshold signatures is still significantly higher than that of ECDSA

signatures.

scheme

th-sig. th-sig. th-sig. ECDSA ECDSA

(tSign) (sVerify) (tVerify) (Sign) (Verify)

𝑛 = 100 17 246 2 8 16

𝑛 = 200 41 530 2 15 34

𝑛 = 300 65 895 2 24 48

𝑛 = 400 79 1417 2 31 64

𝑛 = 500 105 2038 2 34 86

𝑛 = 1000 254 6351 3 73 166

Table 2: Latency (ms) of threshold signatures and ECDSA

signatures. The latency for sVerify and Verify is the time for

verifying of𝑛−𝑓 partial signatures and𝑛−𝑓 digital signatures,
respectively. The time for tVerify refers to the duration it

takes to verify one (combined) threshold signature.

4.3 Technical Overview

Scalable consistent broadcast (CBC) for the transmission pro-

cess. We show the conventional CBC protocol in Figure 2a. Our

transmission process improves CBC using only one technique, as

shown in Figure 2b: instead of letting all replicas reply with a sig-

nature to the sender (e.g., 𝑃0), we sample a committee of ^ size and

only committee members reply with a signature. The underlying

idea is that since collecting 𝑛 digital signatures or using threshold

signatures can be expensive when 𝑛 is large, we can alternatively

use the committee-based approach. The leader only needs to collect

𝑂 (^) signatures as a QC. This immediately brings two benefits. First,

instead of having all replicas reply with a signature to each sender,

only ^ replicas need to do so, so the communication cost does not

grow as 𝑛 grows. Second, as each certificate consists of only 𝑂 (^)
signatures instead of𝑂 (𝑛) signatures, the consensus process can also

be made communication-efficient.

Using a new application of the Chernoff bound, we show that by

setting the committee size as _ = 3𝛼
𝜖2

ln
1

𝛿
= 𝑂 (^), with probability

1 − negl(^), the number of faulty replicas in the committee is less

than 𝑡 = _/3, where 𝛿 is the desired failure probability and 𝛼 is a

small constant (see Lemma A.1). Accordingly, if the sender 𝑃𝑖 is

correct, with probability 1 − negl(^), at least two-thirds of commit-

tee members will reply with a digital signature, so 𝑃𝑖 eventually

completes the CBC. Following the convention in prior works, we

simply use ^ as the committee size in this work.

Atomic broadcast at scale for the consensus process. We pro-

pose a scalable atomic broadcast protocol inspired by the design of

2
Threshold BLS signature implementation in Golabng: https://github.com/dedis/kyber

5

P0

P1

P2

Pn-1

. .
 .

b1

b1

b1

n-f sigs

QC

QC

QCs1

s2

sn-1

(a) Conventional consistent broad-

cast (CBC) protocol.

P0

P1

P2

Pn-1

. .
 .

b1

b1

b1

k-t sigs

QC

QC

QC

s2

sn-1

0

et,C

(b) Our scalable CBC approach.

P0

P1

P2

Pn-1

. .
 .

New-View Propose Prepare Commit

1

lec,C

2

lec,C

3

lec,C

(c) Our scalable atomic broadcast protocol.

Figure 2: Overview of our approach.

HotStuff [56] and PBFT [13]. Our insight is also aligned with our

improved CBC scheme. In particular, we can already ensure that

the fraction of correct replicas in the committee remains the same

as the entire system. Instead of letting all replicas exchange their

votes, only the committee members send their votes to all replicas,

and we can still ensure that at least two-thirds of the committee

members will take the same action in each phase of the protocol.

The actual proof, as shown in Appendix A, is more involved, but it

exploits this insight.

To avoid the security threats in the adaptive security model, we

sample three committees in each epoch 𝑒 of the protocol, denoted as

𝐶1

𝑐,𝑒 ,𝐶
2

𝑐,𝑒 , and𝐶
3

𝑐,𝑒 , as illustrated in Figure 2c. After each committee

member broadcasts its vote, it will not vote again. Accordingly,

even if the committee member is corrupted, it is already too late in

the weakly adaptive adversary model and the protocol is still live.

The main workflow is similar to PBFT besides that each time only

^ replicas send a message to all replicas.

The atomic broadcast protocol is communication-efficient due to

two reasons. First, the input𝑀 of the consensus process is 𝑂 (^2𝑛)
instead of 𝑂 (^𝑛2) as each QC has 𝑂 (^) signatures. Second, in each

phase of the protocol, only one-to-all or ^-to-all communication

is involved and the communication complexity is 𝑂 (|𝑀 |𝑛 + ^2𝑛),
where |𝑀 | is the size of the input. Note that although protocols like

HotStuff only involve one-to-all communication, the communica-

tion complexity is 𝑂 (|𝑀 |𝑛 + ^𝑛2) if we use digital signatures for
the quorum certificates. Our atomic broadcast protocol can be used

as a dedicated BFT protocol and is thus of independent interest.

State transfer with 𝑂 (^𝑛) messages. All prior works achieve

𝑂 (𝑛2) messages and involve all-to-all communication, which might

be very expensive when𝑛 is large. In Pando, we provide a simple yet

efficient state transfer approach with𝑂 (^𝑛) messages and𝑂 (𝐿^𝑛2)
communication.

5 THE PANDO PROTOCOL

5.1 The Generic Workflow

The generic workflow of Pando is presented in Algorithm 2. We

also present the utility functions in Algorithm 5. In particular, every

replica starts the transmission process and the consensus process

when initializing the protocol.

The transmission process is epoch-based, where each replica

proposes a batch of transactions in every epoch. A new epoch

of the transmission process (Algorithm 3) is started when every

Algorithm 2 The Pando protocol for replica 𝑃𝑖 and tag ID

1: initialization: start the transmission process and the consen-

sus process

2: upon a-deliver(𝑙𝑒,𝑚) do
3: 𝑂 ← Obtain(𝑙𝑒,𝑚)
4: obtain the non-overlapped transactions in 𝑂 and deliver in

a deterministic order

5: set 𝑐𝑒 ← 𝑙𝑒

replica has a non-empty queue and has received at least 𝑛 − 𝑓

proposed messages from the previous epoch. QCs are formed in the

transmission process and the queue of QCs𝑊 is shared between

the transmission process and the consensus process.

The consensus process (Algorithm 4) is also epoch-based: in each

epoch, there is a designated leader. For each epoch 𝑙𝑒 , the leader

proposes𝑊 [𝑙𝑒] and𝑊 [𝑙𝑒] consists of at least 𝑛 − 𝑓 QCs. After an

agreement is reached, replicas start the state transfer process. If

a replica has received the proposals corresponding to the QCs, it

delivers the transactions in the proposals. Finally, 𝑃𝑖 obtains a set of

non-overlapped transactions in𝑂 and then delivers the transactions

in 𝑂 in a deterministic order.

5.2 The Transmission Process

The transmission process can be viewed as a scalable version of

pipelined consistent broadcast (CBC). In this section, we present

a pipelining mode for replicas to propose blocks, where a replica

broadcasts the QCs for the prior epoch and also a new block. The

pseudocode is shown in Algorithm 3.

The𝐶𝑖
𝑡,𝑒 signing committee for each 𝑖 ∈ [𝑛]. In the transmission

process, 𝑛 committees are sampled for each epoch 𝑒 . Each com-

mittee serves for signing purposes in each CBC instance. For the

instance initiated by 𝑃𝑖 in epoch 𝑒 , we use𝐶𝑖
𝑡,𝑒 to denote the signing

committee, where the subscript 𝑡 denotes the transmission process.

The identity of a committee member (i.e., a replica) is not revealed

until the replica queries the ComProve() function and sends a mes-

sage to the replicas. After a committee member sends out a message,

other replicas can verify the identity of the committee member via

the ComVerify() function, as described in Sec. 3. In the rest of the

paper, we omit the details of membership discovery and verification

when no ambiguity occurs.

6

Algorithm 3 The transmission process for replica 𝑃𝑖 and tag ID

1: local parameters: let epoch 𝑒 ← 1,𝑄 be the queue of pending

transactions, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 be the received proposals, 𝑞𝑐𝑖 be the

latest certificate,𝑊 ← ⊥ be the queue of certificates.

2: function InitEpoch(𝑒)
3: sample a committee 𝐶

𝑗
𝑡,𝑒 for each 𝑗 ∈ [𝑛]

4: 𝑀 ← select(𝑄)
5: send (Proposal, 𝑒, 𝑀, 𝑞𝑐𝑖) to all replicas

6: ℎ ← 𝐻𝑎𝑠ℎ(𝑀)
7: upon receiving ^ − 𝑡 valid signatures for (𝑒, ℎ, 𝑖) from 𝐶𝑖

𝑡,𝑒

do

8: let 𝑞𝑐𝑖 be the set of valid signatures

9: wait until |𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] | ≥ 𝑛 − 𝑓

10: 𝑒 ← 𝑒 + 1
11: InitEpoch(𝑒)
12: end function

13: upon receiving (Proposal, 𝑒, 𝑀, 𝑞𝑐 𝑗) from 𝑃 𝑗 s.t. 𝑗 ∈ [𝑛] do
14: if 𝑃𝑖 ∈ 𝐶 𝑗

𝑡,𝑒 then

15: ℎ ← 𝐻𝑎𝑠ℎ(𝑀)
16: create a signature 𝜎𝑖 for (𝑒, ℎ, 𝑗) and send to 𝑃 𝑗
17: end if

18: 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] [𝑗] ← 𝑀

19: 𝑊 [𝑒 − 1] ←𝑊 [𝑒 − 1] ∪ 𝑞𝑐 𝑗

Theworkflow.To start epoch 𝑒 , every replica 𝑃𝑖 calls the InitEpoch(𝑒)
function (line 2). In this function, 𝑃𝑖 obtains a batch of transac-

tions𝑀 from its queue𝑄 and then broadcasts a (Proposal, 𝑒, 𝑀, 𝑞𝑐𝑖)

message to all replicas (line 5), where 𝑞𝑐𝑖 is the QC formed in

epoch 𝑒 − 1 (if 𝑒 = 1, 𝑞𝑐𝑖 = ⊥, also known as a genesis block).

𝑃𝑖 then waits for ^ − 𝑡 matching signatures for (𝑒, ℎ, 𝑖) from 𝐶𝑖
𝑡,𝑒 ,

where ℎ is the hash of 𝑀 (line 15). For each replica 𝑃𝑖 , upon re-

ceiving a proposal (Proposal, 𝑒, 𝑀, 𝑞𝑐 𝑗) from 𝑃 𝑗 , 𝑃𝑖 verifies whether

it belongs to the committee 𝐶
𝑗
𝑡,𝑒 . If so, 𝑃𝑖 creates a signature for

(𝑒, 𝐻𝑎𝑠ℎ(𝑀), 𝑗) and then sends to 𝑃 𝑗 . Meanwhile, 𝑃𝑖 sets its local

parameter 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] [𝑗] as 𝑀 and adds the QC 𝑞𝑐 𝑗 to its local

queue𝑊 [𝑒 − 1] (lines 18-19). Here, 𝑞𝑐 𝑗 is the QC for the proposal

in epoch 𝑒 − 1 so 𝑞𝑐 𝑗 is added to𝑊 [𝑒 − 1].
After 𝑃𝑖 collects ^−𝑡 signatures from𝐶

𝑗
𝑡,𝑒 , the signatures become

a QC and the local parameter 𝑞𝑐𝑖 is updated accordingly (line 8).

Then 𝑃𝑖 waits for 𝑛 − 𝑓 valid (Proposal) messages before entering

the next epoch (line 9).

5.3 The Consensus Process

The consensus process is shown in Algorithm 4, a partially syn-

chronous atomic broadcast protocol. The protocol has four phases:

New-View, Propose, Prepare, and Commit. The protocol is epoch-

based. To differentiate the epoch number from that in the state

transfer process, we use 𝑙𝑒 to denote the latest epoch number of

the system and 𝑐𝑒 to denote the last epoch where some value has

been a-delivered. Every replica also maintains a 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 , which

is updated in the Commit phase of every epoch.

