
Implementation and Performance Analysis of
Homomorphic Signature Schemes

Davide Carnemolla1[0009−0001−2575−0874], Dario Catalano1[0000−0001−9677−944X],
Mario Di Raimondo1[0000−0002−5531−1098], and

Federico Savasta2[0009−0005−4551−1562]

1 University of Catania, Italy
{davide.carnemolla,dario.catalano,mario.diraimondo}@unict.it

2 federico.savasta94@gmail.com

Abstract. Homomorphic signatures allow to validate computation on
signed data. Alice, holding a dataset, {m1, . . . ,mt} uses her secret key
sk to sign these data and stores the authenticated dataset on a remote
server. The server can later (publicly) compute m = f(m1, ...,mt) to-
gether with a signature σ certifying that m is indeed the correct output
of the computation f . Over the last fifteen years, the problem of realizing
homomorphic signatures has been the focus of numerous research works,
with constructions now ranging from very efficient ones supporting linear
functions to very expressive ones supporting (up to) arbitrary circuits. In
this work we tackle the question of assessing the practicality of schemes
belonging to this latter class. Specifically, we implement the GVW lattice
based scheme for circuits from STOC 2015 and two, recently proposed,
pairings based constructions building from functional commitments. Our
experiments show that (both) pairings based schemes outperform GVW
on all fronts.

Keywords: Homomorphic Signatures · Implementations.

1 Introduction

Digital Signatures are one of the most fundamental primitives of modern cryp-
tography. Their main security property is unforgeability against chosen message
attacks: any efficient attacker A who has access to signatures on messages of
his choice should not be able to produce a signature on a new message. Said
differently, this means that signatures should be non-malleable in the sense that
from a given signature on some message m one should not be able to derive sig-
natures on any other m′ ̸= m. Yet, even if this sounds paradoxical at first, there
are scenarios where some form of (controlled) malleability for signatures turns
out to be useful. This controlled malleability feature is captured, for example,
by the notion of homomorphic signatures, originally proposed by Desmedt [25]
and Johnson et al. [31], and later formalized by Boneh and Freeman in [11].
Homomorphic Signatures are the focus of this work.



2 Carnemolla et al.

Homomorphic Signatures. Using homomorphic signatures (HS) some user
Alice can use her secret key sk to produce signatures σ1, . . . , σt on a set of
messages (m1, . . . ,mt) (often referred to as a dataset) like with ordinary sig-
nature scheme. The extra feature of HS, however, is that they come equipped
with a (publicly) executable algorithm Eval that takes as input the signatures
σ1, . . . , σt and some function/program P and outputs a signature σP for the
message m = P(m1, . . . ,mt). Notice that σP is not a signature on m alone but
rather a signature on m as output of P. In this sense, homomorphic signatures
implement the requirement of controlled malleability mentioned above. More
precisely, on input Alice’s public key, P,m and σP , the verification procedure
checks whether m is the correct output of P on messages previously signed by
Alice.

What makes this primitive non trivial to realize are the following features.
First, homomorphic signatures should be succinct, in the sense that their size
should be much smaller than the size of the original dataset3.

Second, when verifying the output of a computation, the process should not
require knowledge of the original dataset, an important property when signing
very large datasets that the verifier might not store locally.

Finally, homomorphic signature could be composable in the sense that the
outputs of previous computations (i.e. signatures obtained by Eval) can be used
as inputs for new computations.

Defining security for homomorphic signatures is a much more delicate task4

as, clearly, HS cannot meet the usual unforgeability notion. Informally, an Ho-
momorphic Signature is secure as long as adversaries knowing only the public
verification key, can only produce signatures that either come from the legiti-
mate signer or by running Eval on valid signatures. Slightly more in detail, A is
allowed to see signatures for messages belonging for different datasets and wins
if she manages to produce a valid signature, message pair (σ,m) such that either
(1) m belongs to some new, previously unseen, dataset (this is called type 1
forgery) or (2) for some previously seen dataset ∆ = {m1, . . . ,mt}, she manages
to produce a triplet (P, σ,m), where σ verifies correctly but m is not the correct
output of P, i.e. m ̸= P(m1, . . . ,mt) (this is called a type 2 forgery).

Over the last fifteen years, the problem of realizing homomorphic signatures
under various assumptions and settings has been the focus of several research
works. It is fair to say that, at least from a theoretical perspective, nowadays
we have a pretty clear understanding of the primitive, with known constructions
ranging from very efficient ones for the case of programs expressible as linear
functions (e.g. [10]) to very expressive ones supporting up to arbitrary circuits
([30, 7]. Yet, especially for this latter class of schemes, their concrete efficiency
is far from clear.

3 Indeed, without this requirement, HS become trivial to realize: one simply sets σP =
(P, (σ1,m1), . . . , (σt,mt))

4 See [19] for a detailed discussion about this



1. INTRODUCTION 3

1.1 Our contribution

In this paper we implement three different homomorphic signatures to better
asses their concrete efficiency and clarify their practical significance. Specifically,
we implement the lattice based HS from [30] (GVW15 from now on) and the
pairing based constructions from [20] and [7] (respectively, CTF22 and BCFL23
from now on)5. See Table 1 for a brief summary on their main features. These
constructions, while concretely very different, share some high level interesting
similarities. For instance, they all build from commitments with special prop-
erties (GVW15 implicitly builds from homomorphic equivocable commitments,
CTF22 and BCFL23 from homomorphic functional commitments). Also, they all
admit similar (amortized) efficiency optimizations when verifying the same func-
tion on different datasets. These similarities, among other thing, helped make
implementation choices allowing fair comparisons among the three schemes.

All the schemes were implemented from scratch in Rust using state of the
art libraries (qFALL [38] for lattices and blst [40] for pairings). For simplicity all
our implementations are single thread and consider the case of a single dataset.
Thus, we don’t consider optimizations related to efficient verification for multiple
datasets: being this a common feature of all the considered schemes, dropping it,
has little, if any, impact on our comparisons. Precise details on our implementa-
tions and comparisons are given in Sections 5 and 6, here we simply mention that
our experiments show that (both) pairing based schemes outperform GVW15 on
essentially all fronts. Table 2 reports a sample from our experiments (more details
are given in Section 6) for the variance function computed on a vector of n = 20
elements: as later discussed in Subsection 5.2, we were forced to use a very low
(almost meaningless) security level for GVW15 in order to complete the exper-
iments. Thus, even though there is still room for optimizations/improvements
(e.g. multi-thread implementations, ring variants for the lattice scheme), our re-
sults suggest that, if one wants efficient homomorphic signatures beyond linear
functions, pairing based constructions are the best, currently available, option.

