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Executive Summary
In this audit we started from the security analysis provided in the design documentation [1].
We extended the analysis in several directions and confirmed the security claims that were
made by the designers.

The simple algebraic description of the S-boxes made it possible to extend the original
analysis of the security of the XHash permutations against differential cryptanalysis, resulting
in some interesting new properties. These properties did not result in any attacks.

We added an analysis of the security of the XHash8 permutation against saturation attacks
and made a few comments on linear cryptanalysis of the permutation.

Finally, we examined the XHash padding rule, the RPX representation of the XHash per-
mutations and the XHash sponge function. They have all been defined according to the state
of the art and maintain the security level of the underlying XHash8/XHash12 permutations.
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1 Introduction
This report is the result of an audit of the XHash hash functions. In particular, the security
of the following components was evaluated:

1. The XHash permutations;

2. The XHash padding rule;

3. The RPX representation of the XHash permutations

4. The XHash sponge function.

The audit is based exclusively on the textual specification [1]. The compliance of available
software implementations to the specification was not part of this audit.

2 Differential attacks
Resistance against ordinary differential attacks is argued in the design documentation [1,
Section 5.1]. In this section we comment on some aspects of that study and extend it. All
arithemtic operations in this section are taken modulo p, where p = 264− 232+1 is the 64-bit
prime number used in the definition of XHash8/12.

2.1 Ordinary differential attacks
The designers state: “an adversary controls only the outer part of the sponge and therefore
they can only create a difference in at most 8 field elements.”

This statement refers to the use of XHash8/XHash12 in a sponge construction. However,
apparently it does not take into account the padding rule. Since an adversary can modify
the length of the input, they can also influence the ninth state element, which contains the
domain separation identifier. Hence an adversary can create a difference in 8 + 1 = 9 field
elements on the input.

Luckily, this observation does not affect the bound on the probability of a characteristic
given in [1, Section 5.1], since that bound is determined by the minimum number of active π0
and π1 S-boxes, which is given by βF − 4, where βF denotes the branch number of the linear
layer of F (hence βF = 13).

2.2 Differential uniformity of the S-box
The designers give a bound for the differential uniformity of a power map [1, Theorem 5.1].
The differential uniformity is determined by the number of roots for the following polynomial:

q(x) = (x+ α)γ − xγ − β (1)

(The last term is missing in [1].) Clearly, the bound of Theorem 5.1 can be strengthened for
invertible maps, since the differential uniformity of a map equals the differential uniformity of
its inverse. Therefore, all S-boxes of XHash8/12 have the same differential uniformity, which
is at most 6.
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Working out (1) for γ = 7, we obtain:
q(x) = 7αx6 + 21α2x5 + 35α3x4 + 35α4x3 + 21α5x2 + 7α6x+ α7 − β

Inspired by the study of the differential uniformity of AES [3], we investigate the special case
α7 = β. We obtain

q(x) = 7αx(x+ α)(x2 + αx+ α2)2

Since
p− 3 = (233 − 1)2 mod p,

the quadratic polynomial x2 + αx+ α2 has two roots and
x2 + αx+ α2 = (x− α(232 − 1))(x+ α232)

We conclude that all the differentials (α, α7) have exactly 4 right pairs. There might well
exist other choices of α and β that result in a higher number of right pairs, but we did not
find any.

2.3 Number of right pairs in XHash components
The simple algebraic description of the XHash8/XHash12 S-boxes leads to the following
property.
Theorem 1. All differentials (α, β) over an XHash8/XHash12 S-box with β ̸= α7/64 have
an even number of right pairs.
Proof. As explained earlier, it suffices to give a proof for S-box π0. Let (u, u+ α) be a right
pair for π0. Then we have from (1)

(u+ α)7 − u7 − β = 0

Using
(u+ α)7 = −(−u− α)7

u7 = −(−u)7 = −((−u− α) + α)7

we obtain
((−u− α) + α)7 − (−u− α)7 − β = 0

which means that (−u−α,−u) is a right pair for the differential (α, β). The pairs (u, u+α),
(−u− α,−u) are two different pairs if and only if u ̸= −α/2. Using (1) again we obtain that
the pair (−α/2, α/2) can be a right pair only if β = α7/64. Hence for all other differentials,
the number of right pairs must be even.