Algorithm 4 The consensus process for replica 𝑃𝑖 and tag ID

1: public parameters: each committee have ^ replicas and 𝑡 ← ^/3
2: local parameters: let epoch 𝑙𝑒 ← 0, last committed epoch 𝑐𝑒 ← 0,

𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 ← ⊥, 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ← ∅
3: in each epoch 𝑙𝑒 , sample three committees𝐶1

𝑐,𝑙𝑒
,𝐶2

𝑐,𝑙𝑒
, and𝐶3

𝑐,𝑙𝑒

4: � New-View phase

5: upon |𝑊 [𝑙𝑒] | ≥ 𝑛 − 𝑓 do

6: start a timer Δ and obtain ℓ ← 𝑙𝑒 mod 𝑛

7: if 𝑃𝑖 ∈ 𝐶1

𝑐,𝑙𝑒
then

8: send (New-View, 𝑙𝑒, 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶) to the leader 𝑃ℓ

9: end if

10: � Propose phase

11: upon receiving ^ − 𝑡 (New-View) messages from replicas in𝐶1

𝑐,𝑙𝑒
do

12: if CheckLeader(𝑙𝑒, 𝑖) then
13: 𝑞𝑐ℎ𝑖𝑔ℎ ← the QC of the largest height in (New-View) messages

14: 𝑊𝑖 ←𝑊 [𝑙𝑒]
15: if ℎ𝑒𝑖𝑔ℎ𝑡 (𝑞𝑐ℎ𝑖𝑔ℎ) < 𝑙𝑒 − 1 then

16: for each 𝑒′ ∈ (ℎ𝑒𝑖𝑔ℎ𝑡 (𝑞𝑐ℎ𝑖𝑔ℎ), 𝑙𝑒 − 1]
17: 𝑊𝑖 ←𝑊𝑖 ∪𝑊 [𝑒′]
18: end if

19: create a block 𝑏 with content𝑊𝑖

20: broadcast (Propose, 𝑏, 𝑙𝑒, 𝑞𝑐ℎ𝑖𝑔ℎ) ⊲ a-broadcast event

21: end if

22: � Prepare phase

23: upon receiving (Propose, 𝑏, 𝑒, 𝑞𝑐ℎ𝑖𝑔ℎ) from the leader 𝑃ℓ s.t. 𝑙𝑒 = 𝑒 do

24: if 𝑃𝑖 ∈ 𝐶2

𝑐,𝑙𝑒
and CheckLeader(𝑒, ℓ) and IsValid(𝑏) then

25: 𝜎𝑖 ← a signature for (1, ℎ𝑎𝑠ℎ (𝑏), 𝑙𝑒)
26: broadcast (Prepare, ℎ𝑎𝑠ℎ (𝑏), 𝑙𝑒, 𝜎𝑖)
27: end if

28: 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 [𝑒] ← 𝑏

29: � Commit phase

30: upon receiving ^ − 𝑡 (Prepare, ℎ, 𝑒, 𝜎 𝑗) from𝐶2

𝑐,𝑙𝑒
s.t. 𝑙𝑒 = 𝑒 do

31: 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 ← ^ − 𝑡 signatures for (1, ℎ, 𝑒)
32: if 𝑃𝑖 ∈ 𝐶3

𝑐,𝑙𝑒
then

33: 𝜎𝑖 ← a signature for (2, ℎ, 𝑙𝑒)
34: broadcast (Commit, ℎ, 𝑙𝑒, 𝜎𝑖)

35: end if

36: � Deliver

37: upon receiving 𝑡 + 1 (Commit, ℎ, 𝑒, 𝜎 𝑗) from𝐶3

𝑐,𝑙𝑒
s.t. 𝑙𝑒 = 𝑒 do

38: if 𝑃𝑖 ∈ 𝐶3

𝑐,𝑙𝑒
and 𝑃𝑖 has not sent a (Commit) message then

39: 𝜎𝑖 ← a signature for (2, ℎ, 𝑙𝑒)
40: broadcast (Commit, ℎ, 𝑙𝑒, 𝜎𝑖)

41: end if

42: upon receiving ^ − 𝑡 (Commit, ℎ, 𝑒, 𝜎 𝑗) from𝐶3

𝑐,𝑙𝑒
s.t. 𝑙𝑒 = 𝑒 do

43: let𝑚 be the content in the block 𝑏 and ℎ = ℎ𝑎𝑠ℎ (𝑏)
44: if 𝑐𝑒 + 1 ≠ 𝑙𝑒 then

45: 𝒎 ← ObtainMissing(𝑐𝑒 + 1, 𝑙𝑒,𝑚)
46: a-delivers each𝑚𝑒 ∈ 𝒎 according to the epoch numbers

47: else

48: a-deliver(𝑙𝑒,𝑚) ⊲ a-deliver event

49: end if

50: set 𝑙𝑒 ← 𝑙𝑒 + 1, 𝑐𝑒 ← 𝑙𝑒

51: � View Change

52: upon Δ times out do

53: set 𝑙𝑒 ← 𝑙𝑒 + 1

The 𝐶1

𝑐,𝑙𝑒
, 𝐶2

𝑐,𝑙𝑒
, and 𝐶3

𝑐,𝑙𝑒
committees. In each epoch 𝑙𝑒 , three

committees are sampled, where the subscript 𝑐 denotes the consen-

sus process. The 𝐶1

𝑐,𝑙𝑒
, 𝐶2

𝑐,𝑙𝑒
, and 𝐶3

𝑐,𝑙𝑒
committees are used in the

New-View phase, Prepare, and Commit phases, respectively.

7

Algorithm 5 Utilities

1: function IsValid(𝑏)
2: if 𝑏 extends the block for 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 and for any𝑊𝑒 ∈ 𝑏 for

epoch 𝑒 and VerifyQCs(𝑊𝑒 , 𝑒) returns true and 𝑒′ ≥ 𝑐𝑒 where

𝑒′ is the epoch number for any QC included in 𝑏 then

3: return 𝑡𝑟𝑢𝑒

4: else

5: return 𝑓 𝑎𝑙𝑠𝑒

6: end if

7: end function

8: function VerifyQCs(𝑊𝑗 , 𝑒)
9: if |𝑊𝑗 | ≥ 𝑛 − 𝑓 and for each 𝑞𝑐ℓ ∈𝑊𝑗 , each 𝜎𝑘 ∈ 𝑞𝑐ℓ from

𝑃𝑘 ,ComVerify(𝑡 | |𝑒 | |1| |ℓ, 𝑘) returns 1 and 𝜎𝑘 is a valid signature

for (𝑒, ∗, ℓ) then
10: return 𝑡𝑟𝑢𝑒

11: else

12: return 𝑓 𝑎𝑙𝑠𝑒

13: end if

14: end function

15: function CheckLeader(𝑒, 𝑖)
16: if 𝑖 = 𝑒 mod 𝑛 then

17: return 𝑡𝑟𝑢𝑒

18: else

19: return 𝑓 𝑎𝑙𝑠𝑒

20: end if

21: end function

22: function ObtainMissing(𝑐𝑒, 𝑙𝑒,𝑚)
23: 𝒎 ← ⊥
24: for 𝑒 ∈ [𝑐𝑒, 𝑙𝑒] do
25: if ∃𝑊𝑒 s.t.,𝑊𝑒 ∈𝑚 then

26: 𝒎[𝑒] ←𝑊𝑒

27: else

28: wait for𝑚𝑒 from the block 𝑏 proposed in epoch 𝑒

29: 𝒎[𝑒] ←𝑚𝑒

30: end if

31: return 𝒎
32: end function

The workflow. There is a designated leader in each epoch 𝑙𝑒 . We

use 𝑙𝑒 mod 𝑛 to denote the identity of the leader. Every replica

also starts a timer Δ. In case no value is a-delivered before Δ expires,

replicas enter the next epoch (line 52).

New-View phase. Every replica 𝑃𝑖 first identifies whether it be-

longs to 𝐶1

𝑐,𝑙𝑒
. If so, it sends a (New-view, 𝑙𝑒, 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶) message

to the leader 𝑃ℓ of epoch 𝑙𝑒 (line 7-8), where 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 is a local

parameter.

Propose phase. After receiving at least ^−𝑡 (New-View) messages

from𝐶1

𝑐,𝑙𝑒
, the leader obtains 𝑞𝑐ℎ𝑖𝑔ℎ , the QC with the largest height

(i.e., epoch number). If 𝑃𝑖 is the leader (i.e., 𝑖 = 𝑙𝑒 mod 𝑛), 𝑃𝑖 then

obtains the height of 𝑞𝑐ℎ𝑖𝑔ℎ (line 13). By default, 𝑃𝑖 uses𝑊 [𝑙𝑒] as
the proposal for the current epoch. Additionally, if ℎ𝑒𝑖𝑔ℎ𝑡 (𝑞𝑐ℎ𝑖𝑔ℎ)
is lower than 𝑙𝑒 − 1, it means that the epoch lower than 𝑙𝑒 − 1

is not a-delivered. In this case, 𝑃𝑖 also proposes for epochs be-

tween ℎ𝑒𝑖𝑔ℎ𝑡 (𝑞𝑐ℎ𝑖𝑔ℎ) and 𝑙𝑒 − 1. In particular, for each 𝑒′ between
ℎ𝑒𝑖𝑔ℎ𝑡 (𝑞𝑐ℎ𝑖𝑔ℎ) and 𝑙𝑒 − 1, 𝑃𝑖 appends 𝑊 [𝑒′] to its proposal 𝑊𝑖

(lines 15-17). After that, 𝑃𝑖 creates a block 𝑏 with content𝑊𝑖 , the

height 𝑙𝑒 , and hash of𝑞𝑐ℎ𝑖𝑔ℎ . Then, 𝑃𝑖 broadcasts a (Propose, 𝑏, 𝑙𝑒, 𝑞𝑐ℎ𝑖𝑔ℎ)

message to all replicas (line 20). Here, we say 𝑃𝑖 a-broadcasts 𝑏.

Prepare phase. Every replica waits for the proposal from the

leader. Upon receiving a (Propose, 𝑏, 𝑒, 𝑞𝑐ℎ𝑖𝑔ℎ) message from the

leader 𝑃ℓ , 𝑃𝑖 verifies whether 𝑏 is valid (line 24 and Algorithm 5,

lines 1-7). Namely, 𝑏 is valid if 𝑏 extends the block of 𝑃𝑖 ’s local

𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 and each𝑊𝑒 in the proposal consists of𝑛−𝑓 valid QCs. Af-
ter that, if 𝑃𝑖 belongs to𝐶

2

𝑐,𝑒 , it broadcasts a (Prepare, ℎ𝑎𝑠ℎ(𝑏), 𝑙𝑒, 𝜎𝑖)
message to all replicas, where 𝜎𝑖 is a signature for (1, ℎ𝑎𝑠ℎ(𝑏), 𝑙𝑒).
Commit andDeliverphases. Every replica expects^−𝑡 (Prepare)
messages from 𝐶2

𝑐,𝑒 . If so, the signatures included in the (Prepare)

messages form a QC and every replica updates its local 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶

(line 31).

If a replica 𝑃𝑖 belongs to𝐶
3

𝑐,𝑙𝑒
, it creates a signature for (2, ℎ𝑎𝑠ℎ(𝑏), 𝑙𝑒)

and then sends a (Commit, ℎ, 𝑙𝑒, 𝜎𝑖) message to all replicas (lines 32-

34), whereℎ = ℎ𝑎𝑠ℎ(𝑏). If 𝑃𝑖 belongs to𝐶3

𝑐,𝑙𝑒
, receives 𝑡+1matching

(Commit) messages from replicas in𝐶3

𝑐,𝑙𝑒
, and has not sent a (Commit)

message, 𝑃𝑖 also sends a (Commit, ℎ, 𝑙𝑒, 𝜎𝑖) message to all replicas

(lines 37-40).

Finally, after each replica receives^−𝑡 matching (Commit, ℎ, 𝑙𝑒, 𝜎𝑖)

messages, it is ready to a-deliver block 𝑏 (and the hash of 𝑏 is

ℎ). Before that, 𝑃𝑖 also checks whether its last committed epoch

is 𝑐𝑒 = 𝑙𝑒 − 1 (line 44). If so, 𝑃𝑖 fetches block 𝑏 (either stored

locally or from other replicas) and then a-delivers𝑚, the content

in block 𝑏. Otherwise, 𝑃𝑖 queries the ObtainMissing() function to

obtain the missing values between 𝑐𝑒 + 1 and 𝑙𝑒 − 1 (lines 45-46). In
the ObtainMissing(𝑐𝑒, 𝑙𝑒,𝑚) function, there are two cases for each

epoch 𝑒 ∈ [𝑐𝑒, 𝑙𝑒]:
• A set of QCs for epoch 𝑒 is included in𝑚 (Algorithm 5, lines 25-

26), i.e., the leader has previously included𝑊𝑒 in its proposal. In

this case, 𝑃𝑖 can include𝑊𝑒 in its output and a-delivers the value.

• QCs for epoch 𝑒 are not included in𝑚 (Algorithm 5, lines 27-29).

This might be caused by the fact that some correct replica has

previously a-deliverd some value in epoch 𝑒 but 𝑃𝑖 has not. In this

case, 𝑃𝑖 waits for a QC from 𝐶3

𝑐,𝑒 and then fetches the proposed

block𝑏 (We ignore the details of how replicas obtain the proposed

block based on the hash value as the approach largely follows

prior works [13, 56]). Then 𝑃𝑖 a-delivers the value.

Afterward, 𝑃𝑖 a-delivers the proposed values sequentially accord-

ing to the epoch numbers.

5.4 State Transfer

We provide a state transfer mechanism that only involves ^-to-all

communication so the message complexity is 𝑂 (^𝑛). The idea is
aligned with our transmission and consensus process and we show

the pseudocode in Algorithm 6.