CFT22 BCFL23 GVW15

security assumption DHE n-HiKer6 SIS

security notion strong adapt. strong adapt. semi adapt.

class of functions const. deg. poly circuits circuits

amortized verification ✓ ✓ ✓

multi datasets ✓ ✓ ✓

Table 1: Features

5 We stress here that the construction from [20] only supports low degree polynomials
whereas the constructions in [30, 7] support arbitrary circuits



4 Carnemolla et al.

CFT22 BCFL23 GVW15

KeyGen 0.5 s 5.8 m 2.4 h

Sign 0.2 s 0.1 s 52.5 h

Eval 44.1 s 7.8 m 18.7 s

Ver 0.3 s 5.8 s 6.4 s

signature 39.7 kB 14.2 kB 29.9 MB

proof 2.1 kB 1.7 kB 3.9 MB

security level 100 bits 100 bits 30 bits

Table 2: Benchmark for variance on n = 20 elements

1.2 Other related work

Linearly homomorphic signatures were introduced by Boneh et al. in [10] as a
tool to prevent pollution attacks in linear network coding. Following this semi-
nal work, many results further explored this notion both in the random oracle
(e.g. [28, 12, 17]) and in the standard model (e.g. [3, 21, 27, 22, 5, 18]). In the
symmetric setting, the notion of homomorphic MAC was first considered (for
the case of linear functions) in [1] and later extended to more general functional-
ities in [29, 15, 6, 16]. Homomorphic signatures building from commit and prove
SNARKs for NP were recently proposed in [26]. Linearly Homomorphic Struc-
ture preserving Signatures were introduced in [34] and exploited to construct
Simulation Sound Semi Adaptive NIZKs in [35]. Privacy notions for homomor-
phic signatures were considered in [4].

2 Preliminaries

Notation. In this work we use N,Z,R for the set of natural, integer and real
numbers, while G denotes a group. Zq denotes the set of integers mod q if not
specified differently. Vectors and matrices are denoted with lowercase and up-
percase bold latin letters, respectively, e.g. v and A. λ is the security parameter.
With x

$←− X we denote the uniform random sampling from a set X , while with
x← D a sampling from a distribution or an algorithm D. poly(·) and negl(·) de-
notes the usual polynomial and negligible functions, while O(·) and ω(·) are the
usual big-O and small-ω asymptotic notations. Remaining notation is introduced
in the dedicated sections.
6 The construction is secure under a falsifiable assumption called HintedKernel. We

refer the reader to the original paper for the formal definiton.



2. PRELIMINARIES 5

2.1 Functional Commitments

Intuitively, Functional Commitments (FC) [36] allow a sender to commit to a
vector x so that she can later open the commitment to f(x) for some function
f . We present the formal definition of FC as presented in CTF22, which takes
into account also the compactness property [33].

Definition 1 (Functional Commitments [20]). A functional commitment
scheme is a tuple of algorithms FC = (Setup,Com,Open,Ver) with the following
syntax and that satisfies correctness and succinctness (or compactness [33]).

Setup(1λ, n,m)→ ck on input the security parameter λ and the vector length n,
outputs a commitment key ck, which defines the message space X and the class
of admissible functions F ⊆ {f : Xn → Xm} for some n,m = poly(λ).

Com(ck,x; r)→ (C, aux) on input a vector x ∈ Xn and (possibly) a randomness
r, outputs a commitment C and related auxiliary information aux. r can be
omitted and randomly sampled.

Open(ck, aux, f)→ π on input an auxiliary information aux and a function f ∈
F , outputs an opening proof π.

Ver(ck, C, f,y, π)→ b ∈ {0, 1} on input a commitment C, an opening proof π, a
function f ∈ F and a value y ∈ Xm, accepts (b = 1) or rejects (b = 0).

Correctness. FC is correct if for any n,m ∈ N, all ck ← Setup(1λ, n), any
f : Xn → Xm in the class F , and any vector x ∈ Xn, if (C, aux)← Com(ck,x),
then it holds Ver(ck, C, f, f(x),Open(ck, aux, f)) = 1 with probability 1.

Succinctness/Compactness. A functional commitment FC is succinct if
there exists a fixed polynomial p(λ) = poly(λ) such that for any n,m = poly(λ),
any admissible function f ∈ F such that f : Xn → Xm, honestly generated
commitment key ck ← Setup(1λ, n,m), vector x ∈ Xn, commitment (C, aux) ∈
Com(ck) and opening π ← Open(ck, aux, f), it holds that |C| ≤ p(λ) and |π| ≤
p(λ) ·m. Furthermore, we say that FC is compact if |π| ≤ p(λ).

The considered FCs used in the pairing based construction of Section 3 also
satisfy a nice property which allows to additively combine commitments.

Additive-homomorphic FC [20]. Let FC be a functional commitment scheme
where X is a ring. Then FC is additive homomorphic if there exist deterministic
algorithms FC.Add(ck, C1, . . . , Cn) → C, FC.Addaux(ck, aux1, . . . , auxn) → aux
and FC.Addr(ck, r1, . . . , rn) → r such that for any xi ∈ X and (Ci, auxi) ←
Com(ck,xi; ri), if C ← FC.Add(ck, C1, . . . , Cn), aux← FC.Addaux(ck, aux1, . . . , auxn),
and r ← FC.Addr(ck, r1, . . . , rn), then (C, aux) = Com(ck,

∑n
i=1 xi; r).

Security. The common security notion for FCs is the evaluation binding, which
consists in the hardness of computing two different opening proofs for two dif-
ferent values which pass the verification step for the same function. As proven in
[20], for the security of construction of the FC-based Homomorphic Signature in
Section 3, it is enough that the FC satisfies the weaker notion of security below.



