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Abstract. Topic modelling refers to a popular set of techniques used
to discover hidden topics that occur in a collection of documents. These
topics can, for example, be used to categorize documents or label text
for further processing. One popular topic modelling technique is Latent
Dirichlet Allocation (LDA). In topic modelling scenarios, the documents
are often assumed to be in one, centralized dataset. However, some-
times documents are held by different parties, and contain privacy- or
commercially-sensitive information that cannot be shared. We present a
novel, decentralized approach to train an LDA model securely without
having to share any information about the content of the documents with
the other parties. We preserve the privacy of the individual parties us-
ing a combination of privacy enhancing technologies. We show that our
decentralized, privacy preserving LDA solution has a similar accuracy
compared to an (insecure) centralised approach. With 1024-bit Paillier
keys, a topic model with 5 topics and 3000 words can be trained in
around 16 hours. Furthermore, we show that the solution scales linearly
in the total number of words and the number of topics.
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1 Introduction

Topic modelling is a set of techniques that can discover abstract topics over a
large set of textual documents. This is useful when there is a lot of textual data
that need to be analyzed and manual analysis is infeasible. Topic modelling can
help to categorize and filter the data or to find related documents. Research until
now has focused on centralized data sets, where the training data is available
in one database. It is possible that certain private databases contain valuable
textual data for a topic model that data holders are unwilling to share. There
are two main reasons why data can be too sensitive to share: either commercially
sensitive, or personal information that is privacy sensitive.

An example of the latter motivation occurs in the medical domain, where
information on patients is generated by doctors in various different hospitals

∗The research was performed within TNO’s Appl.AI program.
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or other medical institutions. Combining the textual data from these different
entities is valuable for two reasons: firstly, they often contain different types
of information, which makes the input to the topic model more diverse and
the resulting topic model richer. Secondly, topic models generally need a large
amount of input, so combining inputs to train one larger topic model would result
in a better topic model. The topic model can for example be used to categorize
the textual data to enrich the structured patient data with new information and
predict inpatient violence [12], detect virus outbreaks at an early stage [9], or
get more insight into symptoms of certain diseases.

Privacy-Enhancing Technologies (PETs) provide a solution that retains the
advantages of big data analytics of textual data and ensures privacy (or pro-
tects other kinds of sensitivity) of the analyzed documents. In the context of the
GDPR, PETs contribute to data minimization - and therefore to proportionality
- and to data control. In our work, we specifically focus on a PET called Secure
Multi-Party Computation (MPC ). In a nutshell, MPC allows to perform com-
putations on data of multiple parties while keeping the inputs secret and only
revealing the outcome.

Our work proposes an algorithm that enables topic modelling on distributed
textual documents in a privacy-preserving way, using two MPC techniques called
homomorphic encryption and secret sharing. This opens the door to new busi-
ness cases that require topic models over textual personal data distributed over
different entities, such as the ones previously mentioned.

1.1 Latent Dirichlet Allocation

We focus on an existing algorithm called Latent Dirichlet Allocation to train a
topic model for a set of documents. Intuitively, a topic model categorizes doc-
uments into different topics, where each document is assigned a combination
of one or more topics. Furthermore, this gives insights into what words are of-
ten associated with these topics. Latent Dirichlet Allocation (LDA) is one of
many topic modelling techniques. Among the most common topic modelling
techniques, LDA is the most consistent performer over several comparison met-
rics, making it the most suitable algorithm for most applications [5]. In partic-
ular, we consider LDA and use a technique called Gibbs sampling to train the
model. Gibbs sampling is an iterative method to estimate latent distributions of
a data set based on observations from that data set.

This means that we iterate over all the words in all the documents and
observe what topic it most likely belongs to. With this topic, we then update
the parameters of the topic model. This is done until the parameters converge
to a stable representation of the topic model. There are also other methods
to train latent parameters, but Gibbs sampling was chosen because it often
yields relatively simple algorithms for approximate inference in high-dimensional
models such as LDA [6, Fig.8].
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1.2 Problem Setting

In this work, we consider the scenario where the documents are not stored in a
single database, but are distributed among multiple parties that want to train
a joint topic model, but do not wish to simply share these documents with
each other. Concretely, our goal is to mimic the existing LDA algorithm in a
privacy-preserving manner while maintaining the same accuracy as the non-
private version of the algorithm.

Suppose we have M documents, document m, 1 ≤ m ≤ M , containing Nm

words. We consider the setting where we have multiple parties, each having one or
more (sensitive) documents. Let K be the number of topics, and V the number of
terms3 in our vocabulary. Let α = (α1, . . . , αK) be the Dirichlet hyperparameters
for the topics in the topics-document distribution, and β = (β1, . . . , βV ) the
Dirichlet hyperparameters for the terms in the terms-topic distribution. All these
parameters are public.

During the distributed algorithm, we need to manage the secret matrix el-
ements n

(k)
m , representing the number of words in document m that have topic

k, and n
(t)
k , representing the number of words with term t that have topic k.

Note that {n(k)
m }m∈{1..M},k∈{1..K} is a matrix, which will be referred to as the

document-topic matrix. Furthermore, {n(t)
k }k∈{1..K},t∈{1..V } will be referred to

as the topic-term matrix. The document-topic matrix can be split into M vec-
tors, such that each party can manage and store only the vectors corresponding
to its own documents. For the second matrix we need a different solution to
avoid sharing sensitive data, see Section 3.

