
A Scalable Coercion-resistant Voting Scheme for Blockchain
Decision-making

Zeyuan Yin

The State Key Laboratory of

Blockchain and Data Security,

Zhejiang University

zeyuanyin@zju.edu.cn

Bingsheng Zhang

The State Key Laboratory of

Blockchain and Data Security,

Zhejiang University

bingsheng@zju.edu.cn

Andrii Nastenko

IOG Singapore Pte Ltd

andrii.nastenko@iohk.io

Roman Oliynykov

IOG Singapore Pte Ltd;

V.N.Karazin Kharkiv National

University, Ukraine

roman.oliynykov@iohk.io

Kui Ren

The State Key Laboratory of

Blockchain and Data Security,

Zhejiang University

kuiren@zju.edu.cn

ABSTRACT
Typically, a decentralized collaborative blockchain decision-making

mechanism is realized by remote voting. To date, a number of

blockchain voting schemes have been proposed; however, to the

best of our knowledge, none of these schemes achieve coercion-

resistance. In particular, for most blockchain voting schemes, the

randomness used by the voting client can be viewed as a wit-

ness/proof of the actual vote, which enables improper behaviors

such as coercion and vote-buying. Unfortunately, the existing coercion-

resistant voting schemes cannot be directly adopted in the blockchain

context. In this work, we design the first scalable coercion-resistant

blockchain voting scheme that supports private differential voting

power and 1-layer liquid democracy as introduced by Zhang et al.
(NDSS ’19). Its overall complexity is 𝑂 (𝑛), where 𝑛 is the number

of voters. Moreover, the ballot size is reduced from Zhang et al.’s
Θ(𝑚) to Θ(1), where𝑚 is the number of experts and/or candidates.

We formally prove that our scheme has ballot privacy, verifiability,

and coercion-resistance. We implement a prototype of the scheme

and the evaluation result shows that our scheme’s tally procedure

is more than 6x faster than VoteAgain (USENIX ’20) in an election

with over 10,000 voters and over 50% extra ballot rate.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Cryp-
tography; Pseudonymity, anonymity and untraceability; Distributed
systems security.

KEYWORDS
Electronic voting, coercion-resistant, blockchain decision-making,

remote voting, liquid democracy

1 INTRODUCTION
Blockchain technology enjoys its popularity since the invention

of Bitcoin in 2008, and it continues to reshape our digital society

with its properties of decentralization, transparency, and security.

Democracy on the blockchain has the potential to transform theway

political systems function, creating a more equitable and inclusive

future.

Democracy on the blockchain. In a democratic blockchain sys-

tem, stakeholders have the right to participate in the decision-

making process through verifiable remote voting where everyone

can express his opinion. Usually, in blockchain voting, each par-

ticipant’s voting power is different and proportional to his stake,

which is called differential voting power in this work. This is one of

the main differences between blockchain voting and conventional

elections, where, typically, one participant has one vote. On the

other hand, direct democracy might not always be the best choice

for a blockchain decision-making process. In practice, to make a

wise decision, stakeholders must invest substantial effort into ac-

quiring knowledge and expertise throughout the decision-making

process. Therefore, letting elites lead the decision-making might

be an optimization in most cases. Some systems such as ZCash [8]

use a small committee (consisting of several experts) to make the

decisions; however, this has the risk of centralization, i.e., if the com-

mittee behaves maliciously, there is no mechanism for stakeholders

to alter their decisions whatsoever.

The concept of liquid democracy has been proposed to achieve

better collaborative intelligence. Liquid democracy (also known

as delegative democracy [26]) is a hybrid of direct democracy and

representative democracy. It provides the benefits of both systems

(whilst avoiding their drawbacks) by enabling organizations to take

advantage of experts in a blockchain voting process, as well as

giving the stakeholders the opportunity to vote. For each proposal,

a voter can either vote directly or delegate his voting power to an

expert who is knowledgeable and renowned in the corresponding

area.

Zhang et al. [45] proposed a treasury system that supports liquid

democracy. However, their scheme has the following two draw-

backs: (i) the ballot size is linear in the number of candidates and/or

experts; (ii) it is not coercion-resistant.

The coercion problem in remote voting. In real-world voting,

a voting booth gives a voter privacy and protects him from being

coerced. However, in remote voting, the voting procedure can be

viewed as a probabilistic algorithm that takes as input a random

coin and the voter’s choice. If the output is published on the bulletin

board, then we have a problem: the input and randomness used in

the voting procedure can be viewed as proof of casting a certain

ballot, and anyone can run the probabilistic algorithm again to

1

Zeyuan Yin, Bingsheng Zhang, Andrii Nastenko, Roman Oliynykov, and Kui Ren

verify it, which makes coercion and vote-buying possible. Many

well-known e-voting systems are not coercion-resistant, such as

snapshot [43], Helios [2], and prêt à voter [42]. What’s worse, in

the blockchain context, vote-buying becomes easier with the help

of smart contracts.

To address the coercion/vote-buying problem, several schemes

are proposed. Generally, coercion-resistant voting can be divided

into three categories: fake credentials [4, 19, 34], re-voting [1, 30,

39, 40], and secure hardware [3, 41]. In a coercion-resistant voting

scheme using fake credentials, a voter holds both real and fake cre-

dentials. If coerced, a voter will cast a ballot using a fake credential,

which is indistinguishable from the real one in the coercer’s view,

and it will be silently uncounted in the tally phase. In a re-voting
scheme, a voter can cast his ballot multiple times, and only the

last one will be tallied. Coercion-resistance relies on the fact that

the voter can cast the ballot again after the coercer leaves. In the

schemes using secure hardware, the secure hardware has its inter-
nal randomness source and can do probabilistic encryption for the

voter so that the voter can lie about what has been encrypted.

Coercion-resistance v.s. deniability.All types of coercion-resistant
voting schemes must give a voter deniability through some tech-

nique. Concretely, in “fake credentials" schemes, the election au-

thority will provide randomness in the credential-related elements,

and generate a designated verifier proof of correctness. To deceive

the coercer, a voter can generate a fake credential and claim it as

the real one by simulating the designated verifier proof. Namely,

the registration procedure is deniable. In re-voting schemes, the

re-vote operation must be deniable, i.e., the tally procedure will not

reveal if a voter has re-voted. In the schemes using secure hardware,
the secure hardware hides the randomness in the ciphertext so that

a voter can claim that it is encryption of another candidate, i.e., the

encryption operation is deniable.

Challenges. Could we apply the aforementioned techniques to re-

alize a coercion-resistant voting scheme in the blockchain context?

It turns out to be a non-trivial task. First, secure hardware-based

solutions might not be suitable for the blockchain setting because

an open blockchain allows anyone to join and leave freely, and not

all devices are equipped with secure hardware, such as a trusted

execution environment (TEE).

How about “fake credentials” and “re-voting” schemes? Can

we adapt those schemes with differential voting power? There

are still some challenges. For instance, JCJ [34] is a well-known

coercion-resistance voting scheme, and it can be modified to sup-

port differential voting power; however, the scheme has 𝑂 (𝑛2)
complexity due to the pair-wise plaintext equivalence tests (PETs),

where 𝑛 is the total number of votes, limiting its scalability. On

the other hand, although the recently proposed scheme, VoteA-

gain [40], offers quasi-linear complexity, its verifiability relies on a

trusted third party (TTP), which is undesirable in the blockchain

setting. The best-known candidate is Araújo et al.’s “fake creden-
tials” scheme [4], which achieves 𝑂 (𝑛) complexity without relying

on TTP for verifiability. Unfortunately, the credential of Araújo et
al.’s scheme is in the form of two group elements satisfying a linear

relationship, and this makes it unable to be modified trivially to

support differential voting power. To the best of our knowledge,

no proper coercion-resistant voting scheme in the literature can

support differential voting power and achieve 𝑂 (𝑛) complexity at

the same time. Hereby, we are asking the question:

Can we design a scalable (linear complexity) coercion-
resistant delegated voting scheme for blockchain decision-
making?

1.1 Our Approach
In this work, we answer the above question affirmatively by

proposing a new coercion-resistant voting scheme. Our scheme

belongs to the “fake credentials” category. We start with the well-

known JCJ scheme [34]. In the JCJ scheme, each encrypted cre-

dential is put on the bulletin board in the registration phase, and

each ballot generally consists of an encrypted candidate and an

encrypted credential. In the tally phase, by a shuffle and pair-wise

PETs on the credentials, the ballots with fake credentials will be

silently eliminated.

It is intuitive that one can associate credentials with voting power

in the JCJ scheme to support differential voting power, i.e., each

encrypted credential is tied with encrypted voting power, and we

still perform PETs on the encrypted credentials in the tally phase.

However, the scheme will have 𝑂 (𝑛2) complexity, so it does not

scale well when the number of voters is large. To improve scalability,

we propose a novel “dummy voting power” technique. The key

idea is that we allow voters to publish (encrypted) fake credentials

associated with (encrypted) zero voting power on the bulletin board.

Then, in the tally phase, after shuffle re-encrypting the real and fake

credentials, all the credentials can be decrypted. In this way, we

transform the pair-wise PETs into “decrypt and match”, achieving

𝑂 (𝑛) complexity (counting cryptographic operations only).

To achieve delegation, we design a “two-layer homomorphic tally”
procedure consisting of “delegation calculation” and “final tally

calculation”. In layer one, delegation is calculated by decrypting

voters’ choices and adding the delegated voting power to the corre-

sponding experts. In layer two, the final tally result is calculated

by decrypting experts’ choices and adding experts’ voting power

together with voters’ direct votes. Thanks to the additive homomor-

phism of the encryption scheme, voters’ ballots and voting power

are hidden throughout the tally.

Combining the “dummy voting power” technique and “two-layer

tally” procedure together, we build the first coercion-resistant vot-

ing scheme that has linear complexity and supports private differ-

ential voting power and liquid democracy. We formally prove that

our scheme meets the game-based definitions of ballot privacy, ver-

ifiability, and coercion-resistance. We implement the scheme and

evaluate its performance. Results show that our scheme’s tally exe-

cution time is more than 6x faster than VoteAgain [40] in elections

with over 10,000 voters and over 50% extra ballot rate
1
.

1.2 Related Work
Coercion-resistant voting can be roughly split into three classes:

fake credentials [4, 15, 17, 19, 20, 34], re-voting [1, 30, 39, 40], and

secure hardware [3, 41]. JCJ [34] is the first paper that introduces

the “fake credentials” type of coercion-resistant voting. In JCJ, each

1
In VoteAgain, it means that more than 50% voters re-voted once; in our scheme, it

means that more than 50% voters cast a fake ballot.

2

A Scalable Coercion-resistant Voting Scheme for Blockchain Decision-making

Table 1: Comparison of voting schemes. Here, 𝑛 is the number of voters, and𝑚 is the number of election candidates. Del. means
delegation. Crypto state means that the voter needs to keep a cryptographic secret from the coercer. EA stands for election
authority. Hardware means that the property is guaranteed by secure hardware. An item in bold text means that our scheme is
the best in this aspect.

Schemes

Diff. voting

power

Del.

Ballot

size

Complexity

Crypto

state

Ballot

privacy

Verifiability

Coercion-

resistant

JCJ [34] (fake credentials) No No 𝑂 (1) 𝑂 (𝑛2) Yes 𝑡-out-of-𝑘 trust no one trust EA

ABBT [4] (fake credentials) No No 𝑂 (1) 𝑂 (𝑛) Yes 𝑡-out-of-𝑘 trust no one trust EA

AKL+ [1], LHK [39] (re-voting) No No 𝑂 (1) 𝑂 (𝑛2) No 𝑡-out-of-𝑘 trust no one secret credential

VoteAgain [40] (re-voting) No No 𝑂 (1) 𝑂 (𝑛 log𝑛) No 𝑡-out-of-𝑘 trust EA trust EA

MBC [41], AOZZ [3]

(secure hardware)

No No 𝑂 (1) 𝑂 (𝑛) No hardware hardware hardware

Snapshot [43] Yes No 𝑂 (1) 𝑂 (𝑛) - 𝑡-out-of-𝑘 trust no one -

ZOB [45] Yes Yes 𝑂 (𝑚) 𝑂 (𝑚𝑛) - 𝑡-out-of-𝑘 trust no one -

Our scheme (fake credentials) Yes Yes 𝑶 (1) 𝑶 (𝒏) Yes 𝒕-out-of-𝒌 trust no one trust EA

ballot contains an encrypted credential, and there is a list of en-

crypted valid credentials on the bulletin board. In the tally phase,

by pair-wise plaintext equivalence tests (PETs), the ballots with

invalid credentials will be eliminated, but the pair-wise PETs cause

𝑂 (𝑛2) complexity, where 𝑛 is the number of voters. Other “fake

credentials” schemes such as [4, 19] improve the time complex-

ity and achieve better properties such as everlasting privacy. The

re-voting type of coercion-resistant voting allows a voter to cast

multiple ballots, and the tally procedure will only count the last one.

Achenbach et al. [1] and Locher et al. [39] utilize a deniable vote
update mechanism to realize re-voting with quadratic complexity.

The Norwegian Internet voting protocol [30] and VoteAgain [40]

achieve (quasi-)linear complexity, but they both need a trusted third

party for verifiability. Schemes based on secure hardware [3, 41] can
achieve coercion-resistance easily, but secure hardware is a strong

assumption. A recent work by Giustolisi et al. [29] proposes the first
re-voting scheme that can evade last-minute voter coercion. The

scheme has a re-voting form, but it requires the voter to remember

a secret (number of cast ballots), so it has similar assumptions as

“fake credentials” schemes. The scheme can be modified to support

differential voting power; however, in the scheme, the voting server

needs to continuously generate obfuscation ballots for each voter,

so its complexity is linear to the duration of voting phase and does

not achieve 𝑂 (𝑛) complexity.

On the other hand, blockchain voting [38, 43–45] is becoming

more and more popular nowadays. Snapshot [43] is a popular DAO

(Decentralized Autonomous Organization) voting platform that

frees voters from gas fees. It uses IPFS [9] to store the proposals

and votes, making the voting process off-chain and gas-free. Zhang

et al. [45] proposes a treasury system for blockchain governance.

It supports liquid democracy and is provably secure, but its ballot

size is linear to the candidate number. Besides, to the best of our

knowledge, none of the existing blockchain voting schemes are

coercion-resistant.

Finally, Table 1 gives a comparison between our scheme and

previous work.

2 SYSTEM OVERVIEW
In this section, we start by modifying the JCJ protocol [34] to

build a coercion-resistant voting scheme that supports differential

voting power with 𝑂 (𝑛2) complexity. Then, we give the intuition

and details of our novel “dummy voting power” technique and

“two-layer tally” procedure. We also optimize JCJ’s ballot structure

to achieve a smaller ballot size. Finally, we provide an overview of

our scheme.

2.1 The JCJ Protocol
We first recall the well-known JCJ protocol [34] and show how

to modify it to support differential voting power.

The original protocol. As mentioned above, JCJ is the first pro-

tocol that introduces the concept of “fake credentials”. Generally,

it works as follows. For simplicity, we use J𝑥K to denote encryp-

tion of 𝑥 in section 2.1 and 2.2. In the registration phase, a voter

authenticates to the election authority (EA), and the EA generates

a credential 𝜎 ← G. Then, the EA publishes 𝑆 = J𝜎K on the BB

(bulletin board) and sends 𝜎 to the voter along with a designated

verifier proof that 𝑆 is encryption of 𝜎 . In the voting phase, a voter

cast a ballot 𝐵 = (J𝑣K, J𝜎K, 𝑃 𝑓) where J𝑣K is the encryption of a

candidate 𝑣 , J𝜎K is the encryption of a credential 𝜎 , 𝑃 𝑓 includes

the NIZK proofs of knowledge of 𝑣 and 𝜎 , and a NIZK proof that

J𝑣K encrypts a valid candidate. If a voter is coerced, he generates a

random 𝜎′ ← G and claims it as the real credential by simulating

the designated verifier proof. In the tally phase, the trustees shuffle

the ballots and perform pair-wise PETs on encrypted credentials

to eliminate the ballots with fake credentials. Finally, the trustees

decrypt the candidates and tally the votes. The overview of JCJ

protocol is shown in Figure 1.

Supporting differential voting power. We can see that if we

associate each credential with voting power, then the system can

easily support differential voting power. More specifically, in the

registration phase, the EA publishes 𝑆 = (J𝜎K, J𝛼K) on the BB, where
J𝜎K is the encrypted credential and J𝛼K is the encrypted voting

power under an additively homomorphic encryption scheme. After

the pair-wise PETs, we get tuples of ⟨J𝑣K, J𝛼K⟩, where J𝑣K is the

encrypted candidate and J𝛼K is the encrypted voting power. Then,

3

Zeyuan Yin, Bingsheng Zhang, Andrii Nastenko, Roman Oliynykov, and Kui Ren

…

<latexit sha1_base64="rG4GUGxLA1xXwmhkqa9OeEj/cGQ=">AAAB+3icbVBNS8NAEJ34WetXrEcvW4vgqSRF1GPRi8cK9gOSEDbbTbt0Nwm7G7GU/hUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvyjhT2nG+rbX1jc2t7dJOeXdv/+DQPqp0VJpLQtsk5ansRVhRzhLa1kxz2sskxSLitBuNbmd+95FKxdLkQY8zGgg8SFjMCNZGCu2K51c95Cs2EDh0UeBXg9CuOXVnDrRK3ILUoEArtL/8fkpyQRNNOFbKc51MBxMsNSOcTst+rmiGyQgPqGdoggVVwWR++xSdGaWP4lSaSjSaq78nJlgoNRaR6RRYD9WyNxP/87xcx9fBhCVZrmlCFovinCOdolkQqM8kJZqPDcFEMnMrIkMsMdEmrrIJwV1+eZV0GnX3st64v6g1b4o4SnACp3AOLlxBE+6gBW0g8ATP8Apv1tR6sd6tj0XrmlXMHMMfWJ8/4aaTDQ==</latexit>

[[�1]]

<latexit sha1_base64="XSH5pPYQUK15paNLoluIV+jXcNU=">AAAB+3icbVBNS8NAEJ34WetXrEcvW4vgqSRF1GPRi8cK9gOSEDbbTbt0swm7G7GU/hUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvyjhT2nG+rbX1jc2t7dJOeXdv/+DQPqp0VJpLQtsk5ansRVhRzgRta6Y57WWS4iTitBuNbmd+95FKxVLxoMcZDRI8ECxmBGsjhXbF86se8hUbJDgUKPCrQWjXnLozB1olbkFqUKAV2l9+PyV5QoUmHCvluU6mgwmWmhFOp2U/VzTDZIQH1DNU4ISqYDK/fYrOjNJHcSpNCY3m6u+JCU6UGieR6UywHqplbyb+53m5jq+DCRNZrqkgi0VxzpFO0SwI1GeSEs3HhmAimbkVkSGWmGgTV9mE4C6/vEo6jbp7WW/cX9SaN0UcJTiBUzgHF66gCXfQgjYQeIJneIU3a2q9WO/Wx6J1zSpmjuEPrM8fP1qTSg==</latexit>

[[�n]]

Registration

<latexit sha1_base64="owdYIM+mV3tnlh9OuSTCocsduo0=">AAACGnicbVDNS8MwHE3n15xfVY9eMofgQUY7RD0OvXic4D6gLSXN0i4sTUuSDsbY3+HFf8WLB0W8iRf/G7Ougm4+CLy8934kvxekjEplWV9GaWV1bX2jvFnZ2t7Z3TP3DzoyyQQmbZywRPQCJAmjnLQVVYz0UkFQHDDSDYY3M787IkLShN+rcUq8GEWchhQjpSXftF2GeMQIdNyqM/Jtz616Z/nFlTSK0Y/SCqEr8qRv1qy6lQMuE7sgNVCg5Zsfbj/BWUy4wgxJ6dhWqrwJEopiRqYVN5MkRXiIIuJoylFMpDfJV5vCE630YZgIfbiCufp7YoJiKcdxoJMxUgO56M3E/zwnU+GVN6E8zRTheP5QmDGoEjjrCfapIFixsSYIC6r/CvEACYSVbrOiS7AXV14mnUbdvqg37s5rzeuijjI4AsfgFNjgEjTBLWiBNsDgATyBF/BqPBrPxpvxPo+WjGLmEPyB8fkNcvSepQ==</latexit>h[[v1]], [[�1]], Pfi

<latexit sha1_base64="E6DwabEetkMEWeXFWk+XB2s0zN4=">AAACIHicbVDNS8MwHE39nPOr6tFL5hA8yGiHOI9DLx4nuA9oS0mztAtL05Kkg1H2p3jxX/HiQRG96V9j1u0wNx8EXt57P5LfC1JGpbKsb2NtfWNza7u0U97d2z84NI+OOzLJBCZtnLBE9AIkCaOctBVVjPRSQVAcMNINhndTvzsiQtKEP6pxSrwYRZyGFCOlJd9suAzxiBHouBVn5Od1PvHcindZ3F1JoxgtiK0QuqLI+2bVqlkF4Cqx56QK5mj55pfbT3AWE64wQ1I6tpUqL0dCUczIpOxmkqQID1FEHE05ion08mLBCTzXSh+GidCHK1ioixM5iqUcx4FOxkgN5LI3Ff/znEyFN15OeZopwvHsoTBjUCVw2hbsU0GwYmNNEBZU/xXiARIIK91pWZdgL6+8Sjr1mn1dqz9cVZu38zpK4BScgQtggwZognvQAm2AwRN4AW/g3Xg2Xo0P43MWXTPmMyfgD4yfXxGyoa8=</latexit>h[[v2n]], [[�2n]], Pfi

…

Ballots
pair-wise PETs

…

<latexit sha1_base64="MvsWDKA9GYuDzc/r54IAcIik6Iw=">AAAB+nicbVDLSsNAFL3xWesr1aWbqUVwVZIi6rLoxmUF+4AkhMl00g6dPJiZVErsp7hxoYhbv8Sdf+O0zUJbD1w4nHMv994TpJxJZVnfxtr6xubWdmmnvLu3f3BoVo46MskEoW2S8ET0AiwpZzFtK6Y47aWC4ijgtBuMbmd+d0yFZEn8oCYp9SI8iFnICFZa8s2K41YdNPZz7NtT5LlVzzdrVt2aA60SuyA1KNDyzS+3n5AsorEiHEvp2FaqvBwLxQin07KbSZpiMsID6mga44hKL5+fPkVnWumjMBG6YoXm6u+JHEdSTqJAd0ZYDeWyNxP/85xMhddezuI0UzQmi0VhxpFK0CwH1GeCEsUnmmAimL4VkSEWmCidVlmHYC+/vEo6jbp9WW/cX9SaN0UcJTiBUzgHG66gCXfQgjYQeIRneIU348l4Md6Nj0XrmlHMHMMfGJ8/V8+SxA==</latexit>

[[va1
]]

<latexit sha1_base64="7nZ3AGF+YAHaWMHoirAwjPQBKBw=">AAAB+nicbVDLSsNAFL3xWeur1aWbqUVwVZIi6rLoxmUF+4AkhMl00g6dTMLMpFJiP8WNC0Xc+iXu/Bunj4W2HrhwOOde7r0nTDlT2ra/rbX1jc2t7cJOcXdv/+CwVD5qqySThLZIwhPZDbGinAna0kxz2k0lxXHIaScc3k79zohKxRLxoMcp9WPcFyxiBGsjBaWy61VcNApyHIgJ8r2KH5Sqds2eAa0SZ0GqsEAzKH15vYRkMRWacKyU69ip9nMsNSOcTopepmiKyRD3qWuowDFVfj47fYLOjNJDUSJNCY1m6u+JHMdKjePQdMZYD9SyNxX/89xMR9d+zkSaaSrIfFGUcaQTNM0B9ZikRPOxIZhIZm5FZIAlJtqkVTQhOMsvr5J2veZc1ur3F9XGzSKOApzAKZyDA1fQgDtoQgsIPMIzvMKb9WS9WO/Wx7x1zVrMHMMfWJ8/tbGTAQ==</latexit>

[[van
]]

decrypt

final tally
result

remove Pf
& shuffle
re-encrypt

Figure 1: JCJ original protocol

…

Registration

<latexit sha1_base64="owdYIM+mV3tnlh9OuSTCocsduo0=">AAACGnicbVDNS8MwHE3n15xfVY9eMofgQUY7RD0OvXic4D6gLSXN0i4sTUuSDsbY3+HFf8WLB0W8iRf/G7Ougm4+CLy8934kvxekjEplWV9GaWV1bX2jvFnZ2t7Z3TP3DzoyyQQmbZywRPQCJAmjnLQVVYz0UkFQHDDSDYY3M787IkLShN+rcUq8GEWchhQjpSXftF2GeMQIdNyqM/Jtz616Z/nFlTSK0Y/SCqEr8qRv1qy6lQMuE7sgNVCg5Zsfbj/BWUy4wgxJ6dhWqrwJEopiRqYVN5MkRXiIIuJoylFMpDfJV5vCE630YZgIfbiCufp7YoJiKcdxoJMxUgO56M3E/zwnU+GVN6E8zRTheP5QmDGoEjjrCfapIFixsSYIC6r/CvEACYSVbrOiS7AXV14mnUbdvqg37s5rzeuijjI4AsfgFNjgEjTBLWiBNsDgATyBF/BqPBrPxpvxPo+WjGLmEPyB8fkNcvSepQ==</latexit>h[[v1]], [[�1]], Pfi

<latexit sha1_base64="E6DwabEetkMEWeXFWk+XB2s0zN4=">AAACIHicbVDNS8MwHE39nPOr6tFL5hA8yGiHOI9DLx4nuA9oS0mztAtL05Kkg1H2p3jxX/HiQRG96V9j1u0wNx8EXt57P5LfC1JGpbKsb2NtfWNza7u0U97d2z84NI+OOzLJBCZtnLBE9AIkCaOctBVVjPRSQVAcMNINhndTvzsiQtKEP6pxSrwYRZyGFCOlJd9suAzxiBHouBVn5Od1PvHcindZ3F1JoxgtiK0QuqLI+2bVqlkF4Cqx56QK5mj55pfbT3AWE64wQ1I6tpUqL0dCUczIpOxmkqQID1FEHE05ion08mLBCTzXSh+GidCHK1ioixM5iqUcx4FOxkgN5LI3Ff/znEyFN15OeZopwvHsoTBjUCVw2hbsU0GwYmNNEBZU/xXiARIIK91pWZdgL6+8Sjr1mn1dqz9cVZu38zpK4BScgQtggwZognvQAm2AwRN4AW/g3Xg2Xo0P43MWXTPmMyfgD4yfXxGyoa8=</latexit>h[[v2n]], [[�2n]], Pfi