In our state transfer mechanism, 𝑛 committees are sampled

and each one is denoted as 𝐶
𝑗
𝑠,𝑒 . Committee members in 𝐶

𝑗
𝑠,𝑒 are

in charge of helping other correct replicas collect the proposal

from 𝑃 𝑗 . Namely, if the QC from 𝑃 𝑗 (denoted as 𝑞𝑐 𝑗) is a-delivered

in the consensus process, every correct replica 𝑃𝑖 that belongs

to 𝐶
𝑗
𝑠,𝑒 and meanwhile holds the proposal will send a message

(Distribute, 𝑗, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] [𝑗]) message to all replicas (lines 5-8),

where 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] [𝑗] is the proposal 𝑃𝑖 previously received from

8

Algorithm 6 The state transfer process for replica 𝑃𝑖 and tag ID

1: function Obtain(𝑒,𝑚)
2: sample a committee 𝐶

𝑗
𝑠,𝑒 for each 𝑗 ∈ [𝑛]

3: 𝑂 ← ⊥
4: for 𝑞𝑐 𝑗 ∈𝑚 do

5: if 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 [𝑒] [𝑗] ≠ ⊥ then

6: 𝑂 ← 𝑂 ∪ 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] [𝑗]
7: if 𝑃𝑖 ∈ 𝐶 𝑗

𝑠,𝑒 then

8: send (Distribute, 𝑗, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] [𝑗]) to all repli-

cas

9: end if

10: end if

11: upon receiving (Distribute, 𝑗, 𝑀) from 𝑃𝑘 do

12: if 𝑃𝑘 ∈ 𝐶
𝑗
𝑠,𝑒 and 𝐻𝑎𝑠ℎ(𝑀) matches that for 𝑞𝑐 𝑗 then

13: 𝑂 ← 𝑂 ∪𝑀
14: end if

15: wait until |𝑂 | = |𝑚 |
16: clear𝑊 [𝑒] and remove transactions in 𝑂 from 𝑄

17: end function

𝑃 𝑗 in the transmission process. Any correct replica that receives a

(Distribute, 𝑗, 𝑀) message verifies whether the hash of𝑀 matches

that in the a-delivered message in the consensus process (lines 11-

12). If so, the replica adds𝑀 to its output 𝑂 . Finally, every correct

replica 𝑃𝑖 waits for the proposals for every QC in𝑚 (i.e., |𝑂 | = |𝑚 |)
and completes the state transfer.

5.5 Correctness and Complexity

Correctness. Our protocol is secure under a weakly adaptive ad-

versary. This is because an adversary cannot corrupt too many

members in each committee until it is too late, except with negli-

gible probability. Namely, in all three processes, every member of

each committee only sends a message once. Therefore, even if the

adversary learns that the replica is in a committee, the message has

already been sent so corrupting the replica is useless.

While we show the proof of correctness in detail in Appendix A,

we briefly sketch the correctness below.

Safety. Roughly, the safety of the atomic broadcast protocol ensures

the safety of the BFT. For the safety of our atomic broadcast protocol,

a crucial observation is that a committee can convey the agreement

result to all replicas. Informally, the crux is to show that if a correct

replica 𝑃𝑖 has received ^ − 𝑡 matching (Commit) messages from𝐶3

𝑐,𝑒

in epoch 𝑒 for an a-broadcast message𝑚, no correct replica will

a-deliver message𝑚′ ≠𝑚 in epoch 𝑒 and any correct replica will

only vote for a (Propose) message that excludes𝑚 in epochs greater

than 𝑒 . The property that no correct replica will a-deliver message

𝑚′ ≠𝑚 in epoch 𝑒 is ensured by the fact that each committee has at

least ^ −𝑡 correct replicas with 1−negl(^) probability (Lemma A.1).

Indeed, if at least ^ − 𝑡 replicas in𝐶3

𝑐,𝑒 are correct, no correct replica

will a-deliver 𝑚′ by the quorum intersection rule [10].

Additionally, we also need to ensure that every correct replica

will only vote for a (Propose) message that excludes𝑚 in epochs

greater than 𝑒 . This is achieved by two factors. First, if 𝑃𝑖 has

received ^ − 𝑡 matching (Commit) messages from 𝐶3

𝑐,𝑒 in epoch

𝑒 , at least 𝑓 + 1 correct replicas in the entire system are locked

on𝑚 after receiving ^ − 𝑡 matching (Prepare) messages from 𝐶2

𝑐,𝑒 .

This can also be proved using the Chernoff bound and we show the

correctness in Lemma A.3 and Corollary A.4. Second, to ensure that

a correct leader always proposes the correct proposal (that excludes

a message already a-delivered by at least one correct replica), we

introduce a New-View phase where a committee is sampled and

the committee members send their 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 to the leader 𝑃ℓ . In

this way, the leader can receive the highest locked QC.

Liveness. Liveness of the system requires understanding all the three

processes. First, our transmission process ensures that if a QC is

formed, at least 𝑓 + 1 correct replicas have previously received the

proposal. We show in Lemma A.8 that this happens with probability

1 − 𝛿 . Second, the probability that a message𝑚 a-broadcast by a

correct replica is not a-delivered decreases as the system proceeds.

Informally, this is because a correct replica will a-broadcast a mes-

sage that has previously been proposed but still not a-delivered yet.

Indeed, in our atomic broadcast protocol, we intentionally bind the

epoch number with the leader. In particular, every leader 𝑝ℓ (where

ℓ = 𝑙𝑒 mod 𝑛) only proposes𝑊 [𝑙𝑒] (the certificates for proposals
in epoch 𝑙𝑒 of the transmission process, line 14 of Algorithm 4).

This can greatly simplify the state transfer process but it is possible

that some certificates in epochs lower than 𝑙𝑒 cannot be a-delivered.

To address this issue, the leader 𝑝ℓ also proposes the certificates

between epoch ℎ𝑒𝑖𝑔ℎ𝑡 (𝑞𝑐ℎ𝑖𝑔ℎ) and 𝑙𝑒 − 1 (lines 15-17). In this way,

even if some leaders fail to propose any value in their turn, a set

of 𝑛 − 𝑓 certificates can still be proposed with the help of a correct

leader. The amortized number of certificates a-delivered in every

epoch is thus 𝑛 − 𝑓 . Finally, our state transfer process samples a

committee and we just need to ensure that at least one correct

committee member has previously received the proposal from the

leader. As we already know that at least 𝑓 + 1 correct replicas in the

system have previously received the proposal, it is not difficult to

see that with overwhelming probability, at least one correct com-

mittee member has received the proposal. We show in Lemma A.9

that the probability is 1 − 𝛿
1

9
−𝜖2

𝜖2 .

Complexity. As our protocol only involves one-to-all and ^-to-all

communication, the message complexity is𝑂 (^𝑛). The communica-

tion complexity of the transmission process, consensus process, and

state transfer process is𝑂 (𝐿𝑛2+^2𝑛2),𝑂 (^2𝑛2), and𝑂 (𝐿^𝑛2+^2𝑛2),
respectively. We show the detailed complexity analysis in Appen-

dix A.4.

6 ANALYSIS OF FAILURE PROBABILITY

We analyze the concrete failure probability of Pando in Appendix A

and we summarize our results in this section. In Lemma A.1, we

show that if we use a committee size of
3𝛼
`2

ln
1

𝛿
= 𝑂 (^), with prob-

ability 1 − 𝛿 , the number of faulty replicas in the committee is less

than 𝑡 = ^/3 and the number of correct replicas in the committee is

more than 2^/3. If we set 𝛿 = 𝑒−𝜔 (log^) , 𝛿 is a negligible function.

Using 𝛿 as a parameter, we analyze the concrete probability for

safety and liveness of Pando.

Probability of safety violation. Safety of the system is violated if

a correct replica a-delivers𝑚 and another correct replica a-delivers

𝑚′ and 𝑚 ≠ 𝑚′ in the consensus process. As shown in Theo-

rem A.12, the probability of safety violation is 𝑂 (𝛿2).
9

0 200 400 600 800 1,000 1,200 1,400 1,600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

committee size

𝜖

failure prob = 10
−3

failure prob = 10
−4

failure prob = 10
−9

Figure 3: Committee size vs. 𝜖.

An interesting fact is that the probability of safety violation is

related to the number of phases in the consensus process. Informally,

consider the protocol within a view, there are two phases of ^-to-all

communication (i.e., the Prepare phase and the Commit phase),

and we rely on the committees𝐶2

𝑐,𝑒 and𝐶
3

𝑐,𝑒 to achieve the security

properties. Safety is violated only if neither committee has at least

^ − 𝑡 correct replicas, i.e., the probability of safety violation is

𝑂 (𝛿2). Additionally, our proof shows that the probability of safety

violation across views is lower than 𝑂 (𝛿2) so the probability of

safety violation of the protocol is bounded by 𝑂 (𝛿2).
Notably, we can modify the consensus process to have more

phases to lower the probability of safety violation. For instance,

if we have one more phase of communication in the consensus

process, the probability of safety violation becomes 𝑂 (𝛿3).
We use the two-phase protocol shown in Algorithm 4 in our

implementation. We show the relationship between the committee

size and 𝜖 in Figure 3. We also show some examples of the concrete

probabilities in Table 3 and Table 4. In these tables, Pando (𝑥) de-

notes the setting where the committee size is 𝑥𝑛 (we use 𝑥𝑛 for

ease of understanding; this could simply be ^ instead). The tables

aim to show the relationship between 𝜖 and 𝑛. Namely, the goal is

to show that given a desirable failure probability (e.g., 10
−4

so the

protocol fails once every 10,000 epochs), how much resilience needs

to be sacrificed for each 𝑛. As shown in Table 3, 𝑛 does not have

to be impractically large in our system. For example, for 𝑛 ≥ 400

and a committee size of more than 160 replicas, the resilience of

the system is between 𝑛 > 4𝑓 to 𝑛 > 3𝑓 . When 𝑛 is greater, 𝜖 is

closer to 0.

Probability of liveness violation. We consider that liveness is

violated if a transaction𝑚 is submitted to the system but is never

delivered. Liveness can be violated in three scenarios: 1) No value

is a-delivered in the consensus process; 2) Some value is a-delivered

in the consensus process but no correct replica has received the cor-

responding proposal; 3) Some value is a-delivered in the consensus

process, at least one correct replica has received the corresponding

proposal, but the state transfer fails. As we show in Appendix A,

the probability of the first scenario is 𝛿2𝐸 , where 𝐸 is the number

of epochs after𝑚 is submitted. Therefore, the failure probability of

the consensus process is closer to 0 as the system is up and running.

Accordingly, the probability of liveness violation of Pando becomes

𝑝1 + (1 − 𝑝1)𝑝2, where 𝑝1 is the probability that no correct replica

𝑛 = 100 200 300 400 500 1000

Pando (0.2) 0.193 0.138 0.125 0.104 0.092 0.068

Pando (0.4) 0.138 0.104 0.089 0.074 0.068 0.047

Pando (0.6) 0.125 0.089 0.073 0.063 0.056 0.039

Pando (0.8) 0.104 0.074 0.063 0.053 0.047 0.033

Table 3: The value of 𝜖 for the system to achieve a failure rate

of at most 10
−4
. The system requires 𝑓 ∈ [0, 1

5
𝑛), 𝑓 ∈ [1

5
𝑛, 1

4
𝑛),

and 𝑓 ∈ [1
4
𝑛, 1

3
𝑛) for dark gray cells, gray cells, and white

cells, respectively.

𝑛 = 100 200 300 400 500 1000

Pando (0.2) 0.157 0.108 0.1 0.083 0.071 0.052

Pando (0.4) 0.108 0.083 0.07 0.057 0.052 0.036

Pando (0.6) 0.1 0.07 0.057 0.049 0.044 0.03

Pando (0.8) 0.083 0.057 0.049 0.041 0.036 0.025

Table 4: The value of 𝜖 for the system to achieve a failure rate

of at most 10
−3
.

has received the transaction in the transmission process and 𝑝2 is

the probability that state transfer fails. As shown in Theorem A.18,

the probability of liveness violation is 𝑂 (𝛿
1

9
−𝜖2

𝜖2) for 𝜖 < 0.19 or

𝑂 (𝛿2) for 𝜖 ∈ [0.19, 0.33).

7 IMPLEMENTATION AND EVALUATION

We implement Pando in Golang
3
. We also implement Star in the

same library and assess Narwhal using their open-source imple-

mentation [46]. We assess these two protocols as they have the

same partial synchrony assumption as ours. Our codebase involves

around 10,000 LOC for the protocol and about 1,000 LOC for evalu-

ation. In our implementation, we use gRPC as the communication

library. We use HMAC to realize the authenticated channel and use

SHA256 as the underlying hash function. We use the Golang-based

reed solomon code library
4
for erasure coding. We use the Golang-

based VRF implementation
5
to instantiate the ComProve() and

ComVerify() oracle. The implementation of VRF achieves adaptive

security under the random oracle assumption.

We evaluate the performance of our protocols on Amazon EC2

using up to 200 virtual machines (VMs) and up to 1,000 replicas. We

use m5.xlarge instances for our evaluation. The m5.xlarge instance

has four vCPUs and 16GB memory. When assessing a setup with

fewer than 100 replicas, we use each instance to run one replica. For

a setup with more replicas, we use each instance to run five replicas.

