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Abstract. The Tensor Isomorphism Problem (TIP) has been shown
equivalent to the matrix code equivalence problem, making it an interest-
ing candidate on which to build post-quantum cryptographic primitives.
These hard problems have already been used in protocol development.
One of these, MEDS, is currently in Round 1 of NIST’s call for additional
post-quantum digital signatures.

In this work, we consider the TIP restricted to the orbits of a special class
of tensors. The hardness of the decisional version of this problem is the
foundation of a commitment scheme proposed by D’Alconzo, Flamini,
and Gangemi (Asiacrypt 2023). We present polynomial-time algorithms
for the decisional and computational versions of TIP for special orbits,
which implies that the commitment scheme is not secure. The key obser-
vations of these algorithms are that these special tensors contain some
low-rank points, and their stabilizer groups are not trivial.

With these new developments in the security of TIP in mind, we give a
new commitment scheme based on the general TIP that is non-interactive,
post-quantum, and statistically binding, making no new assumptions.
Such a commitment scheme does not currently exist in the literature.

1 Introduction

Group actions have proven very useful in the transition to post-quantum cryptog-
raphy. They provide a quantum-safe algebraic operation in certain instantiations,
making it easy to use them as a replacement in previously classical schemes. Re-
cently, isogenies have been the most well-studied example of a post-quantum
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group action [8,12]. We can find, however, group actions from other hard prob-
lems, some of which have already been proposed for use in post-quantum cryp-
tography. Such group actions include alternating trilinear forms [45], lattices [20],
polynomials [38], linear codes [5, 15], and tensors [30].

The work of [26] shows that three of these hard problems, the matrix code
equivalence problem, the trilinear form equivalence problem, and the tensor iso-
morphism problem (TIP) are all equivalent. Particularly given a 3-tensor with
dimensions l,m, n, we can naturally represent it as a [l×m,n]-matrix code. Thus,
though our focus in this work will be on TIP, we will be inherently studying the
security of all three of these problems. Two recent independent works [15,30] pro-
posed using tensor isomorphism (or matrix code equivalence) for cryptographic
purposes from the different algebraic structures of tensors and codes. Very re-
cently, a digital signature scheme, MEDS [14], based on matrix code equivalence
was submitted to the NIST standardization competition for post-quantum sig-
natures as a round 1 candidate. The security of MEDS, that is, the algorithm
of matrix code equivalence, has been studied in several works [14,15,17,41]. We
proceed to briefly review the state-of-the-art algorithms for matrix code equiv-
alence, and hence TIP.

Algorithms solving matrix code equivalence. There are three types of algorithms
for matrix code equivalence. The first ones use algebraic methods, whereby ma-
trix code equivalence is translated into solving systems of polynomial equations.
Gröbner basis techniques are often employed for this approach, albeit with effi-
ciency contingent upon the values of l,m and n. Notably, efficiency diminishes
significantly when these dimensions become slightly large. The second is the
graph-theoretic algorithm [41], which involves transforming matrix codes into
quadratic mappings, thereby facilitating the adaptation of algorithms designed
for Quadratic Maps Linear Equivalence (QMLE) [9]. Nevertheless, this approach
does not perform well when l = m = n. The last one is the Leon-like algorithm,
which is an adaptation of the code equivalence problem algorithm on the Ham-
ming metric. The basic idea comes from the observation that equivalence pre-
serves the Hamming weight as well as the weight distribution of the codewords.
Leon’s [33] algorithm entails finding the set of codewords with minimal Hamming
weight in two given codes, which can reveal enough information to recover the
equivalence. Beullens [7] recently improved this algorithm by building two lists
of codewords with a particular weight and then searching for collisions between
them to recover the equivalence. This approach naturally translated to matrix
code [15]: by creating two lists of matrices with low rank in the two given matrix
codes one can then find the collision to recover the equivalence.

In this work, we will consider TIP, but on special orbits. This problem was
first introduced at ASIACRYPT 2023 by D’Alconzo, Flamini and Gangemi [19]
in the context of a commitment scheme construction. While the general TIP
considers tensors that are generated randomly, which we call random tensors,
the work of [19] restricts to the use of very particular tensors with a lot of
structure, or structured tensors. Their commitment scheme uses the orbits of
two of these structured tensors, which they conjecture is still secure.
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1.1 Our contributions

In this paper, we propose polynomial-time algorithms for the decisional and
computational versions of TIP on special orbits. This implies that the commit-
ment scheme proposed by D’Alconzo, Flamini and Gangemi in Asiacrypt 2023
is broken. We also propose a countermeasure to fix the commitment scheme. We
summarize our contributions in what follows.

Algorithms for tensor isomorphism on special orbits. We present a polynomial-
time algorithm for the TIP on special orbits. One observation is that some
low-rank points exist for the tensors on these special orbits. This allows us to
distinguish tensors on two different orbits, which implies that the decisional
TIP is broken. Another observation is that the automorphism groups of these
structured tensors are not trivial, that is, they have stabilizers. Therefore, we
can avoid finding collisions and quickly recover an equivalent isomorphism which
solves the computational TIP.

Regarding the commitment scheme proposed by D’Alconzo, Flamini and
Gangemi, its security is based on the hardness of decisional TIP on these struc-
tured tensors. We implement our algorithms and use them to break the hiding
property of the scheme, as well as recover the random values used when creating
the commitment. These algorithms render the scheme completely insecure; see
more details in Section 3.

Repairing Asiacrypt 2023 scheme. We provide a countermeasure to repair the
commitment scheme from [19] using random (instead of structured) tensors.
Our new scheme fills the gap of a post-quantum, non-interactive commitment
scheme from non-transitive group actions, which was the aim of the Asiacrypt
2023 commitment scheme [19], and which is still missing in the literature. We
stress that our new scheme makes no new assumptions, but only depends on
already existing hard problems from random tensors. The scheme we propose is
statistically binding and computationally hiding. We conclude by proposing a
zero-knowledge proof of opening for our new commitment scheme.

Organization. In Section 2 we summarize the relevant concepts pertaining to
group actions, tensors, commitment schemes, and the protocol we will be attack-
ing from [19]. In Sections 3.1 and 3.2 we discuss low rank points and our attack
on the hiding property of [19], and in Sections 3.3, 3.4, and 3.5, we compute
stabilizers and give an attack that recovers the full secret. Finally, in Section 4,
we give a repair on their commitment scheme that preserves the non-interactive
structure and still has statistical binding, with a discussion on relevant zero-
knowledge proofs in Section 4.2.

2 Preliminaries

In the rest of this work, we denote by 1A(x) the function taking value 1 if x ∈ A
and 0 otherwise. We write PPT to stand for Probabilistic Polynomial Time. We
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call a function negligible, written negl(λ), if its absolute value is asymptotically
dominated by O(x−n) for all n > 0.

2.1 Cryptographic group actions

Group actions have been of interest in cryptography because they sometimes
provide an easy way to transition classical cryptosystems to post-quantum ones.
The first well-studied instance of a group action used in cryptography was in
works from Couveignes [16], and Rostovstev and Stolbunov [42], where they
developed a Diffie-Hellman-like key exchange scheme from the isogeny group
action.

The seminal work from Alamati, De Feo, Montgomery, and Patranabis in [1]
generalizes the hard problems taken from the isogeny group action for use with
any group action. In doing so, they establish standard definitions and notation
that have since been upheld in the field, providing a valuable common ground
for proceeding works. To begin, we recall some of these definitions that will be
relevant to our work.

Definition 1 (Group action). We say that a group G acts on a set X if there
exists a map ⋆ : G×X → X such that :

– Identity: If e is the identity element of G, then for any x ∈ X, e ⋆ x = x;
– Compatibility: For any g, h ∈ G, and any x ∈ X, (gh) ⋆ x = g ⋆ (h ⋆ x).