…

Ballots
pair-wise PETs

…

decrypt candidates
& add voting power

& decrypt voting power sum

final tally
result

remove Pf
& shuffle
re-encrypt

<latexit sha1_base64="0bPPcscIlaRJ+Arwhc8bN4AhGPA=">AAACH3icbVDLSgMxFM3UV62vqks3qUVwIWWmSHVZdOOygn3AzFDupGkbmskMSUYopX/ixl9x40IRcde/MZ2OoK0HAodzzuXmniDmTGnbnlm5tfWNza38dmFnd2//oHh41FJRIgltkohHshOAopwJ2tRMc9qJJYUw4LQdjG7nfvuRSsUi8aDHMfVDGAjWZwS0kbrFmsdBDDjFrldysafYIISug32v5F9kGvB4+KNhT6bxbrFsV+wUeJU4GSmjDI1u8cvrRSQJqdCEg1KuY8fan4DUjHA6LXiJojGQEQyoa6iAkCp/kt43xWdG6eF+JM0TGqfq74kJhEqNw8AkQ9BDtezNxf88N9H9a3/CRJxoKshiUT/hWEd4XhbuMUmJ5mNDgEhm/orJECQQbSotmBKc5ZNXSatacWqV6v1luX6T1ZFHJ+gUnSMHXaE6ukMN1EQEPaEX9IberWfr1fqwPhfRnJXNHKM/sGbfoUmgQQ==</latexit>h[[�1]], [[↵1]]i

<latexit sha1_base64="9LMOXmy02CBe5AXk+Ay3QARQxyc=">AAACH3icbVDLSgMxFM3UV62vqks3qUVwIWWmSHVZdOOygn3AzFDupGkbmskMSUYopX/ixl9x40IRcde/MZ2OoK0HAodzzuXmniDmTGnbnlm5tfWNza38dmFnd2//oHh41FJRIgltkohHshOAopwJ2tRMc9qJJYUw4LQdjG7nfvuRSsUi8aDHMfVDGAjWZwS0kbrFmsdBDDjFrldysafYIISuwL5X8i8yDXg8/NGwJ9N4t1i2K3YKvEqcjJRRhka3+OX1IpKEVGjCQSnXsWPtT0BqRjidFrxE0RjICAbUNVRASJU/Se+b4jOj9HA/kuYJjVP198QEQqXGYWCSIeihWvbm4n+em+j+tT9hIk40FWSxqJ9wrCM8Lwv3mKRE87EhQCQzf8VkCBKINpUWTAnO8smrpFWtOLVK9f6yXL/J6sijE3SKzpGDrlAd3aEGaiKCntALekPv1rP1an1Yn4tozspmjtEfWLNvZTaguw==</latexit>h[[�n]], [[↵n]]i

<latexit sha1_base64="sp4Uppc2Vs7TzAJqF3DKP93QOow=">AAACInicbVDLSgMxFM34rPVVdekmtQgupMwU8bErunFZwT5gZhjupGkbmskMSaZQhn6LG3/FjQtFXQl+jOljUVsPBA7n3MPNPWHCmdK2/W2trK6tb2zmtvLbO7t7+4WDw4aKU0loncQ8lq0QFOVM0LpmmtNWIilEIafNsH839psDKhWLxaMeJtSPoCtYhxHQRgoKNx4H0eUUu17RxYMgg8AZYd8r+udTyQOe9GBOx56cJIJCyS7bE+Bl4sxICc1QCwqfXjsmaUSFJhyUch070X4GUjPC6SjvpYomQPrQpa6hAiKq/Gxy4gifGqWNO7E0T2g8UecTGURKDaPQTEage2rRG4v/eW6qO9d+xkSSairIdFEn5VjHeNwXbjNJieZDQ4BIZv6KSQ8kEG1azZsSnMWTl0mjUnYuy5WHi1L1dlZHDh2jE3SGHHSFquge1VAdEfSEXtAbereerVfrw/qajq5Ys8wR+gPr5xeLTqHY</latexit>h[[va1
]], [[↵a1

]]i

<latexit sha1_base64="/mutp+5/xOoyUA1FkCFFzPC4/eI=">AAACInicbVDLSgMxFM34rPVVdekmtQgupMwU8bErunFZwT5gZhjupGkbmskMSaZQhn6LG3/FjQtFXQl+jOljUVsPBA7n3MPNPWHCmdK2/W2trK6tb2zmtvLbO7t7+4WDw4aKU0loncQ8lq0QFOVM0LpmmtNWIilEIafNsH839psDKhWLxaMeJtSPoCtYhxHQRgoKNx4H0eUUu17RxYMgg0CMsO8V/fOp5AFPejCnY09OEkGhZJftCfAycWakhGaoBYVPrx2TNKJCEw5KuY6daD8DqRnhdJT3UkUTIH3oUtdQARFVfjY5cYRPjdLGnViaJzSeqPOJDCKlhlFoJiPQPbXojcX/PDfVnWs/YyJJNRVkuqiTcqxjPO4Lt5mkRPOhIUAkM3/FpAcSiDat5k0JzuLJy6RRKTuX5crDRal6O6sjh47RCTpDDrpCVXSPaqiOCHpCL+gNvVvP1qv1YX1NR1esWeYI/YH18wtQqaJS</latexit>h[[van
]], [[↵an

]]i

Figure 2: JCJ protocol with differential voting power

the trustees decrypt the candidates and add the voting power by

additive homomorphism. The overview of the modified JCJ protocol

with differential voting power is shown in Figure 2.

2.2 Our Technique
In this part, we will illustrate our novel techniques for achieving

𝑂 (𝑛) complexity and delegated voting.

Dummy voting power.We can see that in the JCJ protocol, the

pair-wise PETs cause𝑂 (𝑛2) complexity. The idea is that if we allow

voters to publish the fake credentials on the BB but associate them

with dummy (zero) voting power, then we can directly decrypt the

credentials instead of performing PETs in the tally phase. In other

words, in the registration phase, the EA publishes (encrypted) real

credentials and (encrypted) real voting power; at any convenient

time, voters can also publish (encrypted) fake credentials and (en-

crypted) dummy voting power. In this way, we switch pair-wise

PETs into shuffle-decrypt and matching, achieving linear complex-

ity. Furthermore, “dummy voting power” also hides the number

of votes obtained by each candidate. The idea of “dummy voting

power” technique is shown in Figure 3.

Two-layer tally. To support delegation, the trustees perform a

“two-layer tally” procedure in the tally phase. Generally speaking,

in layer one, voters’ choices are decrypted, and the delegated voting

power will be added to the corresponding experts; in layer two,

experts’ choices are decrypted, and the final tally result is calculated

by adding experts’ voting power and voters’ direct votes. Note that,

experts have input independence instead of ballot privacy so their

ballots can be decrypted directly. Figure 4 shows the process of

“two-layer tally” where there are 3 candidates and 2 experts.

…

real credentials with
real voting power

<latexit sha1_base64="owdYIM+mV3tnlh9OuSTCocsduo0=">AAACGnicbVDNS8MwHE3n15xfVY9eMofgQUY7RD0OvXic4D6gLSXN0i4sTUuSDsbY3+HFf8WLB0W8iRf/G7Ougm4+CLy8934kvxekjEplWV9GaWV1bX2jvFnZ2t7Z3TP3DzoyyQQmbZywRPQCJAmjnLQVVYz0UkFQHDDSDYY3M787IkLShN+rcUq8GEWchhQjpSXftF2GeMQIdNyqM/Jtz616Z/nFlTSK0Y/SCqEr8qRv1qy6lQMuE7sgNVCg5Zsfbj/BWUy4wgxJ6dhWqrwJEopiRqYVN5MkRXiIIuJoylFMpDfJV5vCE630YZgIfbiCufp7YoJiKcdxoJMxUgO56M3E/zwnU+GVN6E8zRTheP5QmDGoEjjrCfapIFixsSYIC6r/CvEACYSVbrOiS7AXV14mnUbdvqg37s5rzeuijjI4AsfgFNjgEjTBLWiBNsDgATyBF/BqPBrPxpvxPo+WjGLmEPyB8fkNcvSepQ==</latexit>h[[v1]], [[�1]], Pfi

<latexit sha1_base64="E6DwabEetkMEWeXFWk+XB2s0zN4=">AAACIHicbVDNS8MwHE39nPOr6tFL5hA8yGiHOI9DLx4nuA9oS0mztAtL05Kkg1H2p3jxX/HiQRG96V9j1u0wNx8EXt57P5LfC1JGpbKsb2NtfWNza7u0U97d2z84NI+OOzLJBCZtnLBE9AIkCaOctBVVjPRSQVAcMNINhndTvzsiQtKEP6pxSrwYRZyGFCOlJd9suAzxiBHouBVn5Od1PvHcindZ3F1JoxgtiK0QuqLI+2bVqlkF4Cqx56QK5mj55pfbT3AWE64wQ1I6tpUqL0dCUczIpOxmkqQID1FEHE05ion08mLBCTzXSh+GidCHK1ioixM5iqUcx4FOxkgN5LI3Ff/znEyFN15OeZopwvHsoTBjUCVw2hbsU0GwYmNNEBZU/xXiARIIK91pWZdgL6+8Sjr1mn1dqz9cVZu38zpK4BScgQtggwZognvQAm2AwRN4AW/g3Xg2Xo0P43MWXTPmMyfgD4yfXxGyoa8=</latexit>h[[v2n]], [[�2n]], Pfi

…

Ballots

decrypt credentials
& match

…

remove Pf
& shuffle
re-encrypt

<latexit sha1_base64="0bPPcscIlaRJ+Arwhc8bN4AhGPA=">AAACH3icbVDLSgMxFM3UV62vqks3qUVwIWWmSHVZdOOygn3AzFDupGkbmskMSUYopX/ixl9x40IRcde/MZ2OoK0HAodzzuXmniDmTGnbnlm5tfWNza38dmFnd2//oHh41FJRIgltkohHshOAopwJ2tRMc9qJJYUw4LQdjG7nfvuRSsUi8aDHMfVDGAjWZwS0kbrFmsdBDDjFrldysafYIISug32v5F9kGvB4+KNhT6bxbrFsV+wUeJU4GSmjDI1u8cvrRSQJqdCEg1KuY8fan4DUjHA6LXiJojGQEQyoa6iAkCp/kt43xWdG6eF+JM0TGqfq74kJhEqNw8AkQ9BDtezNxf88N9H9a3/CRJxoKshiUT/hWEd4XhbuMUmJ5mNDgEhm/orJECQQbSotmBKc5ZNXSatacWqV6v1luX6T1ZFHJ+gUnSMHXaE6ukMN1EQEPaEX9IberWfr1fqwPhfRnJXNHKM/sGbfoUmgQQ==</latexit>h[[�1]], [[↵1]]i

<latexit sha1_base64="9LMOXmy02CBe5AXk+Ay3QARQxyc=">AAACH3icbVDLSgMxFM3UV62vqks3qUVwIWWmSHVZdOOygn3AzFDupGkbmskMSUYopX/ixl9x40IRcde/MZ2OoK0HAodzzuXmniDmTGnbnlm5tfWNza38dmFnd2//oHh41FJRIgltkohHshOAopwJ2tRMc9qJJYUw4LQdjG7nfvuRSsUi8aDHMfVDGAjWZwS0kbrFmsdBDDjFrldysafYIISuwL5X8i8yDXg8/NGwJ9N4t1i2K3YKvEqcjJRRhka3+OX1IpKEVGjCQSnXsWPtT0BqRjidFrxE0RjICAbUNVRASJU/Se+b4jOj9HA/kuYJjVP198QEQqXGYWCSIeihWvbm4n+em+j+tT9hIk40FWSxqJ9wrCM8Lwv3mKRE87EhQCQzf8VkCBKINpUWTAnO8smrpFWtOLVK9f6yXL/J6sijE3SKzpGDrlAd3aEGaiKCntALekPv1rP1an1Yn4tozspmjtEfWLNvZTaguw==</latexit>h[[�n]], [[↵n]]i

<latexit sha1_base64="sp4Uppc2Vs7TzAJqF3DKP93QOow=">AAACInicbVDLSgMxFM34rPVVdekmtQgupMwU8bErunFZwT5gZhjupGkbmskMSaZQhn6LG3/FjQtFXQl+jOljUVsPBA7n3MPNPWHCmdK2/W2trK6tb2zmtvLbO7t7+4WDw4aKU0loncQ8lq0QFOVM0LpmmtNWIilEIafNsH839psDKhWLxaMeJtSPoCtYhxHQRgoKNx4H0eUUu17RxYMgg8AZYd8r+udTyQOe9GBOx56cJIJCyS7bE+Bl4sxICc1QCwqfXjsmaUSFJhyUch070X4GUjPC6SjvpYomQPrQpa6hAiKq/Gxy4gifGqWNO7E0T2g8UecTGURKDaPQTEage2rRG4v/eW6qO9d+xkSSairIdFEn5VjHeNwXbjNJieZDQ4BIZv6KSQ8kEG1azZsSnMWTl0mjUnYuy5WHi1L1dlZHDh2jE3SGHHSFquge1VAdEfSEXtAbereerVfrw/qajq5Ys8wR+gPr5xeLTqHY</latexit>h[[va1
]], [[↵a1

]]i

<latexit sha1_base64="/mutp+5/xOoyUA1FkCFFzPC4/eI=">AAACInicbVDLSgMxFM34rPVVdekmtQgupMwU8bErunFZwT5gZhjupGkbmskMSaZQhn6LG3/FjQtFXQl+jOljUVsPBA7n3MPNPWHCmdK2/W2trK6tb2zmtvLbO7t7+4WDw4aKU0loncQ8lq0QFOVM0LpmmtNWIilEIafNsH839psDKhWLxaMeJtSPoCtYhxHQRgoKNx4H0eUUu17RxYMgg0CMsO8V/fOp5AFPejCnY09OEkGhZJftCfAycWakhGaoBYVPrx2TNKJCEw5KuY6daD8DqRnhdJT3UkUTIH3oUtdQARFVfjY5cYRPjdLGnViaJzSeqPOJDCKlhlFoJiPQPbXojcX/PDfVnWs/YyJJNRVkuqiTcqxjPO4Lt5mkRPOhIUAkM3/FpAcSiDat5k0JzuLJy6RRKTuX5crDRal6O6sjh47RCTpDDrpCVXSPaqiOCHpCL+gNvVvP1qv1YX1NR1esWeYI/YH18wtQqaJS</latexit>h[[van
]], [[↵an

]]i

<latexit sha1_base64="sREUkt+mbDZcIB0pEIjXQIJb9n4=">AAACGXicbVA7T8MwGHTKq5RXgJHFpUIwoCqpEDBWsDAWiT6kJIoc10mtOk5kO0hV1L/Bwl9hYQAhRpj4N7hpBiicZOl8d5/s74KUUaks68uoLC2vrK5V12sbm1vbO+buXk8mmcCkixOWiEGAJGGUk66iipFBKgiKA0b6wfh65vfviZA04XdqkhIvRhGnIcVIack3LZchHjECHbfuQFfSKEbHvg09t+6dzkWruEBXFEHfbFhNqwD8S+ySNECJjm9+uMMEZzHhCjMkpWNbqfJyJBTFjExrbiZJivAYRcTRlKOYSC8vNpvCI60MYZgIfbiChfpzIkexlJM40MkYqZFc9Gbif56TqfDSyylPM0U4nj8UZgyqBM5qgkMqCFZsognCguq/QjxCAmGly6zpEuzFlf+SXqtpnzdbt2eN9lVZRxUcgENwAmxwAdrgBnRAF2DwAJ7AC3g1Ho1n4814n0crRjmzD37B+PwGYlWdag==</latexit>

h[[�0
1]], [[0]]i

<latexit sha1_base64="TSjk9woV2OFQ2eqGHDDUMsFv+28=">AAACGXicbVA7T8MwGHTKq5RXgJHFpUIwoCqpEDBWsDAWiT6kJIoc10mtOk5kO0hV1L/Bwl9hYQAhRpj4N7hpBiicZOl8d5/s74KUUaks68uoLC2vrK5V12sbm1vbO+buXk8mmcCkixOWiEGAJGGUk66iipFBKgiKA0b6wfh65vfviZA04XdqkhIvRhGnIcVIack3LZchHjECHbfuQFfSKEbHPoeeW/dO56JVXKAriqBvNqymVQD+JXZJGqBExzc/3GGCs5hwhRmS0rGtVHk5EopiRqY1N5MkRXiMIuJoylFMpJcXm03hkVaGMEyEPlzBQv05kaNYykkc6GSM1EguejPxP8/JVHjp5ZSnmSIczx8KMwZVAmc1wSEVBCs20QRhQfVfIR4hgbDSZdZ0Cfbiyn9Jr9W0z5ut27NG+6qsowoOwCE4ATa4AG1wAzqgCzB4AE/gBbwaj8az8Wa8z6MVo5zZB79gfH4DxPudpw==</latexit>

h[[�0
n]], [[0]]i

…

fake credentials with
dummy voting power

shuffle
re-encrypt

decrypt candidates
& add voting power

& decrypt voting power sum

final tally
result

Figure 3: Dummy voting power technique
<latexit sha1_base64="dLiDNx+k8AENSJINb+HxyE7+HpU=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69bC2Cp5KUoh6LXjxWsB+QhLLZbtqlm03c3RRK6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzgoQzpW372ypsbG5t7xR3S3v7B4dH5eOTjopTSWibxDyWvQArypmgbc00p71EUhwFnHaD8d3c706oVCwWj3qaUD/CQ8FCRrA2ku96FRdN+g7yvYrfL1ftmr0AWidOTqqQo9Uvf3mDmKQRFZpwrJTr2In2Myw1I5zOSl6qaILJGA+pa6jAEVV+tjh6hi6MMkBhLE0JjRbq74kMR0pNo8B0RliP1Ko3F//z3FSHN37GRJJqKshyUZhypGM0TwANmKRE86khmEhmbkVkhCUm2uRUMiE4qy+vk0695lzV6g+NavM2j6MIZ3AOl+DANTThHlrQBgJP8Ayv8GZNrBfr3fpYthasfOYU/sD6/AGbjpCz</latexit>

[[v1]]
<latexit sha1_base64="QTgu6GY4d8tp0Qhhz/v9MERSUP8=">AAAB+3icbVBNS8NAEJ34WetXrEcvW4vgqSRF1GPRi8cK9gOSEDbbTbt0swm7G7GU/hUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvyjhT2nG+rbX1jc2t7dJOeXdv/+DQPqp0VJpLQtsk5ansRVhRzgRta6Y57WWS4iTitBuNbmd+95FKxVLxoMcZDRI8ECxmBGsjhXbF86se8jHPhjh0UeBXg9CuOXVnDrRK3ILUoEArtL/8fkryhApNOFbKc51MBxMsNSOcTst+rmiGyQgPqGeowAlVwWR++xSdGaWP4lSaEhrN1d8TE5woNU4i05lgPVTL3kz8z/NyHV8HEyayXFNBFovinCOdolkQqM8kJZqPDcFEMnMrIkMsMdEmrrIJwV1+eZV0GnX3st64v6g1b4o4SnACp3AOLlxBE+6gBW0g8ATP8Apv1tR6sd6tj0XrmlXMHMMfWJ8/0HuTAg==</latexit>

[[↵1]]

<latexit sha1_base64="4tqJY5ZWj2921R5vuf3/JGSDPCk=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69bC2Cp5KUoh6LXjxWsB+QhLLZbtqlm03c3RRK6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzgoQzpW372ypsbG5t7xR3S3v7B4dH5eOTjopTSWibxDyWvQArypmgbc00p71EUhwFnHaD8d3c706oVCwWj3qaUD/CQ8FCRrA2ku96FRdN+nXkexW/X67aNXsBtE6cnFQhR6tf/vIGMUkjKjThWCnXsRPtZ1hqRjidlbxU0QSTMR5S11CBI6r8bHH0DF0YZYDCWJoSGi3U3xMZjpSaRoHpjLAeqVVvLv7nuakOb/yMiSTVVJDlojDlSMdongAaMEmJ5lNDMJHM3IrICEtMtMmpZEJwVl9eJ516zbmq1R8a1eZtHkcRzuAcLsGBa2jCPbSgDQSe4Ble4c2aWC/Wu/WxbC1Y+cwp/IH1+QOdF5C0</latexit>

[[v2]]

<latexit sha1_base64="vd0B4D9SjdJzPzu4Ic9tx12u5ms=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69bC2Cp5JUUY9FLx4r2A9IQtlsN+3SzSbubgol9Hd48aCIV3+MN/+N2zYHbX0w8Hhvhpl5QcKZ0rb9bRXW1jc2t4rbpZ3dvf2D8uFRW8WpJLRFYh7LboAV5UzQlmaa024iKY4CTjvB6G7md8ZUKhaLRz1JqB/hgWAhI1gbyXe9iovGvQvkexW/V67aNXsOtEqcnFQhR7NX/vL6MUkjKjThWCnXsRPtZ1hqRjidlrxU0QSTER5Q11CBI6r8bH70FJ0ZpY/CWJoSGs3V3xMZjpSaRIHpjLAeqmVvJv7nuakOb/yMiSTVVJDFojDlSMdolgDqM0mJ5hNDMJHM3IrIEEtMtMmpZEJwll9eJe16zbmq1R8uq43bPI4inMApnIMD19CAe2hCCwg8wTO8wps1tl6sd+tj0Vqw8plj+APr8weeoJC1</latexit>

[[v3]]

<latexit sha1_base64="kLyEjzEaqpG7yZ/u0A3wPCpj+3I=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69bC2Cp5KUoh6LXjxWsB+QhLLZbtqlm03c3RRK6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzgoQzpW372ypsbG5t7xR3S3v7B4dH5eOTjopTSWibxDyWvQArypmgbc00p71EUhwFnHaD8d3c706oVCwWj3qaUD/CQ8FCRrA2ku96FRdN+g3kexW/X67aNXsBtE6cnFQhR6tf/vIGMUkjKjThWCnXsRPtZ1hqRjidlbxU0QSTMR5S11CBI6r8bHH0DF0YZYDCWJoSGi3U3xMZjpSaRoHpjLAeqVVvLv7nuakOb/yMiSTVVJDlojDlSMdongAaMEmJ5lNDMJHM3IrICEtMtMmpZEJwVl9eJ516zbmq1R8a1eZtHkcRzuAcLsGBa2jCPbSgDQSe4Ble4c2aWC/Wu/WxbC1Y+cwp/IH1+QOgKZC2</latexit>

[[v4]]

<latexit sha1_base64="zQEFCWgQC3/w2sLN9a+NexiYPy4=">AAAB9HicbVDLSsNAFL2pr1pfVZduphbBVUmKr2XRjcsK9gFJKJPppB06mcSZSaGEfocbF4q49WPc+TdO2yy09cCFwzn3cu89QcKZ0rb9bRXW1jc2t4rbpZ3dvf2D8uFRW8WpJLRFYh7LboAV5UzQlmaa024iKY4CTjvB6G7md8ZUKhaLRz1JqB/hgWAhI1gbyXe9iovGvUvkexW/V67aNXsOtEqcnFQhR7NX/vL6MUkjKjThWCnXsRPtZ1hqRjidlrxU0QSTER5Q11CBI6r8bH70FJ0ZpY/CWJoSGs3V3xMZjpSaRIHpjLAeqmVvJv7nuakOb/yMiSTVVJDFojDlSMdolgDqM0mJ5hNDMJHM3IrIEEtMtMmpZEJwll9eJe16zbmq1R8uqo3bPI4inMApnIMD19CAe2hCCwg8wTO8wps1tl6sd+tj0Vqw8plj+APr8wehspC3</latexit>

[[v5]]

<latexit sha1_base64="gxSCfnafbo9jt9B+aDj/kFoK58k=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69bC2Cp5IUqR6LXjxWsB+QhLLZbtqlm03c3RRK6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzgoQzpW372ypsbG5t7xR3S3v7B4dH5eOTjopTSWibxDyWvQArypmgbc00p71EUhwFnHaD8d3c706oVCwWj3qaUD/CQ8FCRrA2ku96FRdN+g3kexW/X67aNXsBtE6cnFQhR6tf/vIGMUkjKjThWCnXsRPtZ1hqRjidlbxU0QSTMR5S11CBI6r8bHH0DF0YZYDCWJoSGi3U3xMZjpSaRoHpjLAeqVVvLv7nuakOb/yMiSTVVJDlojDlSMdongAaMEmJ5lNDMJHM3IrICEtMtMmpZEJwVl9eJ516zWnU6g9X1eZtHkcRzuAcLsGBa2jCPbSgDQSe4Ble4c2aWC/Wu/WxbC1Y+cwp/IH1+QOjO5C4</latexit>

[[v6]]

<latexit sha1_base64="J1jyRne8Uq2fIOYp4HqFMjosDBI=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69bC2Cp5IUsR6LXjxWsB+QhLLZbtqlm03c3RRK6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzgoQzpW372ypsbG5t7xR3S3v7B4dH5eOTjopTSWibxDyWvQArypmgbc00p71EUhwFnHaD8d3c706oVCwWj3qaUD/CQ8FCRrA2ku96FRdN+g3kexW/X67aNXsBtE6cnFQhR6tf/vIGMUkjKjThWCnXsRPtZ1hqRjidlbxU0QSTMR5S11CBI6r8bHH0DF0YZYDCWJoSGi3U3xMZjpSaRoHpjLAeqVVvLv7nuakOb/yMiSTVVJDlojDlSMdongAaMEmJ5lNDMJHM3IrICEtMtMmpZEJwVl9eJ516zbmu1R+uqs3bPI4inME5XIIDDWjCPbSgDQSe4Ble4c2aWC/Wu/WxbC1Y+cwp/IH1+QOkxJC5</latexit>