The purpose of the algorithm is to train the latent variable zm,n, denoting
the topic of the nth word of document m. In each iteration, for each document,
and for each word within that document, a new topic is sampled for that word
from a dynamic multinomial distribution. Given the word with index i = (m,n)
and term t, this distribution is proportional to:

Pr(zi = k) ∝
n
(t)
k,¬i + βt∑V

τ=1 n
(τ)
k,¬i + βτ

·
n
(k)
m,¬i + αk∑K

κ=1 n
(κ)
m,¬i + ακ

, (1)

where n(t)
k,¬i indicates the count n(t)

k , excluding the current word with index i, and

similarly n
(k)
m,¬i [6]. The first ratio can be roughly interpreted as the empirical

probability that a word (not the current word) with topic k has term t. The
second ratio can be roughly interpreted as the empirical weight of topic k in
document m. The hyperparameters α and β are often called pseudo-counts (from
prior belief) and contribute too.

3Term refers to the element of a vocabulary, and word refers to the element of a
document. A term has a particular meaning and can be instantiated by several words.



4 Thijs Veugen, Vincent Dunning, Michiel Marcus, and Bart Kamphorst

1.3 Related Work

Some research has already been done on privacy-preserving Latent Dirichlet
Allocation. We can distinguish two lines of research: work that enables privacy-
preserving LDA on centralized textual data, such that the final model does not
leak information about the inputs [19], and work that enables LDA on distributed
textual data, such that the information sent throughout the protocol does not
leak information about the inputs [3,17,18].

Our work falls into the latter category and therefore distinguishes itself from
the work in the former category by enabling LDA on decentralized data instead
of centralized data. We present several new secure protocols to perform each
step of the LDA algorithm in a privacy-preserving way. We now provide more
explanation of the other works in the latter category.

The first work on privacy-preserving LDA on distributed data was published
in 2010 by Yang and Nakagawa [18]. Similar to us, they use homomorphic en-
cryption. They use a custom protocol to draw the topics, which reveals the dis-
tributions to all parties. Additionally, they use a slightly altered version of the
LDA algorithm, as do we. Whereas they argue the validity of their alteration
with a notion of convergence based on the number of changes the algorithm
makes, we use a more robust analysis using the perplexity score, showing that
our alteration retains the quality and convergence rate of regular LDA.

Wang, Tong and Shi [17] propose a privacy-preserving LDA solution using
federated learning and differential privacy. Their solution makes it possible to
do local sampling, as the intermediate values are perturbed using differential
privacy techniques. As their experiments show, this comes at a quality cost, as the
perplexity score is higher for their solution than for regular LDA. Instead, we use
homomorphic encryption to keep all information hidden, including intermediate
values.

Colin and Dupuy [3] propose a solution to decentralized LDA with varying
network topologies. They claim that their solution attains privacy of the textual
documents, but no privacy arguments are given. In each iteration, two nodes,
each holding a number of documents, exchange (and average) their local statis-
tics. This is similar to sharing the matrix n

(k)
m , which we avoid in our solution

for privacy reasons.

1.4 Our Contributions

We present a novel solution for decentralized topic modelling in a privacy-
preserving manner using latent dirichlet allocation. This is the first solution that
does not leak anything about the content of the documents while at the same
time maintaining the accuracy of non-private versions of LDA. Furthermore, we
present two generic, cryptographic building blocks of independent interest:

– Securely drawing a random number from a finite set without revealing the
drawing probabilities, as described in Subsections 3.4 and 3.5.
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– A generic solution to efficiently convert (multiple) additively homomorphic
encrypted values to secret sharings, as described in Subsection 3.6 and Sec-
tion 4.

2 Preliminaries

Our work leverages cryptographic techniques to ensure secrecy of the documents’
contents, while still enabling us to learn from them. There are different technolo-
gies that can be applied to enable privacy-preserving computations. In this work
we use additively homomorphic encryption (AHE) [11,16] and secret-sharing
[14,2]. In its basic form, both techniques represent the messages they encrypt as
integers, which is also what we follow in this work. The key difference is that
AHE can be computed by a single party knowing the required information, while
with secret sharing all operations need to be performed by all the parties holding
the secrets. Parties can perform the linear operations on the shares individually,
but for more complex operations such as multiplication and division, interaction
is required between the parties. Nevertheless, for non-linear operations, secret
sharing often yields more efficient solutions than AHE.

Additively Homomorphic Encryption. We denote the encryption of a message or
plaintext m by [m]. We use the Paillier encryption scheme [11], which gives us
the operations ⊕ and ⊗ such that:

[x]⊕ [y] = [x+ y] and c⊗ [x] = [c · x],

for any public constant c, and secret messages x and y. That is, given encryp-
tions [x] and [y] of x and y, we can obtain an encryption [x+y] of the sum x+y
without decrypting the ciphertexts. The resulting ciphertext can be decrypted
to yield the result, or be input for further encrypted operations.

Secret Sharing. Secret Sharing has similar properties but works in a fundamen-
tally different, key-less way. Suppose we have a secret s and wish to use this in
a computation with a set of parties P1, . . . , Pn. The party holding the secret s
can split this secret up into a number of shares s1, . . . , sn and send each si to
party Pi. We denote the sharing of s by ⟨s⟩ = s1, . . . , sn.