Such a group action can be denoted (G,X, ⋆).

We call a group action transitive if for any two elements x, y ∈ X, there
exists a group element g ∈ G mapping x to y, i.e. y = g ⋆ x. We say a group
action is free if for each g ∈ G it is the identity element if and only if there exists
an element x ∈ X such that x = g ⋆ x. A group action is called regular if it is
both transitive and free.

Definition 2 (Orbit). The orbit, Ox, of an element x ∈ X, is all the y ∈ X
for which there exists an element mapping x to y i.e Ox = {y ∈ X|∃g ∈ G, y =
g ⋆ x}.

We can reformulate transitivity in terms of orbits : an action is transitive if
for all x, y ∈ X, we get that Ox = Oy.

Since we are considering group actions in the context of cryptography, we
will only be concerned with effective group actions.

Definition 3 (Effective group action (EGA)). We call a group action ⋆ :
G×X → X effective if the following properties hold :

– G is finite and there exists a PPT algorithm for the following operations :
group operation, computation of inverses, membership testing, equality test-
ing and sampling.

– X is finite and there exists a PPT algorithm for membership testing and for
computing a unique representation of elements in X.
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– There exists a distinguished element x0 ∈ X such that its bit-string repre-
sentation is known. We call this point the origin.

– ⋆ can be computed efficiently for any g ∈ G, x ∈ X.

When creating cryptography from group actions, we will want to be able
to actually evaluate the group action, hence we will limit ourselves to EGAs.
In some instances where only a portion of the group or set can be evaluated
efficiently, we can restrict to such a subset. This is called a Restricted Effective
Group Action (REGA).

We can impose some additional properties to be fulfilled by the group action
in order to build specific cryprographic constructions. We recall a definition
from [19] that will be useful later on in this work.

Definition 4 (Decisional Group Action Inverse Problem ). Let (G,X, ⋆)
be a group action, and t0, t1 ∈ X lie in distinct orbits. The decisional Group
Action Inverse Problem (dGA-IP) game for (G,X, ⋆) is described in Figure 1.
For an adversary A against the dGA-IP game, we define the advantage Adv as
follows :

Adv(A) = Pr[dGA-IP(A)→ 1]− 1

2
.

dGA-IP(A)

1: c, b
$←− {0, 1}

2: g, g′
$←− G

3: s← g ⋆ tc
4: if b = 1 then
5: t← g′ ⋆ s
6: end if
7: if b = 0 then
8: t← g′ ⋆ t1−c

9: end if
10: A(s, t)→ b′

11: return b′ = b

Fig. 1. The dGA-IP game

2.2 Tensors over finite fields

We recall some results on tensors, following the notations introduced in [19].
Fix a finite field Fq for a prime q, and ℓ,m, n positive integers. Then given

bases {ei}li=1, {fi}mi=1, {gi}ni=1 of Fl
q,Fm

q ,Fn
q , respectively, a 3-tensor v ∈ Fl

q ⊗
Fm
q ⊗ Fn

q is defined as follows

v =

ℓ∑
i=1

m∑
j=1

n∑
k=1

v(i, j, k)ei ⊗ fj ⊗ gk.
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Alternatively a 3-tensor, v, can be represented as a 3-way array of field elements

v = [[v(i, j, k)]]l,m,n
i,j,k=1 ∈ Fl×m×n

q .

In the same way that matrices encode bilinear forms, 3-tensors encode trilinear
forms. More precisely, given a 3-tensor v, one can associate the 3-linear form
m : Fl

q × Fm
q × Fn

q → Fq defined as

m(x1, x2, x3) =

l∑
i1=1

m∑
i2=1

n∑
i3=1

v(i1, i2, i3)x
1
i1x

2
i2x

3
i3 .

For the rest of this work, we restrict to the case where l = m = n. We will
also only be concerned with 3-tensors, even if not explicitly stated, since the
work from [26] gives an equivalence between isomorphism problems on 3-tensors
and higher dimensional d-tensors. This makes our study of 3-tensors an optimal
instance of these problems. Let V be the tensor space V = Fn

q ⊗ Fn
q ⊗ Fn

q , and
we will use the canonical basis {ei}ni=1 on Fn

q to construct tensors.

Tensor rank. An essential invariant of tensors that we will be considering is their
rank.

Definition 5 (Rank 1 tensor). A tensor, v ∈ V, is said to have rank 1 if it
can be written as v = a⊗ b⊗ c, for a, b, c ∈ Fn

q .

Definition 6 (Rank of a tensor). The rank of a tensor, v ∈ V, is the minimal
r such that we can write v in the form v =

∑r
i=1 wi, where {wi}ri=1 ⊂ V is a

set of rank 1 tensors.

Problem 1 (Computational Tensor Rank Problem). Given a tensor v ∈ V, com-
pute rank(v).

It has been shown that Problem 1 is NP-hard [27, 28, 43]. In [27] it is also
proven to be NP-complete over finite fields.

It is shown in [28] that other tensor related problems are NP-hard. These in-
clude the decisional and computational versions of problems investigating eigen-
values, singular values, and spectral norms of tensors. These problems, however,
are beyond the scope of this paper.

Group action on tensors. We can obtain further hard problems from tensors by
defining a group action on them.
More concretely, the tensors are being acted on by the group G = GL(n, q) ×
GL(n, q) ×GL(n, q), where GL(n, q) denotes the general linear group of degree
n over Fq, in the following way:

⋆ : G×V→ V,(
(A,B,C),

∑
i,j,k

v(i, j, k)ei ⊗ ej ⊗ ek

)
7→

∑
i,j,k

v(i, j, k)Aei ⊗Bej ⊗ Cek, (1)

for v(i, j, k) ∈ Fq.
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Lemma 1. Let (A,B,C) ∈ G, and v ∈ V. Then rank((A,B,C)⋆v) = rank(v).
In other words, (⋆) preserves rank.

Proof. We can decompose w := (A,B,C)⋆v into a sum as shown in Equation 3.3,
giving us an upper bound on its rank. Thus rank(w) ≤ rank(v).

Now consider the tensor (A−1, B−1, C−1) ⋆ w, which again can be writ-
ten as a sum whose index is bounded above by rank(w). This gives us that
rank((A−1, B−1, C−1)⋆w) ≤ rank(w). We notice, however, that (A−1, B−1, C−1)⋆
w = v, thus we get that rank(v) ≤ rank(w) and from before, rank(w) ≤
rank(v). Hence rank(v) = rank(w).

Given this group action on tensors, we can consider two additional potentially
hard problems.

Problem 2 (Decisional Tensor Isomorphism Problem). Given two tensors v0, v1 ∈
V, decide whether there exists (A,B,C) ∈ G such that (A,B,C) ⋆ v0 = v1.

Problem 3 (Computational Tensor Isomorphism Problem). Given two tensors
v0, v1 ∈ V, such that (A,B,C) ⋆ v0 = v1 for some (A,B,C) ∈ G, compute
(A,B,C).

We can rephrase these problems in terms of orbits, from Definition 2 : Prob-
lem 2 asks to determine whether two tensors belong to the same orbit; Problem 3
asks to determine the isomorphism mapping two elements from the same orbit.

2.3 Commitment schemes

Commitment schemes have many real-world use cases, finding applications in
multiparty computations, zero-knowledge proofs, and coin tossing [23,31,34,37,
40].

A commitment scheme is used when a sender wants to commit to some value,
m, without initially revealing it to the receiver. Instead, the sender will commit
to m by computing a commitment, c, that depends on m, and send it to the
receiver. At a later time, the sender will reveal m, and the receiver should be
able to verify that c was computed using m. The key security properties here
are hiding, which means c should reveal nothing about m; and binding, which
means no other value m′ ̸= m should be able to open c. We proceed to give
formal definitions for a commitment scheme and its security properties.