[[v7]]

<latexit sha1_base64="NckipaFjO1Ki//F5LR1UzLmQjfE=">AAAB+3icbVBNS8NAEJ34WetXrEcvW4vgqSRF1GPRi8cK9gOSEDbbbbt0swm7G7GE/hUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSjlT2nG+rbX1jc2t7dJOeXdv/+DQPqp0VJJJQtsk4YnsRVhRzgRta6Y57aWS4jjitBuNb2d+95FKxRLxoCcpDWI8FGzACNZGCu2K51c95GOejnDYQIFfDUK75tSdOdAqcQtSgwKt0P7y+wnJYio04Vgpz3VSHeRYakY4nZb9TNEUkzEeUs9QgWOqgnx++xSdGaWPBok0JTSaq78nchwrNYkj0xljPVLL3kz8z/MyPbgOcibSTFNBFosGGUc6QbMgUJ9JSjSfGIKJZOZWREZYYqJNXGUTgrv88irpNOruZb1xf1Fr3hRxlOAETuEcXLiCJtxBC9pA4Ame4RXerKn1Yr1bH4vWNauYOYY/sD5/ANIEkwM=</latexit>

[[↵2]]

<latexit sha1_base64="9+zJfDYKHRt8aGgCg0jDHAewRjc=">AAAB+3icbVDLSsNAFL2pr1pfsS7dTC2Cq5JUUZdFNy4r2AckIUymk3bo5MHMRCyhv+LGhSJu/RF3/o3TNgttPXDhcM693HtPkHImlWV9G6W19Y3NrfJ2ZWd3b//APKx2ZZIJQjsk4YnoB1hSzmLaUUxx2k8FxVHAaS8Y38783iMVkiXxg5qk1IvwMGYhI1hpyTerjltzkIt5OsL+OfLcmuebdathzYFWiV2QOhRo++aXO0hIFtFYEY6ldGwrVV6OhWKE02nFzSRNMRnjIXU0jXFEpZfPb5+iU60MUJgIXbFCc/X3RI4jKSdRoDsjrEZy2ZuJ/3lOpsJrL2dxmikak8WiMONIJWgWBBowQYniE00wEUzfisgIC0yUjquiQ7CXX14l3WbDvmw07y/qrZsijjIcwwmcgQ1X0II7aEMHCDzBM7zCmzE1Xox342PRWjKKmSP4A+PzB9ONkwQ=</latexit>

[[↵3]]

<latexit sha1_base64="Ydq/dboOcRq6sS7WFu5LxVd9DtU=">AAAB+3icbVDLSsNAFJ3UV62vWJduphbBVUlKUZdFNy4r2AckIdxMJ+3QyYOZiVhCf8WNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeIOVMKsv6Nkobm1vbO+Xdyt7+weGReVztySQThHZJwhMxCEBSzmLaVUxxOkgFhSjgtB9Mbud+/5EKyZL4QU1T6kUwilnICCgt+WbVcWsOdoGnY/Bb2HNrnm/WrYa1AF4ndkHqqEDHN7/cYUKyiMaKcJDSsa1UeTkIxQins4qbSZoCmcCIOprGEFHp5YvbZ/hcK0McJkJXrPBC/T2RQyTlNAp0ZwRqLFe9ufif52QqvPZyFqeZojFZLgozjlWC50HgIROUKD7VBIhg+lZMxiCAKB1XRYdgr768TnrNhn3ZaN636u2bIo4yOkVn6ALZ6Aq10R3qoC4i6Ak9o1f0ZsyMF+Pd+Fi2loxi5gT9gfH5A9UWkwU=</latexit>

[[↵4]]

<latexit sha1_base64="O5A6uJ+5yZ+s6Jw94yv0vjdw/+o=">AAAB+3icbVDLSsNAFL2pr1pfsS7dTC2Cq5IUX8uiG5cV7AOSECbTSTt08mBmIpbQX3HjQhG3/og7/8Zpm4W2HrhwOOde7r0nSDmTyrK+jdLa+sbmVnm7srO7t39gHla7MskEoR2S8ET0AywpZzHtKKY47aeC4ijgtBeMb2d+75EKyZL4QU1S6kV4GLOQEay05JtVx605yMU8HWH/AnluzfPNutWw5kCrxC5IHQq0ffPLHSQki2isCMdSOraVKi/HQjHC6bTiZpKmmIzxkDqaxjii0svnt0/RqVYGKEyErlihufp7IseRlJMo0J0RViO57M3E/zwnU+G1l7M4zRSNyWJRmHGkEjQLAg2YoETxiSaYCKZvRWSEBSZKx1XRIdjLL6+SbrNhXzaa9+f11k0RRxmO4QTOwIYraMEdtKEDBJ7gGV7hzZgaL8a78bFoLRnFzBH8gfH5A9afkwY=</latexit>

[[↵5]]

<latexit sha1_base64="5zrYtSWccwl1qEwb5j5KL0rQrZI=">AAAB+3icbVDLSsNAFJ3UV62vWJduphbBVUmKVJdFNy4r2AckIdxMJ+3QyYOZiVhCf8WNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeIOVMKsv6Nkobm1vbO+Xdyt7+weGReVztySQThHZJwhMxCEBSzmLaVUxxOkgFhSjgtB9Mbud+/5EKyZL4QU1T6kUwilnICCgt+WbVcWsOdoGnY/Bb2HNrnm/WrYa1AF4ndkHqqEDHN7/cYUKyiMaKcJDSsa1UeTkIxQins4qbSZoCmcCIOprGEFHp5YvbZ/hcK0McJkJXrPBC/T2RQyTlNAp0ZwRqLFe9ufif52QqvPZyFqeZojFZLgozjlWC50HgIROUKD7VBIhg+lZMxiCAKB1XRYdgr768TnrNht1qNO8v6+2bIo4yOkVn6ALZ6Aq10R3qoC4i6Ak9o1f0ZsyMF+Pd+Fi2loxi5gT9gfH5A9gokwc=</latexit>

[[↵6]]

<latexit sha1_base64="RkVxkvq4PmOTqmBFtnptLRpQTWI=">AAAB+3icbVDLSsNAFJ3UV62vWJduphbBVUmKWJdFNy4r2AckIdxMJ+3QyYOZiVhCf8WNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeIOVMKsv6Nkobm1vbO+Xdyt7+weGReVztySQThHZJwhMxCEBSzmLaVUxxOkgFhSjgtB9Mbud+/5EKyZL4QU1T6kUwilnICCgt+WbVcWsOdoGnY/Bb2HNrnm/WrYa1AF4ndkHqqEDHN7/cYUKyiMaKcJDSsa1UeTkIxQins4qbSZoCmcCIOprGEFHp5YvbZ/hcK0McJkJXrPBC/T2RQyTlNAp0ZwRqLFe9ufif52QqvPZyFqeZojFZLgozjlWC50HgIROUKD7VBIhg+lZMxiCAKB1XRYdgr768TnrNhn3VaN5f1ts3RRxldIrO0AWyUQu10R3qoC4i6Ak9o1f0ZsyMF+Pd+Fi2loxi5gT9gfH5A9mxkwg=</latexit>

[[↵7]]

<latexit sha1_base64="cEUvBvAbbbq8K5ShmOy+Fpavqi8=">AAACA3icbVDLSsNAFJ34rPUVdaebqUVwVZIi6rIogssK9gFJDJPppB06mYSZSaGEght/xY0LRdz6E+78G6dpFtp64MLhnHu5954gYVQqy/o2lpZXVtfWSxvlza3tnV1zb78t41Rg0sIxi0U3QJIwyklLUcVINxEERQEjnWB4PfU7IyIkjfm9GifEi1Cf05BipLTkm4eOW3HgyLcfMjdCaiDD7GYygZ5b8XyzatWsHHCR2AWpggJN3/xyezFOI8IVZkhKx7YS5WVIKIoZmZTdVJIE4SHqE0dTjiIivSz/YQJPtNKDYSx0cQVz9fdEhiIpx1GgO/M7572p+J/npCq89DLKk1QRjmeLwpRBFcNpILBHBcGKjTVBWFB9K8QDJBBWOrayDsGef3mRtOs1+7xWvzurNq6KOErgCByDU2CDC9AAt6AJWgCDR/AMXsGb8WS8GO/Gx6x1yShmDsAfGJ8/kT2W2A==</latexit>

[[vE
1]]

<latexit sha1_base64="zkYPr074w5hoehnu/eqLItw9sgY=">AAACA3icbVDLSsNAFJ34rPUVdaebqUVwVZIi6rIogssK9gFJDJPppB06mYSZSaGEght/xY0LRdz6E+78G6dpFtp64MLhnHu5954gYVQqy/o2lpZXVtfWSxvlza3tnV1zb78t41Rg0sIxi0U3QJIwyklLUcVINxEERQEjnWB4PfU7IyIkjfm9GifEi1Cf05BipLTkm4eOW3HgyK8/ZG6E1ECG2c1kAj234vlm1apZOeAisQtSBQWavvnl9mKcRoQrzJCUjm0lysuQUBQzMim7qSQJwkPUJ46mHEVEeln+wwSeaKUHw1jo4grm6u+JDEVSjqNAd+Z3zntT8T/PSVV46WWUJ6kiHM8WhSmDKobTQGCPCoIVG2uCsKD6VogHSCCsdGxlHYI9//Iiaddr9nmtfndWbVwVcZTAETgGp8AGF6ABbkETtAAGj+AZvII348l4Md6Nj1nrklHMHIA/MD5/AJLTltk=</latexit>

[[vE
2]]

1. decrypt
candidates

3
<latexit sha1_base64="QTgu6GY4d8tp0Qhhz/v9MERSUP8=">AAAB+3icbVBNS8NAEJ34WetXrEcvW4vgqSRF1GPRi8cK9gOSEDbbTbt0swm7G7GU/hUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvyjhT2nG+rbX1jc2t7dJOeXdv/+DQPqp0VJpLQtsk5ansRVhRzgRta6Y57WWS4iTitBuNbmd+95FKxVLxoMcZDRI8ECxmBGsjhXbF86se8jHPhjh0UeBXg9CuOXVnDrRK3ILUoEArtL/8fkryhApNOFbKc51MBxMsNSOcTst+rmiGyQgPqGeowAlVwWR++xSdGaWP4lSaEhrN1d8TE5woNU4i05lgPVTL3kz8z/NyHV8HEyayXFNBFovinCOdolkQqM8kJZqPDcFEMnMrIkMsMdEmrrIJwV1+eZV0GnX3st64v6g1b4o4SnACp3AOLlxBE+6gBW0g8ATP8Apv1tR6sd6tj0XrmlXMHMMfWJ8/0HuTAg==</latexit>

[[↵1]]

1

4

5

2

4

2

<latexit sha1_base64="NckipaFjO1Ki//F5LR1UzLmQjfE=">AAAB+3icbVBNS8NAEJ34WetXrEcvW4vgqSRF1GPRi8cK9gOSEDbbbbt0swm7G7GE/hUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSjlT2nG+rbX1jc2t7dJOeXdv/+DQPqp0VJJJQtsk4YnsRVhRzgRta6Y57aWS4jjitBuNb2d+95FKxRLxoCcpDWI8FGzACNZGCu2K51c95GOejnDYQIFfDUK75tSdOdAqcQtSgwKt0P7y+wnJYio04Vgpz3VSHeRYakY4nZb9TNEUkzEeUs9QgWOqgnx++xSdGaWPBok0JTSaq78nchwrNYkj0xljPVLL3kz8z/MyPbgOcibSTFNBFosGGUc6QbMgUJ9JSjSfGIKJZOZWREZYYqJNXGUTgrv88irpNOruZb1xf1Fr3hRxlOAETuEcXLiCJtxBC9pA4Ame4RXerKn1Yr1bH4vWNauYOYY/sD5/ANIEkwM=</latexit>

[[↵2]]

<latexit sha1_base64="9+zJfDYKHRt8aGgCg0jDHAewRjc=">AAAB+3icbVDLSsNAFL2pr1pfsS7dTC2Cq5JUUZdFNy4r2AckIUymk3bo5MHMRCyhv+LGhSJu/RF3/o3TNgttPXDhcM693HtPkHImlWV9G6W19Y3NrfJ2ZWd3b//APKx2ZZIJQjsk4YnoB1hSzmLaUUxx2k8FxVHAaS8Y38783iMVkiXxg5qk1IvwMGYhI1hpyTerjltzkIt5OsL+OfLcmuebdathzYFWiV2QOhRo++aXO0hIFtFYEY6ldGwrVV6OhWKE02nFzSRNMRnjIXU0jXFEpZfPb5+iU60MUJgIXbFCc/X3RI4jKSdRoDsjrEZy2ZuJ/3lOpsJrL2dxmikak8WiMONIJWgWBBowQYniE00wEUzfisgIC0yUjquiQ7CXX14l3WbDvmw07y/qrZsijjIcwwmcgQ1X0II7aEMHCDzBM7zCmzE1Xox342PRWjKKmSP4A+PzB9ONkwQ=</latexit>

[[↵3]]

<latexit sha1_base64="Ydq/dboOcRq6sS7WFu5LxVd9DtU=">AAAB+3icbVDLSsNAFJ3UV62vWJduphbBVUlKUZdFNy4r2AckIdxMJ+3QyYOZiVhCf8WNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeIOVMKsv6Nkobm1vbO+Xdyt7+weGReVztySQThHZJwhMxCEBSzmLaVUxxOkgFhSjgtB9Mbud+/5EKyZL4QU1T6kUwilnICCgt+WbVcWsOdoGnY/Bb2HNrnm/WrYa1AF4ndkHqqEDHN7/cYUKyiMaKcJDSsa1UeTkIxQins4qbSZoCmcCIOprGEFHp5YvbZ/hcK0McJkJXrPBC/T2RQyTlNAp0ZwRqLFe9ufif52QqvPZyFqeZojFZLgozjlWC50HgIROUKD7VBIhg+lZMxiCAKB1XRYdgr768TnrNhn3ZaN636u2bIo4yOkVn6ALZ6Aq10R3qoC4i6Ak9o1f0ZsyMF+Pd+Fi2loxi5gT9gfH5A9UWkwU=</latexit>

[[↵4]]

<latexit sha1_base64="O5A6uJ+5yZ+s6Jw94yv0vjdw/+o=">AAAB+3icbVDLSsNAFL2pr1pfsS7dTC2Cq5IUX8uiG5cV7AOSECbTSTt08mBmIpbQX3HjQhG3/og7/8Zpm4W2HrhwOOde7r0nSDmTyrK+jdLa+sbmVnm7srO7t39gHla7MskEoR2S8ET0AywpZzHtKKY47aeC4ijgtBeMb2d+75EKyZL4QU1S6kV4GLOQEay05JtVx605yMU8HWH/AnluzfPNutWw5kCrxC5IHQq0ffPLHSQki2isCMdSOraVKi/HQjHC6bTiZpKmmIzxkDqaxjii0svnt0/RqVYGKEyErlihufp7IseRlJMo0J0RViO57M3E/zwnU+G1l7M4zRSNyWJRmHGkEjQLAg2YoETxiSaYCKZvRWSEBSZKx1XRIdjLL6+SbrNhXzaa9+f11k0RRxmO4QTOwIYraMEdtKEDBJ7gGV7hzZgaL8a78bFoLRnFzBH8gfH5A9afkwY=</latexit>

[[↵5]]

<latexit sha1_base64="5zrYtSWccwl1qEwb5j5KL0rQrZI=">AAAB+3icbVDLSsNAFJ3UV62vWJduphbBVUmKVJdFNy4r2AckIdxMJ+3QyYOZiVhCf8WNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeIOVMKsv6Nkobm1vbO+Xdyt7+weGReVztySQThHZJwhMxCEBSzmLaVUxxOkgFhSjgtB9Mbud+/5EKyZL4QU1T6kUwilnICCgt+WbVcWsOdoGnY/Bb2HNrnm/WrYa1AF4ndkHqqEDHN7/cYUKyiMaKcJDSsa1UeTkIxQins4qbSZoCmcCIOprGEFHp5YvbZ/hcK0McJkJXrPBC/T2RQyTlNAp0ZwRqLFe9ufif52QqvPZyFqeZojFZLgozjlWC50HgIROUKD7VBIhg+lZMxiCAKB1XRYdgr768TnrNht1qNO8v6+2bIo4yOkVn6ALZ6Aq10R3qoC4i6Ak9o1f0ZsyMF+Pd+Fi2loxi5gT9gfH5A9gokwc=</latexit>

[[↵6]]

<latexit sha1_base64="RkVxkvq4PmOTqmBFtnptLRpQTWI=">AAAB+3icbVDLSsNAFJ3UV62vWJduphbBVUmKWJdFNy4r2AckIdxMJ+3QyYOZiVhCf8WNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeIOVMKsv6Nkobm1vbO+Xdyt7+weGReVztySQThHZJwhMxCEBSzmLaVUxxOkgFhSjgtB9Mbud+/5EKyZL4QU1T6kUwilnICCgt+WbVcWsOdoGnY/Bb2HNrnm/WrYa1AF4ndkHqqEDHN7/cYUKyiMaKcJDSsa1UeTkIxQins4qbSZoCmcCIOprGEFHp5YvbZ/hcK0McJkJXrPBC/T2RQyTlNAp0ZwRqLFe9ufif52QqvPZyFqeZojFZLgozjlWC50HgIROUKD7VBIhg+lZMxiCAKB1XRYdgr768TnrNhn3VaN5f1ts3RRxldIrO0AWyUQu10R3qoC4i6Ak9o1f0ZsyMF+Pd+Fi2loxi5gT9gfH5A9mxkwg=</latexit>

[[↵7]]

<latexit sha1_base64="RKcJGwGdUuolYxxrLr9b1pglva0=">AAACGnicbVDLSsNAFJ3UV62vqEs3U4vgqiS1VDdC0Y3LCvYBSQiTyaQdOnkwMxFK6He48VfcuFDEnbjxb5ymWdjWAxcO59zLvfd4CaNCGsaPVlpb39jcKm9Xdnb39g/0w6OeiFOOSRfHLOYDDwnCaES6kkpGBgknKPQY6Xvj25nffyRc0Dh6kJOEOCEaRjSgGEklubop3Ca8hpZdtaCNWDJC7gV07KoDbezHcsFo5Yar14y6kQOuErMgNVCg4+pfth/jNCSRxAwJYZlGIp0McUkxI9OKnQqSIDxGQ2IpGqGQCCfLX5vCM6X4MIi5qkjCXP07kaFQiEnoqc4QyZFY9mbif56VyuDKyWiUpJJEeL4oSBmUMZzlBH3KCZZsogjCnKpbIR4hjrBUaVZUCObyy6uk16ibrXrjvllr3xRxlMEJOAXnwASXoA3uQAd0AQZP4AW8gXftWXvVPrTPeWtJK2aOwQK071/O2Z2k</latexit>

s4 = [[↵3]] · [[↵6]]

<latexit sha1_base64="22bRjXj01PlkHfgLb4XanR0J5/M=">AAACAXicbVDJSgNBEO1xjXEb9SJ46RgET2EmxOUiBL14jGAWmBmGmk5P0qRnobtHCEO8+CtePCji1b/w5t/YWQ6a+KDg8V4VVfWClDOpLOvbWFpeWV1bL2wUN7e2d3bNvf2WTDJBaJMkPBGdACTlLKZNxRSnnVRQiAJO28HgZuy3H6iQLInv1TClXgS9mIWMgNKSbx5K/wxfYcctOdgFnvbBr2HPLXm+WbYq1gR4kdgzUkYzNHzzy+0mJItorAgHKR3bSpWXg1CMcDoqupmkKZAB9KijaQwRlV4++WCET7TSxWEidMUKT9TfEzlEUg6jQHdGoPpy3huL/3lOpsJLL2dxmikak+miMONYJXgcB+4yQYniQ02ACKZvxaQPAojSoRV1CPb8y4ukVa3Y55XqXa1cv57FUUBH6BidIhtdoDq6RQ3URAQ9omf0it6MJ+PFeDc+pq1LxmzmAP2B8fkDIH2UxQ==</latexit>

s5 = [[↵4]]

2. calculate
delegation
(layer 1)

<latexit sha1_base64="cEUvBvAbbbq8K5ShmOy+Fpavqi8=">AAACA3icbVDLSsNAFJ34rPUVdaebqUVwVZIi6rIogssK9gFJDJPppB06mYSZSaGEght/xY0LRdz6E+78G6dpFtp64MLhnHu5954gYVQqy/o2lpZXVtfWSxvlza3tnV1zb78t41Rg0sIxi0U3QJIwyklLUcVINxEERQEjnWB4PfU7IyIkjfm9GifEi1Cf05BipLTkm4eOW3HgyLcfMjdCaiDD7GYygZ5b8XyzatWsHHCR2AWpggJN3/xyezFOI8IVZkhKx7YS5WVIKIoZmZTdVJIE4SHqE0dTjiIivSz/YQJPtNKDYSx0cQVz9fdEhiIpx1GgO/M7572p+J/npCq89DLKk1QRjmeLwpRBFcNpILBHBcGKjTVBWFB9K8QDJBBWOrayDsGef3mRtOs1+7xWvzurNq6KOErgCByDU2CDC9AAt6AJWgCDR/AMXsGb8WS8GO/Gx6x1yShmDsAfGJ8/kT2W2A==</latexit>

[[vE
1]]

<latexit sha1_base64="zkYPr074w5hoehnu/eqLItw9sgY=">AAACA3icbVDLSsNAFJ34rPUVdaebqUVwVZIi6rIogssK9gFJDJPppB06mYSZSaGEght/xY0LRdz6E+78G6dpFtp64MLhnHu5954gYVQqy/o2lpZXVtfWSxvlza3tnV1zb78t41Rg0sIxi0U3QJIwyklLUcVINxEERQEjnWB4PfU7IyIkjfm9GifEi1Cf05BipLTkm4eOW3HgyK8/ZG6E1ECG2c1kAj234vlm1apZOeAisQtSBQWavvnl9mKcRoQrzJCUjm0lysuQUBQzMim7qSQJwkPUJ46mHEVEeln+wwSeaKUHw1jo4grm6u+JDEVSjqNAd+Z3zntT8T/PSVV46WWUJ6kiHM8WhSmDKobTQGCPCoIVG2uCsKD6VogHSCCsdGxlHYI9//Iiaddr9nmtfndWbVwVcZTAETgGp8AGF6ABbkETtAAGj+AZvII348l4Md6Nj1nrklHMHIA/MD5/AJLTltk=</latexit>

[[vE
2]]

voters’
ballots

experts’
ballots

3. decrypt
candidates

2

3

<latexit sha1_base64="flrcE3pA70hywxSpGqxhFpIDMIY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle92v98sVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXqt5FtXZXrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMK6I2l</latexit>s4

<latexit sha1_base64="bSLd5HP5234C/lvszOhvbwPfsMU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGieUCyhNlJbzJkdnaZmRXCkk/w4kERr36RN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis96N5Fr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1Wqvfn5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gAMbI2m</latexit>s5

<latexit sha1_base64="1VU1eGAGOG3Com4CISjfc8kLnIA=">AAACAXicbVDLSsNAFL3xWesr6kZwM7UIrkpSRN0IRTcuK9gHJCFMppN26OTBzEQooW78FTcuFHHrX7jzb5y2WWjrgQuHc+7l3nuClDOpLOvbWFpeWV1bL22UN7e2d3bNvf22TDJBaIskPBHdAEvKWUxbiilOu6mgOAo47QTDm4nfeaBCsiS+V6OUehHuxyxkBCst+eah9G10hRy34iAX83SA/Try3Irnm1WrZk2BFoldkCoUaPrml9tLSBbRWBGOpXRsK1VejoVihNNx2c0kTTEZ4j51NI1xRKWXTz8YoxOt9FCYCF2xQlP190SOIylHUaA7I6wGct6biP95TqbCSy9ncZopGpPZojDjSCVoEgfqMUGJ4iNNMBFM34rIAAtMlA6trEOw519eJO16zT6v1e/Oqo3rIo4SHMExnIINF9CAW2hCCwg8wjO8wpvxZLwY78bHrHXJKGYO4A+Mzx8XB5S/</latexit>

s1 = [[↵2]]
<latexit sha1_base64="b1Re4ndYHX80c8L5BeOdO1MwI4c=">AAACJHicbVDLSsNAFJ3UV62vqEs3U4vgqiSlWkGEohuXFewDkhAmk0k7dPJgZiKU0I9x46+4ceEDF278FqdtFn144MLhnHu59x4vYVRIw/jRCmvrG5tbxe3Szu7e/oF+eNQRccoxaeOYxbznIUEYjUhbUslIL+EEhR4jXW94N/G7T4QLGkePcpQQJ0T9iAYUI6kkV78Wbg3eQMsuW9BGLBkg9wI6dtmBNvZjuWA05g3h1l29YlSNKeAqMXNSATlarv5p+zFOQxJJzJAQlmkk0skQlxQzMi7ZqSAJwkPUJ5aiEQqJcLLpk2N4phQfBjFXFUk4VecnMhQKMQo91RkiORDL3kT8z7NSGVw5GY2SVJIIzxYFKYMyhpPEoE85wZKNFEGYU3UrxAPEEZYq15IKwVx+eZV0alXzslp7qFeat3kcRXACTsE5MEEDNME9aIE2wOAZvIJ38KG9aG/al/Y9ay1o+cwxWID2+wfrGqFV</latexit>

s2 = [[↵5]] · [[↵7]] · s4
<latexit sha1_base64="M6+sFS4dmWNiBLfNYzPLB+t1tRc=">AAACC3icbVDLSsNAFJ3UV62vqEs30xbBVUnqcyMU3bisYFshCWEymbRDJ5kwMxFK6N6Nv+LGhSJu/QF3/o3TNgttPXDhcM693HtPkDIqlWV9G6Wl5ZXVtfJ6ZWNza3vH3N3rSp4JTDqYMy7uAyQJownpKKoYuU8FQXHASC8YXk/83gMRkvLkTo1S4sWon9CIYqS05Js16R/DS+i4VQe6iKUD5NvQc6sedHHIFZT+qW/WrYY1BVwkdkHqoEDbN7/ckOMsJonCDEnp2FaqvBwJRTEj44qbSZIiPER94miaoJhIL5/+MoaHWglhxIWuRMGp+nsiR7GUozjQnTFSAznvTcT/PCdT0YWX0yTNFEnwbFGUMag4nAQDQyoIVmykCcKC6lshHiCBsNLxVXQI9vzLi6TbbNhnjebtSb11VcRRBgegBo6ADc5BC9yANugADB7BM3gFb8aT8WK8Gx+z1pJRzOyDPzA+fwDj25hx</latexit>

s3 = [[↵1]] · s5

4. calculate
final tally result

(layer 2)