Each party Pi can then compute operations for a public constant c and secret
sharings ⟨x⟩ = x1, . . . , xn and ⟨y⟩ = y1, . . . , yn for secrets x and y such that:

⟨x⟩⊞ ⟨y⟩ = ⟨x+ y⟩, c · ⟨x⟩ = ⟨c · x⟩ and ⟨x⟩⊠ ⟨y⟩ = ⟨x · y⟩.

In this work, we use the Shamir secret sharing scheme [14], which is a lin-
ear secret sharing scheme. This means we can compute the linear additions and
multiplications with a public constant without interaction between the parties.
Multiplication of two secrets is additionally possible with communication be-
tween the parties.
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3 Secure distributed LDA

In this section, we present the building blocks and algorithms required for se-
curely performing the distributed LDA algorithm. To this end, we start in Sub-
section 3.1 with the required security assumptions. After that, in Subsection 3.2
we explain our solution for securely keeping track of the document-topic and
topic-term matrices. Next we describe the main algorithm for securely perform-
ing Gibbs sampling in Subsection 3.3. Finally, in Subsections 3.4, 3.5 and 3.6
we respectively introduce separate building blocks for securely drawing a new
topic from secret weights, computing encrypted integer weights and converting
Paillier ciphertexts into Shamir secret sharings.

3.1 Security Model

For both techniques, we assume the semi-honest setting, where each entity tries
to learn as much information about the other entities’ data as possible, but
does follow the steps of the protocol. For most use cases, this security model
will suffice, as it is likely that honest participation will be agreed upon within
a contractual agreement between the entities. Furthermore, since LDA already
has some inherent privacy properties [19], it is unlikely that during execution
a dishonest entity can retrieve a significant amount of information about other
entities’ documents. However, we acknowledge this security model might not be
appropriate for large-scale deployments with many potentially dishonest entities.

3.2 Tracking the Matrices

As highlighted in Section 1.2, LDA essentially manages and updates two ma-
trices: a document-topic matrix and a topic-term matrix. The document-topic
matrix keeps track of the topic distribution of each document and consists of
elements n(k)

m , representing the portion of document m belonging to topic k. The
topic-term matrix keeps track of the topic distribution of each term in the vocab-
ulary and consists of elements n

(t)
k , representing the portion of term t belonging

to topic k over all documents.
However, these matrices are precisely the sensitive information that com-

pletely leaks the content of the documents of a party when simply giving it
away. Therefore, we need to find a secure way to store these matrices without
(significantly) decreasing the accuracy of the algorithm.

A crucial observation is that during the LDA algorithm, the matrix elements
n
(k)
m of the document-topic matrix are only needed by the party actually holding

document m. Therefore, it is not needed to maintain a complete, joint matrix
of all the documents, but it suffices to let each party locally maintain a part of
that matrix corresponding to only its own documents.

On the other hand, the topic-term matrix depends on the distribution over all
the documents and should therefore be available to all the parties in an oblivious
way. Maintaining this matrix comes down to adding to, and subtracting from,
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the elements in the matrix, which suggests the use of additively homomorphic
encryption for this. To avoid individual parties from decrypting and learning
the entries, we furthermore need threshold decryption [16]. This ensures that a
decryption can only be done if all the parties participate. Note that if we were
to do this with secret sharing, each party would need to keep track of the entire
matrix, which would introduce a lot of computational overhead.

3.3 Performing the Algorithm

A formal description of our Secure LDA solution for securely computing the
topic-term matrix n

(t)
k and the document-topic matrix n

(k)
m can be found in Ap-

pendix A. Roughly speaking, our Secure LDA solution consists of three phases:
initialisation, sampling and updating.

In the initialisation phase, the goal is to initialise the two matrices with a
random distribution that will be refined. To this end, all the parties sample
random topics for each word in each document, and use these to fill in an initial
(local) view on the document-topic matrix and the topic-term matrix. Next, the
parties need to build a global view of the complete topic-term matrix. To achieve
this, the parties encrypt all the elements in their local topic-term matrix and
combine these by sending the encrypted elements to each other and aggregate
them into a global matrix by adding the (encrypted) matrices of all the parties
element-wise.

After the initialisation, for a fixed number of iterations, the parties perform
a sampling and an updating phase. During the sampling phase, the parties use
the (secret) matrices as they are at the start of the iteration, to compute, for
each word in each document, a probability distribution over the topics. The
secure sampling procedure ensures that the distributions remain hidden from
the parties and is outlined in Subsections 3.4 and 3.5. For each party, the secure
sampling procedure yields a new topic for each word in each document. A party
uses this information to update her local version of the encrypted topic-term
matrix and local document-topic matrix.

The distribution that is drawn from is proportional to Equation 1. Note that
these distributions are in an encrypted form and the actual probabilities can
thus not be seen by the parties. First, we compute the encrypted weights for all
the topics using the procedure presented in Subsection 3.5. After that, we can
perform a secure draw from the encrypted weights using our novel algorithm
to draw from a secret probability distribution as presented in Subsection 3.4.
This way, the parties obtain for each word in each document a newly sampled
topic. During this sampling, the parties locally keep track of the matrix updates,
which means that they decrease their local counters corresponding to the matrix
elements of the old word topic by one, and increase the counters for the new
topic by one.