The proof of Theorem 1 introduces a kind of mixed quartets (u0, u1, u2, u3) defined by
u1 = u0 + α, u2 = −u1 and u3 = u2 + α. Each quartet defines 0 or 2 right pairs for a
differential (α, β), except when β = α7/64. It can easily be verified that the application of
an XHash8/XHash12 S-box to a mixed quartet (u0, u1, u2, u3) results in a new mixed quartet
(v0, v1, v2, v3) with v1 = v0 + β, v2 = −v1 and v3 = v2 + β. It follows that a differential over
a series of S-box applications will also have an even number of right pairs, except if we are
unlucky and hit somewhere the special β = α7/64 value. Furthermore, the application of the
MC layer to a mixed quartet results in a new mixed quartet. Hence also a differential over
a series of S-box and MDS applications will typically have an even number of right pairs.
Since addition with a constant does not transform a mixed quartet into a mixed quartet, the
property does not hold over a whole step of XHash8/XHash12.
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2.4 Security of XHash12 versus XHash8
The designers claim that the resistance of XHash12 against differential cryptanalysis is at
least as high as the resistance of XHash8 against differential cryptanalysis, because for any
trail pattern, XHash12 activates the same number or more S-boxes than XHash8 [1]. While
this claim might look plausible at first sight, we argue here that there is no guarantee for its
correctness.

Let’s measure security against differential cryptanalysis by studying (the maximum of)
the EDP values of the characteristics. Denote by NX the number of characteristics with
nonzero EDP value over the transformation X. If X is the operation (MC), then the input
difference determines uniquely the output difference. Hence, N(MC) = p12. If X contains
nonlinear elements, then NX will increase because each input difference can result in several
output differences. For example, we can use the bound on the differential uniformity of the
S-boxes to obtain Nπ0 ≥ 1 + (p− 1)2/6. For the step (F ) we get

N(F ) = 1 + 12Nπ0 +

(
12

2

)
(Nπ0)

2 + · · ·+
(
12

12

)
(Nπ0)

12 = (1 +Nπ0)
12 ≈ (Nπ0)

12

Symmetry implies that N(B) = N(F ). However,

N(B′) ≈ (Nπ0)
8 < N(B)

It follows that NXHash8 < NXHash12. It seems hasty to conclude that the maximum of the
EDP of the characteristics in the smaller set is guaranteed to be larger than the maximum
of the EDP of the characteristics in the larger set. In particular, from existing work on AES
characteristics we know that the characteristics with the largest EDP values show a typical
pattern where rounds with many active S-boxes are followed by rounds with only few active
S-boxes. The existence of such characteristics relies on the fact that the S-boxes have for each
input difference many output differences possible, hence it is possible to produce a difference
that will be converted by the MDS layer to differences with only a few active S-boxes in the
next step. Since XHash8 has steps with fewer S-boxes, there are less possibilities to produce
a suitable difference.

2.5 Higher-order differential attacks
A single round of XHash8 is vulnerable to a higher-order differential attack, that we describe
here. Let b = (F )(a), c = (B′)(b). Then

bs = Ci|s +
11∑
t=0

Ms,t(at)
7, s = 0, . . . , 11

cs = Ci+1|s + bs = Ci+1|s +Ci|s +
11∑
t=0

Ms,t(at)
7, s = 1, 4, 7, 10

It follows that c1, c4, c7 and c10 can be expressed as functions of a0, . . . , a11 with degree 7.
Hence it is trivial to construct differentials of order 7 with probability 1. We see however no
way to extend these differentials over more steps.
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2.6 Plateau trails and related differentials
Reasonings on the security of cryptographic primitives against differential cryptanalysis are
often implicitly based on the Hypothesis of stochastic equivalence. Reformulated in statistical
terms, this hypothesis states that the differential probability of a differential/characteristic
is very close to the expected differential probability, which is computed by assuming that
all roundkeys are independent uniformly distributed random variables. In the case of block
ciphers, there are no experimental results supporting the validity of this hypothesis. A fortiori,
the validity can be questioned in the case of hash functions or permutation-based primitives.
The recently proposed quasi-differential cryptanalysis tries to remedy this situation [2]. For
many interesting cases, it is not known yet how to overcome the computational challenges
posed by this framework.

Plateau trails can be see as a special case of quasi-differential trails. It has been observed
that plateau trails are caused by a special property of the diffusion layer, called related dif-
ferentials. Two differentials (α, β), (α⋄, β⋄) over an n-component map M are called related
differentials if for i = 0, 1, . . . , n− 1:

αi = 0 OR α⋄
i = 0 OR αi = α⋄

i

βi = 0 OR β⋄
i = 0 OR βi = β⋄

i

For the MixColumns layer of AES, related differentials with Hamming weight 5 are known.
(5 is the minimum weight of a nontrivial differential over MixColumns.)

For the MDS layer of XHash8/XHash12, no related differentials with Hamming weight 13
are known. We searched for related differentials by extrapolating from the related differentials
of the MixColumns layer of AES, but did not find any. We conjecture that none exist.

3 Saturation attacks
The design documentation [1] does not mention security against saturation attacks. We
introduce here a distinguisher for a single round of XHash8/XHash12 based on saturation
properties.

3.1 Saturating Fp

Using straightforward techniques, a saturation distinguisher can be constructed for the se-
quence of two steps (F )(B) or (F )(B′). A set of inputs with 11 coordinates fixed and one
coordinate saturated will be transformed to a set with all 12 coordinates saturated. There
seems to be no way to propagate this property through the (P3) step, if we reason on Fp

only.