5. decrypt

final tally
result

Figure 4: Two-layer tally

Voter

RA<latexit sha1_base64="5Oo2mUg0OKhMlLJG5y7LoUHC3d4=">AAACEnicbVA9SwNBEN3z2/gVtbRZDIJCCHdB1NKPRrCJYFTIhbC3mUuW7O0du3NiOPIbbPwrNhaK2FrZ+W/cXFKo8cHC2/dmmJkXJFIYdN0vZ2p6ZnZufmGxsLS8srpWXN+4NnGqOdR5LGN9GzADUiioo0AJt4kGFgUSboLe2dC/uQNtRKyusJ9AM2IdJULBGVqpVdzzJVMdCfSiTE/K1I8Ydk2Y4f3AftogkVFf5xWtYsmtuDnoJPHGpETGqLWKn3475mkECrlkxjQ8N8FmxjQKLmFQ8FMDCeM91oGGpYpFYJpZftKA7lilTcNY26eQ5urPjoxFxvSjwFbmK//1huJ/XiPF8KiZCZWkCIqPBoWppBjTYT60LTRwlH1LGNfC7kp5l2nG0aZYsCF4f0+eJNfVindQqV7ul45Px3EskC2yTXaJRw7JMTknNVInnDyQJ/JCXp1H59l5c95HpVPOuGeT/ILz8Q2F1pzJ</latexit>hK, A, tx, �i
1. Register 2. Re-encrypt and sign

BB

…

3. Fake register
<latexit sha1_base64="O47dV/o9n/VHGXglWPrSCFqn+zg=">AAACB3icbVDLSgMxFM34rPU16lKQYBFdlDJTRF1W3QhuKtgHdIYhk6ZtaCYZkoxQhu7c+CtuXCji1l9w59+YTmehrQfu5XDOvST3hDGjSjvOt7WwuLS8slpYK65vbG5t2zu7TSUSiUkDCyZkO0SKMMpJQ1PNSDuWBEUhI61weD3xWw9EKir4vR7FxI9Qn9MexUgbKbAPPIZ4nxF4ewzL8DJwytCTA2FaJgd2yak4GeA8cXNSAjnqgf3ldQVOIsI1ZkipjuvE2k+R1BQzMi56iSIxwkPUJx1DOYqI8tPsjjE8MkoX9oQ0xTXM1N8bKYqUGkWhmYyQHqhZbyL+53US3bvwU8rjRBOOpw/1Ega1gJNQYJdKgjUbGYKwpOavEA+QRFib6IomBHf25HnSrFbcs0r17rRUu8rjKIB9cAhOgAvOQQ3cgDpoAAwewTN4BW/Wk/VivVsf09EFK9/ZA39gff4AzhGXYQ==</latexit>

hK 0, A0, ⇢i

<latexit sha1_base64="sHcFurf7v6V4eCd+POTeQFoiPgA=">AAACC3icbVDLSgMxFM34rPU16tJNaBFdlDJTRF1W3QhuKtgHdIYhk2ba0EwyJBmhDN278VfcuFDErT/gzr8xbWehrQcunJxzL7n3hAmjSjvOt7W0vLK6tl7YKG5ube/s2nv7LSVSiUkTCyZkJ0SKMMpJU1PNSCeRBMUhI+1weD3x2w9EKir4vR4lxI9Rn9OIYqSNFNgljyHeZwTeHgcurMDLwKlATw6EeXlyagV22ak6U8BF4uakDHI0AvvL6wmcxoRrzJBSXddJtJ8hqSlmZFz0UkUShIeoT7qGchQT5WfTW8bwyCg9GAlpims4VX9PZChWahSHpjNGeqDmvYn4n9dNdXThZ5QnqSYczz6KUga1gJNgYI9KgjUbGYKwpGZXiAdIIqxNfEUTgjt/8iJp1aruWbV2d1quX+VxFMAhKIET4IJzUAc3oAGaAINH8AxewZv1ZL1Y79bHrHXJymcOwB9Ynz89Opip</latexit>

hK 0
1, A0, ⇢1i

<latexit sha1_base64="r0MrUr2xTmQqF++xdpF2+2IQde8=">AAACC3icbVDLSgMxFM34rPU16tJNaBFdlDJTRF1W3QhuKtgHdIYhk2ba0EwyJBmhDN278VfcuFDErT/gzr8xbWehrQcunJxzL7n3hAmjSjvOt7W0vLK6tl7YKG5ube/s2nv7LSVSiUkTCyZkJ0SKMMpJU1PNSCeRBMUhI+1weD3x2w9EKir4vR4lxI9Rn9OIYqSNFNgljyHeZwTeHgccVuBl4FSgJwfCvDw5tQK77FSdKeAicXNSBjkagf3l9QROY8I1Zkiprusk2s+Q1BQzMi56qSIJwkPUJ11DOYqJ8rPpLWN4ZJQejIQ0xTWcqr8nMhQrNYpD0xkjPVDz3kT8z+umOrrwM8qTVBOOZx9FKYNawEkwsEclwZqNDEFYUrMrxAMkEdYmvqIJwZ0/eZG0alX3rFq7Oy3Xr/I4CuAQlMAJcME5qIMb0ABNgMEjeAav4M16sl6sd+tj1rpk5TMH4A+szx/9SJkj</latexit>

hK 0
n, A0, ⇢ni

…

<latexit sha1_base64="AnR9tIplELm717Tftib0ecEH8f8=">AAACLnicbVDRahNBFJ2Nto3R1qiPvgwGwYcSdkupfWwVQfAlikkD2SXcnb2bDpmdXWbuimHZL/Klv1IfBC2lr/0MJ9sINu2FYc6ccw9z74kLJS35/m+v9eDhxuZW+1Hn8ZPtnafdZ89HNi+NwKHIVW7GMVhUUuOQJCkcFwYhixWexPP3S/3kGxorc/2VFgVGGcy0TKUActS0+yFUoGcKeUhSJVh9qnf58S4PM6BTm1b03b3DBBWBu62cZTD9p305rnloGve02/P7flP8LghWoMdWNZh2f4ZJLsoMNQkF1k4Cv6CoAkNSKKw7YWmxADGHGU4c1JChjapm3Zq/dkzC09y4o4k37P+OCjJrF1nsOptR17UleZ82KSk9jCqpi5JQi5uP0lJxyvkyO55Ig4LUwgEQRrpZuTgFA4Jcwh0XQrC+8l0w2usHB/29z/u9o3erONrsJXvF3rCAvWVH7CMbsCET7Ac7Z3/YhXfm/fIuvaub1pa38rxgt8q7/gtjVqjJ</latexit>

hK̃, A, tx, �,�RAi

<latexit sha1_base64="g5Z1FFYbuf/hJ9l7MLn4emE+mz0=">AAACOnicbVBNT9wwEHX4KHSBdmmPvViskDigVYIQ5Qj0gtQLIBaQNqto4kwWC8eJ7AliFeV3ceFXcOPQSw+tql75AXjDIvH1JFtP783YMy8ulLTk+3fe1PTM7Ie5+Y+thcWlT5/by19ObF4agT2Rq9ycxWBRSY09kqTwrDAIWazwNL74MfZPL9FYmetjGhU4yGCoZSoFkJOi9mGoQA8V8pCkSrD6WUfBOt8dX2EGdG7Tiq4aLUxQETTMymEGUfVUcLRbrwc1D03zUtTu+F2/AX9LggnpsAkOovZtmOSizFCTUGBtP/ALGlRgSAqFdSssLRYgLmCIfUc1ZGgHVbN6zVedkvA0N+5o4o36vKOCzNpRFrvKZtrX3lh8z+uXlG4PKqmLklCLx4/SUnHK+ThHnkiDgtTIERBGulm5OAcDglzaLRdC8Hrlt+RkoxtsdTcONzs7e5M45tk3tsLWWMC+sx22zw5Yjwl2zX6xP+yvd+P99v55/x9Lp7xJz1f2At79A7vlrNY=</latexit>

hK̃1, A1, tx1, �1,�RA,1i

<latexit sha1_base64="wuUS4U//QBNWdIgmYfZt0s1UbD0=">AAACOnicbVBNT9wwEHWgFLpAWcqxF6srJA5olSAEHIFeKnEBxALSZhVNnMli4TiRPUGsovwuLvwKbj300gMIce0PqDdspfLxJFtP783YMy8ulLTk+z+9qekPMx9n5z615hcWPy+1l7+c2rw0AnsiV7k5j8Gikhp7JEnheWEQsljhWXz5feyfXaGxMtcnNCpwkMFQy1QKICdF7aNQgR4q5CFJlWB1UEd6ne+NrzADurBpRdeNFiaoCBpm5TCDqPpXcLxXr+uah6Z5KWp3/K7fgL8lwYR02ASHUfsuTHJRZqhJKLC2H/gFDSowJIXCuhWWFgsQlzDEvqMaMrSDqlm95qtOSXiaG3c08Ub9v6OCzNpRFrvKZtrX3lh8z+uXlO4MKqmLklCL54/SUnHK+ThHnkiDgtTIERBGulm5uAADglzaLRdC8Hrlt+R0oxtsdTeONju7+5M45thX9o2tsYBts132gx2yHhPshv1i9+zBu/V+e4/e03PplDfpWWEv4P35C7pprgc=</latexit>

hK̃n, An, txn, �n,�RA,ni

Figure 5: Registration phase

Voter
2. Cast fake vote (when coerced)

BB1. Cast real vote

<latexit sha1_base64="j8j5Qiemyf1uHatDYx53k2u2mNo=">AAACJHicbVDLSsNAFJ34rPUVdelmsEhdSEmKqOCm6MZlBfuAJpTJZJIOnUzCzEQooR/jxl9x48IHLtz4LU7SLLT1wjCHc+7h3nu8hFGpLOvLWFpeWV1br2xUN7e2d3bNvf2ujFOBSQfHLBZ9D0nCKCcdRRUj/UQQFHmM9LzxTa73HoiQNOb3apIQN0IhpwHFSGlqaF45DPGQEehESI1kkCXjaf0UOl7MfDmJ9JelmnASmrOShhGqQ0cUnqFZsxpWUXAR2CWogbLaQ/Pd8WOcRoQrzJCUA9tKlJshoShmZFp1UkkShMcoJAMNOYqIdLPiyCk81owPg1joxxUs2N+ODEUy31h3FqfMazn5nzZIVXDpZpQnqSIczwYFKYMqhnli0KeCYMUmGiAsqN4V4hESCCuda1WHYM+fvAi6zYZ93mjendVa12UcFXAIjsAJsMEFaIFb0AYdgMEjeAav4M14Ml6MD+Nz1rpklJ4D8KeM7x9UeqSY</latexit>

hpk0, u0,⇡0,�0i

<latexit sha1_base64="w79Vnniz8+jVpOh9JpGmflzVq7U=">AAACIHicbVDLSsNAFJ3UV62vqEs3g0VwUUpSxLosunFZwT6gCWUymbRDJ5MwMxFKyKe48VfcuFBEd/o1TtIstPXCMIdz7uXec7yYUaks68uorK1vbG5Vt2s7u3v7B+bhUV9GicCkhyMWiaGHJGGUk56iipFhLAgKPUYG3uwm1wcPREga8Xs1j4kbogmnAcVIaWpsth2G+IQR6IRITWWQxrOsAR0vYr6ch/pLk6zhxFRzkk5CBB1R9I/NutW0ioKrwC5BHZTVHZufjh/hJCRcYYakHNlWrNwUCUUxI1nNSSSJEZ6hCRlpyFFIpJsWBjN4phkfBpHQjytYsL8nUhTK/FzdWdhY1nLyP22UqODKTSmPE0U4XiwKEgZVBPO0oE8FwYrNNUBYUH0rxFMkEFY605oOwV62vAr6raZ92WzdXdQ712UcVXACTsE5sEEbdMAt6IIewOARPINX8GY8GS/Gu/GxaK0Y5cwx+FPG9w+OJ6PU</latexit>hpk, u,⇡,�i
<latexit sha1_base64="bZfxqiBRKY6RVodxbBWlCzrTITw=">AAACKHicbVDLSsNAFJ34rPUVdelmsAgupCRF1J1FNy4r2Ac0IUwmk3ToZBJmJkIJ/Rw3/oobEUW69UucpFlo64VhDufcw733+CmjUlnWzFhZXVvf2Kxt1bd3dvf2zYPDnkwygUkXJywRAx9JwignXUUVI4NUEBT7jPT98V2h95+IkDThj2qSEjdGEachxUhpyjNvHIZ4xAh0YqRGMszT8dSzz6HjJyyQk1h/eVYwTkpLXtIoRp4NHVH6PLNhNa2y4DKwK9AAVXU8890JEpzFhCvMkJRD20qVmyOhKGZkWncySVKExygiQw05iol08/LQKTzVTADDROjHFSzZ344cxbJYWneW5yxqBfmfNsxUeO3mlKeZIhzPB4UZgyqBRWowoIJgxSYaICyo3hXiERIIK51tXYdgL568DHqtpn3ZbD1cNNq3VRw1cAxOwBmwwRVog3vQAV2AwTN4BR/g03gx3owvYzZvXTEqzxH4U8b3D8YkpmQ=</latexit>hpk1, u1,⇡1,�1i

<latexit sha1_base64="Q+rvjEpSqY+NyOBkUuDisjzrEXI=">AAACKXicbVDLSsNAFJ3UV62vqEs3g0VwISUpoi6LblxWsA9oQphMJunQySTMTIQS+jtu/BU3Coq69UecpFlo64HhHs69h7n3+CmjUlnWp1FbWV1b36hvNra2d3b3zP2DvkwygUkPJywRQx9JwignPUUVI8NUEBT7jAz8yU3RHzwQIWnC79U0JW6MIk5DipHSkmd2HIZ4xAh0YqTGMszTyczjZ9DxExbIaaxLns2VlJZF0ihGHoeOKI2e2bRaVgm4TOyKNEGFrme+OkGCs5hwhRmScmRbqXJzJBTFjMwaTiZJivAERWSkKUcxkW5eXjqDJ1oJYJgI/biCpfrbkaNYFlvryfKexV4h/tcbZSq8cnPK00wRjucfhRmDKoFFbDCggmDFppogLKjeFeIxEggrHW5Dh2AvnrxM+u2WfdFq3503O9dVHHVwBI7BKbDBJeiAW9AFPYDBI3gGb+DdeDJejA/jaz5aMyrPIfgD4/sHtpCngg==</latexit>hpkn, un,⇡n,�ni

Expert 3. Cast vote
<latexit sha1_base64="rBQZJSnDtkhTWWmr2RdKA4Q5Rno=">AAACLnicbVBNSwMxEM3Wr1q/qh69BIvgQcpuEfVYlILHCrYWuqXMptk2NJtdkqxQlv4iL/4VPQgq4tWfYXa7oLYOJPPy3gyZeV7EmdK2/WoVlpZXVteK66WNza3tnfLuXluFsSS0RUIeyo4HinImaEszzWknkhQCj9M7b3yV6nf3VCoWils9iWgvgKFgPiOgDdUvN1wOYsgpdgPQI+UnjekJdr2QD9QkMCkh6VtDbG7FhgH0k5/KKXZl1t0vV+yqnQVeBE4OKiiPZr/87A5CEgdUaMJBqa5jR7qXgNSMcDotubGiEZAxDGnXQAEBVb0kW3eKjwwzwH4ozREaZ+zvjgQClU5vKrNR57WU/E/rxtq/6CVMRLGmgsw+8mOOdYhT7/CASUo0nxgARDIzKyYjkEC0cbhkTHDmV14E7VrVOavWbk4r9cvcjiI6QIfoGDnoHNXRNWqiFiLoAT2hN/RuPVov1of1OSstWHnPPvoT1tc396+pvA==</latexit>hE, c, ⌧,�Ei

<latexit sha1_base64="DGRHmdmYsagOOW4qYjxFmC8K4ZE=">AAACNnicbVDLSsNAFJ3UV62vqEs3g0VwISUpoi6LIrgRKtgHNCXcTCft0MkkzEyEEvpVbvwOd924UMStn+A07UJbDwz3cO5j7j1BwpnSjjOxCiura+sbxc3S1vbO7p69f9BUcSoJbZCYx7IdgKKcCdrQTHPaTiSFKOC0FQxvpvnWE5WKxeJRjxLajaAvWMgIaCP59r3HQfQ5xV4EeqDC7Hbsu2fYC2LeU6PIhIzMFA1pHhXrR+Bnv+vH2JP5FN8uOxUnB14m7pyU0Rx13371ejFJIyo04aBUx3US3c1AakY4HZe8VNEEyBD6tGOogIiqbpafPcYnRunhMJbmCY1z9XdHBpGa3mAq82UXc1Pxv1wn1eFVN2MiSTUVZPZRmHKsYzz1EPeYpETzkSFAJDO7YjIACUQbp0vGBHfx5GXSrFbci0r14bxcu57bUURH6BidIhddohq6Q3XUQAQ9owl6Rx/Wi/VmfVpfs9KCNe85RH9gff8AUG+sTA==</latexit>hE1, c1, ⌧1,�E1
i

<latexit sha1_base64="yr8e+BNtvUSMcLn2kS68b2F0SOQ=">AAACNnicbVDLSgMxFM34rPVVdekmWAQXUmZE1GVRBDdCBfuAThnupJk2NMkMSUYoQ7/Kjd/hrhsXirj1E0ynXWjrgXAP5z5y7wkTzrRx3bGztLyyurZe2Chubm3v7Jb29hs6ThWhdRLzWLVC0JQzSeuGGU5biaIgQk6b4eBmkm8+UaVZLB/NMKEdAT3JIkbAWCko3fscZI9T7AswfR1lt6NAnGI/jHlXD4UNGZkqBtI8atYTEGS/60fYV/mUoFR2K24OvEi8GSmjGWpB6dXvxiQVVBrCQeu25yamk4EyjHA6KvqppgmQAfRo21IJgupOlp89wsdW6eIoVvZJg3P1d0cGQk9usJX5svO5ifhfrp2a6KqTMZmkhkoy/ShKOTYxnniIu0xRYvjQEiCK2V0x6YMCYqzTRWuCN3/yImmcVbyLytnDebl6PbOjgA7RETpBHrpEVXSHaqiOCHpGY/SOPpwX5835dL6mpUvOrOcA/YHz/QPcHq08</latexit>hEm, cm, ⌧m,�Em
i

…
…

Figure 6: Voting/delegation phase

4

A Scalable Coercion-resistant Voting Scheme for Blockchain Decision-making

…

<latexit sha1_base64="sHcFurf7v6V4eCd+POTeQFoiPgA=">AAACC3icbVDLSgMxFM34rPU16tJNaBFdlDJTRF1W3QhuKtgHdIYhk2ba0EwyJBmhDN278VfcuFDErT/gzr8xbWehrQcunJxzL7n3hAmjSjvOt7W0vLK6tl7YKG5ube/s2nv7LSVSiUkTCyZkJ0SKMMpJU1PNSCeRBMUhI+1weD3x2w9EKir4vR4lxI9Rn9OIYqSNFNgljyHeZwTeHgcurMDLwKlATw6EeXlyagV22ak6U8BF4uakDHI0AvvL6wmcxoRrzJBSXddJtJ8hqSlmZFz0UkUShIeoT7qGchQT5WfTW8bwyCg9GAlpims4VX9PZChWahSHpjNGeqDmvYn4n9dNdXThZ5QnqSYczz6KUga1gJNgYI9KgjUbGYKwpGZXiAdIIqxNfEUTgjt/8iJp1aruWbV2d1quX+VxFMAhKIET4IJzUAc3oAGaAINH8AxewZv1ZL1Y79bHrHXJymcOwB9Ynz89Opip</latexit>

hK 0
1, A0, ⇢1i

<latexit sha1_base64="r0MrUr2xTmQqF++xdpF2+2IQde8=">AAACC3icbVDLSgMxFM34rPU16tJNaBFdlDJTRF1W3QhuKtgHdIYhk2ba0EwyJBmhDN278VfcuFDErT/gzr8xbWehrQcunJxzL7n3hAmjSjvOt7W0vLK6tl7YKG5ube/s2nv7LSVSiUkTCyZkJ0SKMMpJU1PNSCeRBMUhI+1weD3x2w9EKir4vR4lxI9Rn9OIYqSNFNgljyHeZwTeHgccVuBl4FSgJwfCvDw5tQK77FSdKeAicXNSBjkagf3l9QROY8I1Zkiprusk2s+Q1BQzMi56qSIJwkPUJ11DOYqJ8rPpLWN4ZJQejIQ0xTWcqr8nMhQrNYpD0xkjPVDz3kT8z+umOrrwM8qTVBOOZx9FKYNawEkwsEclwZqNDEFYUrMrxAMkEdYmvqIJwZ0/eZG0alX3rFq7Oy3Xr/I4CuAQlMAJcME5qIMb0ABNgMEjeAav4M16sl6sd+tj1rpk5TMH4A+szx/9SJkj</latexit>

hK 0
n, A0, ⇢ni

…

<latexit sha1_base64="g5Z1FFYbuf/hJ9l7MLn4emE+mz0=">AAACOnicbVBNT9wwEHX4KHSBdmmPvViskDigVYIQ5Qj0gtQLIBaQNqto4kwWC8eJ7AliFeV3ceFXcOPQSw+tql75AXjDIvH1JFtP783YMy8ulLTk+3fe1PTM7Ie5+Y+thcWlT5/by19ObF4agT2Rq9ycxWBRSY09kqTwrDAIWazwNL74MfZPL9FYmetjGhU4yGCoZSoFkJOi9mGoQA8V8pCkSrD6WUfBOt8dX2EGdG7Tiq4aLUxQETTMymEGUfVUcLRbrwc1D03zUtTu+F2/AX9LggnpsAkOovZtmOSizFCTUGBtP/ALGlRgSAqFdSssLRYgLmCIfUc1ZGgHVbN6zVedkvA0N+5o4o36vKOCzNpRFrvKZtrX3lh8z+uXlG4PKqmLklCLx4/SUnHK+ThHnkiDgtTIERBGulm5OAcDglzaLRdC8Hrlt+RkoxtsdTcONzs7e5M45tk3tsLWWMC+sx22zw5Yjwl2zX6xP+yvd+P99v55/x9Lp7xJz1f2At79A7vlrNY=</latexit>

hK̃1, A1, tx1, �1,�RA,1i

<latexit sha1_base64="wuUS4U//QBNWdIgmYfZt0s1UbD0=">AAACOnicbVBNT9wwEHWgFLpAWcqxF6srJA5olSAEHIFeKnEBxALSZhVNnMli4TiRPUGsovwuLvwKbj300gMIce0PqDdspfLxJFtP783YMy8ulLTk+z+9qekPMx9n5z615hcWPy+1l7+c2rw0AnsiV7k5j8Gikhp7JEnheWEQsljhWXz5feyfXaGxMtcnNCpwkMFQy1QKICdF7aNQgR4q5CFJlWB1UEd6ne+NrzADurBpRdeNFiaoCBpm5TCDqPpXcLxXr+uah6Z5KWp3/K7fgL8lwYR02ASHUfsuTHJRZqhJKLC2H/gFDSowJIXCuhWWFgsQlzDEvqMaMrSDqlm95qtOSXiaG3c08Ub9v6OCzNpRFrvKZtrX3lh8z+uXlO4MKqmLklCL54/SUnHK+ThHnkiDgtTIERBGulm5uAADglzaLRdC8Hrlt+R0oxtsdTeONju7+5M45thX9o2tsYBts132gx2yHhPshv1i9+zBu/V+e4/e03PplDfpWWEv4P35C7pprgc=</latexit>

hK̃n, An, txn, �n,�RA,ni

<latexit sha1_base64="bZfxqiBRKY6RVodxbBWlCzrTITw=">AAACKHicbVDLSsNAFJ34rPUVdelmsAgupCRF1J1FNy4r2Ac0IUwmk3ToZBJmJkIJ/Rw3/oobEUW69UucpFlo64VhDufcw733+CmjUlnWzFhZXVvf2Kxt1bd3dvf2zYPDnkwygUkXJywRAx9JwignXUUVI4NUEBT7jPT98V2h95+IkDThj2qSEjdGEachxUhpyjNvHIZ4xAh0YqRGMszT8dSzz6HjJyyQk1h/eVYwTkpLXtIoRp4NHVH6PLNhNa2y4DKwK9AAVXU8890JEpzFhCvMkJRD20qVmyOhKGZkWncySVKExygiQw05iol08/LQKTzVTADDROjHFSzZ344cxbJYWneW5yxqBfmfNsxUeO3mlKeZIhzPB4UZgyqBRWowoIJgxSYaICyo3hXiERIIK51tXYdgL568DHqtpn3ZbD1cNNq3VRw1cAxOwBmwwRVog3vQAV2AwTN4BR/g03gx3owvYzZvXTEqzxH4U8b3D8YkpmQ=</latexit>hpk1, u1,⇡1,�1i

<latexit sha1_base64="DGRHmdmYsagOOW4qYjxFmC8K4ZE=">AAACNnicbVDLSsNAFJ3UV62vqEs3g0VwISUpoi6LIrgRKtgHNCXcTCft0MkkzEyEEvpVbvwOd924UMStn+A07UJbDwz3cO5j7j1BwpnSjjOxCiura+sbxc3S1vbO7p69f9BUcSoJbZCYx7IdgKKcCdrQTHPaTiSFKOC0FQxvpvnWE5WKxeJRjxLajaAvWMgIaCP59r3HQfQ5xV4EeqDC7Hbsu2fYC2LeU6PIhIzMFA1pHhXrR+Bnv+vH2JP5FN8uOxUnB14m7pyU0Rx13371ejFJIyo04aBUx3US3c1AakY4HZe8VNEEyBD6tGOogIiqbpafPcYnRunhMJbmCY1z9XdHBpGa3mAq82UXc1Pxv1wn1eFVN2MiSTUVZPZRmHKsYzz1EPeYpETzkSFAJDO7YjIACUQbp0vGBHfx5GXSrFbci0r14bxcu57bUURH6BidIhddohq6Q3XUQAQ9owl6Rx/Wi/VmfVpfs9KCNe85RH9gff8AUG+sTA==</latexit>hE1, c1, ⌧1,�E1
i