We deploy our protocols in the WAN setting, where replicas are

evenly distributed in four different regions: us-west-2 (Oregon, US),

us-east-2 (Ohio, US), ap-southeast-1 (Singapore), and eu-west-1

(Ireland).

We conduct the experiments under different network sizes and

batch sizes. We may use 𝑓 or 𝑛 to denote the network size and we

use 𝑛 = 3𝑓 + 1 replicas for each experiment. We use 𝑏 to denote

3
Pando codebase: https://anonymous.4open.science/r/scalable-bft-2C53

4
https://github.com/klauspost/reedsolomon

5
https://github.com/yoseplee/vrf

10

𝑓 = 10 𝑓 = 20 𝑓 = 30

0

100

200

300

400

98.64

138.7

190.3

218.12

274.65

344.47

161.58
170.32

268.65

132.24
123.83

116.65

P
e
a
k
t
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

Pando (1) Pando (0.8)

Star Narwhal

(a) Peak throughput of Star, Nar-

whal and Pando as 𝑓 grows.

0 50 100 150

0

1

2

3

4

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

Pando (1) Star Narwhal

(b) Latency vs. throughput in

WAN for 𝑓 = 10.

0 50 100 150

0

1

2

3

4

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

Pando (1) Star Narwhal

(c) Latency vs. throughput in

WAN for 𝑓 = 20.

0 50 100 150 200 250

0

1

2

3

4

5

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

Pando (1) Star Narwhal

(d) Latency vs. throughput in

WAN for 𝑓 = 30.

0 500 1,000 1,500 2,000 2,500 3,000

2

3

4

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

Pando (0.2) Pando (0.4)

Pando (0.6) Pando (0.8)

Pando (1)

(e) Latency vs. throughput of

Pando inWANusing different com-

mittee sizes for 𝑓 = 30.

0 500 1,000 1,500 2,000 2,500 3,000
0

2

4

6

8

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

Pando (0.2) Pando (0.4)

(f) Latency vs. throughput of

Pando in WAN for 𝑛 = 100.

0 500 1,000 1,500 2,000 2,500 3,000
0

2

4

6

8

10

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

Pando (0.2) Pando (0.4)

(g) Latency vs. throughput of Pando

in WAN for 𝑛 = 200.

0 200 400 600 800 1,000 1,200 1,400 1,600
0

5

10

15

20

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

Pando (0.2) Pando (0.4)

(h) Latency vs. throughput of

Pando in WAN for 𝑛 = 300.

0 100 200 300 400 500 600

0

10

20

30

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

Pando (0.2) Pando (0.4)

(i) Latency vs. throughput of

Pando in WAN for 𝑛 = 400.

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

Pando (0.2) Pando (0.4)

(j) Latency vs. throughput of

Pando in WAN for 𝑛 = 500.

𝑛 = 100 𝑛 = 200 𝑛 = 300 𝑛 = 400 𝑛 = 500

0

1,000

2,000

3,000 2,947.44

2,812.4

1,558.42

600.96

158.25

2,359.4

1,527.36
1,456.1

125.72
55.35

P
e
a
k
t
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

Pando (0.2) Pando (0.4)

(k) Peak throughput of Pando as

𝑛 grows.

0 2 4 6 8 10 12

n=100 (0.2)

n=200 (0.2)

n=300 (0.2)

n=100 (0.4)

n=200 (0.4)

n=300 (0.4)

Latency breakdown (Sec)

Transmission Consensus

(l) Latency breakdown of Pando when

𝑏 = 50, 000 for different 𝑛.

batch size ktx/sec CPU bandwidth

100 2.49 62% 18.1MB/s

1,000 23.9 140% 18.8MB/s

5,000 117.54 186% 19.1MB/s

10,000 203.59 288% 19.4MB/s

15,000 344.47 (peak) 364% 19.7MB/s

(m) CPU and bandwidth usage of Pando

(0.8) for 𝑓 = 30 with different batch sizes.

Maximum CPU usage is 400%.

committee ktx/sec CPU bandwidth

0.2n 256.17 172% 5.9MB/s

0.4n 238.8 186% 10.7MB/s

0.6n 222.56 248% 15.2MB/s

0.8n 203.59 288% 19.4MB/s

n 190.30 (peak) 344% 24.3MB/s

(n) CPU and bandwidth usage of Pando

for 𝑓 = 30 and 𝑏 = 10, 000 for different

committee sizes. Maximum CPU usage is

400%.

instance vCPU

memory bandwidth batch peak tps

(GiB) (Gbps) size (ktx/sec)

m5.2 8 32 up to 10 - -

m5n.2 8 32 up to 25 5,000 62.57

m5.4 16 64 up to 10 100 1.22

c5.4 16 32 up to 10 100 1.6

(o) Peak throughput of Pando for 𝑛 = 1, 000 using differ-

ent instance types.

Figure 4: Performance of the protocols.

the batch size. We repeat each experiment five times and report the

average performance. The transaction size is 250 bytes.

When evaluating Pando, we vary the committee sizes from 0.2𝑛

to 𝑛 to assess the performance. Namely, when the committee size

is 𝑛, the protocol is very close to a conventional protocol, e.g.,

Star. We intentionally do so to validate our results. We use the

notation Pando (𝑥) to denote the experiment with 𝑥𝑛 committee

members. For example, Pando (0.2) uses 0.2𝑛 committee members

and Pando (1) uses 𝑛 committee members. Notably, for Pando (1),

committee sampling is not needed anymore and the failure rate is

not subjective to the failure rate 𝛿 . Our evaluation still involves the

VRF evaluations to assess the overhead created due to committee

sampling.

We summarize the required 𝜖 for our experiments to achieve a

satisfactory failure rate in Table 3 and Table 4. To achieve a failure

rate of lower than 10
−4
, Pando (0.6) needs to set 𝜖 = 0.125 when

𝑛 = 100, i.e., 𝑓 < 0.2𝑛. When 𝑛 is larger, 𝜖 can be much lower.

For instance, for 𝑛 =1,000, Pando (0.4) can support 𝑓 < 0.29𝑛 and

𝑓 < 0.3𝑛, for the system to achieve a failure rate of 10
−4

and 10
−3
,

respectively.

We summarize our evaluation results below.

11

• We were able to run Narwhal and Star using up to 100 replicas.

Experiments beyond 100 replicas cannot be successfully launched

on the VMs we used. We believe this is in part due to the low-end

VMs (only 4 vCPUs). In contrast, we were able to run Pando

using up to 500 replicas using the same low-end VMs and 1,000

replicas on VMs with only slightly better configuration.

• If we set the committee size of Pando as 𝑛, the performance

of Pando is marginally lower than that of Narwhal and Star. If

the committee size is lower than 𝑛, the performance of Pando

starts to increase significantly due to lower communication and

computational cost.

• By setting up a committee size of lower than 𝑛, Pando is signif-

icantly faster than existing protocols (but 𝜖 is also larger than

the setup with a larger 𝑛). For example, for 𝑛 = 91, the peak

throughput of Pando (0.8) for 𝑓 = 30 is 81.01% higher than Pando

(1) and 28.22% higher than Star. Even for 𝑛 = 500, Pando (0.4)

still achieves a peak throughput of 158 ktx/sec.

• We conducted experiments for 1,000 replicas using different VMs.

Our observation is that for a small-scale network, CPU is usually

the bottleneck of the system. In contrast, for the large-scale

network, the network bandwidth is the bottleneck.

Comparison of Pando, Narwhal, and Star.We first assess the

peak throughput of Pando, Narwhal, and Star. We were not able to

successfully runNarwhal and Star for a network beyond 100 replicas

as we met a frequent "connection refused" error due to high commu-

nication costs. We believe this is mainly because our experiments

are launched on low-end VMs with restricted network bandwidth.

Accordingly, our comparison focuses on the setting for 𝑛 < 100.

We report the peak throughput of Pando (1), Pando (0.8), Star, and

Narwhal in Figure 4a and latency vs. throughput for 𝑓 = 10, 20, 30

in Figure 4b-4d. Our results show that the performance of Pando

(1) is only marginally lower than Star and consistently higher than

Narwhal. This is expected as Pando (1) has a committee size of 𝑛,

so the communication and computational costs are almost identical

to conventional protocols. Compared to Star, Pando (1) uses CBC

instead of wCBC for the transmission process so the overhead is

slightly higher. Additionally, Pando involves more computation due

to VRF, so the performance is lower.

Pando (0.8) already consistently outperforms other protocols.

For example, the peak throughput of Pando (0.8) for 𝑓 = 30 is

81.01% higher than Pando (1) and 28.22% higher than Star. The

improvement is caused by both lower communication and lower

computation. Namely, the ^ term for the communication becomes

more insignificant as 𝑛 grows.

Pando with different committee sizes. To assess the improve-

ment of Pando over existingworks, we assess latency vs. throughput

for Pando for 𝑓 = 30 by varying the committee size as 0.2𝑛 to 𝑛.

As shown in Figure 4e, the performance of Pando is higher when

the committee size is smaller. This is expected as having a small

committee size will lower both communication and computational

costs. The cost is that for a network of 91 replicas, 𝜖 has to be larger

for smaller committee sizes, as summarized in Table 3-4.

We further assess the CPU and bandwidth usage of Pando for

𝑓 = 30. In Figure 4m, we evaluate Pando (0.8) for different batch

sizes until it achieves the peak throughput. It can be seen that the

CPU usage and bandwidth usage grow as 𝑏 grows. When CPU is

fully used, the throughput does not grow anymore. Additionally,

in Figure 4n, we fix the batch size as 10, 000 and vary the size of

the committee. Among these experiments, Pando (𝑛) is the only

instance that achieves its peak throughput, in which case the CPU

usage is maximized. For other cases, as the committee size is smaller,

the CPU usage and bandwidth usage are also lower and the protocol

achieves its peak throughput using an even larger batch size.

Latency vs. throughput. We assess latency vs. throughput of

Pando for 𝑛 = 100, 200, 300, 400, 500. For these scalability tests,

we run five replicas on each VM. We choose 0.2𝑛 and 0.4𝑛 as the

committee sizes and report the results in Figure 4f-4j. In general,

the performance degrades as 𝑛 grows. This is expected and similar

results have been reported in all prior works. For a committee size

of 0.4𝑛, all of our experiments are completed within 50 seconds (the

highest occurs when 𝑛 = 500). If we choose a committee size of

0.2𝑛, the experiments are completed within 30 seconds. For 𝑛 = 200,

the latency and peak throughput of Pando (0.2) are 4.9 seconds and

2,812 ktx/sec, respectively. This result is achieved with a batch size

of around 80,000. As there are 200 replicas in total, 16,000 ktx are

proposed so such a throughput is thus expected.

Scalability and latency breakdown.We report the peak through-

put of Pando for 𝑛 = 100 to 500 in Figure 4k. The throughput

degrades significantly as 𝑛 grows. We believe this is mainly because

of the high communication cost and we started to meet the error of

"connection refused" for 𝑛 > 300. To further assess the results, we

report the latency breakdown of the transmission process and the

consensus process in Figure 4l. An interesting finding is that when

𝑛 is large enough (in our case 𝑛 ≥ 100), the latency of the consensus

process is even higher than the transmission process. This is mainly

because the size of the certificate is very large as we instantiate

each QC using a set of signatures. We believe this overhead can be

further reduced using approaches such as aggregate signatures.

Experiments using 1,000 replicas.We conducted experiments

using 1,000 replicas and were not able to obtain any throughput

using the same 𝑚5.𝑥𝑙𝑎𝑟𝑔𝑒 VMs. We thus used different types of

VMs to run the protocol. As summarized in Figure 4o, unlike small-

scale experiments in which the CPU is usually the bottleneck, the

network bandwidth is the bottleneck of the system for our 1,000-

replica experiments. For VMs with higher network bandwidth (e.g.,

𝑚5𝑛.2𝑥𝑙𝑎𝑟𝑔𝑒 instance with 8 vCPU, 32GB memory, and up to 25

Gbps bandwidth), we were able to launch the experiments and

Pando achieves a throughput of up to 62.57 ktx/sec. For VM with

better configuration but lower network bandwidth (e.g., 𝑐5.4𝑥𝑙𝑎𝑟𝑔𝑒

instance with 16 vCPU, 32GB memory, and up to 10 Gbps band-

width), Pando only achieves a throughput of 1.6 ktx/sec, as we were

not able to run the experiments with a larger batch size (again due

to the "connection refused" errors).

8 CONCLUSION

We present Pando, the first practical and scalable BFT from commit-

tee sampling and the first BFT that can scale to 1,000 realWAN repli-

cas (with near-optimal resilience). To this end, we have provided

new communication-efficient and computation-efficient building

blocks for BFT, including block transmission, atomic broadcast, and

state transfer—all of which are of independent interest.

12

REFERENCES

[1] Ittai Abraham, TH Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling

Ren, and Elaine Shi. 2019. Communication complexity of byzantine agreement,

revisited. In Proceedings of the 2019 ACM Symposium on Principles of Distributed

Computing. 317–326.