6 Carnemolla et al.

Definition 2 (Weak Evaluation Binding [20]). For any PPT adversary A

AdvwEvBind
A,FC (λ) := Pr

(C, ·) = Com(ck,x; r)

∧ y ̸= f(x) ∧
Ver(ck, C, f,y, π) = 1

:
ck← Setup(1λ, n)

(x, r, f,y, π)← A(ck)

 = negl(λ)

2.2 Lattices

Lattices. A m−dimensional lattice L of rank n is defined as the set of linear
combinations of a set of vectors B = [v1, . . . ,vn],vi ∈ Rm, with coefficients in
Z, i.e. L = {Bz : z ∈ Zm}. B is called a basis for L.

Usually, we use the term short basis to refer to a matrix with norm smaller
than a certain bound.

Definition 3 (SIS problem). Given parameters n,m, q, β and a matrix A ∈
Zn×m
q , the Short Integer Solution problem (SIS) consists in finding a non-zero

vector u ∈ Zm such that Au = 0 mod q and ||u|| ≤ β.7 The SIS problem is said
to be hard if the probability of finding such a u is negligible, for all polynomially
bounded adversaries.

2.3 Homomorphic Signatures

In this work we compare several Homomorphic Signature schemes (HS). Infor-
mally, an HS allows a user to sign a dataset (x1, . . . , xn) and obtain a set of
signatures (σ1, . . . , σn) for which an untrusted server can compute a function
y = f(x1, . . . , xn) and a signature σ. If correctly computed, (σ, f, y) can be cor-
rectly verified with the user verification key certifying that y = f(x) (without
the need to know x). In this subsection we recall the definition of a Multi-Data
Homomorphic Signature scheme and its most basic security notion from [30].
The definition considers more datasets. In what follows ∆ denotes the datased
identifier and X the message space.

Definition 4 (Multi-data Homomorphic Signature Scheme [30]). A
Multi–data homomorphic signature scheme consists of poly-time algorithms
(PrmsGen,KeyGen,Sign,Eval,Ver) with the following syntax.

PrmsGen(1λ, data)→ prms on input the security parameter λ and some data data
specific of the construction, generates public parameters prms.

KeyGen(1λ, prms)→ (pk, sk) on input the security parameter λ and prms, returns
a public verification key pk and a secret signing key sk.

Sign(sk, ∆, (x1, . . . , xN ))→ (σ1, . . . , σN ) on input x̄ ∈ X ∗ under a dataset iden-
tifier ∆ ∈ {0, 1}∗, returns a tuple of signature (σ1, . . . , σN ).

7 Typically chosen norms are ℓ2 and ℓ∞. GVW15 opts for ℓ∞.



2. PRELIMINARIES 7

Eval(pk, g,∆, ((x1, σ1), . . . , (xℓ, σℓ)))→ σ∗ takes a set of message/signature
pairs under a dataset identifier ∆ ∈ {0, 1}∗ and homomorphically computes
a signature σ∗.8

Ver(pk, g, y,∆, σ∗)→ b ∈ {0, 1} verifies that y ∈ X is indeed the output of g over
the data signed with the dataset identifier ∆.

Correctness of Signing. For any prms ∈ PrmsGen(1λ, data), (pk, sk) ∈
KeyGen(1λ, prms), any (x1, . . . , xN ) ∈ XN , any ∆ ∈ {0, 1}∗ and any
(σ1, . . . , σN ) ∈ Sign(sk, ∆, (x1, . . . , xN )), then Ver(pk, idi, xi, ∆, σi) = 1, where
idi is the identity function which sends (x1, . . . , xN ) to xi.

Correctness of Evaluation. For any circuits h1, . . . , hℓ with hi : XN → X
and any circuit g : X ℓ → X , any (x1, . . . , xℓ) ∈ X ℓ, any ∆ ∈ {0, 1}∗ and any
(σ1, . . . , σℓ):

 {Ver(pk, hi, xi, ∆, σi) = 1}i∈[ℓ]

σ∗ := Eval(pk, g,∆, (x1, σ1), . . . , (xℓ, σℓ))

⇒
⇒ Ver(pk, (g ◦ h̄),g(x1, . . . , xℓ), ∆, σ∗) = 1.

An additional property that HS schemes can satisfy is succinctness. Informally,
an HS is succinct if the Eval output size is smaller than poly(λ) · log n, where n
is the input size.

Security. As discussed in the Introduction, for HS schemes we cannot use
the basic unforgeability notions for digital signature schemes. In the context
of HS, we require that the types of forgery are restricted to signatures that
come from the legitimate signer or from the evaluation on them. An analysis
and a formal description of the security notions for HS scheme is given in [19].
There, the authors introduce three security notions: semi-adaptive, adaptive and
strong adaptive security. The scheme from [30] described in Section 4 guarantees
semi-adaptive security9, while the FC-based schemes recalled in Section 3 satisfy
strong adaptive security. For simplicity, we recall here the simpler definition given
in [30], which is essentially the semi-adaptive security notion from [19]. We refer
to [19] for a more detailed description.

Remark 1. We remark here that in [19] security is defined with respect to (multi)-
labeled programs. Since the focus of this paper is on implementations of existing,
already proved secure, schemes for the sake of simplicity we rephrase our defi-
nition without relying on the somewhat more cumbersome machinery of labeled
programs.
8 g must be an admissible function where the notion of admissible function depends

on the specific scheme.
9 Actually, the base scheme from [30] satisfies only selective security, but in the same

work the authors present a construction to extend the scheme in order to achieve a
security notion which is essentially equivalent to semi-adaptive security.



8 Carnemolla et al.

Security Experiment [30]. Let HS be as in Definition 4. Consider the following
experiment with a challenger C and an adversary A:

1. C runs prms ← PrmsGen(1λ, data) and (pk, sk) ← KeyGen(1λ, prms). pk and
prms are then given to A.

2. A sends an arbitrary number of queries. For each query j

– A chooses a fresh and never queried identifier ∆j ∈ {0, 1}∗ and a message
vector (xj,1 . . . xj,Nj ) ∈ X ∗.