Definition 7 (Commitment scheme). A commitment scheme is defined by
a message space,M, randomness space, R, a commitment space, C, and a tuple
of algorithms, (Setup,Commit,Verify), defined in the following way :

– Setup(1λ)→ pp: This PPT algorithm takes as input a security parameter λ in
unitary form and returns some public parameters pp which will be implicitly
given as inputs to the proceeding two algorithms.
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– Commit(m, r) → c : This PPT algorithm takes as input a message m ∈ M
and randomness r ∈ R and outputs a commitment value c ∈ C.

– Verify(c, (m, r)) → 0/1: This is a deterministic algorithm which, given as
input c ∈ C, (m, r) ∈M×R returns 1 if Commit(m, r) = c and 0 otherwise.

In the case of a bit commitment scheme, the committed messages are re-
stricted to two possible values, 0 or 1.

Definition 8 (Hiding Security). A commitment scheme (Setup,Commit,Verify)
is hiding if for any adversary, A, the advantage, Adv, is negligible, where Adv
is defined as

Adv = |Pr[Hiding(A)→ 1]− 1/2|
and the Hiding game is defined in Figure 2. In this figure, we take m0,m1, st to
be two messages and a state chosen by the adversary A for use in the game.

Hiding(A)
1: Setup(1λ)→ pp
2: A(pp)→ m0,m1, st

3: b
$←− {0, 1}, r $←− R

4: c← Commit(mb, r)
5: A(c, st)→ b′

6: return b′ = b

Fig. 2. The Hiding game

Remark 1. Note that in the case of a bit commitment scheme, we have M =
{0, 1}, and in the Hiding game the adversary does not choose m0,m1 and does
not need to provide a state st, rather the bit committed is the one sampled by
the game, i.e. one can remove Line 2 in Figure 2 and set mb = b.

Definition 9 (Binding Security). A commitment scheme (Setup,Commit,Verify)
is binding if for any adversary A the advantage Adv is negligible, where Adv is
defined as

Adv = Pr[Binding(A)→ 1]

and the Binding game is as defined in Figure 3.

Binding(A)
1: Setup(1λ)→ pp
2: A(pp)→ m0,m1, r0, r1
3: return (m0 ̸= m1) ∧ Commit(m0; r0) = Commit(m1; r1)

Fig. 3. The Binding game
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Remark 2. We can make the hiding and binding definition more precise by quan-
tifying the complexity of the adversary as well as its advantage. When A has
unbounded complexity and Adv = 0, the commitment scheme is said to be per-
fectly binding/hiding. When A has unbounded complexity and Adv = negl(λ),
it is called statistically binding/hiding. When A is PPT , and Adv = negl(λ) it
is called computationally binding/hiding.

2.4 Asiacrypt 2023’s commitment scheme from tensors

While there is already literature about commitment schemes [36,39], developing
post-quantum equivalents is necessary in order to curb the risk of future quan-
tum attacks. Many post-quantum commitments exist from lattice-based assump-
tions with recent constructions such as [2,6,21], code-based assumptions [29,35],
isogeny-based assumptions [44] and transitive group actions [10, 13, 30]. In [19],
at Asiacrypt 2023, D’Alconzo, Flamini, and Gangemi describe a general bit com-
mitment framework from post-quantum non-transitive group actions that they
call GACE (Group Action with Canonical Element), and then give an instance
using tensors in Section 6.2 of their work.

In particular, they take inspiration from the fact that it is widely believed to
be hard to compute the rank of a random tensor (see Section 2.2), and proven
NP-hard [27, 28, 43]. In the paper they provide a method of constructing a dis-
tinguished element for any rank, such that given the rank it is easy to verify the
correctness of the original claim. Let b ∈ {0, . . . n− 1}, then their distinguished
element is

tb :=

n−b∑
i=1

ei ⊗ ei ⊗ ei. (2)

In their commitment scheme they use tb to create either an n-rank tensor or
an (n− 1)-rank tensor, thereby encoding a bit b ∈ {0, 1}. They then sample an
element (A,B,C) ∈ G = GL(n, q)×GL(n, q)×GL(n, q), and compute the com-
mitment c = (A,B,C) ⋆ tb via the group action described in Equation 3.3. The
sender sends the commitment c to the receiver. When the sender is ready, they
will reveal (A,B,C), b. The receiver can then easily check that c = (A,B,C)⋆tb,
and so has rank n− b.

Parameters. There are no parameters given for the commitment scheme from
[19], and it does not rely on a pure form of the tensor isomorphism problem,
so parameter choice for this scheme is not obvious. Though our attacks run
in polynomial time complexity, we would like a concrete example instance of
the commitment scheme on which to test the algorithms outlined in Section 3.
Thus, we will consider the parameters outlined in MEDS [14], a post-quantum
signature from matrix code equivalences, submitted to the NIST competition for
post-quantum signatures. Their proposed choices of vector dimension and field
size, (n, q), are (14, 4093), (22, 4093), (30, 2039).

The matrix code equivalence problem is polynomially equivalent to the gen-
eral trilinear form equivalence problem and the tensor isomorphism problem as
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noted in [26], meaning parameter sizes should be the same across all of these
hard problems.

2.5 The MinRank problem

In Section 3 we will be exploring how low rank points can affect the security
of some tensor-based hard problems. For this, we will need a way of solving a
MinRank instance. While some more straightforward approaches to MinRank,
such as [32], would suffice for computing low rank points, we choose to use a
more general algorithm to eliminate the chance of using different rank tensors
as a countermeasure to our attacks later on. Here we summarize the relevant
results from [4], the current state-of-the-art for this problem. The authors of
this work revise the algebraic approach to MinRank, and thus completely avoid
the use of a Gröbner basis computation for some parameters, keeping all the
equations linear. When applying this approach to three NIST candidate key
exchange schemes, they were able to improve upon or match the state-of-the-art
attacks.

The MinRank problem is as follows:

Problem 4 (MinRank problem). Given an integer r ∈ N, and k matricesM1, . . .Mk ∈
Fm×n
q , determine field elements x1, . . . xk not all zero, such that

rank
( k∑

i=1

xiMi

)
≤ r.

In previous works [3], the MinRank problem was solved by creating equations
using coefficient variables and support variables depending on maximal minor
equations. This system of equations would then be solved using a Gröbner basis
algorithm. In [4], they instead define even more bilinear equations using the
coefficient and support variables. So many, in fact, that they are sufficient for
solving the entire problem, thereby avoiding the Gröbner basis computation in
many cases.

The algorithm. We are given n matrices, M1, . . .Mn, of size n× n, and a target
rank r. We want to find {xi}ni=1 such that M :=

∑
xiMi has rank r. So the

entries of M are linear expressions in the variables xi. When M has rank r, we
can write it as M = SR, where columns of the n×r matrix S form a basis for the
column-space of M, and the r × n matrix R contains a basis for the row-space
of M . The entries in S and R are referred to as the support and coefficient
variables, respectively. The matrix R will necessarily have full rank r. Hence, if
we add a row from M to it, all of its maximal minors will be vanishing. These
vanishing maximal minors give us algebraic equations depending on the xi and
the entries of R. We can do this for each row of M, obtaining enough equations
to linearize and solve for the xi.
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2.6 Sigma protocols

We give below an informal definition of a sigma protocol that will be of use in
Section 4.2.

Definition 10 (Sigma protocol). A sigma protocol Σ for a relation R is a
protocol between a prover P and a verifier V . It has input (x,w) ∈ R where x,
the statement, is a common input and w, the witness, is private to P , and it
must satisfy the following :

– Σ is a three-move protocol, where P sends the first message a, V replies
with some string e, P send a final message z upon which V wither accepts
or rejects.