[2] Ittai Abraham, Dahlia Malkhi, et al. 2017. The blockchain consensus layer and

BFT. Bulletin of EATCS 3, 123 (2017).

[3] Yair Amir, Claudiu Danilov, Jonathan Kirsch, John Lane, Danny Dolev, Cristina

Nita-Rotaru, Josh Olsen, and David Zage. 2006. Scaling Byzantine Fault-Tolerant

Replication to Wide Area Networks. In DSN. IEEE, 105–114.

[4] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh

Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula

Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason Yellick. 2018.

Hyperledger fabric: A distributed operating system for permissioned blockchains.

EuroSys.

[5] Jean-Paul Bahsoun, Rachid Guerraoui, and Ali Shoker. 2015. Making BFT proto-

cols really adaptive. In IPDPS. IEEE, 904–913.

[6] Amey Bhangale, Chen-Da Liu-Zhang, Julian Loss, and Kartik Nayak. 2022. Effi-

cient adaptively-secure byzantine agreement for long messages. In International

Conference on the Theory and Application of Cryptology and Information Security.

Springer, 504–525.

[7] Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. 2020. Asynchro-

nous byzantine agreement with subquadratic communication. In TCC. Springer,

353–380.

[8] Elette Boyle, Ran Cohen, and Aarushi Goel. 2021. Breaking the O(

√
n)-Bit Barrier:

Byzantine Agreement with Polylog Bits Per Party. In PODC. 319–330.

[9] Ethan Buchman. 2017. Tendermint: byzantine fault tolerance in the age of

blockchains. (2017).

[10] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. 2011. Introduction to

reliable and secure distributed programming. Springer Science & Business Media.

[11] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Se-

cure and efficient asynchronous broadcast protocols. In Annual International

Cryptology Conference. Springer, 524–541.

[12] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. 1996. Adaptively se-

cure multi-party computation. In Proceedings of the twenty-eighth annual ACM

symposium on Theory of computing. 639–648.

[13] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance and

proactive recovery. ACM Transactions on Computer Systems (TOCS) 20, 4 (2002),

398–461.

[14] T-H Hubert Chan, Rafael Pass, and Elaine Shi. 2020. Sublinear-round byzantine

agreement under corrupt majority. In IACR International Conference on Public-Key

Cryptography. Springer, 246–265.

[15] Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient distributed

ledger. Theoretical Computer Science 777 (2019), 155–183.

[16] Tyler Crain, Christopher Natoli, and Vincent Gramoli. 2021. Red Belly: A Secure,

Fair and Scalable Open Blockchain. In Symposium on Security. IEEE, 466–483.

[17] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and Tal Rabin.

1999. Efficient multiparty computations secure against an adaptive adversary. In

International conference on the Theory and Applications of Cryptographic Tech-

niques. Springer, 311–326.

[18] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander

Spiegelman. 2022. Narwhal and Tusk: a DAG-based mempool and efficient BFT

consensus. In Proceedings of the Seventeenth European Conference on Computer

Systems. 34–50.

[19] Sisi Duan, Hein Meling, Sean Peisert, and Haibin Zhang. 2014. BChain: Byzantine

Replication with High Throughput and Embedded Reconfiguration. In OPODIS.

91–106.

[20] Sisi Duan, Sean Peisert, and Karl N Levitt. 2015. hBFT: Speculative Byzantine

fault tolerance with minimum cost. IEEE Transactions on Dependable and Secure

Computing 12, 1 (2015), 58–70.

[21] Sisi Duan, Michael K Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT

made practical. In CCS. ACM, 2028–2041.

[22] Sisi Duan, Xin Wang, and Haibin Zhang. 2023. Practical Signature-Free Asyn-

chronous Common Subset in Constant Time. In CCS.

[23] Sisi Duan and Haibin Zhang. 2022. Foundations of Dynamic BFT. In 2022 IEEE

Symposium on Security and Privacy (SP). 1317–1334.

[24] Sisi Duan, Haibin Zhang, Xiao Sui, Baohan Huang, Changchun Mu, Gang Di,

and Xiaoyun Wang. 2024. Dashing and Star: Byzantine Fault Tolerance from

Weak Certificates. In Eurosys.

[25] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

presence of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988), 288–323.

[26] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility

of distributed consensus with one faulty process. JACM 32, 2 (1985), 374–382.

[27] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.

2022. Dumbo-NG: Fast Asynchronous BFT Consensus with Throughput-

Oblivious Latency. In CCS.

[28] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.

2022. Dumbo-ng: Fast asynchronous bft consensus with throughput-oblivious

latency. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and

Communications Security. 1187–1201.

[29] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegel-

man, and Zhuolun Xiang. 2022. Jolteon and Ditto: Network-Adaptive Efficient

Consensus with Asynchronous Fallback. In FC. 296–315.

[30] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In

Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 51–68.

[31] Neil Giridharan, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander

Spiegelman. 2022. Bullshark: DAG BFT Protocols Made Practical. In CCS.

[32] Neil Giridharan, Florian Suri-Payer, Matthew Ding, Heidi Howard, Ittai Abraham,

and Natacha Crooks. 2023. BeeGees: Stayin’ Alive in Chained BFT. In PODC,

Rotem Oshman, Alexandre Nolin, Magnús M. Halldórsson, and Alkida Balliu

(Eds.). ACM, 233–243.

[33] Rachie Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. 2015.

The next 700 bft protocols. ACM Transactions on Computer Systems 32, 4 (2015),

12:1–12:45.

[34] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,

Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.

Sbft: a scalable and decentralized trust infrastructure. In 2019 49th Annual IEEE/I-

FIP international conference on dependable systems and networks (DSN). IEEE,

568–580.

[35] Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng

Zhang. 2022. Speeding dumbo: Pushing asynchronous bft closer to practice.

NDSS (2022).

[36] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020.

Dumbo: Faster Asynchronous BFT Protocols.. In CCS.

[37] James Hendricks, Shafeeq Sinnamohideen, Gregory R Ganger, and Michael K

Reiter. 2010. Zzyzx: Scalable fault tolerance through Byzantine locking. In DSN.

IEEE, 363–372.

[38] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman.

2021. All You Need is DAG. In PODC. ACM, 165–175.

[39] Valerie King and Jared Saia. 2011. Breaking the 𝑂 (𝑛2) bit barrier: scalable
byzantine agreement with an adaptive adversary. Journal of the ACM (JACM)

58, 4 (2011), 18.

[40] Daniel Larimer. 2014. Delegated proof-of-stake (dpos). (2014).

[41] Jinyuan Li and David Maziéres. 2007. Beyond One-Third Faulty Replicas in

Byzantine Fault Tolerant Systems.. In NSDI.

[42] Chao Liu, Sisi Duan, and Haibin Zhang. 2020. EPIC: Efficient Asynchronous BFT

with Adaptive Security. In DSN.

[43] Y. Lu, Z. Lu, Q. Tang, and G. Wang. 2020. Dumbo-MVBA: Optimal Multi-Valued

Validated Asynchronous Byzantine Agreement, Revisited. In PODC.

[44] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,

and Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In

Proceedings of the SIGSAC Conference on Computer and Communications Security.

ACM, 17–30.

[45] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The

honey badger of BFT protocols. In ACM CCS. 31–42.

[46] Narwhal and Tusk. 2021. Narwhal and Tusk. (2021). https://github.com/

MystenLabs/narwhal

[47] Sajjad Rahnama, Suyash Gupta, Rohan Sogani, Dhruv Krishnan, and Mohammad

Sadoghi. 2022. RingBFT: Resilient Consensus over Sharded Ring Topology. In

EDBT. 2:298–2:311.

[48] Michael K Reiter. 1994. Secure agreement protocols: Reliable and atomic group

multicast in Rampart. In Proceedings of the 2nd ACM Conference on Computer

and Communications Security. 68–80.

[49] Chrysoula Stathakopoulou, Tudor David, Matej Pavlovic, and Marko Vukolic.

2022. [Solution] Mir-BFT: Scalable and Robust BFT for Decentralized Networks.

J. Syst. Res. 2, 1 (2022).

[50] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić. 2022. State-

machine replication scalability made simple (extended version). In Eurosys.

[51] Xiao Sui, Sisi Duan, and Haibin Zhang. 2022. Marlin: Two-Phase BFT with

Linearity. DSN (2022).

[52] Xiao Sui, Sisi Duan, and Haibin Zhang. 2024. BG: A Modular Treatment of BFT

Consensus. TIFS (2024).

[53] Georgios Tsimos, Julian Loss, and Charalampos Papamanthou. 2022. Gossiping

for communication-efficient broadcast. In CRYPTO.

[54] Xin Wang, Sisi Duan, James Clavin, and Haibin Zhang. 2022. BFT in Blockchains:

From Protocols to Use Cases. ACM Computing Surveys (CSUR) (2022).

[55] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum Project Yellow Paper 151 (2014).

13

https://github.com/MystenLabs/narwhal
https://github.com/MystenLabs/narwhal

[56] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2019. HotStuff: BFT consensus with linearity and responsiveness. In 38th

ACM symposium on Principles of Distributed Computing (PODC).

[57] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain: A

Fast Blockchain Protocol via Full Sharding. In CCS. 931–948.

[58] Haibin Zhang and Sisi Duan. 2022. PACE: Fully Parallelizable BFT from Repro-

posable Byzantine Agreement. In CCS.

[59] Haibin Zhang, Sisi Duan, Boxin Zhao, and Liehuang Zhu. 2023. WaterBear: Prac-

tical Asynchronous BFT Matching Security Guarantees of Partially Synchronous

BFT. In Usenix Security.

[60] Haibin Zhang, Chao Liu, and Sisi Duan. 2022. How to achieve adaptive security

for asynchronous BFT? J. Parallel and Distrib. Comput. 169 (2022), 252–268.

[61] You Zhou, Zongyang Zhang, Haibin Zhang, Sisi Duan, Bin Hu, Licheng Wang,

and Jianwei Liu. 2022. Dory: Asynchronous BFT with Reduced Communication

and Improved Efficiency. IACR Cryptol. ePrint Arch. (2022), 1709.

A PROOF OF CORRECTNESS

A.1 The Transmission Process

In this section, we prove the correctness of the transmission process.

Additionally, we also show the properties of the committees, which

are useful for the proof of the Pando protocol.

(Chernoff Upper Tail Bound). Suppose {𝑋𝑛} is the indepen-
dent {0, 1}-random variables, and 𝑋 =

∑
𝑖 𝑋𝑖 . Then for any 𝜏 > 0:

Pr (𝑋 ≥ (1 + 𝜏)𝐸 (𝑋)) ≤ exp

(
−𝜏 ·min{𝜏, 1} · 𝐸 (𝑋)

3

)
Lemma A.1. Let 𝛼 = 1

3
− 𝜖 be the fraction of faulty replicas in the

system and 𝜖 is a small constant where 0 < 𝜖 ≤ 1

3
, 𝛿 be the desired

failure probability. If the number of the replicas in the committee is

greater than
3𝛼
𝜖2

ln
1

𝛿
= 𝑂 (^), then with probability 1 − negl(^), the

number of faulty replicas in the committee is less than 𝑡 = ^/3 and
the number of correct replicas in the committee is more than 2^/3.

Proof. We model the committee election process as a 𝑐-times

independent and repeated experiment, where 𝑐 is the size of the

committee; in the one-time experiment, a determinate replica is

chosen randomly to be a committee member among all replicas in

the system. This is equivalent to the process in which each replica

calls the committee election oracle ComProve() to check whether

it is a member of the committee. Suppose 𝑃𝑖 be the determinate

committee member chosen in the 𝑖-th experiment, it is either correct

or corrupt. Let the random variable 𝑋𝑖 be 1 if 𝑃𝑖 is faulty and 𝑋𝑖 be

0 otherwise. Since 𝑛 is a sufficiently large number, a faulty replica

is chosen for the committee in a single experiment with a fixed

probability 𝛼 , so 𝑃𝑟 (𝑋𝑖 = 1) = 𝛼 , for each 𝑖 = 1, 2, · · · , 𝑐 , as shown
in Table 5.

𝑥 1 0

𝑃𝑟 (𝑋𝑖 = 𝑥) 𝛼 1 − 𝛼
Table 5: Distribution of random variable 𝑋𝑖 .

Let the random variable 𝑌 such that 𝑌 = 𝑋1 + · · · + 𝑋𝑐 . Then 𝑌

represents the total number of faulty replicas chosen in the 𝑐-times

independent and repeated experiments. Based on the above analysis

and probability theory, we have 𝐸 (𝑌) = 𝛼𝑐 .