<latexit sha1_base64="yr8e+BNtvUSMcLn2kS68b2F0SOQ=">AAACNnicbVDLSgMxFM34rPVVdekmWAQXUmZE1GVRBDdCBfuAThnupJk2NMkMSUYoQ7/Kjd/hrhsXirj1E0ynXWjrgXAP5z5y7wkTzrRx3bGztLyyurZe2Chubm3v7Jb29hs6ThWhdRLzWLVC0JQzSeuGGU5biaIgQk6b4eBmkm8+UaVZLB/NMKEdAT3JIkbAWCko3fscZI9T7AswfR1lt6NAnGI/jHlXD4UNGZkqBtI8atYTEGS/60fYV/mUoFR2K24OvEi8GSmjGWpB6dXvxiQVVBrCQeu25yamk4EyjHA6KvqppgmQAfRo21IJgupOlp89wsdW6eIoVvZJg3P1d0cGQk9usJX5svO5ifhfrp2a6KqTMZmkhkoy/ShKOTYxnniIu0xRYvjQEiCK2V0x6YMCYqzTRWuCN3/yImmcVbyLytnDebl6PbOjgA7RETpBHrpEVXSHaqiOCHpGY/SOPpwX5835dL6mpUvOrOcA/YHz/QPcHq08</latexit>hEm, cm, ⌧m,�Em
i

…
…

…
…

…
…

<latexit sha1_base64="cLJbLkcUXQqrvwlGdPlM5tJR/u8=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBg5SkiHqsehG8VLAf0ISw2U7bpZtN2N0IJfTqxb/ixYMiXv0H3vw3btsctPXBwOO9GWbmhQlnSjvOt1VYWl5ZXSuulzY2t7Z37N29popTSaFBYx7LdkgUcCagoZnm0E4kkCjk0AqH1xO/9QBSsVjc61ECfkT6gvUYJdpIgY09TkSfA/Y0413IbseBe4IvAxd7cmoEdtmpOFPgReLmpIxy1AP7y+vGNI1AaMqJUh3XSbSfEakZ5TAueamChNAh6UPHUEEiUH42/WSMj4zSxb1YmhIaT9XfExmJlBpFoemMiB6oeW8i/ud1Ut278DMmklSDoLNFvZRjHeNJLLjLJFDNR4YQKpm5FdMBkYRqE17JhODOv7xImtWKe1ap3p2Wa1d5HEV0gA7RMXLROaqhG1RHDUTRI3pGr+jNerJerHfrY9ZasPKZffQH1ucP7EmZNA==</latexit>

hK̃1, A1i

<latexit sha1_base64="CxMop7eFYKR3jWXi7q9UNPQCo4c=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBg5SkiHqsehG8VLAf0ISw2U7bpZtN2N0IJfTqxb/ixYMiXv0H3vw3btsctPXBwOO9GWbmhQlnSjvOt1VYWl5ZXSuulzY2t7Z37N29popTSaFBYx7LdkgUcCagoZnm0E4kkCjk0AqH1xO/9QBSsVjc61ECfkT6gvUYJdpIgY09TkSfA/Y0413IbseBOMGXgcCenBqBXXYqzhR4kbg5KaMc9cD+8roxTSMQmnKiVMd1Eu1nRGpGOYxLXqogIXRI+tAxVJAIlJ9NPxnjI6N0cS+WpoTGU/X3REYipUZRaDojogdq3puI/3mdVPcu/IyJJNUg6GxRL+VYx3gSC+4yCVTzkSGESmZuxXRAJKHahFcyIbjzLy+SZrXinlWqd6fl2lUeRxEdoEN0jFx0jmroBtVRA1H0iJ7RK3qznqwX6936mLUWrHxmH/2B9fkDqkGZrg==</latexit>

hK̃n, Ani
<latexit sha1_base64="6XcHurdHRj8qlxg4dQqaZ3KMs2Q=">AAACA3icbVBNS8NAEJ3Ur1q/ot70slhED1KSIuqx6kXwUsF+QFPCZrttl242YXcjlFDw4l/x4kERr/4Jb/4bt2kP2vpg4PHeDDPzgpgzpR3n28otLC4tr+RXC2vrG5tb9vZOXUWJJLRGIh7JZoAV5UzQmmaa02YsKQ4DThvB4HrsNx6oVCwS93oY03aIe4J1GcHaSL6953Esepyi2yPfRSfo0neQJzPJt4tOycmA5ok7JUWYourbX14nIklIhSYcK9VynVi3Uyw1I5yOCl6iaIzJAPdoy1CBQ6raafbDCB0apYO6kTQlNMrU3xMpDpUahoHpDLHuq1lvLP7ntRLdvWinTMSJpoJMFnUTjnSExoGgDpOUaD40BBPJzK2I9LHERJvYCiYEd/bleVIvl9yzUvnutFi5msaRh304gGNw4RwqcANVqAGBR3iGV3iznqwX6936mLTmrOnMLvyB9fkDAh6V2A==</latexit>

hK 0
1, A0i

<latexit sha1_base64="OjJtn4CUARhfRMN9B7cWbx/v2RE=">AAACA3icbVBNS8NAEJ3Ur1q/ot70slhED1KSIuqx6kXwUsF+QFPCZrttl242YXcjlFDw4l/x4kERr/4Jb/4bt2kP2vpg4PHeDDPzgpgzpR3n28otLC4tr+RXC2vrG5tb9vZOXUWJJLRGIh7JZoAV5UzQmmaa02YsKQ4DThvB4HrsNx6oVCwS93oY03aIe4J1GcHaSL6953Esepyi2yNfoBN06TvIk5nk20Wn5GRA88SdkiJMUfXtL68TkSSkQhOOlWq5TqzbKZaaEU5HBS9RNMZkgHu0ZajAIVXtNPthhA6N0kHdSJoSGmXq74kUh0oNw8B0hlj31aw3Fv/zWonuXrRTJuJEU0Emi7oJRzpC40BQh0lKNB8agolk5lZE+lhiok1sBROCO/vyPKmXS+5ZqXx3WqxcTePIwz4cwDG4cA4VuIEq1IDAIzzDK7xZT9aL9W59TFpz1nRmF/7A+vwBYeiWFQ==</latexit>

hK 0
n, A0i

<latexit sha1_base64="A8sp8g0cHrZu9bnfavYfb5OidA0=">AAACGHicbVC7TsMwFHV4lvIKMLJYVEgMqCQVAsYKFsYi0YfURJHjOK1Vx45sB6mK+hks/AoLAwixduNvcNMM0HIly0fn3Kt77glTRpV2nG9rZXVtfWOzslXd3tnd27cPDjtKZBKTNhZMyF6IFGGUk7ammpFeKglKQka64ehupnefiFRU8Ec9TomfoAGnMcVIGyqwLzyG+IAR6CVID1Wcp6NJ4J5DLxQsUuPEfHlmGOjJoi+wa07dKQouA7cENVBWK7CnXiRwlhCuMUNK9V0n1X6OpKaYkUnVyxRJER6hAekbyFFClJ8Xh03gqWEiGAtpHtewYH9P5ChRM5Oms7C/qM3I/7R+puMbP6c8zTTheL4ozhjUAs5SghGVBGs2NgBhSY1XiIdIIqxNllUTgrt48jLoNOruVb3xcFlr3pZxVMAxOAFnwAXXoAnuQQu0AQbP4BW8gw/rxXqzPq2veeuKVc4cgT9lTX8AQg2gig==</latexit>hpk1, u1i

<latexit sha1_base64="VLMMezPizUN8qWewZlDyOvTOfa0=">AAACF3icbVDLSsNAFJ34rPUVdelmsAguJCRF1GVRBJcV7AOaECaTSTt0MgkzE6GE/oUbf8WNC0Xc6s6/cZJmoa0Xhjmccy/33BOkjEpl29/G0vLK6tp6baO+ubW9s2vu7XdlkglMOjhhiegHSBJGOekoqhjpp4KgOGCkF4yvC733QISkCb9Xk5R4MRpyGlGMlKZ803IZ4kNGoBsjNZJRfjP1nVPoBgkL5STWX441A11Rtvlmw7bssuAicCrQAFW1ffPLDROcxYQrzJCUA8dOlZcjoShmZFp3M0lShMdoSAYachQT6eXlXVN4rJkQRonQjytYsr8nchTLwqTuLN3PawX5nzbIVHTp5ZSnmSIczxZFGYMqgUVIMKSCYMUmGiAsqPYK8QgJhJWOsq5DcOZPXgTdpuWcW827s0brqoqjBg7BETgBDrgALXAL2qADMHgEz+AVvBlPxovxbnzMWpeMauYA/Cnj8wcFhJ/Y</latexit>hE1, c1i

<latexit sha1_base64="1gZnfo82V0uMi8gPPtaLM4CzRBI=">AAACF3icbVDLSsNAFJ34rPUVdelmsAguJCRF1GVRBJcV7AOaECaTSTt0MgkzE6GE/oUbf8WNC0Xc6s6/cZJmoa0Xhjmccy/33BOkjEpl29/G0vLK6tp6baO+ubW9s2vu7XdlkglMOjhhiegHSBJGOekoqhjpp4KgOGCkF4yvC733QISkCb9Xk5R4MRpyGlGMlKZ803IZ4kNGoBsjNZJRfjP141PoBgkL5STWX441A11Rtvlmw7bssuAicCrQAFW1ffPLDROcxYQrzJCUA8dOlZcjoShmZFp3M0lShMdoSAYachQT6eXlXVN4rJkQRonQjytYsr8nchTLwqTuLN3PawX5nzbIVHTp5ZSnmSIczxZFGYMqgUVIMKSCYMUmGiAsqPYK8QgJhJWOsq5DcOZPXgTdpuWcW827s0brqoqjBg7BETgBDrgALXAL2qADMHgEz+AVvBlPxovxbnzMWpeMauYA/Cnj8wfDXKBQ</latexit>hEm, cmi

1. check
validity

2. shuffle
re-encrypt

3. decrypt pk

<latexit sha1_base64="K7ORW80lceBN+uNRG3RATGjiINk=">AAACNXicbVBNS8MwGE79nPOr6tFLcAgeZLRD1OPQiwcPE9wHrKWkWdqFpWlJUmGU/Skv/g9PevCgiFf/gmlXRTdfCHnyvB95n8dPGJXKsp6NhcWl5ZXVylp1fWNza9vc2e3IOBWYtHHMYtHzkSSMctJWVDHSSwRBkc9I1x9d5vnuHRGSxvxWjRPiRijkNKAYKU155rXDEA8ZgU6E1FAGWTKaeFmDT46h48dsIMeRvrL0h0zoN5I0jFDxgI4ohnhmzapbRcB5YJegBspoeeajM4hxGhGuMENS9m0rUW6GhKKYkUnVSSVJEB6hkPQ15Cgi0s0K1RN4qJkBDGKhD1ewYH93ZCiS+fq6stA2m8vJ/3L9VAXnbkZ5kirC8fSjIGVQxTC3EA6oIFixsQYIC6p3hXiIBMJKG13VJtizkudBp1G3T+uNm5Na86K0owL2wQE4AjY4A01wBVqgDTC4B0/gFbwZD8aL8W58TEsXjLJnD/wJ4/MLzAmsog==</latexit>hpk2n, u2n,⇡2n,�2ni
<latexit sha1_base64="kxLFOic+UKcku0SooNB5c4h8QEA=">AAACHnicbVDLSsNAFJ34rPUVdelmsAgupCTF17LoxmUF+4AmhMlk0g6dTMLMRCghX+LGX3HjQhHBlf6NkzQLbb0wzOGce7n3HD9hVCrL+jaWlldW19ZrG/XNre2dXXNvvyfjVGDSxTGLxcBHkjDKSVdRxcggEQRFPiN9f3JT6P0HIiSN+b2aJsSN0IjTkGKkNOWZ5w5DfMQIdCKkxjLMkknuZS2en0LHj1kgp5H+snRGQkeU3Z7ZsJpWWXAR2BVogKo6nvnpBDFOI8IVZkjKoW0lys2QUBQzktedVJIE4QkakaGGHEVEullpL4fHmglgGAv9uIIl+3siQ5Es7tSdpYl5rSD/04apCq/cjPIkVYTj2aIwZVDFsMgKBlQQrNhUA4QF1bdCPEYCYaUTresQ7HnLi6DXatoXzdbdWaN9XcVRA4fgCJwAG1yCNrgFHdAFGDyCZ/AK3own48V4Nz5mrUtGNXMA/pTx9QPf5aOU</latexit>hpk2n, u2ni

<latexit sha1_base64="G/AV34i/Ipx5o0CD1q7fi7cJM2Y=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0UQkZIUUZdVNy4r2Ac0JUymN+3QySTMTIQS+g9u/BU3LhRx68adf+M07UJbDwwczjmXufcECWdKO863VVhaXlldK66XNja3tnfs3b2milNJoUFjHst2QBRwJqChmebQTiSQKODQCoY3E7/1AFKxWNzrUQLdiPQFCxkl2ki+feJxIvocsBcRPVBhlgzHfkZ8d3yKr6YEezKP+HbZqTg58CJxZ6SMZqj79pfXi2kagdCUE6U6rpPobkakZpTDuOSlChJCh6QPHUMFiUB1s/ymMT4ySg+HsTRPaJyrvycyEik1igKTzDef9ybif14n1eFlN2MiSTUIOv0oTDnWMZ4UhHtMAtV8ZAihkpldMR0QSag2NZZMCe78yYukWa2455Xq3Vm5dj2ro4gO0CE6Ri66QDV0i+qogSh6RM/oFb1ZT9aL9W59TKMFazazj/7A+vwBsVOeCQ==</latexit>hpka1
, Aa1

i

<latexit sha1_base64="UFlYLWXuETHzq13GSBYnmoUGfag=">AAACGXicbVDLSsNAFL2pr1pfVZduBovgQkpSRF1W3bisYB/QlDCZTtqhk0mYmQgl5Dfc+CtuXCjiUlf+jdO0iLYeGDiccy5z7/FjzpS27S+rsLS8srpWXC9tbG5t75R391oqSiShTRLxSHZ8rChngjY105x2Yklx6HPa9kfXE799T6VikbjT45j2QjwQLGAEayN5ZdvlWAw4RW6I9VAFaTzKvBR7aU1k2Qm6/OHIlXnQK1fsqp0DLRJnRiowQ8Mrf7j9iCQhFZpwrFTXsWPdS7HUjHCaldxE0RiTER7QrqECh1T10vyyDB0ZpY+CSJonNMrV3xMpDpUah75J5vvPexPxP6+b6OCilzIRJ5oKMv0oSDjSEZrUhPpMUqL52BBMJDO7IjLEEhNtyiyZEpz5kxdJq1Z1zqq129NK/WpWRxEO4BCOwYFzqMMNNKAJBB7gCV7g1Xq0nq03630aLVizmX34A+vzG0B6oRM=</latexit>hpka2n
, Aa2n

i …4. match pk
<latexit sha1_base64="gvSKG2KZBiwMWbaS/TcSfEcPbvM=">AAACFnicbVDLSsNAFJ3UV62vqEs3g0VwoSUpoi6rblxWsA9oQphMpu3QySTMTIQS8hVu/BU3LhRxK+78GydpFtp6YZjDOedy7z1+zKhUlvVtVJaWV1bXquu1jc2t7R1zd68ro0Rg0sERi0TfR5IwyklHUcVIPxYEhT4jPX9yk+u9ByIkjfi9msbEDdGI0yHFSGnKM08dhviIEXjlpdizsxPo+BEL5DTUX5pkMxY6onB5Zt1qWEXBRWCXoA7KanvmlxNEOAkJV5ghKQe2FSs3RUJRzEhWcxJJYoQnaEQGGnIUEummxVkZPNJMAIeR0I8rWLC/O1IUynxR7QyRGst5LSf/0waJGl66KeVxogjHs0HDhEEVwTwjGFBBsGJTDRAWVO8K8RgJhJVOsqZDsOdPXgTdZsM+bzTvzuqt6zKOKjgAh+AY2OACtMAtaIMOwOARPINX8GY8GS/Gu/Exs1aMsmcf/Cnj8wdI+Z95</latexit>hAc1

, uc1
i

<latexit sha1_base64="SoGupYxJE/Tb8ubCSajnckpK/kI=">AAACHHicbVDLSsNAFJ34rPUVdelmsAgupCRV1GXVjcsK9gFNCJPJtB06mYSZiVBCPsSNv+LGhSJuXAj+jZM0iLZeGOZwzrnce48fMyqVZX0ZC4tLyyurlbXq+sbm1ra5s9uRUSIwaeOIRaLnI0kY5aStqGKkFwuCQp+Rrj++zvXuPRGSRvxOTWLihmjI6YBipDTlmScOQ3zICLz0UuylDZ5lx9DxIxbISai/NMl+BOiIwuuZNatuFQXngV2CGiir5ZkfThDhJCRcYYak7NtWrNwUCUUxI1nVSSSJER6jIelryFFIpJsWx2XwUDMBHERCP65gwf7uSFEo8121M0RqJGe1nPxP6ydqcOGmlMeJIhxPBw0SBlUE86RgQAXBik00QFhQvSvEIyQQVjrPqg7Bnj15HnQadfus3rg9rTWvyjgqYB8cgCNgg3PQBDegBdoAgwfwBF7Aq/FoPBtvxvvUumCUPXvgTxmf3+EZooM=</latexit>hAc2n
, uc2n

i

6. decrypt <latexit sha1_base64="DIytP37ofppSz6y0mVSUXtT1cT4=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclZki6rLoxmUF+4B2LJlMpg3NJEOSUcrQ/3DjQhG3/os7/8ZMOwttPRByOOdecnKChDNtXPfbWVldW9/YLG2Vt3d29/YrB4dtLVNFaItILlU3wJpyJmjLMMNpN1EUxwGnnWB8k/udR6o0k+LeTBLqx3goWMQINlZ66AeSh3oS2ytLp4NK1a25M6Bl4hWkCgWag8pXP5QkjakwhGOte56bGD/DyjDC6bTcTzVNMBnjIe1ZKnBMtZ/NUk/RqVVCFElljzBopv7eyHCs82h2MsZmpBe9XPzP66UmuvIzJpLUUEHmD0UpR0aivAIUMkWJ4RNLMFHMZkVkhBUmxhZVtiV4i19eJu16zbuo1e/Oq43roo4SHMMJnIEHl9CAW2hCCwgoeIZXeHOenBfn3fmYj644xc4R/IHz+QNRB5MN</latexit>u

<latexit sha1_base64="m2PhD2smHS/ZKYxZq0wfvwlGLqw=">AAACBXicbVBNS8NAEN34WetX1aMeFovgQUpSRD1WvXisYD+gCWGznbRLN5uwuymU0IsX/4oXD4p49T9489+4bXPQ1gcDj/dmmJkXJJwpbdvf1tLyyuraemGjuLm1vbNb2ttvqjiVFBo05rFsB0QBZwIammkO7UQCiQIOrWBwO/FbQ5CKxeJBjxLwItITLGSUaCP5pSOXE9HjgK/9jPrO+AwPfQe7cir6pbJdsafAi8TJSRnlqPulL7cb0zQCoSknSnUcO9FeRqRmlMO46KYKEkIHpAcdQwWJQHnZ9IsxPjFKF4exNCU0nqq/JzISKTWKAtMZEd1X895E/M/rpDq88jImklSDoLNFYcqxjvEkEtxlEqjmI0MIlczcimmfSEK1Ca5oQnDmX14kzWrFuahU78/LtZs8jgI6RMfoFDnoEtXQHaqjBqLoET2jV/RmPVkv1rv1MWtdsvKZA/QH1ucP4MaXiw==</latexit>hAc1
, v1i

<latexit sha1_base64="us+VuhLCABBVcTtADkp7wEQvlyE=">AAACC3icbZDLSsNAFIZP6q3WW9Slm8EiuJCSFFGXVTcuK9gLNCVMptN26GQSZiaFErp346u4caGIW1/AnW/jNM1CWw8MfPz/OZw5fxBzprTjfFuFldW19Y3iZmlre2d3z94/aKookYQ2SMQj2Q6wopwJ2tBMc9qOJcVhwGkrGN3O/NaYSsUi8aAnMe2GeCBYnxGsjeTbxx7HYsApuvZT4qdVMZ2eoXEGyJOZ5dtlp+JkhZbBzaEMedV9+8vrRSQJqdCEY6U6rhPrboqlZoTTaclLFI0xGeEB7RgUOKSqm2a3TNGJUXqoH0nzhEaZ+nsixaFSkzAwnSHWQ7XozcT/vE6i+1fdlIk40VSQ+aJ+wpGO0CwY1GOSEs0nBjCRzPwVkSGWmGgTX8mE4C6evAzNasW9qFTvz8u1mzyOIhzBMZyCC5dQgzuoQwMIPMIzvMKb9WS9WO/Wx7y1YOUzh/CnrM8fSpaalQ==</latexit>hAc2n
, v2ni

…

7. decrypt <latexit sha1_base64="OKos9k+NkrYUCtKFDKXifCjPsO4=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclZki6rLoxmUF+4B2LJlMpg3NJEOSUcrQ/3DjQhG3/os7/8ZMOwttPRByOOdecnKChDNtXPfbWVldW9/YLG2Vt3d29/YrB4dtLVNFaItILlU3wJpyJmjLMMNpN1EUxwGnnWB8k/udR6o0k+LeTBLqx3goWMQINlZ66AeSh3oS2ysj00Gl6tbcGdAy8QpShQLNQeWrH0qSxlQYwrHWPc9NjJ9hZRjhdFrup5ommIzxkPYsFTim2s9mqafo1CohiqSyRxg0U39vZDjWeTQ7GWMz0oteLv7n9VITXfkZE0lqqCDzh6KUIyNRXgEKmaLE8IklmChmsyIywgoTY4sq2xK8xS8vk3a95l3U6nfn1cZ1UUcJjuEEzsCDS2jALTShBQQUPMMrvDlPzovz7nzMR1ecYucI/sD5/AE1rZL7</latexit>c <latexit sha1_base64="fR6tFkq7kD/iwdrrvsRYHnSxiYI=">AAACFXicbVDLSgMxFM3UV62vqks3wSK4KGWmiLosiuCygn1Ap5ZMeqcNzWSGJFMoQ3/Cjb/ixoUibgV3/o3pdBbaeiBwcs693HuPF3GmtG1/W7mV1bX1jfxmYWt7Z3evuH/QVGEsKTRoyEPZ9ogCzgQ0NNMc2pEEEngcWt7oeua3xiAVC8W9nkTQDchAMJ9Roo3UK5ZdTsSAA3YDoofKT26mPaeMxw+//9iVaVGvWLIrdgq8TJyMlFCGeq/45fZDGgcgNOVEqY5jR7qbEKkZ5TAtuLGCiNARGUDHUEECUN0kvWqKT4zSx34ozRMap+rvjoQESk0Cz1Smuy56M/E/rxNr/7KbMBHFGgSdD/JjjnWIZxHhPpNANZ8YQqhkZldMh0QSqk2QBROCs3jyMmlWK855pXp3VqpdZXHk0RE6RqfIQReohm5RHTUQRY/oGb2iN+vJerHerY95ac7Keg7RH1ifPxWFnsY=</latexit>

hE1, v
E
1 i

<latexit sha1_base64="+1qR8/yOxkiN8A/HWa5YynGLneU=">AAACFXicbVDLSgMxFM3UV62vUZdugkVwUcpMEXVZFMFlBfuAzlgyaaYNTTJDkimUoT/hxl9x40IRt4I7/8Z0OgttPRA4Oede7r0niBlV2nG+rcLK6tr6RnGztLW9s7tn7x+0VJRITJo4YpHsBEgRRgVpaqoZ6cSSIB4w0g5G1zO/PSZS0Ujc60lMfI4GgoYUI22knl3xGBIDRqDHkR6qML2Z9ngFjh9+/6Ens6KeXXaqTga4TNyclEGORs/+8voRTjgRGjOkVNd1Yu2nSGqKGZmWvESRGOERGpCuoQJxovw0u2oKT4zSh2EkzRMaZurvjhRxpSY8MJXZroveTPzP6yY6vPRTKuJEE4Hng8KEQR3BWUSwTyXBmk0MQVhSsyvEQyQR1ibIkgnBXTx5mbRqVfe8Wrs7K9ev8jiK4Agcg1PgggtQB7egAZoAg0fwDF7Bm/VkvVjv1se8tGDlPYfgD6zPH9Llnz4=</latexit>

hEm, vE
mi

… 8. two-layer tally
<latexit sha1_base64="5Cr9j/2BQyOZJjQglPEQp/qirRA=">AAACJ3icbVDLSgMxFM34rPVVdenmYhEEpcyIqAgVHxuXCrYKnWHIZNI2mkmGJCOUYf7Gjb/iRlARXfonpo+FrwMhh3PuJTknSjnTxnU/nLHxicmp6dJMeXZufmGxsrTc1DJThDaI5FJdR1hTzgRtGGY4vU4VxUnE6VV0e9r3r+6o0kyKS9NLaZDgjmBtRrCxUlg59CPJY91L7JXrImRwUAc/VTIO87vwpu5TzmETWAHHYU7Cm2ILGPhMQMvbgiQIK1W35g4Af4k3IlU0wnlYefZjSbKECkM41rrluakJcqwMI5wWZT/TNMXkFndoy1KBE6qDfJCzgHWrxNCWyh5hYKB+38hxovtR7GSCTVf/9vrif14rM+39IGcizQwVZPhQO+NgJPRLg5gpSgzvWYKJYvavQLpYYWJstWVbgvc78l/S3K55u7Xti53q0cmojhJaRWtoA3loDx2hM3SOGoige/SIXtCr8+A8OW/O+3B0zBntrKAfcD6/ANeHpJo=</latexit>

si :=
Y

vj=`+i

Acj
, i 2 [1, m]

<latexit sha1_base64="1SHb+8wwWgT52ip6bTnXsPw0VBI=">AAACSnicbVDLSsQwFE3H9/iqunQTHAQXMrQiKoLgA8GlguMI01rSNNXMpElJ0sJQ+n1uXLnzI9y4UMSN6TgLnfFAyOGce5N7T5gyqrTjvFi1icmp6ZnZufr8wuLSsr2yeqNEJjFpYcGEvA2RIoxy0tJUM3KbSoKSkJF22Dur/HZOpKKCX+t+SvwE3XMaU4y0kQIbeaFgkeon5ipUGeTw8Ah6qRRRUORB9ygv4UlQ4KBb/lLvvATpBxUX52VVMPJEdxvm0KMcdtxtyPzAbjhNZwA4TtwhaYAhLgP72YsEzhLCNWZIqY7rpNovkNQUM1LWvUyRFOEeuicdQzlKiPKLQRQl3DRKBGMhzeEaDtTfHQVKVDWqqRzsMOpV4n9eJ9PxgV9QnmaacPzzUZwxqAWscoURlQRr1jcEYUnNrBA/IImwNunXTQju6Mrj5Gan6e41d652G8enwzhmwTrYAFvABfvgGFyAS9ACGDyCV/AOPqwn6836tL5+SmvWsGcN/EFt8hsBYbP2</latexit>

sv :=
Y

vj=v

Acj

Y

vE
j=v

sj , v 2 [1, l]
9. decrypt <latexit sha1_base64="BO3TwatHtmFThmncCVhLRrOuQR4=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRF1GXRjcsK9gFtCJPJpB06mYSZSaGE/okbF4q49U/c+TdO2iy09cAwh3PuZc6cIOVMacf5tiobm1vbO9Xd2t7+weGRfXzSVUkmCe2QhCeyH2BFORO0o5nmtJ9KiuOA014wuS/83pRKxRLxpGcp9WI8EixiBGsj+bY9DBIeqllsrlzN/alv152GswBaJ25J6lCi7dtfwzAhWUyFJhwrNXCdVHs5lpoRTue1YaZoiskEj+jAUIFjqrx8kXyOLowSoiiR5giNFurvjRzHqghnJmOsx2rVK8T/vEGmo1svZyLNNBVk+VCUcaQTVNSAQiYp0XxmCCaSmayIjLHERJuyaqYEd/XL66TbbLjXjebjVb11V9ZRhTM4h0tw4QZa8ABt6ACBKTzDK7xZufVivVsfy9GKVe6cwh9Ynz9fHJQl</latexit>sv final tally

result

BB

5. shuffle
re-encrypt

Figure 7: Tally phase

2.3 Overview of Our Scheme
In this section, we define the roles in our system and provide an

overview of our scheme in the blockchain context.