– It is complete i.e. if P, V follow the protocol on input (x,w) with (x,w) ∈ R
then V always accepts.

– Special soundness: there exists a polynomially bounded algorithm E called
extractor such that for any x, if (x, a, e, z) and (x, a, e′, z) are two accepting
views for V such that e ̸= e′ then E(x, a, e, z, e′, z′) yields w such that R(x,w).

– Special honest-verifier zero-knowledge : there exists a polynomially bounded
algorithm Sim called simulator such that for any x ∈ L and e, the transcript
(a, e, z) of the interaction P x←→ V conditioned to e has the same distribution
as Sim(x, e; r).

A sigma-protocol can be turned into a non-interactive zero-knowledge proof
using the Fiat-Shamir transform [22].

3 Solving Tensor Isomorphism Problems in tb orbits

In this section we focus on attacking the commitment scheme from [19], which
uses special cases of tensor hard problems. We begin in Section 3.1 by establishing
some background on the rank of points in tensors. This will help us in Section 3.2,
where we focus on attacking a variant of the Decisional Tensor Isomorphism
Problem (DTI, see Problem 2) present in their commitment scheme, and provide
a polynomial time attack on it. We then describe some elements of the stabilizer
group of the family of tensors {tb : b ∈ Zn} in Section 3.3. Lastly, in Sections
3.4 and 3.5, we use these findings to attack their variant of the Computational
Tensor Isomorphism Problem (CTI, see Problem 3).

All the algorithms and experiments described in the proceeding sections were
coded in Magma, and can be found at

https://anonymous.4open.science/r/tensor-group-action-CB25/ .

3.1 Computing the rank of points

In the case of tensors, we can first choose to view a 3-tensor, g ∈ V, as a list
of n matrices G1, . . . Gn ∈ Fn×n

q . Given u, v, w ∈ Fn
q , we represent u ⊗ v ⊗ w

as [G1, ..., Gn] where Gi = ui · (v · wT ). Note, there are two additional ways to
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do this, which essentially changes along which axis you are “slicing”. While the
choice of this axis is not important, choosing one and staying consistent is. We
highlight our chosen representation in the following example.

Example 1. Suppose we are working over F3
5. We would like to compute the

tensor u⊗ v ⊗ w, where u = [4, 1, 2], v = [3, 0, 1], w = [2, 4, 0].
We proceed by first expanding the matrix v · wT :

v · wT =

1 2 0
0 0 0
2 4 0

 .

Now we multiply this matrix by each entry of u, storing them in a list as we go
and we obtain the following :4 3 0

0 0 0
3 1 0

 ,

1 2 0
0 0 0
2 4 0

 ,

2 4 0
0 0 0
4 3 0

 .

Using this representation of tensors, we can define the rank of a point in a
tensor.

Definition 11 (Rank of a point). Let g ∈ V be a tensor, written in the form
g = [G1, . . . Gn]. Then the rank of a point u := [u1, . . . un] ∈ Fn

q in g is exactly
the matrix rank of u1G1 + . . . unGn.

We denote this value as rankg(u).

Computing the rank of points in a tensor will be useful to us later on. In the
rest of this paper, when talking about the rank of points, we will consider points
up to scalar multiplication, unless stated otherwise. That is, we are considering
points from the projective space Pn(Fq).

Lemma 2. Let v ∈ V be a tensor. Denote Lk(v) := {u ∈ Fn
q : rankv(u) = k}

to be the set of rank k points in v. Now let (A,B,C) ∈ G be an isomorphism,
and w = (A,B,C) ⋆ v. Then |Lk(v)| = |Lk(w)|.

Proof. We observe that, given a tensor v, the action of B and C does not affect
the rank of a point, meaning that a point u of rank r in v will also be of rank
r for (I,B, I) ⋆ v, and (I, I, C) ⋆ v). This follows straightforwardly from the fact
that given v = [T1, ..., Tn], we can write the action of (I,B, I) as (I,B, I) ⋆ v =
[BT1, ..., BTn] and that of (I, C, i) as (I, I, C) ⋆ v = [T1C

T , ..., TnC
T ] where T

denoting the transpose.
We observe that only the action of A has some influence on the rank of points,
and A sends a rank r point u in v to the rank r point w = u⋆A−1 in (A, I, I)⋆v,
where ⋆ is as defined in Equation 3.3.
Combining these results, we obtain a one-to-one correspondence between the
rank r points in v, and the rank r points in (A,B,C) ⋆ v, with an explicit
mapping, which proves the statement.
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When considering tensors, Lemma 2 tells us that the number of points of
fixed rank in a tensor is preserved via the group action (⋆) from Equation 3.3.
Computing a group action in this case amounts to transforming the bases of
Fn
q being used to compute the tensor, to new bases, via linear transformations

(recall we require three bases of Fn
q ). Hence, the overall structure or rank of the

tensor does not change.
Rank 0 points in tensors, when considering a tensor as a list of matrices,

means that there exists some linear dependency between these matrices. So
transforming the bases of Fn

q preserves this dependency, regardless of the exact
changes of bases being used. Solving for these points can be done with Gaussian
elimination, as we will see in Section 3.2. Solving for higher rank points will
amount to a MinRank problem, described in Section 2.5.

3.2 Hiding attack

We now describe an attack that breaks the hiding property of the commitment
scheme described in [19]. That is, given a committed value c = Commit(b, r) for
a given bit b, we recover b by solving a system of linear equations, therefore
disproving the security claims made in [19].

Let us recall the problem we are attacking:

Problem 5. Given c = (A,B,C)⋆tb with tb =
∑n−b

i=1 ei⊗ei⊗ei, b ∈ {0, . . . n−1},
(A,B,C) ∈ G sampled randomly, and ⋆ is as defined in Equation 3.3, recover b.

Note, this problem is slightly more general than the commitment scheme
from [19], since we are considering any b ∈ {0, 1, . . . n − 1}. From Problem 5,
we see that c is precisely the tensor tb with an isomorphism acting on it, as
described in Lemma 2.

Lemma 3. Let tb =
∑n−b

i=1 ei ⊗ ei ⊗ ei, then the subspace of rank 0 points has
dimension b.

Proof. Let us write tb as an n list of n×n matrices, which we denote T 1
b , . . . T

n
b .

These matrices can be described in the following way :

(T k
b )ij =

{
1 if i = j = k and k ≤ n− b

0 otherwise

We know that the rank of a point u ∈ Fn
q of tb is the rank of the matrix Ub =

u1T
1
b + ..+ unT

n
b .

Using the above definition of the T i
b , i = 1, .., n we observe that Ub will be a

diagonal matrix with entries

(Ub)ii =

{
ui, for i = 1, ..., n− b

0 otherwise
.

Recall that we enforce that u ̸= 0 ∈ Fn
q , hence U0 will have rank at least 1 and

13



therefore no rank 0 points. Similarly U1 will have one empty column so rank at
most n − 1 and will always have a rank 0 point (up to scalar multiplication),
in the form u1 = ... = un−1 = 0 and un any non-zero element of Fn

q . The same
reasoning can be extended to tb and Ub for further values of b to deduce the
result.

We focus for a moment on the case b ∈ {0, 1}. Using Lemma 3, we have that
t1 has exactly one rank 0 point, and that t0 has no rank 0 points. Combining
this with Lemma 2 shows that we can use the existence of a rank 0 point as a
distinguisher on c. We can find the rank 0 points of c by solving the system of
n2 linear equations

α1G1 + ...+ αnGn = 0, (3)

for αi ∈ Fq, i = 1, ..., n. If such a solution exists, then b = 1, else b = 0. For the
more general case of b ∈ {0, 1, . . . n− 1}, the number of distinct solutions will be
exactly b.