The second part of each iteration then consists of each party updating its local
document-topic matrix and the parties together updating the global topic-term
matrix using the locally tracked changes. To this end, each party encrypts their
local changes to the topic-term matrix and sends this to all the other parties.
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Then the parties can simply add these encrypted counters to their encrypted
topic-term matrix to get the new, consistent, topic-term matrix. The document-
topic matrix can be updated locally by each party without any communication.

We observe that the LDA algorithm requires linear computations, except
for the computation of the probability Pr(zi = k) and the secure draw that
uses these probabilities in the sampling step. Therefore, we perform most of the
operations for tracking the topic-term matrix using AHE, and introduce a novel
mechanism to switch between AHE and secret sharing in Subsection 3.6 and
Section 4 to obtain the best performance. Concretely, we use AHE for the linear
operations and only switch to (Shamir) secret sharings for securely drawing the
new topics.

Typically, convergence of an LDA algorithm is checked by monitoring the
changes in the model parameters, or monitoring how well the model fits a sep-
arate set of documents. In the encrypted domain, this can be quite costly to
check after each iteration. Therefore, we simply iterate a sufficiently large, fixed
number of times.

3.4 Random draw with secret probabilities

An important building block of secure LDA is a method of drawing a new topic
k̃ ∈ {1, . . . ,K}, given secret weights wk ∈ N, such that

Pr(k̃ = k) =
wk∑
i wi

, 1 ≤ k ≤ K.

The new, randomly chosen topic will be revealed to party p, the holder of the
current document. The intuition behind our solution is to compute cummulative
weights Sk, k ∈ {1, . . . ,K} such that Sk =

∑k
i=1 wi. For notational convenience,

we define an “extra” weight S0 = 0. Next, the parties sample a random value
r in the range {0, SK − 1} and find between which two cumulative weights this
value r lies, which then corresponds to the sampled topic. Since r is sampled
uniformly at random in the total range, the probability of r precisely ending up
between cumulative weights Sk−1 and Sk is exactly (Sk−Sk−1)/SK = wk/

∑
i wi.

This can be implemented with only log2 K secure comparisons between r and
thresholds t = Sk (with varying k) by traversing a binary tree from the root
to the leaf representing the new topic. Note that our solution assumes that the
weights are integers. In Subsection 3.5, we explain how we securely transform
fractional weights into integer weights.

Formally, the parties do the following for every word w in each document:

1. The parties generate a secret random number ⟨r⟩, r ∈ {0, . . . , SK − 1}:
(a) They generate a secret random number ⟨R⟩, R ∈ {0, . . . 2ℓ − 1} for suf-

ficiently large ℓ.
(b) They securely multiply ⟨R⟩ with ⟨SK⟩, and compute the secure trunca-

tion ⟨r⟩, where r = ⌊R·SK

2ℓ
⌋

2. They find ⟨k̃⟩, such that Sk̃−1 ≤ r < Sk̃, by repeating log2 K times:
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(a) Party p determines the next secret threshold ⟨t⟩ (see below).
(b) The parties compute the secure comparison ⟨(r < t)⟩, and reveal the

outcome to p.

To see that indeed a uniformly random variable r is generated, we count the
number of R that lead to r = x, for 0 ≤ x < SK . We need x ≤ R·SK

2ℓ
< x + 1,

i.e. 2ℓ·x
SK
≤ R < 2ℓ·x

SK
+ 2ℓ

SK
. The number of R that satisfy this is ⌊ 2ℓ

SK
⌋, or

⌊ 2ℓ

SK
⌋+1. Therefore, we need ℓ ≥ log2 SK +κ, where κ is the statistical security

parameter, to assure that r is statistically indistinguishable from a uniformly
random variable.

The first threshold choice will be t = KK÷2, each iteration adapting the
threshold following the binary search principle. This means that if r < t, we go
to the left and otherwise to the right. As the numbers ⟨wi⟩ are secret-shared,
party p needs to generate a secret-shared binary indicator vector ⟨δ1⟩ . . . ⟨δK⟩,
such that the threshold can be computed by ⟨t⟩ =

∑
i⟨δi⟩ · ⟨wi⟩. Party p is the

only party that can determine the binary indicator vector, because it is the only
party that is allowed to learn k̃.

3.5 Computing the Integer Weights

A key element of Algorithm 1 is the secure, random sampling of new topics
for all of the words. As explained in Subsection 3.3, this is done in two steps:
computing the integer weights and performing the secure draw. This subsection
will introduce the steps required to compute the integer weights for Equation 1
given the matrices.

We assume we are given matrices [n
(t)
k,¬i] = [n

(t)
k +∆

(t)
k ] and n

(k)
m,¬i, the first

one encrypted and the second one privately known to party p, the holder of
document m. We omit the index ¬i for convenience.

To sample a new topic, first the weights have to be computed that deter-
mine the probabilities according to Equation (1), which we denote as Pr(zi) ∝
[wn

k ]/[w
d
k] for simplicity. The weights consist of numerators

[wn
k ] =

[
(n

(t̂)
k + βt̂) · (n

(k)
m + αk)

]
,

and denominators

[wd
k] =

[
V∑

τ=1

(n
(τ)
k + βτ ) · (

K∑
κ=1

n(κ)
m + ακ)

]
.