Roles. There are five roles in the protocol: voters, experts, registra-

tion authority (RA), shuffler, and trustees.

• A voter has a certain amount of voting power and can either

vote on the proposal directly or delegate his voting power

to an expert.

• An expert does not have voting power himself, but he can

be delegated to vote on others’ behalf.

• The RA is responsible for the registration procedure.

• The shuffler performs verifiable shuffle procedures on the

ciphertexts.

• The trustees are responsible for decrypting the ballot and

revealing the final tally result.

We use 𝑛,𝑚, ℓ to denote voter number, expert number, and can-

didate number, respectively. There are 𝑘 trustees with a threshold

𝑡 .

An optimization of JCJ’s ballot structure. We further optimize

JCJ’s ballot structure in the following two aspects. Firstly, we ob-

serve that it is not necessary to prove that J𝑣K encrypts a valid

candidate because all of them will be decrypted in the tally phase. If

it encrypts an invalid value, we can simply treat it as “abstain” and

drop it. Secondly, instead of defining 𝜎 as the secret credential, we

can define the discrete logarithm of𝜎 as the secret credential (voting

secret key) and define 𝜎 as the voting public key, i.e., 𝜎 := pk := 𝑔sk.

Then, the ballot can be modified as ⟨pk, 𝒖, 𝜋, 𝑆𝑖𝑔⟩, where 𝒖 := J𝑣K
is the encrypted choice, 𝜋 is a NIZK proof of plaintext knowledge

of 𝒖, and 𝑆𝑖𝑔 ← Sign(sk, 𝒖). By doing so, we change an Elgamal

ciphertext J𝜎K to a group element pk, achieving a smaller ballot

size.

Overview. Our voting scheme has four phases: preparation phase,

registration phase, voting/delegation phase, and tally phase.

In the preparation phase, the RA generates a public-private sign-

ing key pair ⟨pkRA, skRA⟩. The trustees perform a distributed key

generation protocol to generate pkT, and they share skT.
In the registration phase (see Figure 5), each voter first freezes

some stake by transaction tx. Then, he generates a pair of real

voting keys ⟨pk, sk⟩ and sends a registration message ⟨𝐾,𝐴, tx, 𝛿⟩
to the RA (step 1), where 𝐾 ← EC.EncpkT (pk) is encryption of

real public key, 𝐴← LE.EncpkT (𝛼) is encryption of voting power,

tx is the transaction that freezes some stake, and 𝛿 is the NIZK

proof that the encrypted voting power equals the frozen stake (Cf.

Appendix B). After authenticating the voter (i.e., checking that the

voter knows the sk corresponding to tx’s sender’s pk), the RA re-

encrypts 𝐾 as �̃� and signs the registration message. Then, the RA

sends a designated verifier proof of re-encryption correctness to the

voter and sends the “registration item” ⟨�̃�, 𝐴, tx, 𝛿, 𝜎RA⟩ to the BB

(step 2), where 𝜎RA ← Sig.signskRA (�̃� | |𝐴| |tx| |𝛿). At any convenient
time, the voter can generate a pair of fake voting keys ⟨pk′, sk′⟩
and publish a “fake registration item” ⟨𝐾 ′, 𝐴0, 𝜌⟩ on the BB (step

3), where 𝐾 ′ ← EC.EncpkT (pk
′) is encryption of fake public key,

𝐴0 is a deterministic encryption of 0, and 𝜌 is a NIZK proof of

knowledge of sk′. The voter can repeat step 3 multiple times to

generate multiple fake keys. In this phase, all the users who want

to be experts will also register by authenticating to the blockchain

(by signing a registration message using the blockchain secret key).

In the voting phase (see Figure 6), all registered experts E1, . . . , E𝑚
form a list of eligible experts. Each voter encrypts his choice with

the trustees’ public key pkT, signs it with the voting secret key, and

casts it on BB (step 1). Specifically, a voter’s ballot is of the form

⟨pk, 𝒖, 𝜋, 𝜎⟩, where 𝒖 ← EC.EncpkT (𝑣) is the encrypted choice, 𝜋

is a NIZK proof of plaintext knowledge of 𝒖, and 𝜎 ← Sign(sk, 𝒖)
is the signature. If a voter is coerced, he will use the fake key pair

⟨pk′, sk′⟩ to perform the voting process (step 2). Thanks to the

re-encryption by RA and the designated verifier proof, the voter

can claim that �̃� is re-encryption of EC.EncpkT (pk
′) by simulating

the designated verifier proof. In this phase, each expert also casts

5

Zeyuan Yin, Bingsheng Zhang, Andrii Nastenko, Roman Oliynykov, and Kui Ren

his ballot by simply encrypting the choice and signing it with his

blockchain secret key (step 3), i.e., an expert’s ballot is of the form

⟨E, 𝒄, 𝜏, 𝜎E⟩, where E is the expert’s identity, 𝒄 ← EC.EncpkT (𝑣
E) is

the encrypted candidate, 𝜏 is the NIZK proof of plaintext knowledge,

and 𝜎E is the signature.

In the tally phase (see Figure 7), the BB contains (real and fake)

“registration items”, voters’ ballots, and experts’ ballots at the begin-

ning. For simplicity, in Fig. 7, we assume there are 𝑛 real ballots and

𝑛 fake ballots; in reality, a voter can cast any number of fake ballots.

Firstly, the shuffler checks the validity of all the “registration items”

and ballots, and removes the NIZK proofs and signatures (step

1). Then, the shuffler shuffle re-encrypts the “registration items”

(step 2). Next, the trustees jointly decrypt the public keys in “reg-

istration items” and voters’ ballots (step 3). If the same public key

appears more than once, drop them. The encrypted voting power

and encrypted choices with the same public key will be matched

(step 4). To ensure ballot privacy, a shuffle re-encryption is per-

formed on the matched items (step 5). Next, the trustees jointly

decrypt voters’ choices (step 6) and experts’ choices (step 7). Af-

ter the decryption, the trustees will add the voting power to the

corresponding candidates by a two-layer tally (step 8). In layer

1, each expert’s obtained voting power is calculated, i.e., expert

E𝑖 ’s obtained voting power is 𝒔𝑖 :=
∏

𝑣𝑗=ℓ+𝑖 𝐴𝑐 𝑗 , 𝑖 ∈ [1,𝑚], where
ℓ is the candidate number and 𝑚 is the expert number; in layer

2, the votes for each candidate are tallied by adding direct votes

and expert votes together, i.e., candidate 𝑣 ’s obtained voting power

is 𝒔𝑣 :=
∏

𝑣𝑗=𝑣 𝐴𝑐 𝑗
∏

𝑣E
𝑗
=𝑣 𝒔 𝑗 , 𝑣 ∈ [1, 𝑙]. Ballots that encrypt an in-

valid choice will be dropped. Finally, the trustees jointly decrypt

{𝒔𝑣}𝑣∈[1,ℓ] to publish the final tally result (step 9).

Blockchain deployment. To deploy the scheme on a blockchain,

we need to select the RA, shuffler, and trustees properly. Also, there

should be a validator to check all the NIZK proofs.

The RA.Note that the communication between the voter and the RA

must be secret to the coercer. Also, the RA is trusted for coercion-

resistance and cannot be distributed (see sec. 3 for details). There-

fore, it may be instantiated with a trusted execution environment

(TEE) like Intel SGX.

The shuffler. The shuffler can be implemented by a mixnet [16], and

the mixnet nodes can be selected by cryptographic sortition [18].

Ballot privacy is preserved as long as one mixnet node is honest.

The trustees. The trustees can also be selected by cryptographic

sortition [18]. In the blockchain context, the majority of trustees

are honest with a high probability when the majority of the stake

is honest.

The validator. Every participant can be the validator to check all

the NIZK proofs if he wants. Since there are shuffle proofs in our

scheme, whose verification cost is relatively heavy, it is not recom-

mended to deploy a smart contract to play the role of the validator.

Roles of the blockchain. In our scheme, the blockchain serves as

the BB. It also plays the role of PKI in the registration phase to

authenticate voters and experts.

3 THREAT MODEL
We consider an adversary whose goal is to coerce voters into

casting ballots for a particular candidate or to abstain. We rely on

three assumptions: 1) anonymous communication with honest BB,

2) untappable channels, and 3) inalienable authentication. While

these assumptions are strong, we will argue that they are necessary

assumptions for all “fake credentials" schemes and explain how

they can be achieved in the blockchain context.

Assumption 1. The bulletin board is honest, and the communication

with the BB is anonymous.

BB is a basic assumption for any electronic voting scheme. A

malicious BB can break verifiability by creating different views

for different voters [32]. Then, ballot privacy will be undermined

if ballots can be dropped undetectably [22], and it is not possible

to achieve coercion-resistance without ballot privacy. Thus, BB is

trusted for all three properties. Moreover, communication with BB

must be anonymous; otherwise, the coercer will catch the deceiving

voter when he tries to cast the real ballot.

In our system, the blockchain is a public ledger and serves as

the honest BB. A voter can use anonymous channels (e.g., TOR) to

broadcast on the blockchain. Although there are attacks that lever-

age the designs or implementation of the blockchain to deanonymize

a user [13, 37], in this work, we assume that the communicationwith

the blockchain can be anonymous, as in [27, 36]. How to achieve

anonymous communication with the blockchain in practice is out

of the scope of this paper.

Assumption 2. There is a secure (untappable) channel between the

voter and the RA.

In all “fake credentials” schemes, a voter needs to establish a

secret in the registration phase and keep the secret from the coercer.

If the coercer taps all the communication between the voter and the

authorities, then the voter’s private information is a receipt/witness

of what he cast [33].

As mentioned above, the RA can be instantiated with TEE, such

as Intel SGX. A voter can communicate with the RA using TOR.

Assumption 3. The authentication is inalienable [1], i.e., the coercer

cannot impersonate the voter or stop the voter from authenticating.

Inalienable authentication is a must for all voting schemes. Oth-

erwise, the adversary can vote on the voter’s behalf or launch a

forced abstention attack.

In the blockchain context, the blockchain plays the role of PKI,

and each voter authenticates to the RA by proving knowledge of

his blockchain secret key. It is assumed that a voter will not reveal

his blockchain secret key to the coercer, which will put the voter’s

stake at risk.

In the following, we will informally define ballot privacy, verifi-

ability, and coercion-resistance and analyze how they are achieved.

In section 5, we will formalize these properties and provide a secu-

rity proof.

Definition 1. (Ballot privacy) The adversary cannot learn the votes

of honest voters.

Definition 2. (Verifiability) Honest voters’ ballots must be tallied,

and the adversary cannot cast more votes than the number of voters

that he controls.

Definition 3. (Coercion-resistance) A coercer cannot determine if

the coerced party is trying to deceive him.

Ballot privacy. In the registration phase, the voter himself gen-

erates the voting public key, and he encrypts it with the trustees’

public key before sending it to the RA. Thus, nobody knows the link

6

A Scalable Coercion-resistant Voting Scheme for Blockchain Decision-making

Table 2: Trust assumptions on the entities.

Ballot

privacy

Verifiability

Coercion-

resistance

BB Trusted Trusted Trusted

RA Untrusted Untrusted Trusted

Shuffler Trusted Untrusted Trusted

Trustees 𝑡-out-of-𝑘 Untrusted 𝑡-out-of-𝑘

between the voting public key and the voter as long as the majority

of trustees are honest. In the voting/delegation phase, voters’ ballots

are also encrypted with the trustees’ public key. In the tally phase,

ballots and registration items will be shuffled before decryption

so that the link between identity and ballot/voting public key is

broken by the shuffle. Therefore, ballot privacy is achieved if the

shuffler and the majority of trustees are honest.

Note: In delegated voting, usually the experts have input indepen-

dence rather than ballot privacy, i.e., when casting the ballot, it

should be independent of the others; later in the tally phase, it will

be decrypted directly without shuffle. This is an important require-

ment for delegated voting because we want to detect if an expert’s

behavior deviates from what he claimed.

Verifiability. A process composed of several subroutines is verifi-

able if each subroutine is verifiable itself. In the preparation phase,

the trustees perform a verifiable distributed key generation proto-

col [28]. In the registration phase, we use two NIZKs to ensure that

(i) the encrypted voting power is equal to the frozen stake and (ii)

the RA does the re-encryption correctly. In the voting/delegation

phase, the EUF-CMA property of the signature scheme prevents

anyone who does not know the secret key from casting a valid bal-

lot. In the tally phase, the shuffle correctness is guaranteed by the

shuffle NIZK [6], and decryption correctness is guaranteed by the

decryption NIZK [28]. In conclusion, all subroutines in our scheme

are publicly verifiable, so no one needs to be trusted for verifiability.

Coercion-resistance. A coercer may ask the voter to reveal his

real voting key pair, but the voter can claim a fake key pair as real

by simulating the designated verifier proof, as long as the RA is

not colluding with the coercer. In the tally phase, after shuffling

all the registration items, real keys and fake keys become indistin-

guishable from the coercer’s perspective. Besides, the majority of

trustees must be honest to ensure that the coercer cannot decrypt

the ciphertexts.

Finally, Table 2 summarizes the trust assumptions on the entities

for achieving each property.

Notes on distributing the shuffler and RA: To distribute the shuf-

fler, a mixnet [16] can be utilized, and we can perform a crypto-

graphic sortition [18] on the blockchain to select the mixnet nodes.

The assumption becomes that at least one of the mixnet nodes is

honest instead of trusting a single shuffler.

However, simply distributing the RA does not lead to a weaker

assumption because the coercer can ask the voter to provide the

entire view of the registration phase. Even if only one of the RA

parties is colluding with the coercer, the voter who does not know

which RA party is colluding cannot simulate the registration view

with negligible fail probability. Concretely, if the voter fakes a

message sent by an RA member, then he will have at least 1/𝑛

probability of being caught (in the case that the RA member is

malicious), where 𝑛 is the number of RA parties. Therefore, it is

better not to distribute the RA for “fake credentials” schemes. We

suggest using a TEE to instantiate the RA on the blockchain.

4 THE PROTOCOL
In this section, we will give a detailed protocol description of

our voting scheme.

4.1 Cryptographic primitives
Notations. Let 𝜆 ∈ N be the security parameter. Let G be a cyclic

group of prime order 𝑝 with group generator 𝑔. We denote the

integers modulo 𝑝 with Z𝑝 and write 𝑟 ←
$
Z𝑝 for 𝑟 being chosen

uniformly from Z𝑝 . We abbreviate probabilistic polynomial time as
PPT.

(Lifted) ElGamal Encryption. ElGamal encryption scheme con-

sists of three PPT algorithms: the key generation algorithm

EC.Keygen(G, 𝑔, 𝑝) takes as input the group parameters and out-

puts a public-private key pair (pk := 𝑔sk, sk); the encryption algo-

rithm EC.Encpk (𝑚; 𝑟) takes as input the public key pk, the message

𝑚 ∈ G, and randomness 𝑟 ←
$
Z𝑝 , and it outputs the ciphertext

𝑐 := (𝑐1, 𝑐2) := (𝑔𝑟 ,𝑚 · pk𝑟); the decryption algorithm EC.Decsk (𝑐)
takes as input the secret key sk and the ciphertext 𝑐 and outputs

the message𝑚 := 𝑐2/𝑐sk
1
.

ElGamal encryption is a re-randomizable encryption scheme.

The re-encryption algorithm EC.Randpk (𝑐; 𝑟) takes as input a ci-
phertext 𝑐 := (𝑐1, 𝑐2) and randomenss 𝑟 ←

$
Z𝑝 , and it outputs the

re-randomized ciphertext 𝑐′ := (𝑐′
1
, 𝑐′
2
) := (𝑔𝑟 · 𝑐1, ℎ𝑟 · 𝑐2).

Lifted ElGamal encryption is a variant of ElGamal encryption.

The encryption algorithm LE.Encpk (𝑚; 𝑟) takes as input the public
key pk, the message𝑚, and randomness 𝑟 ←

$
Z𝑝 , and it outputs the

ciphertext 𝑐 := (𝑐1, 𝑐2) := (𝑔𝑟 , 𝑔𝑚 · pk𝑟); the decryption algorithm

LE.Decsk (𝑐) takes as input the secret key sk and the ciphertext 𝑐 and
outputs the message𝑚 := Dlog(𝑐2/𝑐sk

1
), whereDlog(𝑥) outputs the

discrete logarithm of 𝑥 (note that computing the discrete logarithm

is inefficient, thus the message space should be small in practice).

The (lifted) ElGamal encryption scheme is IND-CPA secure under

the DDH assumption (see Appendix A for formal definition). We

omit the randomness 𝑟 when it is not crucial to the context. Lifted

ElGamal encryption is additively homomorphic, i.e., LE.Encpk (𝑚1) ·
LE.Encpk (𝑚2) = LE.Encpk (𝑚1 +𝑚2). Besides, with distributed key

generation [28], (lifted) ElGamal encryption can be distributed as a

threshold encryption scheme.

Signature. A signature scheme Sig is defined by three PPT algo-

rithms: A key generation algorithm Sig.Keygen(1𝜆) that gener-
ates a public-private key pair (pk, sk); a signing algorithm 𝜎 ←
Sig.Signsk (𝑚) that generates a signature on message𝑚; and a veri-

fication algorithm Sig.Verifypk (𝜎,𝑚) that outputs 1 if and only if

𝜎 is a valid signature on𝑚. The existential unforgeability under

chosen message attack (EUF-CMA) property of a signature scheme

is formally defined in Appendix A.

Non-interactive Zero-knowledge Proof (NIZK). Our scheme

utilizes Sigma protocols and uses Fiat-Shamir heuristic [25] to trans-

form them into non-interactive proofs of knowledge. There are six

NIZK protocols in our scheme for proving: (i) voting power cor-

rectness (NIZKpower); (ii) ElGamal encryption plaintext knowledge

7

Zeyuan Yin, Bingsheng Zhang, Andrii Nastenko, Roman Oliynykov, and Kui Ren

(NIZKknowledge); (iii) re-encryption correctness (NIZKDVP-reenc);
(iv) knowledge of secret key (NIZKsk); (v) shuffle correctness (NIZKshuffle);
and (vi) decryption correctness (NIZKDec). For simplicity, we some-

times omit the witness used in NIZK.Prove() when it is clear in

context. We define completeness, simulation-sound extractability,

and zero-knowledge of a NIZK in Appendix A, and we give the

constructions of these NIZK protocols in Appendix B.

Distributed Key Generation In our scheme, the trustees will run

a distributed key generation protocol Vote.DKeyGen(G, 𝑡, 𝑘) for
threshold key generation, where G is the group, 𝑡 is the corruption

threshold, and 𝑘 is the number of trustees. The protocol outputs a

public key pk, and each trustee T𝑖 obtains a share of the secret key.
We use the protocol by Gennaro et al. [28] to realize the threshold

distributed key generation.

4.2 Protocol Description
Preparation Phase:

In the preparation phase, the trustees and the RA prepare their

cryptographic materials. Formally:

Procedure 1 (Setup). To setup an election with ℓ candidates C :=

{C1, . . . ,Cℓ }, 𝑘 trustees, and threshold 𝑡 . The parties proceed as

follows:

(1) The trustees run Vote.DKeyGen(G, 𝑡, 𝑘) to generate a pub-

lic encryption key pkT and each trustee T𝑖 obtains skT,𝑖 , a
share of the decryption key. They publish pkT.

(2) The RA runs (pkRA, skRA) ← Sig.Keygen(1𝜆). It publishes
pkRA.

Registration Phase:
In the registration phase, a voter authenticates to the RA to

publish a “registration item”. At any convenient time, it can publish

“fake registration items” on the BB. Experts also need to register in

this phase.

Procedure 2 (Reg(Auth)). A voter takes as input his blockchain

inalienable authentication method Auth (usually by proving knowl-

edge of secret key) and does the following:

(1) Assume that the voter issued a privacy-preserving transac-

tion tx that locks 𝛼 stake during the election.

(2) The voter runs (pk, sk) ← Sig.Keygen(1𝜆).
(3) The voter computes𝐾 ← EC.EncpkT (pk) and𝐴← EC.EncpkT (𝛼).
(4) The voter generates 𝛿 ← NIZKpower .Prove(tx, 𝐴) proving

that 𝐴 is an encryption of the amount of stake locked in tx.
(5) The voter sends ⟨𝐾,𝐴, tx, 𝛿⟩ to the RA and uses Auth to au-

thenticate to the RA. The RA checksNIZK.verify(𝐴, tx, 𝛿) ?

=

1. If the check passes, the RA computes �̃� ← EC.RandpkT (𝐾)
and generates the signature𝜎RA ← Sig.signskRA (�̃� | |𝐴| |tx| |𝛿).
Then, the RA publishes the registration item ⟨�̃�, 𝐴, tx, 𝛿, 𝜎RA⟩
on the BB.

(6) The RA generates 𝜋DVP ← NIZKDVP-reenc .Prove(�̃�, 𝐾)
and sends 𝜋DVP to the voter, where 𝜋DVP is a designated

verifier proof of re-encryption correctness.

(7) The voter checks NIZKDVP-reenc .Verify(�̃�, 𝐾, 𝜋DVP)
?

= 1. If

the check does not pass, he raises a complaint.

Procedure 3 (FakeReg()). At any convenient time, a voter can

register a fake key with zero voting power.

(1) The voter runs (pk′, sk′) ← Sig.Keygen(1𝜆).
(2) The voter computes𝐾 ′ ← EC.EncpkT (pk

′) and𝐴0 = LE.EncpkT
(0; 1).

(3) The voter generates 𝜌 ← NIZKsk .Prove(𝐾 ′).
(4) The voter publishes the fake registration item ⟨𝐾 ′, 𝐴0, 𝜌⟩

on the BB.

Procedure 4 (E_Reg(Auth)). In the registration phase, all users

who want to be experts also register using the blockchain authenti-

cation method Auth.

(1) The user 𝑖 uses Auth to generate an authencation message

𝑒𝑖 and publishes ⟨E𝑖 , 𝑒𝑖 ⟩ on the BB.

Voting/Delegation Phase:
Procedure 5 (V_Vote(pk, sk, 𝑣)). To cast a vote, a voter takes as

input his key-pair ⟨pk, sk⟩ and his choice 𝑣 , and proceeds as follows:
(1) The voter reads the list of eligible experts from the BB,

denoted as E := {E1, . . . , E𝑚}.
(2) The voter computes 𝒖 ← EC.EncpkT (𝑣) and generates

𝜋 ← NIZKknowledge .Prove(𝒖), which is a proof of plain-

text knowledge of 𝒖.
(3) The voter computes 𝜎 ← Sig.signsk (𝒖).
(4) The voter sends the ballot 𝛽V = (pk, 𝒖, 𝜋, 𝜎) to the BB.

Procedure 6 (E_Vote(Auth, 𝑣)). An expert casts his vote by en-

crypting his choice and authenticating to the BB.

(1) The expert 𝑖 computes 𝒄 ← EC.EncpkT (𝑣) and generates

𝜏 ← NIZKknowledge .Prove(𝒄), which is a proof of plaintext

knowledge of 𝒄 .
(2) The expert 𝑖 usesAuth to generate an authencationmessage

𝑒𝑖 on 𝒄 .
(3) The expert 𝑖 sends the ballot 𝛽E = (E𝑖 , 𝒄, 𝜏, 𝑒𝑖) to the BB.