According to the Chernoff Bound, we have

Pr

(
𝑌 ≥ 𝑐

3

)
= Pr (𝑌 ≥ (𝛼 + 𝜖)𝑐)

= Pr

(
𝑌 ≥ (1 + 𝜖

𝛼
)𝐸 (𝑌)

)
≤ exp{−𝜖

2𝐸 (𝑌)
3𝛼2

}

= exp{−𝑐𝜖
2

3𝛼
}

≤ 𝛿 (since 𝑐 ≥ 3𝛼

𝜖2
log

1

𝛿
)

Typically, the failure probability of the protocol 𝛿 is a negligible

function in some statistical security parameters. As a special case,

assuming that 𝜖 is a arbitrarily small positive constant, 0 < 𝜖 < 1

3

and the mining difficulty parameter is 𝑝𝑚𝑖𝑛𝑒 = 3𝛼
𝜖2𝑛

ln
1

𝛿
, then the

failure probability 𝛿 = 𝑒−𝜔 (log^) would be a negligible function, so
with probability 1 − negl(^), the lemma holds. □

Corollary A.2. Let 𝛼∗ be the fraction of correct replicas in the

system that holds some value 𝑣 . If we sample a committee of
3𝛼
𝜖2

ln
1

𝛿
=

𝑂 (^) size, 𝛼∗^ committee members hold value 𝑣 with probability

1 − negl(^).

Lemma A.3. In the transmission process, if 𝑃𝑖 receives ^ − 𝑡 sig-
natures from committee 𝐶𝑖

𝑡,𝑒 for (𝑒, ℎ, 𝑖), then with probability 1 −
negl(^), at least 𝑓 + 1 correct replicas in the system have received the

proposed message𝑀 from 𝑃𝑖 and the hash of𝑀 is ℎ.

Proof. We assume fewer than 𝑓 + 1 correct replicas have re-

ceived𝑀 and prove the correctness by contradiction. Suppose at

most 𝑓 < (1/3 − 𝜖)𝑛 correct replicas in the system have received

the proposed message 𝑀 from 𝑃𝑖 , and the hash of 𝑀 is ℎ. Then

after these correct replicas call the ComProve() oracle, fewer than
(1/3 − 𝜖)^ replicas in 𝐶𝑖

𝑡,𝑒 have received𝑀 since 𝑝𝑚𝑖𝑛𝑒 = ^/𝑛. Ac-
cording to Lemma A.1, there are at most ^/3 faulty replicas in 𝐶𝑖

𝑡,𝑒

with probability 1−𝛿 . If 𝑃𝑖 receives ^−𝑡 signatures from committee

𝐶𝑖
𝑡,𝑒 for (𝑒, ℎ, 𝑖), at least ^ − 𝑡 = 2^/3 replicas in 𝐶𝑖

𝑡,𝑒 have received

𝑀 . This leads to a contradiction as there are only ^ replicas in the

committee. The lemma thus holds. □

Jumping ahead a little bit, Lemma A.3 also leads to the following

corollary for the consensus process.

Corollary A.4. In epoch 𝑒 of the consensus process, given that

each committee has at most 𝑡 faulty replicas, the following holds: 1)

if a correct replica receives ^ − 𝑡 (prepare) messages with hash ℎ from

𝐶2

𝑐,𝑙𝑒
, at least 𝑓 + 1 correct replicas in the system have received the

(propose) message where the proposed block 𝑏 satisfies ℎ𝑎𝑠ℎ(𝑏) = ℎ.

2) if a correct replica receives ^ − 𝑡 (commit) messages with hash ℎ

from 𝐶3

𝑐,𝑙𝑒
, at least 𝑓 + 1 correct replicas in the system have received

^ (prepare) messages from 𝐶2

𝑐,𝑙𝑒
and set their 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 to 𝑞𝑐 for

(2, ℎ, 𝑙𝑒).

Lemma A.5. Let 𝛼 = 1

3
− 𝜖 be the fraction of faulty replicas in the

system, 𝛿 be the desired failure probability and 𝜖 be a small constant

and 0 < 𝜖 < 1

3
. If the number of the replicas in the committee is

greater than
3𝛼
𝜖2

ln
1

𝛿
= 𝑂 (^), then with probability 1 − 2+3𝜖

1−3𝜖 · 𝛿
3−9𝜖
𝜖 ,

there exists at least one correct replica in the committee.

14

Proof. We bound the probability that there exists at most one

correct replica in each committee. Since the total number of replicas

𝑛 is sufficiently large, the probability that one faulty replica be

elected as a committee member is 𝛼 = 1

3
− 𝜖 (correspondingly,

the probability that one correct replica is elected as a committee

member is 1 − 𝛼 = 2

3
+ 𝜖). Let 𝑐 the the size of the committee. Then

the probability that no more than one correct replica is elected as a

committee member is:(
1

3

− 𝜖
)𝑐
+ 𝑐 ·

(
2

3

+ 𝜖
)
·
(
1

3

− 𝜖
)𝑐−1

=

(
1

3

(1 − 3𝜖)
)𝑐
+ 𝑐 · 2 + 3𝜖

1 − 3𝜖 ·
(
1

3

(1 − 3𝜖)
)𝑐

=
1

3
𝑐
· (1 − 3𝜖)𝑐 + 𝑐

3
𝑐
· 2 + 3𝜖
1 − 3𝜖 · (1 − 3𝜖)

𝑐

≤ 2𝑐
3
𝑐
· 2 + 3𝜖
1 − 3𝜖 · (1 − 3𝜖)

𝑐

≤ 2 + 3𝜖
1 − 3𝜖 · (1 − 3𝜖)

3𝛼

𝜖2
ln

1

𝛿 (since 𝑐 = 3𝛼

𝜖2
ln

1

𝛿
)

≤ 2 + 3𝜖
1 − 3𝜖 · exp

(
−9𝛼

𝜖
ln

1

𝛿

)
=
2 + 3𝜖
1 − 3𝜖 · 𝛿

3−9𝜖
𝜖

=𝑂

(
𝛿

3−9𝜖
𝜖

)
□

Lemma A.6. Let 𝛼 = 1

3
− 𝜖 be the fraction of faulty replicas in the

system, 𝛿 be the desired failure probability, and 𝜖 be a small constant

where 0 < 𝜖 < 1

3
. If the number of the replicas in the committee is

greater than
3𝛼
𝜖2

ln
1

𝛿
= 𝑂 (^), then with probability 1 − 𝛿

1

9
−𝜖2

𝜖2 , there

exist at least 𝑡 + 1 correct replicas in the committee where 𝑡 = ^/3.

Proof. We bound the probability that there are no more than

^/3 + 1 correct replicas in the committee. Since the number of

replicas is sufficiently large, the probability that one faulty replica

is elected as a committee member is 𝛼 = 1

3
− 𝜖 (correspondingly,

the probability that one correct replica is elected as a committee

member is 1 − 𝛼 = 2

3
+ 𝜖). Let 𝑐 be the committee size. Then the

probability that there are no more than 𝑐/3 + 1 correct replicas in
the committee is:

Pr

(
𝑌 ≥ 2𝑐

3

)
= Pr

(
𝑌 ≥ (𝛼 + 1

3

+ 𝜖)𝑐
)

= Pr

(
𝑌 ≥ (1 +

1

3
+ 𝜖
𝛼
)𝐸 (𝑌)

)
≤ exp{−

(1
3
+ 𝜖)𝐸 (𝑌)
3𝛼

}

= exp{−
(1
3
+ 𝜖)𝑐
3

}

≤ 𝛿

1

9
−𝜖2

𝜖2 (since 𝑐 ≥ 3𝛼

𝜖2
log

1

𝛿
)

□

Lemma A.7. In the transmission process, if 𝑃𝑖 receives ^ − 𝑡 signa-
tures from committee 𝐶𝑖

𝑡,𝑒 for the tuple (𝑒, ℎ, 𝑖), the probability that

none of correct committee members have received𝑀 is 𝛿

1

9
−𝜖2

𝜖2 .

Proof. Correctness follows Lemma A.6. □

Lemma A.8. In the transmission process for any epoch 𝑒 , if a QC

𝑞𝑐 𝑗 is formed where 𝑃 𝑗 is the sender, with the probability of 1−negl(^),
at least 𝑓 + 1 correct replicas have received the proposal from 𝑃 𝑗 .

Proof. The probability that 𝑡 + 1 correct committee members

in 𝐶
𝑗
𝑡,𝑒 have received the proposal from 𝑃 𝑗 is the same as the fact

that there exist fewer than ^ − 𝑡 correct replicas in the committee.

According to Lemma A.1, the probability is 1−𝛿 and 𝛿 is a negligible
function. Then following an argument similar to that for LemmaA.3,

this lemma holds. □

Lemma A.9. Assuming that at least 𝑓 + 1 correct replicas have

received a proposal from 𝑃 𝑗 , with the probability of 1 − negl(^), the
state transfer fails such that some correct replicas fail to receive the

proposal from 𝐶
𝑗
𝑠,𝑒 .

Proof. State transfer fails if the committee 𝐶
𝑗
𝑠,𝑒 does not have

any correct replica that has previously received the proposal from

𝑃 𝑗 . The probability is the same as that there are fewer than 𝑡 +

1 correct replicas in 𝐶
𝑗
𝑠,𝑒 , i.e., 𝛿

1

9
−𝜖2

𝜖2 by Lemma A.6, a negligible

function. □

A.2 The Consensus Process

In this section, we focus on the consensus process and show that

our protocol achieves the security properties of atomic broadcast

with probability 1-negl(^).

Lemma A.10. If a correct replica 𝑃𝑖 receives ^ − 𝑡 matching mes-

sages from 𝐶3

𝑐,𝑒 in epoch 𝑒 , the (Propose, 𝑏, 𝑒′, 𝑞𝑐ℎ𝑖𝑔ℎ) message by a

correct leader in epoch 𝑒′ > 𝑒 satisfies ℎ𝑒𝑖𝑔ℎ𝑡 (𝑞𝑐ℎ𝑖𝑔ℎ) ≥ 𝑒 . Addition-

ally, at least 𝑡 + 1 correct replicas in𝐶2

𝑐,𝑒′ accept the (Propose) message

only if ℎ𝑒𝑖𝑔ℎ𝑡 (𝑞𝑐ℎ𝑖𝑔ℎ) ≥ 𝑒 .

Proof. We know that 𝑃𝑖 receives ^ − 𝑡 matching messages from

𝐶3

𝑐,𝑒 . According to Corollary A.4, at least 𝑓 + 1 correct replicas in
the system have set their 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 to a QC 𝑞𝑐 for (2, ℎ, 𝑒). Now, in
any epoch 𝑒′ > 𝑒 , at the beginning of epoch 𝑒′, a committee 𝐶1

𝑐,𝑒 is

sampled, and the committee members send their 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 to the

leader. According to Corollary A.2, the leader will receive the QC

and update its 𝑞𝑐ℎ𝑖𝑔ℎ accordingly. If the leader provides 𝑞𝑐ℎ𝑖𝑔ℎ , the

height of which is lower than 𝑒 , at least 𝑓 + 1 correct replicas in the

system have set their 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 to 𝑞𝑐 . According to Corollary A.2,

at least 𝑡 + 1 correct replicas in 𝐶2

𝑐,𝑒 will not accept the (Propose)

message. The lemma thus follows. □

Lemma A.11. If a correct replica 𝑃𝑖 has received ^ − 𝑡 matching

(commit) messages from𝐶3

𝑐,𝑒 in epoch 𝑒 , in which the QC is for (2, ℎ, 𝑒),
any correct replica eventually receives a QC for (2, ℎ, 𝑒).

Proof. As 𝑃𝑖 has received ^ − 𝑡 matching (commit) messages

from 𝐶3

𝑐,𝑒 for (2, ℎ, 𝑒), at least ^ − 2𝑡 ≥ 𝑡 + 1 correct replicas have
sent (commit) messages. According to our protocol, every replica in

15

𝐶3

𝑐,𝑒 that has not sent a (commit) message will also send a (commit)

message after receiving 𝑡 + 1 matching messages. Therefore, 𝑃 𝑗
eventually receives ^ − 𝑡 matching (commit) messages and obtains

a QC for (2, ℎ, 𝑒). □

Theorem A.12 (Safety). Let the probability that each committee

has more than 𝑡 faulty replicas be 𝛿 and the probability that the hash

function is not collision-resistant be 0. If a correct replica a-delivers a

message𝑚 before a-delivering𝑚′, then with probability 1 −𝑂 (𝛿2),
no correct replica a-delivers a message𝑚′ without first a-delivering
𝑚.

Proof. As the input of each epoch is a set of QCs and correct

replicas only a-deliver messages sequentially, no correct replica will

a-deliver any value𝑚 that has already been a-delivered.

Now we assume that a correct replica 𝑃𝑖 a-delivers𝑚 in epoch 𝑒1
and a-delivers𝑚′ in epoch 𝑒2 and 𝑒2 > 𝑒1. Another correct replica 𝑃 𝑗
a-delivers𝑚 in 𝑒′

1
and𝑚′ in 𝑒′

2
and 𝑒′

2
< 𝑒′

1
. We prove the correctness

by contradiction.

Without loss of generality, we assume 𝑒1 < 𝑒′
2
(the correctness

follows vice versa). We show that if 𝑃𝑖 a-delivers𝑚 in epoch 𝑒1, 𝑃 𝑗
also a-delivers𝑚′ in 𝑒1,𝑚 =𝑚′.