The encrypted numerators and denominators can easily be computed by party
p due to the additively homomorphic property of our encryption scheme.

The only problem is that the hyperparameters α and β are not integers, while
the secret sharing scheme requires the plaintexts to be integers. For this work, we
chose symmetric priors, meaning αi = α, 1 ≤ i ≤ K, and βi = β, 1 ≤ i ≤ V (see
Subsection 5.3). We then approximate the fractions α = αn

αd and β = βn

βd , where
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αn, αd, βn and βd are integers. Then the numerators wn
k and denominators wd

k

are converted to integers w̃n
k and w̃d

k by multiplying both with αdβd.
Eventually, we want to obtain integer weights for the secure draw (see Subsec-

tion 3.4). To avoid costly secure integer divisions w̃n
k

w̃d
k

, we multiply these fractions

with W =
∏

k w̃
d
k to obtain w̃k = w̃n

k ·
∏

κ̸=k w̃
d
κ as follows:

1. Party p computes the encryptions [w̃n
k ] = [wn

k ·αdβd] = ([n
(t̂)
k ]β

d ·[βn])α
d·n(k)

m +αn

and [w̃d
k] = [wd

k · αdβd] = ([βn] · [V ] ·
∏V

τ=1[n
τ
k]

βd

])α
n·V+αd·

∑
κ n(κ)

m , which are
converted to secret sharings (see Subsection 3.6) for efficiency reasons.

2. With one fan-in multiplication [1] the parties compute ⟨W ⟩ =
∏K

k=1⟨w̃d
k⟩.

3. For each w̃d
k, 1 ≤ k ≤ K, they jointly compute the multiplicative inverse

⟨(w̃d
k)

−1⟩ [7, Prot.4.11].
4. The parties compute ⟨w̃k⟩ = ⟨w̃n

k ⟩ · ⟨W ⟩ · ⟨(w̃d
k)

−1⟩, 1 ≤ k ≤ K.

3.6 Converting encryptions to secret-sharings

During the execution of Algorithm 1, we need to transform the encrypted weights
[w] to Shamir secret sharings ⟨w⟩ to randomly draw new topics more efficiently.
Suppose we have precomputed pairs ([R], ⟨r⟩), such that R contains σ more bits
than w, and r = R mod N , where N , N > w, is the modulus of the Shamir secret
sharing scheme. Then a conversion from [w] to ⟨w⟩ is relatively straightforward:

1. Compute [w +R] = [w] · [R], and (jointly) decrypt it.
2. Jointly compute ⟨w⟩ = (w +R) mod N − ⟨r⟩.

Note that R is different from the R used earlier in Subsection 3.4. The pairs
could be precomputed as follows:

1. Each party i generates random number Ri that has σ more bits than w, and
encrypts it.

2. Each party i computes ri = Ri mod N , and generates a secret sharing ⟨ri⟩
for it.

3. Each party i sends each other party a share of ⟨ri⟩, together with [Ri].
4. The parties compute [R] = [

∑
Ri] =

∏
i[Ri], and ⟨r⟩ =

∑
i⟨ri⟩.

We have r = R mod N , because r = (
∑

i ri) mod N = (
∑

i Ri) mod N , and
R =

∑
i Ri. It is not necessary that all parties generate a random number; it is

sufficient that at least t+ 1 parties do.

4 Optimisations

During the development of the protocol, we came up with several optimisations
to improve the performance. The optimisations that we implemented are de-
scribed below. Additional optimisations, that were not implemented due to time
constraints, can be found in the appendix.
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Parallelisation of secure samplings. We combine the sampling of all new
topics of one party (step 2(a)iiB), such that we can parallelise each step of
the binary search (see Subsection 3.4), and drastically reduce the number of
communication rounds. This means that the probabilities from Equation (1)
are not recomputed after each single topic sampling, but only when during one
iteration all words of all documents of a certain party have been assigned a new
topic. This version, which we will refer to as batched LDA, enables us to execute
all secure comparisons at the same level of the binary tree (see Subsection 3.4)
in parallel, and significantly reduce the total number of communication rounds.
The disadvantage is that the drawing probabilities are not constantly adjusted,
which might lead to accuracy loss, see Subsection 5.4.

Multiple conversions. We have multiple conversions that can be efficiently
combined into one protocol. Suppose we have weights w1, . . . , wω, and corre-
sponding pairs ([Ri], ⟨ri⟩), 1 ≤ i ≤ ω, such that ω ·(σ+⌈log2 w⌉+⌈log2 n⌉+1) <
⌈log2 N⌉, where ⌈log2 w⌉ is an upper bound on the bit size of the weights, ⌈log2 n⌉
is the bit size of number of parties n and ⌈log2 N⌉ the bit size of the encryption
modulus. Then the ω conversions can be combined as follows.

1. [C] = [wω +Rω] = [wω] · [Rω]

2. For i = ω − 1 to 1 do [C] = [C]2
σ+⌈log2 w⌉+⌈log2 n⌉+1 · [wi] · [Ri]

{ C =
∑ω

i=1(wi +Ri) · 2(i−1)(σ+⌈log2 w⌉+⌈log2 n⌉+1) }
3. The parties jointly decrypt C and split it into C1, . . . , Cω, each component

consisting of σ + ⌈log2 w⌉+ ⌈log2 n⌉+ 1 bits. { Ci = wi +Ri }
4. For each i, 1 ≤ i ≤ ω, the parties compute ⟨wi⟩ = Ci mod N − ⟨ri⟩.