– C replies to A with (σj,1, . . . , σj,Nj )← Sign(sk, ∆j , (xj,1 . . . xj,Nj )).
3. A chooses a function g : XN ′ → X and ∆, y′, σ′. Let y := g(x1, . . . , xn). A

wins the game if:
– Ver(pk, g, y′, σ′) = 1;
– One of the following types of forgeries happens:
• Type-1: ∆ ̸= ∆j for any j or ∆ = ∆j for some j and N ′ ̸= Nj

• Type-2: ∆ = ∆j for some j such that g is admissible on xj,1, . . . , xj,N ′

and y′ ̸= g(xj,1, . . . , xj,N ′)

HS is said to be secure if for all PPT A, the probability that A wins is negl(λ)
in the security experiment above.

3 Pairing based Homomorphic Signatures

The aim of this section is to introduce the two pairing based schemes of CFT22
and BCFL23 that build upon additive-homomorphic FCs. The main idea is that
the signer generates a commitment Cx to his dataset and a digital signature
σCx on the commitment and gives it to the server. The server can then compute
a function f by giving to the verifier the pair (Cx, σCx) and an opening of Cx

to the function f . Then the verifier can use the signer public key to verify the
server computation. In addition, to dispense the signer from having to commit
to the dataset all at once, [20] proposes the use of additive-homomorphic FC and
a linearly homomorphic signature (LHS) in the commitment space. Concretely
the LHS used in [20] is the structure preserving linearly homomorphic scheme
from [23]. The LHS supports FC.Add for evaluations. For what concerns the
security, as proven in [20], the HS is strongly-adaptive secure if the underlying
LHS is strongly-adaptive secure and the FC satisfies weak evaluation binding. We
implement the LHS construction presented in the original paper, which supports
commitments to group elements for the pairing based FC under consideration.
The LHS implemented is built from any (standard) digital signature scheme. The
algorithms of the resulting HS construction are summarized in Figure 1.

Short overview of the implemented FC The first FC scheme (CFT22)
we use to instantiate an HS is the one presented in the Section 4 of [20]. This
scheme supports a commitment opening to multiple (multivariate) polynomials
of bounded constant degree (fixed at setup time) with a single compact proof and
its security is proven under the standard Diffie-Hellman exponent assumption.
On the other hand, the second FC scheme (BCFL23), proposed in [7], supports



4. A LATTICE BASED HOMOMORPHIC SIGNATURE 9

KeyGen(1λ, [n])

ck← FC.Setup(1λ, n,m)

(skLHS, pkLHS)← LHS.KeyGen(1λ, [n])

pk := (pkLHS, ck), sk := skLHS

return (sk, pk)

Eval(pk, f, σ1, . . . , σt)

C ← FC.Add(ck, C1, . . . , Ct)

aux← FC.Addaux(ck, aux1, . . . , auxt)

σ̂ ← LHS.Eval(pkLHS,FC.Add, σ̂1, . . . , σ̂t)

π ← FC.Open(ck, aux, f̂i)

return σf,y := (σ̂, C, πf )

Sign(sk, ∆, i, xi)

Let ei s.t. ei,i = 1, ei,j = 0 ∀i ̸= j

(Ci, auxi)← FC.Com(ck, xi · ei)

σ̂i ← LHS.Sign(skLHS,∆, i, Ci)

return σi := (σ̂i, Ci, auxi, i)

Ver(pk, (f, i), ∆,y, σ)

bLHS ← LHS.Ver(pkLHS, (FC.Add, i),∆,C, σ̂)

if σ = (σ̂, C, aux, i)

π ← FC.Open(ck, aux, f̂id,i)

bFC ← FC.Ver(ck, C, f̂i,y, π)

return bFC ∧ bLHS

Fig. 1: HS from additive FC and LHS for FC.Add.

the evaluation of arbitrary arithmetic circuits with a maximal width, the opening
proof is succinct and its security is proven under a new falsifiable assumption
called n-HiKer. Both schemes are additive-homomorphic and have amortized
efficient verification.

4 A Lattice based Homomorphic Signature

In this section we recall the Lattice based Homomorphic Signature of GVW15.
The authors present two schemes, one with larger public parameters in the stan-
dard model and one with shorter public parameters in the random oracle model.
The construction of both HS schemes relies upon a primitive called Homomor-
phic Trapdoor Function (HTDF), and their security is guaranteed under the SIS
assumption. In the HS only the depth d of the circuits is fixed in setup, and the
protocol can evaluate arbitrary circuits. The HS allows full composability, mean-
ing that outputs of some evaluations can be used as inputs to a new evaluation
which can be verified using the verification key of the legitimate signer.

4.1 Homomorphic Trapdoor Function HTDF

The notion of Homomorphic Trapdoor Function (HTDF) is introduced in GVW15.
We recall the formal definition and refer to the original paper for a more detailed
description10.

Definition 5 (Homomorphic Trapdoor Function [30]). A HTDF is a tuple
of five algorithms (HTDF.KeyGen, f, Inv,HTDF.Evalin,HTDF.Evalout) where:
10 The original paper also presents an HTDF construction, which is the one we used in

our implementation.



10 Carnemolla et al.

◦ HTDF.KeyGen on input the security parameter λ returns a public key pk and
a secret key sk. λ also defines the index space X , the input space U , the output
space V and an input distribution DU over U . It is required that membership
tests in X ,U ,V and uniform sampling in V can be done efficiently.
◦ fpk,x : U → V a deterministic function indexed by x ∈ X and pk, on input an

element in U returns an element in V.
◦ Invsk,x : V → U a probabilistic inversion function indexed by x ∈ X and sk, on

input an element in V returns a preimage in U .
◦ HTDF.Evalin a deterministic homomorphic evaluation algorithm which, on in-

put {(xi, ui)}i∈[ℓ], where ui ∈ U , xi ∈ X , for each i ∈ [ℓ], and a circuit
g : X ℓ → X , HTDF.Evalin, returns u∗ := HTDF.Evalin(g, (x1, u1), . . . , (xℓ, uℓ))
where u∗ ∈ U .
◦ HTDF.Evalout a deterministic homomorphic evaluation algorithm which, on

input {vi}i∈[ℓ], where vi ∈ V, for each i ∈ [ℓ], and a circuit g : X ℓ → X ,
HTDF.Evalout , returns v∗ := HTDF.Evalout(g, v1, . . . , vℓ), where v∗ ∈ V.