If 𝑃𝑖 a-delivers 𝑚, there are two cases: Case 1) 𝑃𝑖 has received

^−𝑡 matching signatures for (2, ℎ, 𝑒1) from𝐶3

𝑐,𝑒1
in epoch 𝑒1, where

ℎ is the hash of𝑚; Case 2) 𝑃𝑖 has a-delivered some value in epoch

𝑒′ > 𝑒1 and then a-delivers 𝑚 via the ObtainMissing() function.
Similarly, if 𝑃 𝑗 a-delivers 𝑚

′
, there are two cases: Case 3) 𝑃 𝑗 has

received ^−𝑡 matching signatures for (2, ℎ′, 𝑒1) from𝐶3

𝑐,𝑒1
in epoch

𝑒1, where ℎ
′
is the hash of𝑚′; Case 4) 𝑃 𝑗 has a-delivered some value

in epoch 𝑒′′ > 𝑒1 and then a-delivers 𝑚 via the ObtainMissing()
function. In the following, we show that in any combination of the

two cases,𝑚 =𝑚′.

Case-1: Case 1 (for 𝑃𝑖) and Case 3 (for 𝑃 𝑗). As the committee

𝐶3

𝑐,𝑒1
has ^ replicas among which at most ^/3 replicas are faulty

with probability 1 − negl(^), at least one correct replica has sent
a signature for both (2, ℎ, 𝑒1) and (2, ℎ′, 𝑒1), a contradiction. Addi-
tionally, according to the collision-resistance of the hash function,

𝑚 =𝑚′.

Probability of safety violation for Case-1: According to the

definition, a correct replica in 𝐶3

𝑐,𝑒1
will never send signatures for

inconsistent values. 𝑃𝑖 receives^−𝑡 matchingmessages for (2, ℎ, 𝑒1)
from𝐶3

𝑐,𝑒1
. Let the set of ^ − 𝑡 replicas that send matching (Commit)

messages be 𝑆1. Meanwhile, 𝑃 𝑗 receives ^−𝑡 matching messages for

(2, ℎ′, 𝑒1) from𝐶3

𝑐,𝑒1
. Let the set of replicas that send ^ − 𝑡 matching

messages be 𝑆2. According to the proof in Theorem A.12, a safety

violation occurs only when 𝑆1 or 𝑆2 has fewer than ^ − 2𝑡 correct
replicas.

There are two sub-cases if safety is violated: 1) none of 𝑆1 or 𝑆2
has any correct replicas; 2) there is at least one correct replica 𝑃𝑘
in 𝑆1 and there is at least one correct replica 𝑃ℓ in 𝑆2 and 𝑘 ≠ ℓ .

For sub-case 1 (Case-1-SC1), faulty committee members can

already cause a safety violation. The probability SC1 occurs only

if the 𝐶3

𝑐,𝑒1
committee has fewer than 𝑡 + 1 correct replicas. By

Lemma A.6, the probability of safety violation of sub-case 1 is:

Pr(𝐶𝑎𝑠𝑒-1-𝑆𝐶1) = 𝛿

1

9
−𝜖2

𝜖2

We now analyze sub-case 2 (Case-1-SC2). First, this case causes

a safety violation only if there are fewer than ^ − 𝑡 correct replicas
so the probability is 𝑝1 = 𝛿 .

Second, we analyze the probability that sub-case 2 leads to a

safety violation. Since 𝑃𝑘 has sent a (Commit) message for (2, ℎ, 𝑒1),
it has previously received ^ − 𝑡 matching (Prepare) messages for

(1, ℎ, 𝑒1) from 𝐶2

𝑐,𝑒1
. Let the set of replicas be 𝑆3. Meanwhile, as 𝑃ℓ

has sent a (Commit) message for (2, ℎ′, 𝑒1), it has previously received
^ − 𝑡 matching (Prepare) messages for (1, ℎ′, 𝑒1) from 𝐶2

𝑐,𝑒1
. Let the

set of replicas be 𝑆4. The probability that there does not exist a

correct replica in 𝑆3∩𝑆4 is the same as the probability that the𝐶2

𝑐,𝑒1
committee has fewer than ^ − 𝑡 correct replicas, i.e., 𝑝2 = 𝛿 .

Put them together, the probability that sub-case 2 leads to a

safety violation is:

Pr(𝐶𝑎𝑠𝑒-1-𝑆𝐶2) ≤ 𝑝1𝑝2 = 𝛿2 .

The probability that Case-1 leads to a safety violation is then:

Pr(𝐶𝑎𝑠𝑒-1) = Pr(𝐶𝑎𝑠𝑒-1-𝑆𝐶1) + Pr(𝐶𝑎𝑠𝑒-1-𝑆𝐶2) ≤ 𝛿

1

9
−𝜖2

𝜖2 + 𝛿2 .

Case-2: Case 1 (for 𝑃𝑖) and Case 4 (for 𝑃 𝑗). If 𝑃 𝑗 a-delivers some

value𝑚′′ in epoch 𝑒′′ > 𝑒1,𝑚
′′
consists of proposals between the

height of 𝑞𝑐ℎ𝑖𝑔ℎ (in the (propose) message) and 𝑒′′. We first show

that the ℎ𝑒𝑖𝑔ℎ𝑡 (𝑞𝑐ℎ𝑖𝑔ℎ) ≥ 𝑒1. Then, we show that 𝑃 𝑗 will eventually

receive a QC for epoch 𝑒1in theObtainMissing() function and then

a-deliver 𝑚′. Finally, we show𝑚 =𝑚′.
We begin with ℎ𝑒𝑖𝑔ℎ𝑡 (𝑞𝑐ℎ𝑖𝑔ℎ) ≥ 𝑒1. If 𝑃𝑖 receives ^ − 𝑡 matching

(commit) messages in epoch 𝑒1, by Lemma A.10, in the proposal of

any epoch greater than 𝑒1, at least 𝑡 + 1 correct replicas will not
accept a (Propose) message for ℎ𝑒𝑖𝑔ℎ𝑡 (𝑞𝑐ℎ𝑖𝑔ℎ) < 𝑒1 with probability

1 − negl(^). Now, assume that when 𝑃 𝑗 a-delivers some value in

epoch 𝑒′′, the height of the 𝑞𝑐ℎ𝑖𝑔ℎ in the (Propose) message is lower

than 𝑒1. Therefore, at least ^ − 𝑡 replicas in𝐶2

𝑐,𝑒′′ have accepted the

(Propose) message and created a signature. This is a violation as at

least 𝑡 + 1 correct replicas in 𝐶2

𝑐,𝑒′′ will not accept the message.

We now show that 𝑃 𝑗 eventually obtains a QC for (2, ℎ, 𝑒1) for
epoch 𝑒1 in theObtainMissing() function. According to LemmaA.11,

𝑃 𝑗 eventually obtains a QC for (2, ℎ, 𝑒1). After that 𝑃 𝑗 has either
received𝑚′ from the leader such that the hash of𝑚′ is ℎ, or syn-
chronized𝑚′ from other replicas.

According to the collision-resistance of the hash function,𝑚 =

𝑚′.

Probability of safety violation for Case-2: 𝑃𝑖 receives ^ − 𝑡

matching (commit) messages from 𝐶3

𝑐,𝑒1
in epoch 𝑒1. Additionally,

𝑃 𝑗 a-delivers some value in epoch 𝑒′′ and the height of the 𝑞𝑐ℎ𝑖𝑔ℎ
in the (Propose) message is lower than 𝑒1. At least ^ − 𝑡 replicas
in 𝐶2

𝑐,𝑒′′ have accepted the (Propose) message with 𝑞𝑐ℎ𝑖𝑔ℎ . Among

them, fewer than ^ − 2𝑡 are correct. In a partially synchronous

environment, the probability that this occurs is the same as the

probability that 𝐶2

𝑐,𝑒′′ has fewer than ^ − 𝑡 correct replicas, i.e.,

𝑝1 = 𝛿 .

There are three sub-cases for 𝐶3

𝑐,𝑒1
in epoch 𝑒1: there are fewer

than 𝑡 + 1 correct replicas in 𝐶3

𝑐,𝑒1
; there are at least ^ − 𝑡 correct

replicas in 𝐶3

𝑐,𝑒1
; there are fewer than ^ − 𝑡 correct replicas in 𝐶3

𝑐,𝑒1
.

16

The probability of the three sub-cases is 𝛿

1

9
−𝜖2

𝜖2 (by Lemma A.6),

1 − 𝛿 , 𝛿 , respectively.
Sub-case 1 (Case-2-SC1) directly leads to a safety violation. By

Lemma A.6, the probability that there are fewer than 𝑡 + 1 correct

replicas in 𝐶3

𝑐,𝑒1
is: 𝛿

1

9
−𝜖2

𝜖2 . Meanwhile, any committee 𝐶∗𝑐,𝑒 for 𝑒1 <

𝑒 < 𝑒′′ has at least ^ − 𝑡 correct replicas. The probability that each

𝐶∗𝑐,𝑒 has at least ^ − 𝑡 correct replicas is 1 − 𝛿 . Together with the

case that there are fewer than ^ − 𝑡 correct replicas in 𝐶2

𝑐,𝑒′′ , the

probability that SC1 leads to a safety violation is:

Pr(𝐶𝑎𝑠𝑒-2-𝑆𝐶1) < 𝑝1 · 𝛿
1

9
−𝜖2

𝜖2

= 𝛿

1

9

𝜖2 .

For sub-case 2 (Case-2-SC2), 𝑃𝑖 receives ^ − 𝑡 matching (Commit)

messages for (2, ℎ, 𝑒1). Among them, at least ^ − 2𝑡 messages are

sent by correct replicas. Any correct replica 𝑃𝑘 in the ^ − 2𝑡 set has
received ^ − 𝑡 matching (Prepare) messages for (1, ℎ, 𝑒1). According
to Corollary A.4, at least 𝑓 +1 correct replicas receive ^−𝑡 matching

(Prepare) messages for (1, ℎ, 𝑒1). According to the protocol, these
𝑓 + 1 correct replicas will not vote for 𝑞𝑐ℎ𝑖𝑔ℎ . Therefore, sub-case 2
leads to a safety violation when 1)𝐶2

𝑐,𝑒′′ has fewer than ^−𝑡 correct
replicas; 2) there are at least ^ − 𝑡 correct replicas in 𝐶3

𝑐,𝑒1
; 3) there

are fewer than ^ − 𝑡 correct replicas in𝐶2

𝑐,𝑒1
; 4) Any committee𝐶∗𝑐,𝑒

for 𝑒1 < 𝑒 < 𝑒′′ has at least ^ − 𝑡 correct replicas. The probability
of 1), 2), 3) is 𝛿 , 1−𝛿 , 𝛿 , respectively. Therefore, the probability that
sub-case 2 leads to a safety violation is:

Pr(𝐶𝑎𝑠𝑒-2-𝑆𝐶2) < 𝛿 (1 − 𝛿)𝛿 = 𝛿2 (1 − 𝛿) < 𝛿2 .

Sub-case 3 (Case-2-SC) leads to a safety violation when both

sub-case 3 occurs and there are fewer than ^ − 𝑡 correct replicas in
𝐶2

𝑐,𝑒′′ . Meanwhile, any committee 𝐶∗𝑐,𝑒 for 𝑒1 < 𝑒 < 𝑒′′ has at least
^ − 𝑡 correct replicas. Therefore,

Pr(𝐶𝑎𝑠𝑒-2-𝑆𝐶3) < 𝛿2 .

To conclude, the probability that Case-2 leads to a safety violation

is:

Pr(𝐶𝑎𝑠𝑒-2) = Pr(𝐶𝑎𝑠𝑒-2-𝑆𝐶1) + Pr(𝐶𝑎𝑠𝑒-2-𝑆𝐶2) + Pr(𝐶𝑎𝑠𝑒-2-𝑆𝐶3)

< 𝛿

1

9

𝜖2 + 𝛿2 + 𝛿2 = 𝑂 (𝛿2) .

Case-3: Case 2 (for 𝑃𝑖) and Case 3 (for 𝑃 𝑗). Correctness is similar

to Case-1 (i.e.,case 1 for 𝑃𝑖 and case 4 for 𝑃 𝑗) and we omit the details

here.

Probability of safety violation for Case-3: The analysis for this

case is similar to that for Case-1 and we omit the details.