While more complex algorithms could be used to solve this system, Gaussian
elimination is sufficient for our purposes. The challenge here is selecting a set
of n linearly independent equations from the n2 possible choices. In the worst
case this gives an upper bound on the number of operations of O(n4). Through
experiments, however, we found that sampling the first n equations was sufficient
for correctly solving the system. While we would not expect this to be true for
a random set of n2 equations, this could be due to the structure of the tensor
which is not random. So heuristically, we expect a complexity of O(n3). This
proves Theorem 1.

Theorem 1. There exists an algorithm that solves Problem 5 using O(n4) op-
erations.

For all parameters highlighted in Section 2.4 the attack runs in under a
second on a laptop.

Note that Theorem 1 always returns a correct answer to Problem 5. If we are
satisfied with a probabilistic algorithm, then we can solve it in O(n3) operations
using a different approach.

Theorem 2. There exists a probabilistic algorithm that solves Problem 5 using
O(n3) operations.

Proof. Recall from Problem 5, given c = (A,B,C) ⋆ tb, we would like to recover
b.

We begin by restricting to the case b ∈ {0, 1}. Consider a random point
u ∈ Fn

q . Then u has rank n in t0 and rank n− 1 in t1 with very high probability.
Namely u will have rank n in t0 with probability (q− 1)n/qn since there can be
no zeros in this point. Similarly, in t1, one of the entries can be free but the rest
must be non-zero, so we get probability (q − 1)n−1/qn−1. By Lemma 2, these
probabilities will translate to c. Thus, it suffices to compute the rank of u in
the commitment, c, to recover b with overwhelming probability, for large q. This
approach generalizes to b ∈ {0, 1, . . . n− 1}, in the obvious way.
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This algorithm consists of computing a random linear combination of n
square matrices, and computing the sum’s rank over the finite field Fq. Using
Gaussian elimination, we can do this in O(n3) complexity.

Remark 3. This attack method works because of how structured tb is. For a
random tensor we do not expect to have any rank 0 point (this will be shown
in Lemma 8). For this reason, our distinguishing attack is not expected to have
any impact on the general case of Problem 2 (the Decisional Tensor Isomorphism
Problem), which asks an attacker to determine whether two given tensors are
isomorphic. For the same reason, we also do not claim any improvement on
Problem 3 (the Computational Tensor Isomorphism Problem). To date, both of
these problems are believed to be cryptographically hard in the general setting.

3.3 Stabilizer subgroup of tb

We now investigate some elements belonging to the stabilizer group of tensors,
and construct the entire stabilizer group of t0. These findings will be of use to
us in an attack in later sections.

Stabilizers for all tensors. Recall, we define v ∈ V as

v :=

n∑
i,j,k=1

v(i, j, k)ei ⊗ ej ⊗ ek,

and we are considering isomorphisms (A,B,C) ∈ G that act on v via the group
action, (⋆), defined as

(A,B,C) ⋆
∑
i,j,k

v(i, j, k)ei ⊗ ej ⊗ ek =
∑
i,j,k

v(i, j, k)Aei ⊗Bej ⊗ Cek.

Lemma 4. Let λa, λb, λc ∈ Fq be such that λaλbλc = 1. Then for all v ∈ V, we
have that (λaIn, λbIn, λcIn) ⋆ v = v.

The proof of this lemma can be done straightforwardly using the definition
of the group action from Equation 3.3. We reserve the details for Appendix A.

Stabilizer subgroup of tb. Now we focus our attention to tb, which can be written
as

tb :=

n−b∑
i=1

ei ⊗ ei ⊗ ei.

In the following two lemmas we formalize how diagonal matrices and per-
mutation matrices can be used to create stabilizing elements for tb, and more
specifically, for t0.

Lemma 5. Suppose ΛA, ΛB , ΛC are three diagonal n×n matrices over Fq such
that ΛAΛBΛC = In. Then (ΛA, ΛB , ΛC) ⋆ tb = tb, i.e. (ΛA, ΛB , ΛC) is in the
stabilizer subgroup of tb.
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Proof. We claim that (ΛA, ΛB , ΛC) is an element of the stabilizing group of tb.
We can see this explicitly as

(ΛA, ΛB , ΛC) ⋆ tb =

n−b∑
i,j,k=1

n−b∑
s=1

ΛA
isΛ

B
jsΛ

C
ksei ⊗ ej ⊗ ek (the matrices are diagonal)

=

n−b∑
i=1

ΛA
iiΛ

B
iiΛ

C
iiei ⊗ ei ⊗ ei

=

n−b∑
i=1

ei ⊗ ei ⊗ ei = tb.

To explore how permutation matrices can be used to build stabilizing ele-
ments, we first focus on the case of b = 0. In what follows, we use Sn to denote
the symmetric group of integers {1, . . . n}.

Lemma 6. Let σ ∈ Sn, and let Pσ be the associated permutation matrix given
by Pσ = (pij)

n
i,j=1 and pij = 1i=σ(j). Then (Pσ, Pσ, Pσ)⋆t0 = t0, i.e. (Pσ, Pσ, Pσ)

is in the stabilizer subgroup of t0.

Proof. Consider any permutation matrix Pσ. When applied consistently to the
bases being used to construct t0 =

∑n
s=1 es ⊗ es ⊗ es, it simply permutes the

order in which the summation is performed, resulting in the same tensor t0. We
reserve the explicit calculations showing this equality for Appendix A.

In [11], Proposition 4.1, they state that the entire stabilizer group of tb,
defined over the complex numbers, is exactly the semi-direct product of the
diagonal matrices from Lemma 5 and the set of permutation matrices Pσ for
σ ∈ Sn−b. This is consistent with our findings over finite fields, and was further
corroborated via our experiments.

Equivalence classes on G. The study of stabilizer groups leads us to a new
equivalence definition on G = GL(n, q)×GL(n, q)×GL(n, q). These observations
will allow us to add more constraints to the solutions we are looking for in CTI
(Computational Tensor Isomorphism Problem), and thus accelerate our attack
in the proceeding section.

Definition 12. Let (A1, B1, C1), (A2, B2, C2) be two elements from G, and t ∈
V a tensor. We say that (A1, B1, C1) and (A2, B2, C2) belong to the same equiv-
alence class via t, denoted (A1, B1, C1) ≡t (A2, B2, C2), if and only if they are
equal up to right-multiplication by an element in the stabilizer subgroup of t.

3.4 Solving CTI in orbits of t0

In this section we focus on the b = 0 case from the commitment scheme, and
outline an approach to recovering an element from the isomorphism class via t0
of the secret (A,B,C). Recall our problem is as follows:
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Problem 6. Let t0, g ∈ V be two 3-tensors such that

t0 :=

n∑
i=1

ei ⊗ ei ⊗ ei, and g :=

n∑
i,j,k=1

gi,j,kei ⊗ ej ⊗ ek

for {gi,j,k} ⊂ Fq. Assuming it exists, find an isomorphism (A,B,C) ∈ G such
that

(A,B,C) ⋆ t0 = g, (4)

where ⋆ is as defined in Equation 3.3.

The tensor t0 has exactly n rank 1 points (up to scalars), so from Lemma 2
this tells us that g will also have n rank 1 points. Denote a set of rank 1 points
of t0 as {e1, . . . en}. Suppose we could find the rank 1 points in g, denoted
{a1, . . . an}. Then, we can try to match the ei to the ai to recover part of the
isomorphism, namely A−1. We formalize this idea in Lemma 7.

Lemma 7. Consider Problem 6. Let {a1, . . . , an} be the set of rank 1 points of
g, and {e1, . . . , en} be the set of rank 1 points in t0 (up to scalar multiplication).
Then there exists an ordering, σ, of {a1, ..., an} and a matrix A such that for
each i ∈ [1, . . . n], aσ(i) = eiA

−1.