Correctness. Let (pk, sk) ← KeyGen(1λ), let g : X ℓ → X a circuit,
x1, . . . , xℓ ∈ X and y := g(x1, . . . , xℓ). Let u1, . . . , uℓ ∈ U and define vi :=
fpk,xi(ui) for each i ∈ [ℓ]. Let u∗ := HTDF.Evalin(g, (x1, u1), . . . , (xℓ, uℓ)) and
v∗ := HTDF.Evalout(g, v1, . . . , vℓ), then correctness of homomorphic evaluations
requires that u∗ ∈ U and fpk,y(u

∗) = v∗.11

An HTDF can be seen as a homomorphic equivocable commitment scheme,
where knowing the secret key it is possible to open any commitment v to u for
any index x. This motivates the security notion below for a HTDF, which is
similar to the binding property of a commitment scheme.

Definition 6 (HTDF Security [30]). An HTDF is said to be secure if for any
PPT adversary A, the probability that A finds two inputs u, u′ ∈ U and x ̸= x′ ∈
X such that fpk,x(u) = fpk,x′(u′) is negl(λ).

4.2 Lattice based HS scheme from HTDF

[30] presents a way to use an HTDF as a building block to construct an Homo-
morphic Signature scheme. A concrete HTDF can be instantiated using existing
algorithms such the ones in [37], which is the construction we chose for our
implementation of the HS from GVW15 discussed in Subsection 5.2. More pre-
cisely, the implemented scheme, which is built for a single dataset, satisfies a
notion of security called selective security where an adversary chooses its mes-
sages (x1, . . . , xℓ) before knowing the public parameters and the public key. [30]
also present a construction to transform the basic scheme to a more complex
one which satisfies full security, which is essentially the semi-adaptive security.

11 The evaluated function g must be an admissible function, otherwise the correctness
property is not guaranteed. See description in Section 4.2 for more details.



4. A LATTICE BASED HOMOMORPHIC SIGNATURE 11

We implement the single-data scheme in the standard model and we discuss our
implementation in Subsection 5.2.

Homomorphic Signature construction. The GVW15 single-data HS scheme
inherits some characteristic of the underlying HTDF. More in details, we give a
short description of noise analysis to introduce these inherited properties and
to explain what is an admissible function in GVW15. Any function used in the
evaluation algorithm is expressed as an arithmetic circuit. The HS signatures
are matrices in U , as given by the construction of the HTDF, with an associated
noise level β equal to their ℓ∞ norm. Any evaluation outputs a signature with
a noise-level which depends on the evaluated function and the messages12. Af-
ter some evaluation the output has some noise β. The HS is parametrized by a
threshold noise level βmax which must not be exceeded by the noise level β of
an evaluated signature, otherwise the correctness of the HTDF and then of the
HS is not guaranteed. The HS of GVW15 inherits from HTDF both βmax and
the set of admissible functions. The correctness of the homomorphic evaluations
in the HS comes from the corresponding ones in the HTDF.

GVW15 scheme. The single-data HS construction from GVW15 that we
implement is described below:
Let HTDF = (HTDF.KeyGen, f, Inv,HTDF.Evalin,HTDF.Evalout) be an HTDF
with index space X , input space U , output space V and an input distribution DU .
The GVW15 HS is a tuple of algorithms HS = (PrmsGen,KeyGen,Sign,Ver,Eval)
where Ver is divided in two subprocedures (Ver∗,Process). HS has message space
X and:

◦ PrmsGen(1λ, 1N )→ prms: return prms = (v1, . . . , vN )
$←− VN .

◦ KeyGen(1λ, prms)→ (pk, sk): set (pk, sk) = (pk′, (prms, sk′)) where (pk′, sk′)←
HTDF.KeyGen(1λ)

◦ Sign(sk, x1, . . . , xN )→ (σ1, . . . , σN ): sample ui ← Invsk′,xi
(vi) and set σi := ui

for i ∈ [N ].
◦ Eval(pk, g, (x1, σ1), . . . , (xℓ, σℓ))→ σ∗: run HTDF.Evalin(pk′, g, (x1, σ1), . . . , (xℓ, σℓ))

◦ Ver(pk, g, y, σ∗)→ {0, 1}:13
− αg ← Process(prms, g): set αg ← HTDF.Evalout(pk′, g, v1, . . . , vN ).

− Ver∗(pk, αg, y, σ
∗): verify fpk′,y(σ)

?
= αg. If true accept, else reject.

Security. We defined the full security of a multi-data scheme in Section 2, which
corresponds to the semi-adaptive security notion. For the single-data protocol the
security experiment takes into account only one dataset and a possible forgery
is only of the second type, i.e. when datasets are all the same one. Anyway,
12 The noise level grows after any evaluation gate of the circuit.
13 In the original work [30], the names of Ver and Ver∗ are switched and the construction

is presented with the procedures Process and Ver∗ taken separately and not unified
as in Ver here. To be consistent with the definition we gave in Section 2, we opted
to present the construction with a unified procedure where Ver∗ has the role of Ver
in the original paper.



12 Carnemolla et al.

the basic protocol we considered satisfies a weaker notion of security where the
adversary chooses messages to ask for signatures before seeing the public key
and the parameters.

5 Implementations

As our main contribution in this work, we implemented the three construc-
tions of Sections 3 and 4 in order to compare them in terms of execution time
and bandwidth consumption. Additionally, we carried on a feasibility study for
some commonly used statistical functions to understand their applicability in
real-world scenarios. Our implementations were written in Rust programming
language, along with several additional libraries we will cite later14.