Procedure 7 (Validate(BB, 𝛽)). The validation algorithm verifies

that a ballot is valid with respect to the current state of the bulletin

board.

(1) If 𝐵 is a voter’s ballot, parse 𝛽 as (pk, 𝒖, 𝜋, 𝜎). Check (i) pk
does not appear in other ballots; (ii) 𝒖 does not appear in

other ballots; (iii) NIZKknowledge .Verify(𝜋, 𝒖)
?

= 1; and (iv)

Sig.verifypk (𝜎, 𝒖)
?

= 1.

(2) If 𝐵 is an expert’s ballot, parse 𝛽 as (E𝑖 , 𝒄, 𝜏, 𝑒𝑖). Check (i)

E𝑖 does not appear in other ballots; (ii) 𝒄 does not appear in

other ballots; (iii) NIZKknowledge .Verify(𝜏, 𝒄)
?

= 1; and (iv)

𝑒𝑖 is E𝑖 ’s valid authentication message on 𝒄 .
(3) Return ⊤ if and only if all the checks pass.

Tally Phase:
Procedure 8 (Tally). When the voting phase ends, the shuffler and

trustees will perform the tally procedure.

(1) The shuffler takes all the registration items from the BB.
(2) For each registration item ⟨�̃�, 𝐴, tx, 𝛿, 𝜎RA⟩ published by the

RA, check (i)NIZKpower .Verify(𝐴, tx, 𝛿)
?

= 1; (ii) Sig.VerifypkRA
(𝜎RA, �̃� | |𝐴| |tx| |𝛿)

?

= 1. The shuffler removes the invalid

ones and removes tx, 𝛿, 𝜎RA.
(3) For each fake registration item ⟨𝐾 ′, 𝐴0, 𝜌⟩ published by a

voter, check NIZKknowledge .Verify(𝐾 ′, 𝜌)
?

= 1. Remove the

invalid ones and remove 𝜌 .

8

A Scalable Coercion-resistant Voting Scheme for Blockchain Decision-making

(4) The shuffler takes all the ballots from the BB.
(5) For each voter’s ballot 𝛽V = (pk, 𝒖, 𝜋, 𝜎), check (i)NIZKknowledge .

Verify(𝒖, 𝜋) ?

= 1; (ii) Sig.Verifypk (𝜎, 𝒖)
?

= 1. Remove the in-

valid ballots and remove 𝜋, 𝜎 . Now, a voter’s ballot 𝐵 is of

the form (pk, 𝒖).
(6) For each expert’s ballot 𝛽E = (E𝑖 , 𝒄, 𝜏, 𝑒𝑖), check (i)NIZKknowledge .

Verify(𝒄, 𝜏) ?

= 1; (ii) 𝑒𝑖 is a valid authentication message on

𝒄 . Remove the invalid ballots and remove 𝜏, 𝑒𝑖 . Now, an

expert’s ballot 𝐵E is of the form (E𝑖 , 𝒄).
(7) The shuffler puts all the valid registration items together.

At this point, each registration item is of the form (𝐾,𝐴),
where 𝐾 is the encrypted public key, and𝐴 is the encrypted

voting power.

(8) The shuffler verifiably shuffle re-encrypts the registration

items.

(9) For each shuffled registration item (𝐾,𝐴), the trustees ver-
ifiably decrypt the public keys 𝐾 . If the same public key

appears multiple times, drop them.

(10) For each ballot 𝐵, if the public key does not match any

public key in the registration items, drop it.

(11) Put the corresponding 𝐴 together with 𝒖, i.e., assume a

ballot 𝐵 = (pk, 𝒖) and a registration item𝑊 = (𝐾,𝐴), if
EC.DecskT (𝐾) = pk, we put𝐴 and 𝒖 together to form a new

item 𝐼 := (𝐴, 𝒖).
(12) The shuffler verifiably shuffle re-encrypts the new items.

(13) For each candidateC𝑖 , set initial score as 𝒔𝑖 := LE.EncpkT (0).
For each expert E𝑗 , set initial score as 𝒔ℓ+𝑗 := LE.EncpkT (0).

(14) For each shuffled item 𝐼 := (𝐴, 𝒖), the trustees verifiably
decrypt 𝒖 to 𝑣 and update candidate (or expert) 𝑣 ’s score

𝒔𝑣 := 𝒔𝑣 · 𝐴.
(15) Form a list of each expert’s encrypted score and encrypted

candidate, i.e., expert E𝑖 ’s entry is (𝒔ℓ+𝑖 , 𝒄𝑖).
(16) For each expert’s ballot (𝒔, 𝒄), the trustees verifiably decrypt

𝒄 to 𝑣 and update candidate 𝑣 ’s score 𝒔𝑣 := 𝒔𝑣 · 𝒔.
(17) For each candidate C𝑖 , the trustees verifiably decrypt the

score 𝒔𝑖 to 𝑠𝑖 .
(18) Return {𝑠𝑖 }𝑖∈[ℓ] as the final result.

Procedure 9 (VerifyElection). Any party can verify that the election
is performed correctly.

(1) Verify all experts’ registration messages to check that the

list of eligible experts is correctly formed.

(2) For each registration item published by the RA, parse it as

⟨�̃�, 𝐴, tx, 𝛿, 𝜎RA⟩, and check (i)NIZKpower .Verify(𝐴, tx, 𝛿)
?

=

1; (ii) Sig.VerifypkRA (𝜎RA, �̃� | |𝐴| |tx| |𝛿)
?

= 1. Check that all

the invalid ones are removed and all the valid ones are

counted.

(3) For each fake registration item published by a voter, parse

it as ⟨𝐾 ′, 𝐴0, 𝜌⟩, check NIZKknowledge .Verify(𝐾 ′, 𝜌)
?

= 1.

Check that all the invalid ones are removed and all the

valid ones are counted.

(4) Check all the shuffle NIZKs and decryption NIZKs during

the tally phase.

(5) Return ⊤ if and only if all of the checks pass.

Exp
𝐵𝑃
A,V [𝑏] (𝜆, C) :

((pkRA, skRA), (pkT, skT)) ← Setup(1𝜆, C);
𝑏′ ← AO (skRA, pkT, C);
output 𝑏′ .

Oracles:
OvoteLR(pk, sk, 𝑣0, 𝑣1) :
let 𝛽0 = V_vote(pk, sk, 𝑣0) and 𝛽1 = V_vote(pk, sk, 𝑣1);
if Validate(BB𝑏 , 𝛽𝑏) = ⊥ then return ⊥;
else BB0 ← BB0 | |𝛽0 and BB1 ← BB1 | |𝛽1 .
Ocast(𝛽) :
if Validate(BB𝑏 , 𝛽) = ⊥ then return ⊥;
else BB0 ← BB0 | |𝛽 and BB1 ← BB1 | |𝛽.
Oboard() :
return BB𝑏 .
Otally() :
(𝑟,Π0) ← Tally(BB0, skT);
Π1 = SimTally(BB1, 𝑟);
return (𝑟,Π𝑏).

Figure 8: Ballot Privacy Experiment Exp𝐵𝑃A,V [𝑏] (𝜆, C)

5 SECURITY ANALYSIS
In this section, we analyze ballot privacy, verifiability, and coercion-

resistance of our voting scheme. As mentioned above, experts do

not have ballot privacy and coercion-resistance, so we can adopt the

definitions of ballot privacy and coercion-resistance by Bernhard

et al. [10, 11]. We adapt Cortier et al.’s verifiability definition [21]

to delegative and weighted voting.

5.1 Ballot Privacy
Ballot privacy is based on the definition by Bernhard et al. [10].

The ballot privacy experiment tracks two bulletin boards: BB0 for
the “real” world and BB1 for the “fake” world, in which only one

bulletin board is available the the adversary A. The outcome of

the election is always computed on the real bulletin board BB0.
The adversary controls the registration authority RA and a subset

of voters, and his goal is to distinguish whether the tally result is

evaluated over the “real” or “fake” world.

Formally, the ballot privacy experiment is depicted in Figure 8.

The adversary A takes as input RA’s secret key skRA (since he

controls the RA), the trustees’ public key pkT, and the candidate

list C, and he can query the following oracles:

• OvoteLR(pk, sk, 𝑣0, 𝑣1), which allows the adversary A to

let a voter with (pk, sk) cast a vote for 𝑣0 on BB0 and a vote
for 𝑣1 on BB1.

• Ocast(𝛽), which allows the adversary A to cast a ballot 𝛽

(constructed by A) on both BB0 and BB1.
• Oboard(), which allows the adversaryA to see the content

of a bulletin board depending on the bit 𝑏.

• Otally(), which allows the adversary A to see the tally

result and proof of tally correctness. The result 𝑟 is always

evaluated by tallying BB0, and the proof is simulated when

𝑏 = 1.

9

Zeyuan Yin, Bingsheng Zhang, Andrii Nastenko, Roman Oliynykov, and Kui Ren

Definition 1. Ballot privacy. LetV = {Setup,Reg, FakeReg, E_reg,
V_vote, E_vote,Validate, Tally,VerifyElection} be an election scheme
for a candidate list C and security parameter 𝜆. We say thatV meets
ballot privacy if there exists a PPT simulation algorithm SimTally
such that for any PPT adversary A:

| Pr[Exp𝐵𝑃A,V [0] (𝜆, C) = 1] − Pr[Exp𝐵𝑃A,V [1] (𝜆, C) = 1] |
is a negligible function in the security parameter 𝜆.

Theorem 1. Assume that the ElGamal encryption scheme is IND-
CPA secure, the underlying NIZKs NIZK𝑖 , 𝑖 ∈ {power, knowledge,
DVP-reenc, sk, shuffle,Dec} are complete, sound, and zero-knowledge,
NIZKknowledge is simulation-sound extractable, and the signature
scheme is EUF-CMA secure. The voting protocol described in secion 4
provides ballot privacy.

The proof of this theorem is deferred to Appendix C. We also

prove that our scheme provides strong consistency and strong

correctness [10].

5.2 Verifiability
We adapt Cortier et al.’s verifiability definition [21] to our delega-

tive and weighted voting. In a nutshell, a voting scheme is verifiable

if the election result reflects the votes of 1) all honest voters/experts

who checked their votes, which appear on the bulletin board; 2) at

most 𝑛𝑐 voters/experts who are controlled by the adversary; and 3)

a subset of the votes by honest voters/experts that did not check

if their ballots were cast correctly. In our scheme, the registration

authority is not trusted for verifiability, which is known as strong

verifiability [21].

The verifiability experiment is formally depicted in Figure 9. We

useU to denote the set of public-private key pairs and Corrupted to
denote the set of corrupted voters/experts. Let𝐻 = {(pkℎ

𝑖
, 𝑣ℎ
𝑖
, 𝛼ℎ

𝑖
, ∗)}𝑛ℎ

𝑖=1
correspond to voters/experts that have checked that their ballots

will be counted and 𝐻 ′ = {(pkℎ′
𝑖
, 𝑣ℎ

′
𝑖
, 𝛼ℎ

′
𝑖
, ∗)}𝑛ℎ′

𝑖=1
correspond to vot-

ers/experts that have not checked their ballots (for experts, 𝛼𝑖 = ∅).
We adapt the result function 𝜌 to the delegative and weighted vot-

ing setting, i.e., 𝜌 : (V ∨ E)𝜏 → 𝑹 takes as inputs voters’ and

experts’ choices, and outputs the election result. The adversary A
takes as input RA’s secret key skRA, the trustees’ secret key skT,
and the candidate list C, and he can query the following oracles:

• Ocorrupt(𝑖𝑑), which allows the adversary A to corrupt a

voter/expert 𝑖𝑑 .

• Ovote(𝑖𝑑, 𝑣), which allows the adversaryA to let an honest

voter/expert 𝑖𝑑 cast a vote for 𝑣 .

Note thatA does not need the Oregister oracle since he controls
the registration authority and thus can register arbitrarily. The ad-

versary wins if the result 𝑟 verifies but violates any of the following

conditions: 1) for each voter/expert that has checked his ballot, the

ballot is counted; 2) at most 𝑛𝑐 corrupted votes are counted; 3) a

subset of votes by honest voters/experts that did not check their

ballots are counted.

Definition 2. Verifiability. LetV = {Setup,Reg, FakeReg, E_reg,
V_vote, E_vote,Validate, Tally,VerifyElection} be an election scheme
for a candidate list C and security parameter 𝜆. We say thatV meets
verifiability if for any PPT adversary A:

Pr[Exp𝑣𝑒𝑟A,V (𝜆, C) = ⊤]

Exp
𝑣𝑒𝑟
A,V (𝜆, C) :

((pkRA, skRA), (pkT, skT)) ← Setup(1𝜆, C);
(BB, 𝑟 ,Π) ← AO (skRA, skT);
if VerifyElection(BB, (𝑟,Π)) = ⊥ then return ⊥;
if 𝑟 = ⊥ then return ⊥;
𝐻 = {(pkℎ

𝑖
, 𝑣ℎ
𝑖
, 𝛼ℎ

𝑖
, ∗)}𝑛ℎ

𝑖=1
and 𝐻 ′ = {(pkℎ′

𝑖
, 𝑣ℎ

′
𝑖
, 𝛼ℎ

′
𝑖
, ∗)}𝑛ℎ′

𝑖=1
;

if ∃{pk𝑐
𝑖
, 𝑣𝑐
𝑖
, 𝛼𝑐

𝑖
}𝑛𝑐
𝑖=1
⊆ Corrupted, ∃{(pkℎ′

𝑖
, 𝑣ℎ

′
𝑖
, 𝛼ℎ

′
𝑖
, ∗)}𝑡

𝑖=1
⊆ 𝐻 ′ s.t.

𝑟 = 𝜌 ({pkℎ
𝑖
, 𝑣ℎ
𝑖
, 𝛼ℎ

𝑖
}𝑛ℎ
𝑖=1
∪ {pk𝑐

𝑖
, 𝑣𝑐
𝑖
, 𝛼𝑐

𝑖
}𝑛𝑐
𝑖=1
∪ {pkℎ′

𝑖
, 𝑣ℎ

′
𝑖
, 𝛼ℎ

′
𝑖
}𝑡
𝑖=1
)

then return ⊥ else return ⊤.
Oracles:
Ocorrupt(𝑖𝑑) :
if (𝑖𝑑, ∗, ∗) ∉ U then return ⊥;
Corrupted← Corrupted ∪ {(pk𝑖𝑑 , ∗, 𝛼𝑖𝑑)};
return (pk𝑖𝑑 , sk𝑖𝑑);

Ovote(𝑖𝑑, 𝑣) :
if (𝑖𝑑, ∗, ∗) ∉ U or (𝑖𝑑, ∗) ∈ Corrupted then return ⊥;
if 𝑖𝑑 is voter then

𝛽 ← V_vote(pk𝑖𝑑 , sk𝑖𝑑 , 𝑣);
else

𝛽 ← E_vote(Auth𝑖𝑑 , 𝑣);
end if

𝐻 ∪ 𝐻 ′ ← Update(𝐻 ∪ 𝐻 ′, (𝑖𝑑, 𝑣, 𝛼𝑖𝑑 , 𝛽));
return 𝛽.

Figure 9: Verifiability Experiment Exp𝑣𝑒𝑟A,V (𝜆, C)

is a negligible function in the security parameter 𝜆.

Theorem 2. Assume that the underlying NIZKsNIZK𝑖 , 𝑖 ∈ {power,
knowledge,DVP-reenc, sk, shuffle,Dec} are complete, sound, and
zero-knowledge, and the signature scheme is EUF-CMA secure. The
voting protocol described in section 4 provides verifiability.

The proof of this theorem is deferred to Appendix D.

5.3 Coercion-resistance
The definition of coercion-resistance is inspired by Bernhard

et al. [11]. Similar to the ballot privacy definition, the coercion-

resistance experiment tracks two bulletin boards for the “real” world

and the “fake” world, respectively. The adversary’s goal is to distin-

guish whether he is in the “real” or “fake” world.

The coercion-resistance experiment is depicted in Figure 10. The

adversary A takes as input RA’s public key pkRA, the trustees’

public key skT, and the candidate list C (since RA and trustees

are trusted for coercion-resistance). The adversary has access to

OvoteLR, Ocast, Oboard, and Otally as in the ballot privacy experi-

ment, along with an additional oracle Oreceipt(𝑖𝑑, 𝑣0, 𝑣1). Oreceipt
(𝑖𝑑, 𝑣0, 𝑣1) allows the adversary A to let a voter 𝑖𝑑 submit to coer-

cion by voting for 𝑣0 on 𝐵𝐵0, and resist coercion by voting for 𝑣1 on

𝐵𝐵1. It will return the ballot cast under coercion 𝛽𝑏 and a receipt.

If the voter submits to coercion, the receipt is the real view during

the registration and voting phase; if the voter resists coercion, the

receipt is simulated by the algorithm SimView.

Definition 3. Coercion-resistance. LetV = {Setup,Reg, FakeReg,
E_reg,V_vote, E_vote,Validate, Tally,VerifyElection} be an election

10

A Scalable Coercion-resistant Voting Scheme for Blockchain Decision-making

Exp
𝐶𝑅
A,V [𝑏] (𝜆, C) :

((pkRA, skRA), (pkT, skT)) ← Setup(1𝜆, C);
𝑏′ ← AO (pkRA, pkT, C);
Output 𝑏′ .

Oracles:
OvoteLR(𝑖𝑑, 𝑣0, 𝑣1) :
(pk, sk) ← Reg(𝑖𝑑);
let 𝛽0 = V_vote(pk, sk, 𝑣0) and 𝛽1 = V_vote(pk, sk, 𝑣1);
if Validate(BB𝑏 , 𝛽𝑏) = ⊥ then return ⊥;
else BB0 ← BB0 | |𝛽0 and BB1 ← BB1 | |𝛽1 .
Oreceipt(𝑖𝑑, 𝑣0, 𝑣1) : % submit versus resist

(pk, sk) ← Reg(𝑖𝑑);
(pk′, sk′) ← FakeReg(𝑖𝑑);
let 𝛽0 = V_vote(pk, sk, 𝑣0) and 𝛽1 = V_vote(pk′, sk′, 𝑣0);
if Validate(BB𝑏 , 𝛽𝑏) = ⊥ then return ⊥;
else BB0 ← BB0 | |𝛽0 and BB1 ← BB1 | |𝛽1 .
if 𝑏 = 0 then

receipt = View{Reg(𝑖𝑑),V_vote(pk, sk, 𝑣0)};
else

receipt = SimView(sk𝑖𝑑);
end if

let 𝛽′
0
= V_vote(pk′, sk′, 𝑣1) and 𝛽′

1
= V_vote(pk, sk, 𝑣1);

if Validate(BB𝑏 , 𝛽′𝑏) = ⊥ then return ⊥;
else BB0 ← BB0 | |𝛽′

0
and BB1 ← BB1 | |𝛽′

1
.

return (𝛽𝑏 , receipt) .
Ocast(𝛽) :
if Validate(𝐵𝐵𝑏 , 𝛽) = ⊥ then return ⊥;
else BB0 ← BB0 | |𝛽 and BB1 ← BB1 | |𝛽.
Oboard() :
return BB𝑏 .
Otally() :
(𝑟,Π0) ← Tally(BB0, skT);
Π1 = SimTally(BB1, 𝑟);
return (𝑟,Π𝑏).

Figure 10: Coercion-resistance Experiment Exp𝐶𝑅A,V [𝑏] (𝜆, C)

scheme for a candidate list C and security parameter 𝜆. We say that
V meets coercion-resistance if there exist PPT simulation algorithms
SimView and SimTally such that for any PPT adversary A:

| Pr[Exp𝐶𝑅A,V [0] (𝜆, C) = 1] − Pr[Exp𝐶𝑅A,V [1] (𝜆, C) = 1] |

is a negligible function in the security parameter 𝜆.

Theorem 3. Assume that the ElGamal encryption scheme is IND-
CPA secure, the underlying NIZKs NIZK𝑖 , 𝑖 ∈ {power, knowledge,
DVP-reenc, sk, shuffle,Dec} are complete, sound, and zero-knowledge,
NIZKknowledge,NIZKsk are simulation-sound extractable, and the sig-
nature scheme is EUF-CMA secure. The voting protocol described in
section 4 provides coercion-resistance.

The proof of this theorem is deferred to Appendix E.

6 DISCUSSION
Vote-buying via stake-buying. In blockchain voting, typically, a

voter’s voting power is proportional to his stake. Since blockchain

coins are publicly traded in open exchanges, one may argue that it

is always possible to realize vote-buying via stake-buying. However,

acquiring sufficient voting power through stake-buying is imprac-

tical. For an adversary to be successful, he needs to purchase a

substantial amount of stake. Here’s the catch: when buying from an

exchange, there is often limited availability of stakes. Furthermore,

rapidly purchasing large volumes of stake will inevitably drive up

the price due to the basic principles of supply and demand. This

surge in price could put the adversary’s capital at risk. In contrast,

vote-buying is a much simpler method and is detrimental to the

decision-making process. Our coercion-resistant voting scheme

effectively prevents vote-buying on the blockchain.

Stake renting/smart contract vote-buying. Another attack on

blockchain voting is to use a smart contract to “rent” stakes. The

smart contract collects stakes, uses the stakes for voting, and re-

turns them back with an extra payment after the election. We

defend against this attack by prohibiting contract accounts from

participating in the voting.

Inalienable authentication. Coercion-resistant voting requires
inalienable authentication [1], i.e., the coercer can neither imper-

sonate the voter nor prevent the voter from authenticating. In the

blockchain context, authentication is realized by proving knowl-

edge of his blockchain secret key, and it is assumed that the voter

will not give his secret key to the coercer. However, the “Dark DAO”

attack [5, 24] is still possible if the coercer can use TEEs. Specif-

ically, the coercer can set up a TEE running a “cryptocurrency

wallet” and create an encumbered key. The remote attestation of

the TEE can prove that the wallet will not steal the bribee’s stake.

Then, a voter can transfer his stake to the account and use his

own secret key to manage it. At the end of the election, the TEE

ensures a fair exchange for voting-buying. As pointed out in [24],

this problem is inherent in any remote voting scheme where the

secret key is generated by the voter. Kelkar et al. [35] proposed
two schemes to defend against such kind of attacks using TEEs

and ASICs (Application-Specific Integrated Circuit), respectively.

But neither of them is suitable in the blockchain context. In this

work, we assume that authentication is inalienable. How to defend

against this type of attack is out of the scope of this paper. We leave

it as an interesting open question.

Complexity. In the preparation phase, the RA takes 𝑂 (1) time to

generate the signing key pair, and the trustees take 𝑂 (𝑘) time to

perform the DKG protocol, where 𝑘 is the number of trustees. In the

registration phase, a voter generates a NIZK proof of voting power

correctness and verifies a designated verifier proof, which has𝑂 (1)
complexity. In the voting/delegation phase, the ballot generation has

𝑂 (1) complexity. In the tally phase, the shuffler shuffles the ballots

and the registration items, which has 𝑂 (𝑛) complexity (counting

cryptographic operations only), where 𝑛 is the number of voters.

Then, the trustees decrypt the public keys, do the matching between

the voting power and candidates, and decrypt the candidates. Thus,

the time complexity of a trustee is also𝑂 (𝑛). Adding them together,

our scheme has 𝑂 (𝑛) time complexity.

7 IMPLEMENTATION AND EVALUATION
We implement a prototype of our voting scheme in Rust. The

implementation uses OpenSSL 1.1.1t to provide the basic elliptic

11

Zeyuan Yin, Bingsheng Zhang, Andrii Nastenko, Roman Oliynykov, and Kui Ren

0 20000 40000 60000 80000 100000
Number of voters

0

500

1000

1500

2000

2500

3000

Ta
lly

 e
xe

cu
ti

on
 t

im
e,

 s
 (

25
%

 e
xt

ra
 b

al
lo

ts
)

Our scheme
VoteAgain

0 20000 40000 60000 80000 100000
Number of voters

0

500

1000

1500

2000

2500

3000

Ta
lly

 e
xe

cu
ti

on
 t

im
e,

 s
 (

50
%

 e
xt

ra
 b

al
lo

ts
)

Our scheme
VoteAgain

0 20000 40000 60000 80000 100000
Number of voters

0

500

1000

1500

2000

2500

3000

Ta
lly

 e
xe

cu
ti

on
 t

im
e,

 s
 (

75
%

 e
xt

ra
 b

al
lo

ts
)

Our scheme
VoteAgain

Figure 11: Comparison of tally execution time between our scheme and VoteAgain [40] (with extra ballot rate as 25%, 50%, 75%
from left to right). In VoteAgain, 𝑥% extra ballot rate means that 𝑥% voters re-vote once; in our scheme, 𝑥% extra ballot rate
means that 𝑥% voters cast one fake ballot.

0 10 20 30 40 50 60
Number of trustees

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ex
ec

ut
io

n
ti

m
e,

 s

0

200

400

600

800

1000

O
ve

ra
ll

tr
af

fic
, K

B

Execution time
Overall traffic

Figure 12: DKG execution time and overall trafficwith respect
to different numbers of trustees

curve math, and it uses Schnorr signature as the signature scheme.

We evaluate all the cryptographic building blocks and the time

consumption in each phase. The experiments are performed on a

workstation with Intel Core i7-1165G7 @2.80GHz and 32GB RAM

running Ubuntu 20.04.4 LTS x64, using the elliptic curve secp256r1.

Preparation phase. We evaluate the DKG execution time and

traffic with respect to different numbers of trustees: from 4 to 64.

Results are given in Figure 12.

Registration phase. In the registration phase, the voter uses

NIZKpower in the registration message to prove that the frozen

stake is equal to the encrypted voting power, and the RA proves re-

encryption correctness by a designated verifier proofNIZKDVP-reenc.
Generating a registration message costs 430.95 µs, and its size is

475 bytes. The designated verifier proof costs 102.91 µs to generate

and 181.69 µs to verify, and its size is 141 bytes. Generating a fake

registration item costs 336.05 µs, and the size is 267 bytes.