3.2 Saturating Fp3

The design documentation [1] uses Fp as the base field, in which most components of the hash
functions are described. The S-boxes π2 are then the exception. However, it is also possible
to describe the hash functions using Fp3 as the base field. If we take this approach, then a
state a can be described as a 3-tuple (a0,a1,a2) with ai ∈ Fp3 . The S-boxes π0 and π1 become
opaque invertible S-boxes. Also the description of the MDS layer becomes more complicated,
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but it can easily be seen that the MDS properties are maintained. In particular, we have the
following.

Theorem 2. Let (α, β) = (α0, . . . , α11;β0, . . . , β11) denote a differential over the MDS layer
of XHash8/XHash12. If

α3 = α4 = · · · = α11 = 0

then the probability of (α, β) is nonzero only if

(β0, β1, β2) ̸= (0, 0, 0), (β3, β4, β5) ̸= (0, 0, 0), (β6, β7, β8) ̸= (0, 0, 0) and (β9, β10, β11) ̸= (0, 0, 0)

Proof. Let M0 denote the 3× 3 submatrix of M consisting of columns 0, 1, 2 and rows 0, 1, 2.
Since M is an MDS matrix, M0 is invertible. Hence an input difference (α0, α1, α2, 0, . . . , 0)
with (α0, α1, α2) ̸= (0, 0, 0) is mapped to an output difference β0, . . . , β11) with (β0, β1, β2) ̸=
(0, 0, 0). Applying a similar reasoning we obtain that also (β3, β4, β5) ̸= (0, 0, 0), (β6, β7, β8) ̸=
(0, 0, 0) and (β9, β10, β11) ̸= (0, 0, 0).

Let R denote a single round, i.e. the sequence of the three steps (F )(B)(P3) or (F )(B′)(P3).
Let R− denote a single round without the last MDS layer. Then we have the following.

Theorem 3. Let S be a saturated input set

S = {a ∈ (Fp3)
3|a1 = c1,a2 = c2}

with c1, c2 two arbitrary constants. Then

1. R−(S) is saturated in the following way:

∀a, b ∈ R(S) with a ̸= b : (a0, a1, a2) ̸= (b0, b1, b2), (a3, a4, a5) ̸= (b3, b4, b5),

(a6, a7, a8) ̸= (b6, b7, b8), and (a9, a10, a11) ̸= (b9, b10, b11)

2. The set R(S) has the sum property:∑
a∈S

R(a) = (0, 0, . . . , 0)

Proof.

1. Two different elements of S have the property that their difference equals
(α0, α1, α2, 0, . . . , 0) with (α0, α1, α2) ̸= (0, 0, 0). This property passes through the S-
box layer π0 with probability 1. Using Theorem 2, we see that the MDS-layer of
the step (F ) expands this property and produces a difference β = (β0, . . . , β11) with
(β4i, β4i+1, β4i+2) ̸= (0, 0, 0), i = 0, 1, 2, 3. Steps (B) or (B′) transform this difference to
an output difference with the same property, and the same is true for the S-box layer
π2.

2. For any field Fq with q > 2 we have ∑
x∈Fq

x = 0
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Using part (1) we obtain that

∑
a∈S

R(a) =

 ∑
x∈Fp3

x,
∑

x∈Fp3

x,
∑

x∈Fp3

x,
∑

x∈Fp3

x


= (0, 0, 0; 0, 0, 0; 0, 0, 0; 0, 0, 0)

It follows that we have a saturation distinguisher over 1 full round of the hash function.
We see no way to extend this distinguisher over more steps.

4 Linear attacks
Linear cryptanalysis of non-binary ciphers is defined in [4] by considering the group characters
χu, where

χu(x) = e
2πi
p

ux

The correlation of an approximation (u, v) of π0 is given by:

corπ0(u, v) =
1

p

∑
x∈Fp

e
2πi
p

(vx7−ux)
=

1

p

∑
z∈Fp

e
2πi
p

(vu−7z7−z)

It follows that corπ0(u, v) = corπ0(wu,w
7v), ∀w ∈ Fp, which will cause some patterns in the

correlation matrix of π0. Observe that the correlation matrix of π1 is the transpose of the
correlation matrix of π0. Hence, it exhibits the same patterns. Since π2 is based on the same
power mapping, but over a larger field, the correlation matrix of π2 exhibits similar patterns.

The size of the components used by XHash8/XHash12 makes it impossible to compute
correlation matrices in the naive way. We see no way to accelerate this computation. Hence it
is difficult to obtain more results. Furthermore, even if one could find linear approximations
with a relatively high correlation over the whole hash function, it is not known how to exploit
them for an attack on a hash function.
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