Case-4: Case 2 (for 𝑃𝑖) and Case 4 (for 𝑃 𝑗). Both 𝑃𝑖 and 𝑃 𝑗 a-

deliver some value in epoch greater than 𝑒1. Here, there are two

sub-cases: 1) at least one correct replica 𝑃ℓ has received^−𝑡 (commit)
messages in epoch 𝑒1; 2) none of the correct replicas has received

^ − 𝑡 (commit) messages in epoch 𝑒1. In the first sub-case, we know

that the height of 𝑞𝑐ℎ𝑖𝑔ℎ in the (propose) message by a correct leader

for any epoch greater than 𝑒1 must be greater than 𝑒1 according to

Lemma A.10. In this case, since 𝑒′ > 𝑒1 and 𝑒
′′ > 𝑒1, the a-delivered

message will not consist of any value for epoch 𝑒1. According to

Lemma A.11, both 𝑃𝑖 and 𝑃 𝑗 eventually receive the same 𝑞𝑐 for

epoch 𝑒1. It is then not difficult to see that𝑚 =𝑚′. In the second

sub-case, the case is identical to case 1 for some correct replicas

and case 3 for some correct replicas. It is then not difficult to see

that𝑚 =𝑚′.
As 𝑃 𝑗 a-delivers𝑚 in epoch 𝑒1, 𝑒1 = 𝑒′

1
. We also know that 𝑃 𝑗 a-

delivers𝑚′ in 𝑒′
2
and 𝑃𝑖 a-delivers𝑚

′
in epoch 𝑒2. Therefore, 𝑒

′
2
< 𝑒2.

Following a similar argument as above, we know that if 𝑃 𝑗 a-delivers

𝑚′ in 𝑒′
2
, 𝑃𝑖 must have a-delivered 𝑚′ in 𝑒′

2
as well, a contradiction

with 𝑒′
2
< 𝑒2.

Probability of safety violation for Case-4: The analysis for this

case is similar to that for Case-2 and we omit the details.

To conclude, the probability that safety is violated is 𝑂 (𝛿2). The
theorem thus follows. □

Lemma A.13. In every epoch 𝑒 , if at least one correct replica 𝑃𝑖
receives ^ − 𝑡 (Commit, ℎ, 𝑒,−) messages with the same ℎ, every correct

replica 𝑃 𝑗 eventually receives ^ − 𝑡 (Commit, ℎ, 𝑒,−) messages.

Proof. We assume that Δ is properly set up. If a correct replica

𝑃𝑖 receives ^ − 𝑡 (Commit, ℎ, 𝑒,−) messages with the same ℎ, the

messages are sent from committee members in 𝐶3

𝑐,𝑒 . As the com-

mittee𝐶3

𝑐,𝑒 has at least 𝑡 + 1 correct replicas, all correct replicas will
eventually receive 𝑡 + 1 (Commit) messages with the same ℎ and

any correct replica that has not sent a (Commit) message will send

one to all replicas. Therefore, every correct replica 𝑃 𝑗 eventually

receives ^ − 𝑡 (Commit, ℎ, 𝑒,−) messages. □

Lemma A.14. In every epoch 𝑒 , if at least one correct replica 𝑃𝑖
receives ^ − 𝑡 (Commit, ℎ, 𝑒,−) messages with the same ℎ, for the block

𝑏 proposed by the leader (the hash of 𝑏 is ℎ and the QCs with the

lowest epoch number in 𝑏 is 𝑒′), at least one correct replica has already
a-delivered some values in any epoch lower than 𝑒′.

Proof. If at least one correct replica 𝑃𝑖 receives^−𝑡 (Commit, ℎ, 𝑒,−)
messages with the same ℎ, at least 𝑡 + 1 replicas in 𝐶2

𝑐,𝑒 have sent

(Prepare) messages with the same ℎ, among which at least one is

correct. According to the IsValid(𝑏) function, every correct replica

in 𝐶2

𝑐,𝑒 sends a (Prepare) message only if it has completed every

epoch lower than 𝑒′. The lemma thus holds. □

Lemma A.15. If a correct replica queries ObtainMissing(𝑐𝑒, 𝑙𝑒,𝑚),
the function eventually returns some 𝒎.

Proof. If a correct replica 𝑃𝑖 queries ObtainMissing(𝑐𝑒, 𝑙𝑒,𝑚),
it iterates every 𝑒 ∈ [𝑐𝑒, 𝑙𝑒] and there are two cases: some QCs𝑊𝑒

has already been included in𝑚; QCs are not included in𝑚. For the

first case, 𝒎[𝑒] is set as𝑊𝑒 . We now focus on the second case. In

this case, 𝑃𝑖 has not completed epoch 𝑒 , but the proposer (leader in

epoch 𝑙𝑒) believes that epoch 𝑒 has already been completed. Here,

𝑃𝑖 simply waits for the proposal of epoch 𝑒 , and we show that 𝑃𝑖
eventually obtains the proposed block 𝑏. According to Lemma A.14,

at least one correct replica has completed epoch 𝑒 . Furthermore,

according to Lemma A.13, 𝑃𝑖 eventually receives ^ − 𝑡 matching

(Commit, ℎ, 𝑒,−) messages. Based on the hash value ℎ, 𝑃𝑖 is able to

obtain the original proposal 𝑏 (either directly received from the

leader in epoch 𝑒 or from other replicas). □

17

Theorem A.16 (Liveness). Let the probability that each commit-

tee hasmore than 𝑡 faulty replicas be 𝛿 . If a correct replica a-broadcasts

a message 𝑚, then all correct replicas eventually a-deliver 𝑚 with

probability 1 − 𝛿2𝐸 , where 𝐸 is an epoch number.

Proof. If a correct replica 𝑃𝑖 a-broadcasts a message𝑚 in epoch

𝑒 , it has received ^ − 𝑡 (Commit, ℎ, 𝑒,−) messages with the same ℎ.

According to Lemma A.13, any correct replica eventually receives

^ − 𝑡 (Commit, ℎ, 𝑒,−) messages with the same ℎ. Furthermore, 𝑃𝑖
either directly a-delivers some value or obtains some value from

the ObtainMissing() function. According to Lemma A.15, every

correct replica eventually obtains some 𝒎. The collision resistance

of the hash function ensures that the value of every correct replica

a-delivers is𝑚.

Consider the case where the leader is correct and the leader

proposes 𝑚 in epoch 𝑒 , liveness is violated only if none of 𝐶2

𝑐,𝑒

and 𝐶3

𝑐,𝑒 have at least ^ − 𝑡 correct replicas. By Lemma A.1, the

probability of this case is 𝛿2.

According to the protocol, replicas will move to a new view if

replicas do not a-deliver any value in epoch 𝑒 . We also additionally

require every correct leader to propose a value for epoch 𝑒 even if

it enters a new epoch 𝑒′ > 𝑒 . Without loss of generality, assuming

that the correct leader proposes 𝑚 in epoch 1 and every correct

leader continues to propose𝑚 if𝑚 has not been a-delivered yet.

The probability that𝑚 is not a-delivered until epoch 𝐸 is therefore

bounded by 𝛿2𝐸 . □

A.3 Safety and Liveness of Pando

Theorem A.17 (Safety). Let the probability that each committee

has more than 𝑡 faulty replicas be 𝛿 . If a correct replica delivers a

transaction 𝑡𝑥 before delivering 𝑡𝑥 ′, then no correct replica delivers a

transaction 𝑡𝑥 ′ without first delivering 𝑡𝑥 with probability 1−𝑂 (𝛿2).

Proof. The safety property of atomic broadcast (i.e., consensus

process) ensures that any correct replica a-delivers a set of QCs

in every epoch. For any 𝑞𝑐 𝑗 , every correct replica obtains 𝑀 , the

hash of which is ℎ according to Lemma A.8. Every correct replica a-

delivers the same set of transactions in𝑂 in every epoch. As correct

replicas deliver transactions in 𝑂 in the same deterministic order

and correct replicas will not deliver the same transaction twice, the

theorem thus holds.

By TheoremA.17, the probability that safety is violated for Pando

is the same as that for the atomic broadcast protocol. By Theo-

rem A.12, the probability is 𝑂 (𝛿2). □

Theorem A.18 (Liveness). Let the probability that each com-

mittee has more than 𝑡 faulty replicas be 𝛿 . If a transaction 𝑡𝑥 is

submitted to all correct replicas, then all correct replicas eventually

deliver 𝑡𝑥 with probability 1 −𝑂 (𝛿
1

9
−𝜖2

𝜖2).

Proof. If a transaction 𝑡𝑥 is submitted to all correct replicas,

eventually in some epoch, 𝑡𝑥 will included in the proposal by at

least one correct replica. As the network is eventually synchronous,

the 𝑞𝑐 for the proposal containing transaction 𝑡𝑥 will eventually be

received by all correct replicas.

At least 𝑛 − 𝑓 QCs will be a-delivered in the consensus process

according to the liveness of atomic broadcast (Theorem A.16), at

least 𝑓 + 1 QCs must be proposed by correct replicas. Therefore, it

is not difficult to see that 𝑡𝑥 will be eventually delivered by correct

replicas.

Liveness is violated under three cases: 1) No value is a-delivered

in the consensus process; 2) Some value is a-delivered in the consen-

sus process but no correct replica has received the corresponding

proposal; 3) Some value is a-delivered in the consensus process, at

least one correct replica has received the corresponding proposal,

and the state transfer fails.

According to Theorem A.16, the probability that no value is

a-delivered in the consensus process is 𝛿2𝐸 . We thus can ignore

this probability and consider that the transaction is eventually a-

delivered. Liveness is then violated under two cases, considering

that transaction 𝑚 in a-delivered in some epoch: 1) No correct

replica has received the corresponding proposal; 2) At least one

correct replica has received the corresponding proposal, and the

state transfer fails.

Given each QC, the probability that no correct replicas have

received the corresponding proposal is 𝑝1 = 𝛿

1

9
−𝜖2

𝜖2 by Lemma A.7.

Additionally, by Lemma A.9, the probability that state transfer fails

is 𝑝2 = 𝛿

1

9
−𝜖2

𝜖2 .

Therefore, the probability that liveness is violated for our proto-

col is:

Pr(𝐿𝑖𝑣𝑒𝑛𝑒𝑠𝑠-𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛) = 𝑝1 + (1 − 𝑝1)𝑝2

= 𝑂 (𝛿
1

9
−𝜖2

𝜖2
)

□

A.4 Complexity Analysis

We discuss the communication complexity of Pando.

Lemma A.19. The communication complexity of the transmission

process is 𝑂 (𝐿𝑛2 + ^2𝑛2).

Proof. The communication complexity of this process is bounded

by the function InitEpoch(𝑒), where the leader 𝑃𝑖 sends a message

(Proposal, 𝑒, 𝑀, 𝑞𝑐𝑖) to all replicas. Each 𝑞𝑐𝑖 consists of ^ digital sig-

natures so the length is 𝑂 (^2). As there are 𝑛 such instances, the

communication complexity is shown as follows.

𝑛∑︁
𝑖=1

𝑂

(
𝑛(𝐿 + ^2)

)
= 𝑂 (𝐿𝑛2 + ^2𝑛2)

□

Lemma A.20. The communication complexity of our atomic broad-

cast protocol is𝑂 (|𝑀 |𝑛+^2𝑛), where |𝑀 | is the size of input. The com-

munication complexity of the consensus process in Pando is 𝑂 (^2𝑛2).

Proof. In the (New-View) phase, ^ committee replicas send their

𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 to the leader. The size of 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 is ^2, so the commu-

nication of this phase is 𝑂 (^3).
In the (Propose) phase, the leader broadcasts its proposal𝑀 and

the evidence of its identity (VRF evaluation), and a QC to all replicas.

The length of the VRF evaluation is 𝑂 (^) and the length of the QC

is 𝑂 (^2), so the communication is 𝑂 (|𝑀 |𝑛 + ^2𝑛 + ^3).
18

In the (Prepare) and (Commit) phases, ^ replicas broadcast their

signatures to 𝑛 replicas, so the communication is 𝑂 (^2𝑛).
The communication complexity of the atomic broadcast protocol

is thus 𝑂 (|𝑀 |𝑛 + ^2𝑛 + ^3). As we consider 𝑛 > ^, the complexity

is 𝑂 (|𝑀 |𝑛 + ^2𝑛).
Using the atomic broadcast protocol in the consensus process,

the input consists of 𝑛 − 𝑓 QCs and the length of each QC is𝑂 (^2).
Therefore, the communication complexity is thus 𝑂 (^2𝑛2). □

Lemma A.21. The communication complexity of state transfer

protocol is 𝑂 (𝐿^𝑛2 + ^2𝑛2).

Proof. In the state transfer process, ^ replicas are sampled for

each 𝑗 and each sampled replica sends a proposal and a VRF evalu-

ation to all replicas. The communication complexity is shown as

follows.

𝑛∑︁
𝑖=1

𝑂 (^𝑛(𝐿 + ^)) = 𝑂 (𝐿^𝑛2 + ^2𝑛2)

□

19

	Abstract
	1 Introduction
	2 Related Work
	3 System Model and Building Blocks
	3.1 Building Blocks

	4 Motivation and Overview
	4.1 Review of Existing De-coupling Approaches
	4.2 The Scalability Bottlenecks
	4.3 Technical Overview

	5 The Pando Protocol
	5.1 The Generic Workflow
	5.2 The Transmission Process
	5.3 The Consensus Process
	5.4 State Transfer
	5.5 Correctness and Complexity

	6 Analysis of Failure Probability
	7 Implementation and Evaluation
	8 Conclusion
	References
	A Proof of Correctness
	A.1 The Transmission Process
	A.2 The Consensus Process
	A.3 Safety and Liveness of Pando
	A.4 Complexity Analysis