5.1 Pairing based schemes

As previously mentioned, CFT23 and BCFL23 are based on pairings. For the
implementation of both schemes, we used the open-source blstrs cryptographic
library provided by Protocol Labs [39]. This is a Rust binding for the well-
known blst library [40], written in C and Assembly, which provides an efficient
implementation of the Barreto-Lynn-Scott pairing-friendly elliptic curve [9] with
embedding degree 12 and a 381 bits modulus (BLS12-381). The BLS12-381
curve was instantiated from the BLS12 curve family by appropriately choos-
ing the instantiation parameter to minimise its Hamming weight, which is useful
for achieving the best performance on the Miller’s Weil pairing algorithm (also
known as Miller’s Loop), while maximizing the size of the field modulus q. This
allows fast 32/64-bit arithmetic. BLS12-381 was originally designed to provide a
128 bit security level, however it is known that the extended tower number field
sieve (exTNFS) [32] reduces its security to approximately 100 bits [8]. For each of
the aforementioned schemes a library was developed using a modular approach.
Two different modules have been created: one for the FC scheme and one for
the LHS construction. These modules were then called up in another module
specifically created for the HS construction. For both schemes we implemented
the LHS proposed in [20] using BLS [13] as standard digital signature, namely
the implementation of the blst [40] library.

5.2 Lattice based scheme

We implemented the lattice based scheme (GVW15) using the qFALL library
[38], which provides mathematical primitives for lattice based cryptography and
the implementation of the trapdoor functions proposed in [37]. qFALL uses the
optimized widespread FLINT library [41] as back-end for the arithmetic on stan-
dard rings. First of all, we tried to find proper parameters, using the Lattice
Estimator project [2], to instantiate the scheme in order to provide a security of

14 The source code is available upon request of the reviewers.



5. IMPLEMENTATIONS 13

approximately 100 bits. After the early experiments we realised that with such
parameters, the execution time of the benchmarks would be totally unaccept-
able, mainly due to the KeyGen and Sign algorithms. Specifically, in addition to
compute a parity matrix A and an associated trapdoor td, the KeyGen algorithm
also generates a short base of the lattice of interest using td and precomputes
its Gram-Schmidt Orthogonalisation. This is necessary to optimise the execu-
tion of the SamPre algorithm during the signing phase. Unfortunately, it is the
Gram-Schmidt Orthogonalisation that is the most time-consuming operation in
our KeyGen implementation. As previously outlined, the Sign algorithm simply
invokes the Inv algorithm, whose execution time is exclusively dependent on the
parameters selected for the SIS instance. In fact, this algorithm solves a certain
number of systems of linear equations depending on the chosen SIS parame-
ters. Using the qFALL library, our implementation of this algorithm employs
the Gaussian elimination method. Despite this optimization, the Sign algorithm
remains very time-consuming due to the size of the involved matrices: more pre-
cisely if n and q are the parameters for the SIS instance, then we have to solve
n⌈log2 q⌉ systems of linear equations modulus q. For these reasons, we decided
to use lower non-secure parameters, namely n = 16 and q = 2601023. According
to the Lattice Estimator, this would give a security of about 30 bits. Never-
theless, as we shall see in Section 6, the scheme performs poorly. The scheme
was implemented in a generic way, enabling the evaluation of both boolean and
arithmetic circuits as outlined in the original article. However, our benchmarks
were carried out on arithmetic circuits to reduce execution time and bandwidth
consumption. Indeed, using boolean circuits would have posed challenges in ex-
pressing the chosen functions and produced more signatures (one for each bit of
the vector elements), leading to wasted bandwidth and CPU cycles.

5.3 On the possibility of a parallel implementation

For the sake of simplicity, the libraries were implemented using a single-threaded
approach. While a parallel implementation could potentially enhance the effi-
ciency of many operations in the considered constructions, we believe it would
not fundamentally subvert the final conclusions. More specifically, there are two
levels of parallelism that we can consider: one for the basic mathematical oper-
ations (e.g. multi-precision integer arithmetic, elliptic curve arithmetic, pairing
computation, polynomial and matrix operations etc.) and one that is inherent
to the protocol that we implemented. Regarding the first level, as mentioned
before, standard libraries have been employed for the basic mathematical oper-
ations but, unfortunately, these do not provide any parallelism support. On the
other hand, for the second level of parallelism, we conducted an analysis of the
implemented algorithms in order to evaluate the impact of a parallel approach.
With regard to the pairing based HS, all algorithms are amenable to paral-
lelization: this would result in a reduction of the execution time by an expected
factor equal to the number of used threads15. We would have the same reduction
15 This assertion can be corroborated by inspecting the FC constructions [20, 7].



14 Carnemolla et al.

factor in the case of GVW15, especially in the KeyGen algorithm, using a paral-
lel Gram-Schmidt Orthogonalization implementation (we used the FLINT one),
and in the Sign algorithm by solving the systems of linear equations in parallel.
Obviously, even in the case of the Eval algorithm, we can have the same gain by
parallelizing the evaluation of the gates when it is possible. If we keep out the
preprocessing phase for the amortized verification, the Ver algorithm is the least
likely to benefit from this level of parallelism.

5.4 Benchmarks

First of all, we implemented a benchmark unit to compare the schemes in terms
of execution time. We used the Divan library [42] which provides a good ap-
proximation of the strategy proposed in [24] for benchmarking even in noisy
environments. We also considered the use of the Criterion library: indeed it is
considered the de facto standard for Rust benchmarks. A wider flexibility in the
test management but also a better accuracy guaranteed by the native use of the
Time Stamp Counter (TSC), determined our final choice. For each benchmark,
we collected as many samples as possible for at least 60 seconds. This guaranteed
a proper number of runs on fine-grain operations but also a dynamic experimen-
tal environment on heterogeneous operations. In experiments where we collected
more than one sample, the value in Section 6 represents the median of the col-
lected samples. Our benchmarks keep track of the bandwidth usage among the
parties in the implemented schemes. Due to the complexity of the involved data
structures, we decided to use as metric the size of the serialization obtained by
means of the Concise Binary Object Representation (CBOR)[14] provided by
the Serde serialization library. Benchmark units have been implemented for two
representative functions in statistics: the weighted sum and the variance. The
first one gives us an understanding of the behaviour of constructions in the linear
case, the second one in the quadratic case16.