Proof. As a consequence of the proof of Lemma 2, we see that a rank one point
in t0 is sent to a rank one point in g through A−1. This will fix the ordering σ.

Finding the rank 1 points {a1, . . . an} is an instance of MinRank, so we can
use the algorithm given in [4] that is summarized in Section 2.5. In this particular
context, we want to find n matrices with target rank 1. This means that our
coefficient variable matrix, R, is simply a row matrix. Denote the entries in R as
r1, . . . rn. This leaves us with a bilinear system in the target variables, {xi}ni=1,
and the coefficient variables, {ri}ni=1, where we will have n2(n− 1)/2 equations
and n(n − 1) monomials. From here we can solve by direct linearization. This
fact, which we tested experimentally, corroborates the claims in [4] about the
linear independence of these equations.

Going forward, Lemma 7 shows that we can recover some matrix A−1
0 whose

rows are given by {ai}ni=1. Our findings from Section 3.3 tell us that neither the
permutation of these rows, nor the scalar multiples of them, will affect our search
for a suitable isomorphism satisfying Equation 4. In fact, fixing these rows and
scalar multiples is a good idea as it reduces the number of solutions and variables
in our search.

Once we have recovered some A−1
0 , we can then solve for B0 and C0 to

complete the isomorphism by considering the system of n3 linear equations in
2n2 variables given by (I,B0, I)⋆t0 = (A−1

0 , I, C−1
0 )⋆g. The system, as is, is very

under-determined because of the size of the equivalence class of (A,B,C) via t0.
To slim down the solution space, thanks to Lemma 5, we can similarly normalize
the first row of B0, by setting the entries of this row to arbitrary values of F∗

q .
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There is a chance that this will not give a solution, in case one or more of
the entries in the first row of B were 0. We argue in the proof of Theorem 3 that
when q is large enough compared to n, the probability of this failure is very low.
In the small chance of failure, however, we can apply a new known isomorphism,
(I,B1, I) ∈ G, and now consider (I,B1, I)⋆((A,B,C)⋆t0) = (I,B1, I)⋆g instead.
This essentially “rerandomizes” our instance, in the hopes that the solution space
for B1 · B will contain an entry whose first row has no zeros. Alternatively, we
can also normalize a randomly chosen element in each column of B.

These steps are summarized in Figure 4.

1: Given: g ∈ V, isomorphic to t0.
2: a1, . . . an ← MinRank(g, target rank = 1)
3: A−1

0 ← Matrix(a1, . . . an)
4: B0, C0 ← Solutions((I, B0, I)⋆t0 = (A−1

0 , I, C−1
0 )⋆g)∩Solutions((B0)1,i = 1, i =

1, . . . n)
5: return (A0, B0, C0)

Fig. 4. Solving Problem 6.

Theorem 3. There exists a probabilistic algorithm that solves Problem 6 using
O(n6) operations.

Proof. We first show that the probability of failure of Algorithm 4 is negligible for
large q. When q is small, in case of failure one can just apply a new isomorphism
(I,B1, I) ∈ G to g, and repeat the algorithm with this new instance as described
above.

We have a chance of failure when we normalize the first row of B0. Since
we have already fixed A0, this fixes the permutation of columns of B0 as well
(see Lemma 6). Hence, we risk failure when one of these normalized columns
necessarily has a leading zero. The chance of this happening is the complement
probability to the columns having no leading zero. This gives us a total proba-
bility of failure of

P (Alg 4 fails) = 1− (q − 1)n

qn
,

which is negligible for large q.
We now prove the complexity of this algorithm. The dominating subrou-

tines in Algorithm 4 include the MinRank computation, the tensor group action
arithmetic, and solving the final system of equations (which can be done us-
ing Gaussian elimination). While the tensor arithmetic could be done in time
O(n4), as noted in Section 6.2 of [45], the other two subroutines require O(n6)
operations.

Remark 4. An alternate approach to proving Theorem 3 could be to apply
Lemma 7 over all three axis, allowing us to recover some A,B,C, each up to
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some stabilizer elements. The issue with this approach, however, is that those
stabilizer elements will a priori not be the same for all three matrices, so at this
point we can write a system of equations to recover these stabilizer elements
and finish the attack. This approach, while correct, adds an extra step, making
it neither conceptually simpler nor more efficient than what is outlined above.
Additionally, the above approach has the advantage of directly using the partial
knowledge we have about A when recovering B and C.

We test the attack from Theorem 3 on the parameters from Section 2.4 and
give the results in seconds in Table 1. We consider some additional parameters
in Figure 5 to further support our complexity claims.

n q time (s)

14 4093 9.3

22 4093 141.6

30 2039 858.9

Table 1. Timings in seconds for solving the CTI variant from Problem 6.

3.5 Solving CTI in orbits of t1

The approach of computing the set of rank 1 points via the MinRank algorithm
from [4] will only work in the case the tensor has rank n (i.e. b = 0 in the
commitment scheme). Any smaller rank would result in too many rank 1 points
to compute. In the b = 1 case, however, we can edit MinRank to further filter
distinct rank 1 points using our knowledge of the stabilizer group of t1 from
Section 3.3.

We begin by computing the one rank 0 point in g (which is unique up to
scalars). This point is easy to compute, as seen in Section 3.2. Denote it P0.
Now, we know that any rank 1 point could have a rank 0 point added to it,
and still remain a rank 1 point. In other words, we get an equivalency class on
the set of rank 1 points where we say two rank 1 points, Ri, Rj , are equivalent
if Ri − Rj = λP0 for some scalar λ. This means, for each i ∈ [1, . . . n − 1],
the equivalency class can be written as the subspace ⟨Pi, P0⟩, for some rank 1
point Pi, and the rank 0 point P0. Hence, we can obtain a representative from
each equivalency class, Pi, by appropriately filtering the results returned from
MinRank. To filter the solutions even more, we can normalize the first non-zero
entry of the points.

After these computations, we will be left with one rank 0 point and n − 1
distinct rank 1 points. We are assured to get exactly n−1 since each equivalency
class, ⟨Pi, P0⟩, is the image under an isomorphism of the subspace ⟨ei, en⟩. We
can then carry out the rest of the attack described in Section 3.4, Figure 4, to
reconstruct an isomorphism (A0, B0, C0) ≡t1 (A,B,C).

19



6 10 14 18 22

101

102

dimension, n

ti
m
e
in

se
co
n
d
s

Timings for Algorithm 4

Fig. 5. We show some timings of Algorithm 4 for q = 4093 and varying values of n
on a log-log scale. Christophe : If time, can you superpose data with different q values
(using different colours and symbols) Val : I ran it for q = 2039 but the timings were
almost identical This corroborates our claim that Algorithm 4 has complexity O(n6),
since the curve follows very closely to a line of slope 6.
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4 Repairing the Asiacrypt 2023 scheme

We propose a new construction in this section, and include proofs of its security.
The key components that we aim to preserve from [19] are the following: a
commitment scheme based on a non-transitive group action for which the group
action should be uncertified (i.e. checking that two elements are in the same
orbit is hard), and the commitment scheme should be non-interactive.

We therefore propose a non-interactive bit commitment scheme from non-
transitive uncertified group actions5, described in Figure 6. It is statistically
binding (Theorem 4) and computationally hiding (Theorem 5). We improve
on [30]’s construction, which is also statistically binding and computationally
hiding but requires interaction. We lose the perfect binding property of [19],
however, this allows us to have a concrete instantiation that relies on standard
problems. In practice, replacing perfect binding by statistical binding does not
affect the security of more advanced constructions that could be built from bit
commitments. Note that we do not keep the framework of Problem 5, but rather
introduce a slightly different and simpler one, which still does not introduce any
new assumptions.