This reduces the number of decryptions by a factor ω, at the cost of some ex-
tra multiplications that combined are comparable to one decryption effort. To
further reduce the number of secure additions each party could pack ω ran-
dom numbers before encrypting them when precomputing ([R], ⟨r⟩) pairs (see
Subsection 3.6)), which also reduces the communication effort.

5 Evaluation

5.1 Security

Because topic sampling is performed in a secure, but joint way, the parties learn
the total number of words in all documents of a single party. However, nobody
learns the sampling probabilities, and only the document holder learns the new
topics (of the words in his documents). Our solution is secure in the semi-honest
model, i.e., parties are expected to exactly follow the protocol steps, but are
allowed to compute with any data that is received during execution in an attempt
to gain additional insights in other parties’ data.

As we use standard building blocks, such as secure comparison and random
number generation, of the MPyC platform, which is known to be secure in the
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semi-honest model, our computations with secret-sharings are secure too. Sim-
ilarly, Paillier is known to be semantically secure, and since we use threshold
decryption, encrypted information will never fall in strange hands.

Therefore, we only need to investigate the conversions from encryptions to
secret-sharings, as described in Subsection 3.6. Because the numbers R contain
σ more bits than the weights, where σ is the statistical security parameter, we
know that the sum w +R is statistically indistinguishable from a large random
number, and can be safely revealed. Furthermore, as each party i generates its
own Ri and ri, the sums

∑
i Ri and

∑
i ri can be considered as secret random

numbers.

5.2 Implementation

We have implemented our secure LDA approach in Python 3.8. For the homo-
morphic encryption functionalities, we have used the Paillier implementation
available in the TNO MPC Lab [15]. This implementation is based on the dis-
tributed Paillier solution presented in [16]. For the functionalities based on secret
sharing, we have used the MPyC framework [13]. This framework implements
a number of functionalities based on Shamir secret sharing. We performed all
of our experiments with three parties, but stress that our implementation also
works for more parties.

5.3 Experimental Setup

For our experiments, we used the Amazon reviews dataset presented by Ni, Li
and McAuley [8]. In total, this dataset consists of over 200 million reviews. How-
ever, we only used the first 150 entries. Furthermore, we split these 150 entries
into three separate datasets of 50 documents for the three different parties. In
total, this results in a vocabulary length of V = 1492 terms and a total number
of 2965 words in the distributed corpus. For the experiments, we used 5, 10, 20,
30, 40 and 50 documents per party. As the number of words is not the same
for every document, we compared the number of words over all documents for
the actual experiments, which is 16, 406, 873, 1549, 2197 and 2965 respectively.
Furthermore, we chose the symmetric priors α = β = 1

K . This corresponds to
the default parameter choices in the scikit-learn implementation of LDA.

All experiments have been run on a single server running an Intel Broadwell
CPU at 2.1GHz with 4 cores and 32GB RAM. The parties communicated via
(local) HTTPS connections.

5.4 Performance

We evaluate the performance of our solution in terms of accuracy and runtime.
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Fig. 1: Perplexity traces of three LDA variants
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Accuracy. In order to evaluate the accuracy of our secure LDA solution, we
compare its results to the results obtained when performing a regular LDA im-
plementation without any encryption or secret sharing. We compare both using
the perplexity metric. This metric is standard in language modelling and is de-
fined as

∏
m p

1/N
m . Here, N =

∑
m Nm is the total number of words, and pm is

the predictive likelihood of all words in document m [6]. Perplexity is an objec-
tive metric that essentially computes the geometric mean of the log-likelihood
per word in a set of observed documents. Lower perplexity scores imply a model
that describes the dataset better. We have implemented and compared three
versions of LDA:

– Standard LDA: this is a standard implementation of LDA without the use
of encryption and updating the matrices after each word topic generation.

– Batching LDA: this version also does not use encryption, but implements
a batched version of LDA, updating the matrices only once at the end of
each pass through the entire corpus.

– Secure LDA: this is the solution presented in this work. It implements a
privacy-preserving batched version of the LDA algorithm.

By comparing the standard- and batching versions of LDA, we can measure the
impact of the adaptation we made to the algorithm. By then comparing the
batching- and the secure variants, we can furthermore measure the accuracy of
our privacy-preserving solution.

We let all three variants run for 100 iterations with two topics and 50 doc-
uments per party, which results in a total of 2965 words distributed over the
parties. The results of this experiment can be found in Figure 1. We ran all
versions for five times and present the average results.

As can be seen, the standard version of LDA converges faster than the
batching- and secure variants. Furthermore, we see that by updating the weights
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Fig. 2: Benchmark of secure LDA in the number of topics.
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(a) Preprocessing

2 3 4 5 6 7 8 9
#Topics

0

100

200

300

400

500

600

700

800

Ru
nt

im
e 

in
 S

ec
on

ds

166 Words
406 Words
873 Words
1549 Words
2197 Words
2965 Words

(b) Iteration

after every word, the standard version generates a slightly better model. How-
ever, the differences do not seem to be significant. Finally, we observe that the
secure variant shows behaviour similar to the batched plaintext variant, which
strongly suggests that the use of encryption and secret sharing does not reduce
the accuracy of the algorithm.