6 Experimental results

In this section we report the benchmark results we collected in our experiments.
In all the executions we evaluated the chosen statistic functions on the same
randomly-generated vector of 8-bit unsigned integers17. All our benchmarks were
executed on a server equipped with an Intel(R) Xeon(R) Gold 6238R CPU run-
ning at 2.20 GHz and 24 GiB of RAM. Figures 2 and 3 show our benchmark
results for, respectively, the weighted sum and variance functions. As the col-
lected data are spread over a wide range, we chose to use a logarithmic scale in
our graphs. They give an idea of the running times of the main operations and of
16 We implemented the variance using a pair of grade 2 polynomials omitting the

problematic division operation for the public and function-related parameter n.
17 This choice is mainly related to the toy parameters we were forced to use in GVW15:

indeed the other two schemes would be able to manage also 64-bit scalars with the
chosen keys.



6. EXPERIMENTAL RESULTS 15

the sizes of the generated signatures and proofs. The size of the dataset ranges
from 5 to 40 elements. Dashed lines were used in the lattice based scheme to
indicate the use of very small and insecure parameters. When interpreting these
graphs, it is important to consider this aspect, particularly when the GVW15
scheme appears to be comparable to others in terms of evaluation and veri-
fication. More specifically, regarding the variance function shown in Figure 3
and focusing solely on pairing based constructions, it can be observed that the
key generation of CFT22 is significantly faster compared to BCFL23. Addition-
ally, the evaluation and verification functionalities of CFT22 are quicker than
BCFL23 by an average factor of 12 and 23 times, respectively. On the other
hand, BCFL23 is three times more efficient in the signing phase and produces
signatures that are three times smaller, albeit with slightly more concise proofs.



16 Carnemolla et al.

10 20 30 40
0.01

0.1

1

10

100

1,000

10,000

T
im

e
(s

)

KeyGen

CFT22 BCFL23 GVW15

10 20 30 40
0.001

0.1

10

1,000

100,000

Sign

10 20 30 40
0.001

0.01

0.1

1

10

T
im

e
(s

)

Eval

10 20 30 40

0.1

1

Verify

10 20 30 40

10

100

1,000

10,000

100,000

Input vector size

M
em

or
y

(k
B

)

Signature (size)

10 20 30 40
1

10

100

1,000

Input vector size

Proof (size)

Fig. 2: Weighted Sum Function



6. EXPERIMENTAL RESULTS 17

10 20 30 40
0.01

0.1

1

10

100

1,000

10,000

T
im

e
(s

)

KeyGen

CFT22 BCFL23 GVW15

10 20 30 40
0.001

0.1

10

1,000

100,000

Sign

10 20 30 40

0.1

1

10

100

1,000

10,000

T
im

e
(s

)

Eval

10 20 30 40

0.1

1

10

Verify

10 20 30 40

10

100

1,000

10,000

100,000

Input vector size

M
em

or
y

(k
B

)

Signature (Size)

10 20 30 40
1

10

100

1,000

Input vector size

Proof (Size)

Fig. 3: Variance Function



18 Carnemolla et al.

References

1. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for net-
work coding. In: Abdalla, M., Pointcheval, D., Fouque, P.A., Vergnaud, D.
(eds.) ACNS 09. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (Jun 2009).
https://doi.org/10.1007/978-3-642-01957-9_18

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of
learning with errors. Journal of Mathematical Cryptology 9(3), 169–203
(Oct 2015). https://doi.org/10.1515/jmc-2015-0016, http://dx.doi.org/10.
1515/jmc-2015-0016

3. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the
standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (Mar 2011).
https://doi.org/10.1007/978-3-642-19379-8_2

4. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data:
New privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (Dec 2012).
https://doi.org/10.1007/978-3-642-34961-4_23

5. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (Feb / Mar
2013). https://doi.org/10.1007/978-3-642-36362-7_24

6. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013.
pp. 863–874. ACM Press (Nov 2013). https://doi.org/10.1145/2508859.2516681

7. Balbás, D., Catalano, D., Fiore, D., Lai, R.W.F.: Chainable functional commit-
ments for unbounded-depth circuits. In: Theory of Cryptography - 21st Inter-
national Conference, TCC 2023, Taipei, Taiwan, November 29 - December 2,
2023, Proceedings, Part III. pp. 363–393 (2023). https://doi.org/10.1007/978-3-
031-48621-0_13, https://doi.org/10.1007/978-3-031-48621-0_13

8. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Journal
of Cryptology 32(4), 1298–1336 (Oct 2019). https://doi.org/10.1007/s00145-018-
9280-5

9. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 02. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (Sep 2003). https://doi.org/10.1007/3-
540-36413-7_19

10. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace:
Signature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (Mar 2009).
https://doi.org/10.1007/978-3-642-00468-1_5

11. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (May 2011). https://doi.org/10.1007/978-3-642-20465-4_10

12. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(Mar 2011). https://doi.org/10.1007/978-3-642-19379-8_1

13. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Jour-
nal of Cryptology 17(4), 297–319 (Sep 2004). https://doi.org/10.1007/s00145-004-
0314-9

https://doi.org/10.1007/978-3-642-01957-9_18
https://doi.org/10.1515/jmc-2015-0016
http://dx.doi.org/10.1515/jmc-2015-0016
http://dx.doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1007/978-3-642-19379-8_2
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-36362-7_24
https://doi.org/10.1145/2508859.2516681
https://doi.org/10.1007/978-3-031-48621-0_13
https://doi.org/10.1007/978-3-031-48621-0_13
https://doi.org/10.1007/978-3-031-48621-0_13
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/978-3-642-19379-8_1
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9


6. EXPERIMENTAL RESULTS 19

14. Bormann, C., Hoffman, P.E.: Concise Binary Object Representation (CBOR). RFC
8949 (Dec 2020). https://doi.org/10.17487/RFC8949, https://www.rfc-editor.
org/info/rfc8949

15. Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 336–
352. Springer, Heidelberg (May 2013). https://doi.org/10.1007/978-3-642-38348-
9_21

16. Catalano, D., Fiore, D., Gennaro, R., Nizzardo, L.: Generalizing homomorphic
MACs for arithmetic circuits. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 538–555. Springer, Heidelberg (Mar 2014). https://doi.org/10.1007/978-3-642-
54631-0_31

17. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trap-
door) one-way functions and their applications. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 680–699. Springer, Heidelberg (Mar 2013).
https://doi.org/10.1007/978-3-642-36594-2_38

18. Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go
private: Constructions and applications to (homomorphic) signatures with
shorter public keys. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 254–274. Springer, Heidelberg (Aug 2015).
https://doi.org/10.1007/978-3-662-48000-7_13

19. Catalano, D., Fiore, D., Nizzardo, L.: On the security notions for homomorphic
signatures. In: Preneel, B., Vercauteren, F. (eds.) ACNS 18. LNCS, vol. 10892,
pp. 183–201. Springer, Heidelberg (Jul 2018). https://doi.org/10.1007/978-3-319-
93387-0_10

20. Catalano, D., Fiore, D., Tucker, I.: Additive-homomorphic functional commitments
and applications to homomorphic signatures. In: Agrawal, S., Lin, D. (eds.) ASI-
ACRYPT 2022, Part IV. LNCS, vol. 13794, pp. 159–188. Springer, Heidelberg (Dec
2022). https://doi.org/10.1007/978-3-031-22972-5_6

21. Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applica-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223.
Springer, Heidelberg (May 2011). https://doi.org/10.1007/978-3-642-20465-4_13

22. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures
in the standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (May 2012).
https://doi.org/10.1007/978-3-642-30057-8_40

23. Catalano, D., Marcedone, A., Puglisi, O.: Authenticating computation on groups:
New homomorphic primitives and applications. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 193–212. Springer, Heidelberg
(Dec 2014). https://doi.org/10.1007/978-3-662-45608-8_11

24. Chen, J., Revels, J.: Robust benchmarking in noisy environments (2016)
25. Desmedt, Y.: Computer security by redefining what a computer is. In: NSPW 1993
26. Fiore, D., Tucker, I.: Efficient zero-knowledge proofs on signed data with appli-

cations to verifiable computation on data streams. In: Yin, H., Stavrou, A., Cre-
mers, C., Shi, E. (eds.) ACM CCS 2022. pp. 1067–1080. ACM Press (Nov 2022).
https://doi.org/10.1145/3548606.3560630

27. Freeman, D.M.: Improved security for linearly homomorphic signatures: A
generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (May 2012).
https://doi.org/10.1007/978-3-642-30057-8_41

https://doi.org/10.17487/RFC8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://doi.org/10.1007/978-3-642-38348-9_21
https://doi.org/10.1007/978-3-642-38348-9_21
https://doi.org/10.1007/978-3-642-54631-0_31
https://doi.org/10.1007/978-3-642-54631-0_31
https://doi.org/10.1007/978-3-642-36594-2_38
https://doi.org/10.1007/978-3-662-48000-7_13
https://doi.org/10.1007/978-3-319-93387-0_10
https://doi.org/10.1007/978-3-319-93387-0_10
https://doi.org/10.1007/978-3-031-22972-5_6
https://doi.org/10.1007/978-3-642-20465-4_13
https://doi.org/10.1007/978-3-642-30057-8_40
https://doi.org/10.1007/978-3-662-45608-8_11
https://doi.org/10.1145/3548606.3560630
https://doi.org/10.1007/978-3-642-30057-8_41


20 Carnemolla et al.

28. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 142–160. Springer, Heidelberg (May 2010). https://doi.org/10.1007/978-3-642-
13013-7_9

29. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301–320.
Springer, Heidelberg (Dec 2013). https://doi.org/10.1007/978-3-642-42045-0_16

30. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomor-
phic signatures from standard lattices. In: Servedio, R.A., Rubinfeld,
R. (eds.) 47th ACM STOC. pp. 469–477. ACM Press (Jun 2015).
https://doi.org/10.1145/2746539.2746576

31. Johnson, R., Molnar, D., Song, D.X., Wagner, D.A.: Homomorphic signature
schemes. In: Topics in Cryptology - CT-RSA 2002, The Cryptographer’s Track
at the RSA Conference, 2002, San Jose, CA, USA, February 18-22, 2002, Proceed-
ings. Lecture Notes in Computer Science, vol. 2271, pp. 244–262. Springer (2002)

32. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity
for the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg (Aug 2016).
https://doi.org/10.1007/978-3-662-53018-4_20

33. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to suc-
cinct arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part I. LNCS, vol. 11692, pp. 530–560. Springer, Heidelberg (Aug 2019).
https://doi.org/10.1007/978-3-030-26948-7_19

34. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (Aug
2013). https://doi.org/10.1007/978-3-642-40084-1_17

35. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleabil-
ity: Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption
from homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (May 2014).
https://doi.org/10.1007/978-3-642-55220-5_29

36. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: From
polynomial commitments to pairing-based accumulators from simple assump-
tions. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D.
(eds.) ICALP 2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl (Jul 2016).
https://doi.org/10.4230/LIPIcs.ICALP.2016.30

37. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-
29011-4_41

38. Porzenheim, L., Beckmann, M., Kramer, P., Milewski, P., Moog, S., Schmidt, M.,
Siemer, N.: qfall-crypto v0.0. Online: https://github.com/qfall/crypto (Mar
2023), university Paderborn, Codes and Cryptography

39. Protocol Labs: blstrs. Online: https://github.com/filecoin-project/blstrs
(2020)

40. Supranational: blst. Online: https://github.com/supranational/blst (2020)
41. team, T.F.: FLINT: Fast Library for Number Theory, https://flintlib.org
42. Vazquez, N.: Divan. Online: https://github.com/nvzqz/divan

https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-642-42045-0_16
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-642-40084-1_17
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://github.com/qfall/crypto
https://github.com/filecoin-project/blstrs
https://github.com/supranational/blst
https://flintlib.org
https://github.com/nvzqz/divan

	Implementation and Performance Analysis of Homomorphic Signature Schemes
	Introduction
	Our contribution
	Other related work

	Preliminaries
	Functional Commitments
	Lattices
	Homomorphic Signatures

	Pairing based Homomorphic Signatures
	A Lattice based Homomorphic Signature
	Homomorphic Trapdoor Function HTDF
	Lattice based HS scheme from HTDF

	Implementations
	Pairing based schemes
	Lattice based scheme
	On the possibility of a parallel implementation
	Benchmarks

	Experimental results