Definition 13 (Decisional group action framework). Consider a group
action ⋆ : G× V → V that has the following properties :

1. It is an Effective Group Action.
2. Given two elements v0, v1 such that v1 = g ⋆ v0 for some g ∈ G, computing

g is hard.
3. The probability, p, that two random elements are in different orbits is p =

1− negl(λ).
4. The Decisional Group Action Inversion Problem for ⋆ is hard (recall Defini-

tion 4).

Note that the first three properties are described in [30].

Setup(1λ)

1: v0, v1
$←− V

2: return v0, v1

Commit(b)

1: g
$←− G

2: c← g ⋆ vb
3: return c

Verify(c, (b, g))
1: return (c = g ⋆ vb)

Fig. 6. Commitment scheme

We can instantiate this framework using tensors through the group action
described in Equation 3.3. The crucial difference with the construction of [19] is

5 An uncertified group action is a group action for which checking that two elements
are in the same orbit is hard.
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that v0, v1 are now two randomly generated tensors and they do not possess
any special structure. In particular, a random tensor will only have low rank
points with negligible probability, as shown in the Lemma 8.

Remark 5. One can extend the commitment scheme to accommodate a polyno-
mial number of messages say 0, . . . N by slightly modifying the Setup and Commit
algorithms of Figure 6. Indeed, during Setup one can instead randomly sample
N elements v0, . . . vN and output these. Then during Commit, to commit to a
message k ∈ {0, . . . N}, one samples g ∈ G and computes g ⋆ vk.

Remark 6. Note that v0, v1 can be sampled as the output of a pseudo-random
generator or a cryptographic hash function. What matters for our proofs is
that they are indeed indistinguishable from elements sampled from a uniformly
random distribution.

Lemma 8. Given a random tensor t ∈ V, the average number of rank n − d
points (up to scalar multiplication) is q−d2+n−1 as q goes to infinity.

Proof. Consider our tensor t as a list of n random n× n matrices, over Fq, say
M1, . . .Mn. A rank r point in t is λ = (λ1, . . . , λn) ∈ Fn

q , λ ̸= 0, such that
rank(λ1M1 + . . .+ λnMn) = r.
First, we have that the probability that a random matrix M has rank n − d
for some integer d goes to q−d2

as q goes to infinity. This result is a direct
observation from [24]. Then we observe that there are about qn−1 possibilities
projectively for λ, hence we get that the average number of rank n− d points is
q−d2+n−1.

This means that our distinguishing attack from Section 3.2 is not applica-
ble on a randomly generated instance. Let us now check that all the desired
properties from Definition 13 are satisfied: Property 1 has been studied in [30]
and Property 2 corresponds to the Computational Tensor Isomorphism Problem
(Problem 3). Property 4 is introduced in [19] and they discuss its applicability
to tensors. While we show it is broken for their instantiation using structured
tensors, tb, it is still believed to be hard in the case of random tensors, which is
precisely our case. Regarding Property 3, we must compute the probability, p,
of two random tensors being in different orbits under ⋆. Note that [30] assumes
that this probability is high but they do not give any estimates.

Lemma 9. The probability, p, of two random tensors being in distinct orbits
under ⋆ is p ≥ 1− 1

qn3−3n2 .

Proof. Let t ∈ V be any tensor, then trivially

#Orb(t) ≤ #G = (#GLn(q))
3 = O(q3n

2

).

Furthermore, we have #V = qn
3

. So the total number of orbits is at least
#V/(#GLn(q))

3 = O(qn
3−3n2

). The probability of two tensors being in the
same orbit is therefore bounded by 1

qn3−3n2 , hence p ≥ 1− 1
qn3−3n2 .
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We have shown that all the properties from Definition 13 are satisfied. Now
it remains to show that our proposed commitment scheme from Figure 6 is both
hiding and binding.

Theorem 4 (Binding). The commitment scheme described in Figure 6 is
statistically binding.

Proof. Consider G to be the binding security game from Section 2.3 applied to
our scheme. Taking the following probabilities over the randomness of the game
we have :

Pr[G(A)→ 1] = Pr[G(A)→ 1 ∧ v0, v1 are in the same orbit]

+ Pr[G(A)→ 1 ∧ v0, v1 are in different orbits]

≤ Pr[v0, v1 are in the same orbit]

+ Pr[G(A)→ 1|v0, v1 are in different orbits] · p,

where p is the probability defined by Property 3, and computed in Lemma 9.
We have Pr[v0, v1 are in the same orbit] = 1−p by definition of p. Furthermore,
Pr[G(A) → 1|v0, v1 are in different orbits] = 0 since otherwise if A wins G in
that case, this means they return (A0, B0, C0) and (A1, B1, C1) such that

(A0, B0, C0) ⋆ v0 = (A1, B1, C1) ⋆ v1.

In particular this would mean that (A−1
1 A0, B

−1
1 B0, C

−1
1 C0) ⋆ v0 = v1 which

is impossible since v0, v1 are in different orbits and thus no such isomorphism
exists.

Overall we get

Pr[G(A)→ 1] ≤ (1− p) + 0 · p = (1− p) = negl(λ).

Remark 7. Notice that in the case where v0, v1 are indeed in the same orbit
(which happens only with negligible probability), breaking the Binding problem
amounts to solving the Computational Tensor Isomorphism problem (Problem 3)
in a random orbit, hence remains plausibly hard.

Theorem 5 (Hiding). Assuming the hardness of the dGA-IP problem (Defi-
nition 4), our commitment scheme is hiding.

Proof. Consider G to be the hiding game from Section 2.3. Taking the following
probabilities over the randomness of the game, we have :

Pr[G(A)→ 1] = Pr[G(A)→ 1 ∧ v0, v1 are in the same orbit]

+ Pr[G(A)→ 1 ∧ v0, v1 are in different orbits]

≤ Pr[v0, v1 are in the same orbit]

+ Pr[G(A)→ 1|v0, v1 are in different orbits] · p,
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where p is the probability defined by Property 3. We have
Pr[v0, v1 are in the same orbit] = 1− p = negl(λ).
In the case where v0, v1 are in different orbits, one can refer to [19], Theorem 2.
Roughly, given an adversary B against dGA-IP, that receives as input s, t, they
instantiate two Hiding games with adversaries A1,A2 to which they respectively
give s or t as input, and B returns 1 if the outputs of A1 and A2 are equal and
0 otherwise. They get that

Pr[G(A)→ 1|v0, v1 are in different orbits] ≤ 1

2
+ 2ϵ(λ)2

where ϵ(λ) is the advantage in the dGA-IP game.
So overall we have

Pr[G(A)→ 1] ≤ (1− p) + p · (1
2
+ 2ϵ(λ)2)

=
1

2
p+ (1− p) + 2pϵ(λ)2

and by assumption both ϵ(λ) and 1− p are negligible.

Remark 8. Consider the extension of our commitment scheme to a message space
of {0, . . . N} as described in Remark 5. Then the hiding and binding properties
are derived in a straightforward way since v0, . . . vN are in different orbits with
probability at least 1− N

qn3−3n2 .

4.1 Cost comparison

The cost of generating the commitment in [19] is O(n3) (the cost of matrix
multiplication, ignoring asymptotic improvements). Due to our use of generic
tensors, we have to perform 3n matrix multiplications to compute our com-
mitment, bringing the cost to O(n4). The cost of multiplications over Fq is
O(log q log log q). While this provides a slowdown compared to [19], it is still
reasonable when compared to other cryptographic operations. In particular, we
benefit from the fact that matrix multiplication already has existing low-level
code and algorithms, including parallel algorithms. It is also worth noting that
our loss in efficiency only occurs during the actual computation of the com-
mitment. For any operation on the commitment itself or involving it (e.g zero-
knowledge proofs) the cost of manipulating it would be the same for both our
construction and that of [19] since they are both comprised of matrix multipli-
cation on a (seemingly) random tensor.