Runtime. To see the influence of the input size and the desired complexity
of the model to train, we ran benchmarks varying both the total number of
words in all the documents, and the number of topics to model. We separately
measured the runtime of the pre-processing step for the ciphertext conversions
and performing one iteration of the secure LDA algorithm. For all benchmarks,
we used a 1024-bit Paillier key4 for the homomorphic encryptions and a 64-bit
field size for the Shamir secret shares. All parameter combinations have been
tested five times and averaged.

First, we present the results for a varying number of topics for the prepro-
cessing phase and the iteration phase in Figure 2a and Figure 2b respectively.
As can be seen, the amount of work for the preprocessing phase is linear in
both the number N of words and the number K of topics, which is as expected
as the number of tuples required per iteration is N · K · 2. For the iterations,
the general trend for an increasing number of topics is also linear with slightly
steeper increases from 2 to 3, 4 to 5 and 8 to 9. This is explained by the fact
that for the secure drawing, the number of intervals is extended by dummies to
reach a power of two (either 21, 22, 23, or 24 in these experiments), which incurs
an extra step in the binary search (see Appendix C.3 to avoid this). Other than
that, the amount of work scales linearly in the number of topics.

4From a security perspective, a 2048-bit key would have been preferable, but our
primal goal was to investigate input scalability.
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Table 1: Comparison of our work compared to prior work.
Accuracy Speed Security

YN10 [18] Medium Low Medium: Leaks probability distributions of topics
WTS20 [17] Low Medium Medium: Leaks statistics about all the information
CD16 [3] High High Low: Leaks the complete document-topic matrix
Our Work High Low High: Leaks just the total number of words

5.5 Comparison to Prior Work

As explained in section 1.3, there are three works that also consider decentralized,
privacy-preserving LDA. In Table 1, we highlight the most important differences
between our works and these related works. Due to the lack of comparable run-
time measurements in these works it is hard to compare our work in that regard.
Instead, we turn to a conceptual comparison.

In terms of accuracy, it is unclear how the altered algorithm of [18] impacts
the accuracy exactly since they do not provide metrics such as perplexity. We
do know that their convergence notion influences the resulting model accuracy
to some extend. Furthermore, they leak the probability distributions for the
topics in every round, which is a privacy risk as this reveals information about
other parties’ data. Our solution keeps Pr(zi = k) secret throughout the entire
protocol. Furthermore, they do not provide a security argument for their solution,
which we do.

Due to the use of differential privacy, [17] is not able to match the accuracy of
non-private LDA like we are able to do using MPC. Furthermore, this is a weaker
security guarantee and might still leak some (statistical) information about the
data of the other parties. This solution is, however, faster than our solution.

Finally, in [3] an approach is used where statistical information about the
documents of the parties is shared in every round. This way, they are able to
learn models with high accuracy and obtain a high performance at the cost
of very low security guarantees as this essentially comes down to sharing your
document-topic matrix.

All in all, our solution is very secure and accurate, at the cost of a lower
performance. However, our solution scales linearly in both the number of words
and the number of topics, which makes it scalable in practice.

6 Conclusions

In this work, we have presented and evaluated a fundamentally new approach to
securely perform an LDA algorithm on a set of documents distributed amongst
several, untrusting parties. Compared to earlier solutions, our solution provides
stronger secrecy as we keep almost everything secret, including the topic weights.
The only thing leaked in our solution is the total number of words over all
documents of a party. Furthermore, we minimize the risk of leakage as the data
is protected using cryptographic assumptions instead of statistical techniques
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like differential privacy, which might accidentally still leak some information.
Furthermore, we show that the accuracy of our approach is similar to non-secure
variants of the LDA algorithm.

Finally, we show that our solution scales nearly linear in the number of topics
and the number of words. All in all, this makes it an attractive solution in
practice, even for larger datasets.
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Appendix

A Formal description of the algorithm

Our main protocol is formally described in Algorithm 1.

Algorithm 1 Protocol for Performing the Distributed LDA Algorithm

1. Initialisation:
(a) Each party p samples a random topic for each word of all its documents.
(b) Each party p sets the local counters (n(t)

k )p and n
(k)
m , for each of its documents

m.
(c) The parties encrypt (n

(t)
k )p, and securely aggregate them to [n

(t)
k ] =

[
∑

p(n
(t)
k )p] =

∏
p[(n

(t)
k )p].

2. Iterate a fixed number of times:
(a) For each party p do

i. Party p obtains the matrix elements [n
(t)
k ], and sets all local counters

(∆
(t)
k )p ← 0.

ii. Simultaneously choose a new topic for each word n of each document m
of party p:
A. Set index i = (m,n). Let t̂ be the term of word i, and let k̂ be the

current topic of word i. Party p adjusts the local counters (∆
(t̂)

k̂
)p ←

(∆
(t̂)

k̂
)p − 1, n(k̂)

m ← n
(k̂)
m − 1.

B. The parties securely sample a new topic k̃ for word i with matrices
[n

(t)
k +∆

(t)
k ] and n

(k)
m (see Subsection 3.5), and reveal it to party p.