MEDS [15] only uses two matrices A,B, but introduces systematic form com-
putation. This allows a trade-off between computation time and size. Therefore,
the cost of a single group action on a matrix code is the cost of matrix mul-
tiplication plus the systematic form computation. This trade-off could also be
applied to the case of our commitment scheme, along with their other (future)
group action optimizations.
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4.2 On proofs of knowledge

To use commitment schemes within more advanced protocols such as verifiable
secret sharing or zero-knowledge proofs for generic statements, it is useful to
have non-interactive zero-knowledge proofs of knowledge of commitments. More
precisely, one wishes to prove that they know the value to which a commitment
c corresponds without giving away any information about it.

Let us consider the commitment scheme of Figure 6, extended to the message
space {0, . . . N}. Given public parameters pp = {t0, . . . tN} consisting of N + 1
random tensors from V, we consider the relation

R = {(c, (ti, (A,B,C))) | c = (A,B,C) ⋆ ti},

where c is the statement and (ti, (A,B,C)) is the witness. This means given c we
wish to prove knowledge of the message ti and randomness (A,B,C) to which
c corresponds, without revealing anything about them. We briefly expose two
ways of obtaining such a proof.

Using OR-proofs. A proof for R can be obtained by combining an OR-proof
[18] and a proof for Ri = {((c, ti), (A,B,C))) | c = (A,B,C) ⋆ ti}, to show that
one knows one out of the N ti’s. A proof for R can be obtained by adapting, for
example, the graph isomorphism proof [25]. However, using OR-proofs increases
the communication cost in the answer of the prover, and we will therefore prefer
to build a direct proof for the full relation R.

A direct proof for R. We give in Figure 7 a sigma protocol that directly gives
a proof for R.

We sketch the extractor for special soundness and simulator for honest-
verifier zero-knowledge below.

Special-soundness. Suppose we have two accepting transcripts with different
challenges, ((dj)

N
j=1, ch0, resp0) and ((dj)

N
j=1, ch1, resp1). Without loss of gener-

ality, we assume ch0 = 0. Then we can build an extractor E which, given these
transcripts as input, does the following : Recover (A′, B′, C ′) from resp0 and
(A(A′)−1, B(B′)−1, C(C ′)−1) from resp1. Compute (A,B,C) by multiplying the
latter by the former. Recover i from resp0 and recover the correct tσ−1(i). Then
(tσ−1(i), (A,B,C)) is the witness.

Honest-verifier zero-knowledge. We now sketch the simulator. In the case ch = 0,
the simulator just follows the protocol honestly and will be producing an accept-
ing transcript. In the ch = 1 case, the simulator samples (A′, B′, C ′) and σ as in
the protocol, then picks some index j and sets dj = ((A′)−1, (B′)−1, (C ′)−1) ⋆ c.
The other di for i ̸= j are computed according to the protocol. The distribution
will remain the same since (A′, B′, C ′) is random. The answer then consists of j
and (A′, B′, C ′).
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Prover1(pp, ti, c, (A,B,C))

1: A′, B′, C′ $←− GLn(q)
3

2: σ
$←− Sn

3: for j = 1, . . . N do
4: dj ← (A′, B′, C′) ⋆ tσ(j)

5: end for
6: st← (pp, (A,B,C), (A′, B′, C′), σ)
7: Send (dj)

N
j=1 to Verifier

8: return st

Prover2(st, ch)
1: if ch = 0 then
2: resp← ((A′, B′, C′), σ)
3: return resp
4: end if
5: resp← (A(A′)−1, B(B′)−1, C(C′)−1), i)
6: return resp

Verifier1(pp, c, (dj)
N
j=1)

1: ch
$←− {0, 1}

2: st← (pp, ch, c, (dj)
N
j=1), ti)

3: Send ch to Prover
4: return st

Verifier2(st, resp)
1: if ch = 0 then
2: resp→ ((Ã, B̃, C̃), σ)
3: return ∀i, (Ã, B̃, C̃) ⋆ tσ(i) = di

)
4: end if
5: resp→ (Ã, B̃, C̃), i)
6: return

(
(Ã, B̃, C̃) ⋆ di = c

)

Fig. 7. Proof system for R

5 Conclusion

In this work, we study low rank points and stabilizers on structured tensors.
We show how this information gives us the tools to break the hiding property
of the bit commitment scheme proposed in [19] at Asiacrypt 2023, that uses
these structured tensors. Our attacks further allow to recover all the secret in-
formation used during the creation of the commitment. All of these algorithms
run in polynomial time, which leaves the framework introduced in [19] with no
concrete instantiation. Prior to this work, there was no evidence in the literature
suggesting that structured tensors were not secure for use in cryptography.

With these attacks in mind, we propose a slightly different framework as
well as a construction that makes use of random tensors. This allows us to build
a statistically binding, computationally hiding commitment from non-transitive
group actions. Finally, we complete this work by proposing a zero-knowledge
proof of opening for our new commitment scheme.

At the moment, the field of commitment schemes from non-transitive group
actions is lacking protocols that are both post-quantum and non-interactive. We
hope our new construction helps to fill this gap, and that our attacks can help
to inform future cryptography designers on some of the limits of working with
structured tensors. We leave any further investigation into a commitment scheme
using the framework proposed in [19] as future work.
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Supplementary Material

A Proofs

The proofs included here are done via a very computational approach, using core
definitions. We encourage the reader who wants to familiarize themselves with
these definitions to do them as exercise.

Lemma 4. Let λa, λb, λc ∈ Fq be such that λaλbλc = 1. Then for all v ∈ V, we
have that (λaIn, λbIn, λcIn) ⋆ v = v.

Proof. Let us write v =
∑n

i,j,k=1 v(i, j, k)ei ⊗ ej ⊗ ek. We have

(λaIn, λbIn, λcIn) ⋆ v =
n∑

i,j,k=1

v(i, j, k)(λaIn)ei ⊗ (λbIn)ej ⊗ (λcIn)ek

=

n∑
i,j,k=1

v(i, j, k)λaλbλcei ⊗ ej ⊗ ek

=

n∑
i,j,k=1

v(i, j, k)ei ⊗ ej ⊗ ek since λaλbλc = 1

= v

Lemma 6. Let σ ∈ Sn, then there exists Pσ such that (Pσ, Pσ, Pσ) ⋆ t0 = t0,
given by Pσ = (pij)

n
i,j=1 and pij = 1i=σ(j).

Proof. Let t0 =
∑n

s=1 es ⊗ es ⊗ es, then we can express the action (A,B,C) ⋆ t0
(from (3.3)) as (A,B,C)∗(

∑n
s=1 es⊗es⊗es) =

∑n
i,j,k

∑n
s=1 AisBjsCksei⊗ej⊗ek.

(Pσ, Pσ, Pσ) ⋆ t0 =

n∑
i,j,k=1

n∑
s=1

(Pσ)is(Pσ)js(Pσ)ksei ⊗ ej ⊗ ek

=

n∑
i,j,k=1

n∑
s=1

1i=σ(s)1j=σ(s)1k=σ(s)ei ⊗ ej ⊗ ek

=

n∑
i,j,k=1

n∑
s=1

1i=j=k1i=σ(s)ei ⊗ ej ⊗ ek

=

n∑
m=1

n∑
s=1

1m=σ(s)em ⊗ em ⊗ em

=

n∑
m=1

em ⊗ em ⊗ em = t0

since σ is a bijection.
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