C. Party p adjusts the local counters: (∆
(t̂)

k̃
)p ← (∆

(t̂)

k̃
)p + 1, n

(k̃)
m ←

n
(k̃)
m + 1.

iii. Party p encrypts the local counters (∆
(t)
k )p, 1 ≤ k ≤ K, 1 ≤ t ≤ V , and

communicates them.
(b) The parties update the matrix elements [n

(t)
k ], 1 ≤ k ≤ K, 1 ≤ t ≤ V , with

local counts to [n
(t)
k ] ·

∏
p[(∆

(t)
k )p].

3. The parties jointly decrypt the topic-term matrix [n
(t)
k ] to obtain n

(t)
k .

4. The parties output n
(t)
k and n

(k)
m .
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B Benchmarks results in the number of words

Fig. 3: Benchmark results of secure LDA in the number of words.
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(a) Preprocessing
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(b) Iteration

To see the influence of the input size, we also plotted the runtimes against an
increasing number of words over all parties. As expected, the preprocessing phase
again shows a linear increase in the number of words. However, the runtime of one
iteration seems to grow slightly faster than linear which might seem surprising
at first as the algorithm description does not suggest exponential increase as
the number of words grows. This behaviour is explained by the way we batch
conversions in Section 4. Namely, a fixed number of weights can be converted at
once, depending on the size of the Paillier modulus. As long as the number of
conversions that need to be performed fits in the same number of decryptions,
the runtime of an iteration grows linearly. However, if more decryptions are
required in this step, the increase in runtime grows faster.

C Optimizations

We describe a few optional optimisations that were not implemented due to time
constraints.

C.1 Use of Oblivious RAM

Another promising solution for securely storing and accessing the topic-term
matrix is by oblivious RAM [10,4]. In the semi-honest model, a more efficient
solution is to store the matrix entries somewhere, e.g. in the cloud, in an homo-
morphically encrypted way. Each party can query and modify entries, without
the other parties noticing it.
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C.2 Avoid indicator vectors

To avoid generating indicator vectors and computing a secure inner product
for each new threshold, we could decide to postpone the conversions. Given the
encrypted weights, party p can first add the proper weights to determine the next
threshold. Only then the encrypted threshold is converted to a secret-sharing.
This does not increase the number of conversions. The transforming of fractional
to integer weights might become more intensive though.

Given our parallel approach of combining all drawings of one party, we could
compute all weights as follows:

1. [Nk] =
∏V

τ=1[n
(τ)
k + βτ ]

2. [N ] = [
∏

k Nk] { secure product }
3. [ωk] = [N ·N−1

k ] { secure product and secure inverse }

Given [ωk], where ωk ∝ 1
Nk

, the weights for each term t can be computed as

[w
(t)
k ] = [(n

(t)
k + βt) · ωk] with one secure product. Using the local matrix n

(k)
m ,

these weights can be adjusted locally to document m, to cope with the fac-
tor n(k)

m +αk∑K
κ=1 n

(κ)
m +ακ

. This adjustment comes down to the exponentiation [w̃k] =

[w
(t)
k ]v

(k)
m , where v(k)m = (n

(k)
m +αk)·(

∑K
κ=1(n

(κ)
m +ακ))

−1 ·
∏M

µ=1

∑K
κ=1(n

(κ)
µ +ακ).

To generate a secret random number r, given term t and document m, the en-
cryption

∏
k[w̃k] needs to be converted to a secret-sharing. During each iteration

step of the binary search, the proper weights [w̃k] can be accumulated by party
p to obtain the new threshold, which can then be converted to a secret-sharing
for the secure comparison.

C.3 Number of topics not a power of two

If the number K of topics is a power of two, the binary search can be easily
performed. If 2λ−1 < K < 2λ, then the number of iterations (λ or λ − 1) of
the binary search would disturb the uniform distribution of the randomly cho-
sen topic. An easy way to fix this is to add 2λ − K dummy values, such that
the number of iterations is always λ. However, this takes more secure compar-
isons than strictly necessary. We describe a way to avoid these additional secure
comparisons without leaking information.

1. Party p randomly chooses 2λ −K different dummy indices di ∈ {1, . . . , 2λ},
1 ≤ i ≤ 2λ −K, such that d1 < d2 < . . . d2λ−K . See argumentation below
how this should be done.

2. k ← 1; u← 1 {Initialise counters }
3. For i = 1 to 2λ do: { Compute new weights vi }

If du = i then vi = 0; u← u+ 1 else vi = wk; k ← k + 1
4. The parties perform a binary search with weights vi, 1 ≤ i ≤ 2λ:

– If there is only one non-dummy index remaining, party p ends the binary
search.
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– In each iteration, party p constructs an indicator vector of length K
(ignoring the dummy weights).

We need K to be even to avoid information leakage. E.g., for K = 3 the index
2 will never be selected after one iteration, irrespective of the chosen dummy
index. This means that party p has to first choose one special dummy in case
K is odd that should not lead to skipping iterations (in step 4). The question
remains how the 2λ −K random dummy indices (in step 1) should be chosen,
assuming K is even.

We order the K indices in K/2 pairs of consecutive numbers. We choose
(2λ −K)/2 random positions out of these K/2 pairs. We add two dummies to
each chosen pair, just before each element of the pair. In this way, each of the
K indices will have an identical probability of being chosen after λ (no dummies
in the pair) or λ− 1 (dummies in the pair) rounds.
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