Voting/Delegation phase. In the voting/delegation phase, voters

and experts encrypt the choice, sign it, and use NIZKknowledge
to prove plaintext knowledge of the ballot. It takes 283.27 µs to

generate a ballot. The size of a voter’s ballot is 358 bytes, and the

size of an expert’s ballot is 332 bytes.

Tally phase. We evaluate the tally execution time with respect

to different numbers of voters and different extra ballot rates and

compare the results with VoteAgain [40]. Here, extra ballot rate

represents how many voters cast extra ballots, i.e., in VoteAgain,

50% extra ballot rate means that 50% voters re-vote once; in our

scheme, 50% extra ballot rate means that 50% voters cast one fake

ballot. Note that, in our scheme, a voter’s ballot takes more time

to tally than an expert’s ballot (because voters’ ballots are shuffled

and experts’ ballots are not shuffled), so we set expert number as

zero in the experiments.

Figure 11 shows the tally execution time compared with VoteA-

gain [40] when the extra ballot rates are 25%, 50%, and 75% from

left to right. VoteAgain’s benchmark fails in 102400 voters with 50%

and 75% extra ballot rates (probably because of too large ciphertext

input). We can see that our scheme’s execution time grows linearly,

and VoteAgain’s execution time grows quasi-linearly (𝑂 (𝑛 log𝑛)).
A higher rate of extra ballots confers a greater advantage, as it ne-

cessitates VoteAgain to introduce a substantial quantity of dummy

ballots in this scenario. In large-scale voting with more than 10000

voters and over 50% extra ballot rate, our scheme’s tally execution

time is over 6x faster than VoteAgain.

8 CONCLUSION
In this work, we propose the first scalable coercion-resistant

blockchain decision-making scheme that supports differential vot-

ing power and liquid democracy. It is scalable in the sense that it has

constant ballot size and linear complexity. We formally prove that

the proposed scheme has ballot privacy, verifiability, and coercion-

resistance without any extra strong assumptions. Our scheme has

an advantage over all the existing coercion-resistant voting schemes,

so it is suitable for large-scale coercion-resistant blockchain voting

programs.

REFERENCES
[1] Dirk Achenbach, Carmen Kempka, Bernhard Löwe, and Jörn Müller-Quade.

2015. Improved Coercion-Resistant Electronic Elections through Deniable

Re-Voting. USENIX Journal of Election Technology and Systems (JETS)
(Aug. 2015). https://www.usenix.org/conference/jets15/workshop-program/

presentation/achenbach

12

https://www.usenix.org/conference/jets15/workshop-program/presentation/achenbach
https://www.usenix.org/conference/jets15/workshop-program/presentation/achenbach

A Scalable Coercion-resistant Voting Scheme for Blockchain Decision-making

[2] Ben Adida. 2008. Helios: Web-based Open-Audit Voting. In USENIX Security
2008: 17th USENIX Security Symposium, Paul C. van Oorschot (Ed.). USENIX

Association, San Jose, CA, USA, 335–348.

[3] Joël Alwen, Rafail Ostrovsky, Hong-Sheng Zhou, and Vassilis Zikas. 2015. In-

coercible Multi-party Computation and Universally Composable Receipt-Free

Voting. In Advances in Cryptology – CRYPTO 2015, Part II (Lecture Notes in Com-
puter Science, Vol. 9216), Rosario Gennaro and Matthew J. B. Robshaw (Eds.).

Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 763–780. https:

//doi.org/10.1007/978-3-662-48000-7_37

[4] Roberto Araújo, Amira Barki, Solenn Brunet, and Jacques Traoré. 2016. Remote

Electronic Voting Can Be Efficient, Verifiable and Coercion-Resistant. In FC
2016 Workshops (Lecture Notes in Computer Science, Vol. 9604), Jeremy Clark,

Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach, Michael Brenner, and Kurt

Rohloff (Eds.). Springer, Heidelberg, Germany, Christ Church, Barbados, 224–232.

https://doi.org/10.1007/978-3-662-53357-4_15

[5] James Austgen, Andrés Fábrega, Sarah Allen, Kushal Babel, Mahimna Kelkar, and

Ari Juels. 2023. DAO Decentralization: Voting-Bloc Entropy, Bribery, and Dark

DAOs. CoRR abs/2311.03530 (2023). https://doi.org/10.48550/ARXIV.2311.03530

arXiv:2311.03530

[6] Stephanie Bayer and Jens Groth. 2012. Efficient Zero-Knowledge Argument

for Correctness of a Shuffle. In Advances in Cryptology – EUROCRYPT 2012
(Lecture Notes in Computer Science, Vol. 7237), David Pointcheval and Thomas

Johansson (Eds.). Springer, Heidelberg, Germany, Cambridge, UK, 263–280. https:

//doi.org/10.1007/978-3-642-29011-4_17

[7] Mihir Bellare and Phillip Rogaway. 1994. Entity Authentication and Key Dis-

tribution. In Advances in Cryptology – CRYPTO’93 (Lecture Notes in Computer
Science, Vol. 773), Douglas R. Stinson (Ed.). Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 232–249. https://doi.org/10.1007/3-540-48329-2_21

[8] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, Berkeley, CA, USA, 459–474. https://doi.org/10.1109/

SP.2014.36

[9] Juan Benet. 2014. IPFS - Content Addressed, Versioned, P2P File System. CoRR
abs/1407.3561 (2014). arXiv:1407.3561 http://arxiv.org/abs/1407.3561

[10] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bogdan

Warinschi. 2015. SoK: A Comprehensive Analysis of Game-Based Ballot Privacy

Definitions. In 2015 IEEE Symposium on Security and Privacy. IEEE Computer

Society Press, San Jose, CA, USA, 499–516. https://doi.org/10.1109/SP.2015.37

[11] David Bernhard, Oksana Kulyk, and Melanie Volkamer. 2017. Security Proofs

for Participation Privacy, Receipt-Freeness and Ballot Privacy for the Helios

Voting Scheme. In Proceedings of the 12th International Conference on Availability,
Reliability and Security, Reggio Calabria, Italy, August 29 - September 01, 2017.
ACM, 1:1–1:10. https://doi.org/10.1145/3098954.3098990

[12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. 2012. How Not to Prove

Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios. In

Advances in Cryptology – ASIACRYPT 2012 (Lecture Notes in Computer Science,
Vol. 7658), Xiaoyun Wang and Kazue Sako (Eds.). Springer, Heidelberg, Germany,

Beijing, China, 626–643. https://doi.org/10.1007/978-3-642-34961-4_38

[13] Alex Biryukov and Ivan Pustogarov. 2015. Bitcoin over Tor isn’t a Good Idea. In

2015 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San

Jose, CA, USA, 122–134. https://doi.org/10.1109/SP.2015.15

[14] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions and

More. In 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, San Francisco, CA, USA, 315–334. https://doi.org/10.1109/SP.2018.00020

[15] Sergiu Bursuc, Gurchetan S. Grewal, and Mark Dermot Ryan. 2011. Trivitas:

Voters Directly Verifying Votes. In E-Voting and Identity - Third International
Conference, VoteID 2011, Tallinn, Estonia, September 28-30, 2011, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 7187), Aggelos Kiayias and Helger

Lipmaa (Eds.). Springer, 190–207. https://doi.org/10.1007/978-3-642-32747-6_12

[16] David Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Commun. ACM 24, 2 (1981), 84–88. https://doi.org/10.1145/358549.

358563

[17] David Chaum. 2016. Random-sample voting. White Paper (2016).
[18] Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient distributed

ledger. Theor. Comput. Sci. 777 (2019), 155–183. https://doi.org/10.1016/J.TCS.

2019.02.001

[19] Jeremy Clark and Urs Hengartner. 2012. Selections: Internet Voting with Over-

the-Shoulder Coercion-Resistance. In FC 2011: 15th International Conference on
Financial Cryptography and Data Security (Lecture Notes in Computer Science,
Vol. 7035), George Danezis (Ed.). Springer, Heidelberg, Germany, Gros Islet, St.

Lucia, 47–61.

[20] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. 2008. Civitas:

Toward a Secure Voting System. In 2008 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, Oakland, CA, USA, 354–368. https://doi.org/10.

1109/SP.2008.32

[21] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachène.

2014. Election Verifiability for Helios under Weaker Trust Assumptions. In

ESORICS 2014: 19th European Symposium on Research in Computer Security, Part II
(Lecture Notes in Computer Science, Vol. 8713), Miroslaw Kutylowski and Jaideep

Vaidya (Eds.). Springer, Heidelberg, Germany, Wroclaw, Poland, 327–344. https:

//doi.org/10.1007/978-3-319-11212-1_19

[22] Véronique Cortier and Joseph Lallemand. 2018. Voting: You Can’t Have Privacy

without Individual Verifiability. In ACM CCS 2018: 25th Conference on Computer
and Communications Security, David Lie, Mohammad Mannan, Michael Backes,

and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada, 53–66. https:

//doi.org/10.1145/3243734.3243762

[23] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. 1994. Proofs of Partial

Knowledge and Simplified Design of Witness Hiding Protocols. In Advances
in Cryptology – CRYPTO’94 (Lecture Notes in Computer Science, Vol. 839), Yvo
Desmedt (Ed.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 174–187.

https://doi.org/10.1007/3-540-48658-5_19

[24] Philip Daian, Tyler Kell, Ian Miers, and Ari Juels. 2018. On-Chain Vote Buying
and the Rise of Dark DAOs. https://hackingdistributed.com/2018/07/02/on-chain-

vote-buying (Last accessed: 2024-04-18).

[25] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In Advances in Cryptology – CRYPTO’86
(Lecture Notes in Computer Science, Vol. 263), Andrew M. Odlyzko (Ed.). Springer,

Heidelberg, Germany, Santa Barbara, CA, USA, 186–194. https://doi.org/10.1007/

3-540-47721-7_12

[26] Bryan Alexander Ford. 2002. Delegative democracy. (2002).

[27] Chaya Ganesh, Claudio Orlandi, and Daniel Tschudi. 2019. Proof-of-Stake

Protocols for Privacy-Aware Blockchains. In Advances in Cryptology – EURO-
CRYPT 2019, Part I (Lecture Notes in Computer Science, Vol. 11476), Yuval Ishai
and Vincent Rijmen (Eds.). Springer, Heidelberg, Germany, Darmstadt, Germany,

690–719. https://doi.org/10.1007/978-3-030-17653-2_23

[28] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 1999. Secure

Distributed Key Generation for Discrete-Log Based Cryptosystems. In Advances
in Cryptology – EUROCRYPT’99 (Lecture Notes in Computer Science, Vol. 1592),
Jacques Stern (Ed.). Springer, Heidelberg, Germany, Prague, Czech Republic,

295–310. https://doi.org/10.1007/3-540-48910-X_21

[29] Rosario Giustolisi, Maryam Sheikhi Garjan, and Carsten Schuermann. 2023.

Thwarting Last-Minute Voter Coercion. Cryptology ePrint Archive, Paper

2023/1876. https://eprint.iacr.org/2023/1876 https://eprint.iacr.org/2023/1876.

[30] Kristian Gjøsteen. 2011. The Norwegian Internet Voting Protocol. In E-Voting and
Identity - Third International Conference, VoteID 2011, Tallinn, Estonia, September
28-30, 2011, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 7187),
Aggelos Kiayias and Helger Lipmaa (Eds.). Springer, 1–18. https://doi.org/10.

1007/978-3-642-32747-6_1

[31] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In

Advances in Cryptology – EUROCRYPT 2016, Part II (Lecture Notes in Computer
Science, Vol. 9666), Marc Fischlin and Jean-Sébastien Coron (Eds.). Springer, Hei-

delberg, Germany, Vienna, Austria, 305–326. https://doi.org/10.1007/978-3-662-

49896-5_11

[32] Lucca Hirschi, Lara Schmid, and David A. Basin. 2021. Fixing the Achilles

Heel of E-Voting: The Bulletin Board. In CSF 2021: IEEE 34th Computer Security
Foundations Symposium, Ralf Küsters and Dave Naumann (Eds.). IEEE Computer

Society Press, Virtual Conference, 1–17. https://doi.org/10.1109/CSF51468.2021.

00016

[33] Martin Hirt and Kazue Sako. 2000. Efficient Receipt-Free Voting Based on Ho-

momorphic Encryption. In Advances in Cryptology – EUROCRYPT 2000 (Lecture
Notes in Computer Science, Vol. 1807), Bart Preneel (Ed.). Springer, Heidelberg,
Germany, Bruges, Belgium, 539–556. https://doi.org/10.1007/3-540-45539-6_38

[34] Ari Juels, Dario Catalano, and Markus Jakobsson. 2005. Coercion-resistant

electronic elections. In Proceedings of the 2005 ACM Workshop on Privacy in the
Electronic Society, WPES 2005, Alexandria, VA, USA, November 7, 2005, Vijay Atluri,
Sabrina De Capitani di Vimercati, and Roger Dingledine (Eds.). ACM, 61–70.

https://doi.org/10.1145/1102199.1102213

[35] Mahimna Kelkar, Kushal Babel, Philip Daian, James Austgen, Vitalik Buterin, and

Ari Juels. 2023. Complete Knowledge: Preventing Encumbrance of Cryptographic

Secrets. Cryptology ePrint Archive, Report 2023/044. https://eprint.iacr.org/

2023/044.

[36] Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas. 2019.

Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake. In 2019 IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society Press, San Francisco, CA,

USA, 157–174. https://doi.org/10.1109/SP.2019.00063

[37] Markulf Kohlweiss, Varun Madathil, Kartik Nayak, and Alessandra Scafuro. 2021.

On the Anonymity Guarantees of Anonymous Proof-of-Stake Protocols. In 2021
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San

Francisco, CA, USA, 1818–1833. https://doi.org/10.1109/SP40001.2021.00107

[38] Yannan Li, Willy Susilo, Guomin Yang, Yong Yu, Dongxi Liu, Xiaojiang Du, and

Mohsen Guizani. 2022. A Blockchain-Based Self-Tallying Voting Protocol in

Decentralized IoT. IEEE Trans. Dependable Secur. Comput. 19, 1 (2022), 119–130.
https://doi.org/10.1109/TDSC.2020.2979856

13

https://doi.org/10.1007/978-3-662-48000-7_37
https://doi.org/10.1007/978-3-662-48000-7_37
https://doi.org/10.1007/978-3-662-53357-4_15
https://doi.org/10.48550/ARXIV.2311.03530
https://arxiv.org/abs/2311.03530
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
https://doi.org/10.1109/SP.2015.37
https://doi.org/10.1145/3098954.3098990
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1109/SP.2015.15
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-642-32747-6_12
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1016/J.TCS.2019.02.001
https://doi.org/10.1016/J.TCS.2019.02.001
https://doi.org/10.1109/SP.2008.32
https://doi.org/10.1109/SP.2008.32
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1145/3243734.3243762
https://doi.org/10.1145/3243734.3243762
https://doi.org/10.1007/3-540-48658-5_19
https://hackingdistributed.com/2018/07/02/on-chain-vote-buying
https://hackingdistributed.com/2018/07/02/on-chain-vote-buying
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-030-17653-2_23
https://doi.org/10.1007/3-540-48910-X_21
https://eprint.iacr.org/2023/1876
https://eprint.iacr.org/2023/1876
https://doi.org/10.1007/978-3-642-32747-6_1
https://doi.org/10.1007/978-3-642-32747-6_1
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1109/CSF51468.2021.00016
https://doi.org/10.1109/CSF51468.2021.00016
https://doi.org/10.1007/3-540-45539-6_38
https://doi.org/10.1145/1102199.1102213
https://eprint.iacr.org/2023/044
https://eprint.iacr.org/2023/044
https://doi.org/10.1109/SP.2019.00063
https://doi.org/10.1109/SP40001.2021.00107
https://doi.org/10.1109/TDSC.2020.2979856

Zeyuan Yin, Bingsheng Zhang, Andrii Nastenko, Roman Oliynykov, and Kui Ren

[39] Philipp Locher, Rolf Haenni, and Reto E. Koenig. 2016. Coercion-Resistant

Internet Voting with Everlasting Privacy. In FC 2016 Workshops (Lecture Notes in
Computer Science, Vol. 9604), Jeremy Clark, Sarah Meiklejohn, Peter Y. A. Ryan,

Dan S. Wallach, Michael Brenner, and Kurt Rohloff (Eds.). Springer, Heidelberg,

Germany, Christ Church, Barbados, 161–175. https://doi.org/10.1007/978-3-662-

53357-4_11

[40] Wouter Lueks, Iñigo Querejeta-Azurmendi, and Carmela Troncoso. 2020. VoteA-

gain: A scalable coercion-resistant voting system. In USENIX Security 2020:
29th USENIX Security Symposium, Srdjan Capkun and Franziska Roesner (Eds.).

USENIX Association, 1553–1570.

[41] Emmanouil Magkos, Mike Burmester, and Vassilios Chrissikopoulos. 2001.

Receipt-Freeness in Large-Scale Elections without Untappable Channels. In

Towards The E-Society: E-Commerce, E-Business, and E-Government, The First
IFIP Conference on E-Commerce, E-Business, E-Government (I3E 2001), October
3-5, Zürich, Switzerland (IFIP Conference Proceedings, Vol. 202), Beat F. Schmid,

Katarina Stanoevska-Slabeva, and Volker Tschammer (Eds.). Kluwer, 683–693.

https://doi.org/10.1007/0-306-47009-8_50

[42] Peter Y. A. Ryan, David Bismark, James Heather, Steve A. Schneider, and Zhe

Xia. 2009. Prêt à voter: a voter-verifiable voting system. IEEE Trans. Inf. Forensics
Secur. 4, 4 (2009), 662–673. https://doi.org/10.1109/TIFS.2009.2033233

[43] Snapshot. 2024. Snapshot. https://snapshot.org

[44] Votem. 2024. Votem. https://votem.com

[45] Bingsheng Zhang, Roman Oliynykov, and Hamed Balogun. 2019. A Treasury

System for Cryptocurrencies: Enabling Better Collaborative Intelligence. In ISOC
Network and Distributed System Security Symposium – NDSS 2019. The Internet
Society, San Diego, CA, USA.

A DEFINITIONS
Here, we give formal definitions of Sigma protocols, Fiat-Shamir

heuristic, public-key encryption, and signatures.

Sigma protocols. A Sigma protocol is a special type of 3-move

public-coin proof system. A Sigma protocol for relation 𝑅 consists

of three algorithms (C,Z,V):
• 𝑎 ← C(𝑥,𝑤 ; 𝑟) takes as input the statement 𝑥 , witness 𝑤

and random coin 𝑟 . It outputs the initial message 𝑎.

• 𝑧 ← Z(𝑥,𝑤, 𝑟, 𝑒) takes as input the statement 𝑥 , witness

𝑤 , random coin 𝑟 and a given challenge 𝑒 . It outputs the

answer 𝑧.

• 0/1 ← V(𝑥, 𝑎, 𝑒, 𝑧) takes as input the statement 𝑥 , initial

message 𝑎, challenge 𝑒 and answer 𝑧. It outputs 0 or 1 for

rejection or acceptance, respectively.

The completeness, 𝑘-special soundness, and special honest veri-

fier zero-knowledge of Sigma protocols are defined as follows:

• Completeness: for all (𝑥,𝑤) ∈ 𝑅, 𝑒 ∈ {0, 1}𝜆 , Pr[𝑎 ←
C(𝑥,𝑤 ; 𝑟), 𝑧 ←Z(𝑥,𝑤, 𝑟, 𝑒) : V(𝑥, 𝑎, 𝑒, 𝑧) = 1] = 1

• 𝑘-special soundness: there exists a deterministic polynomial-

time extractorX such that for any PPT adversaryA: Pr[(𝑥, 𝑎)
← A(1𝜆), 𝑒1, . . . , 𝑒𝑘 ← {0, 1}𝜆, 𝑧1, . . . , 𝑧𝑘 ← A(𝑒1, . . . , 𝑒𝑘),
𝑤 ← X(𝑥, 𝑎, {𝑒1, 𝑧1}, . . . , {𝑒𝑘 , 𝑧𝑘 }) : V(𝑥, 𝑎, 𝑒𝑖 , 𝑧𝑖) = 1 for 𝑖 ∈
[𝑘] ∧ 𝑅(𝑥,𝑤) = 0] ≈ 0.

• Special honest verifier zero-knowledge: there exists a PPT

algorithmS such that for any PPT adversaryA: Pr[(𝑥, 𝑒) ←
A(1𝜆);𝑎 ← C(𝑥,𝑤 ; 𝑟); 𝑧 ← Z(𝑥,𝑤, 𝑟, 𝑒) : A(𝑎, 𝑧) = 1] ≈
Pr[(𝑥, 𝑒) ← A(1𝜆); (𝑎, 𝑧) ← S(𝑥, 𝑒) : A(𝑎, 𝑧) = 1]

Fiat-Shamir Transformation [25]. Let Σ = (C,Z,V) be a Sigma

protocol andH a hash function. The Fiat-Sharmir transformation of

Σ is the proof system FSH (Σ) = (Prove,Verify) defined as follows:

• (𝑎, 𝑧) ← Prove(𝑥,𝑤 ; 𝑟): Run C(𝑥,𝑤 ; 𝑟) to obtain initial mes-

sage 𝑎. Compute 𝑒 ←H(𝑥, 𝑎). RunZ(𝑥,𝑤, 𝑟, 𝑒) to get the

answer 𝑧. Output (𝑎, 𝑧).
• 0/1 ← Verify(𝑥, 𝑎, 𝑧): Compute 𝑒 ← H(𝑥, 𝑎), then run

V(𝑥, 𝑎, 𝑒, 𝑧).

In the security proof, the hash functionH is typically modeled

as a random oracle. In the following, we give the definition of

zero-knowledge [7] and simulation-sound extractability [12] (in

the random oracle model).

Zero-knowledge [7]. A proof system (Prove,Verify) for relation R
is zero-knowledge if there is a simulator S such that no adversary

who can make queries to the random oracle and queries of the form

create-proof (𝑥,𝑤) can distinguish the following two settings with

non-negligibly better than 1/2 probability:

(1) Random oracle queries are answered by a random oracle.

In response to create-proof (𝑥,𝑤), the challenger checks

that R(𝑥,𝑤). If not, he returns ⊥. Otherwise, he returns
Prove(𝑥,𝑤).

(2) The challenger runs a copy of the simulator S. It forwards
random oracle queries to S directly. For create-proof (𝑥,𝑤),
the challenger checks if R(𝑥,𝑤) holds: if not, the challenger
returns ⊥; if it holds, the challenger send Simulate(x) to S
and returns the result to the adversary.

Simulation-sound extractability [12]. Let P be a zero-knowledge

proof system with simulator S. We say that P is simulation-sound

extractable if there exists an extractorK such that for every prover

A, K wins the following game with overwhelming probability.

(1) (Initial run.) The game selects a random string 𝜔 for A. It

runs an instance of A with the simulator S until A makes

his output and halts. If A does not output any proofs, any

of the proofs do not verify (w.r.t. the instance of S used

as the random oracle) or any of A’s statement/proof pairs

(𝑥, 𝜋) is such that 𝜋 was the result of a Simulate(𝑥) query,
then K wins the game directly.

(2) (Extraction.) The game runs an instance of K , giving it the

transcript of all queries in the initial run and the produced

(𝑥, 𝜋) as input. K may repeatedly make one type of query

invoke in response towhich the game runs a new invocation

ofA on the same randomness 𝜔 that it chose for the initial

run. All queries made by these instances are forwarded to

K who can reply to them.

(3) K wins the game if it can output a vector of witnesses 𝑤

that match the statements 𝑥 of the initial run, i.e. for all 𝑖

we have R(𝑥𝑖 ,𝑤𝑖).
Public-key encryption. A public-key encryption scheme consists

of three PPT algorithms (Keygen, Enc,Dec). The ElGamal encryp-

tion scheme we use is IND-CPA secure under the DDH assumption.

Formally, consider the following IND-CPA experiment:

Exp
IND-CPA
A,Enc (𝜆):

(1) The challenger performs the key generation algorithm (pk, sk)
← Keygen(𝜆) and sends pk to the adversary A.

(2) A sends𝑚0,𝑚1 to the challenger.

(3) The challenger picks a random bit 𝑏 ∈ {0, 1} and sends

𝑐 ← Encpk (𝑚𝑏) to A.

(4) A outputs a guess bit 𝑏′ ∈ {0, 1}. If 𝑏 = 𝑏′, output 1;
otherwise, output 0.

A public-key encryption scheme is IND-CPA secure if the adver-

sary A’s advantage AdvIND-CPAEnc (A, 𝜆) := |2 · Pr[ExpIND-CPAA,Enc (𝜆) =
1] − 1| is negligible in 𝜆.

14

https://doi.org/10.1007/978-3-662-53357-4_11
https://doi.org/10.1007/978-3-662-53357-4_11
https://doi.org/10.1007/0-306-47009-8_50
https://doi.org/10.1109/TIFS.2009.2033233
https://snapshot.org
https://votem.com

A Scalable Coercion-resistant Voting Scheme for Blockchain Decision-making

Signature. A signature scheme consists of three PPT algorithms

(Keygen, Sign,Verify). We require the underlying signature scheme

to be existentially unforgeable under chosen message attack (EUF-

CMA). The EUF-CMA experiment is as follows:

Exp
EUF-CMA
A,Sig (𝜆):

(1) The challenger performs the key generation algorithm (pk, sk) ←
Keygen(𝜆) and sends pk to the adversary A.

(2) A can repeatedly request for signatures on chosen mes-

sages (𝑚0, . . . ,𝑚𝑞), and receives the valid signatures (𝜎0, . . . , 𝜎𝑞)
in response.

(3) A outputs a message and signature (𝑚∗, 𝜎∗).
(4) If𝑚∗ is not one of the messages requested in step 2, and

Verifypk (𝑚∗, 𝜎∗) = 1, output 1; otherwise, output 0.

A signature scheme is EUF-CMA if the adversaryA’s advantage

AdvEUF-CMA
Sig (A, 𝜆) := Pr[ExpEUF-CMA

A,Sig (𝜆) = 1] is negligible in 𝜆.

B NIZKS
In this section, we show the construction of the NIZKs used in

our system. There are six zero-knowledge proofs in our scheme for

proving: (i) voting power correctness (NIZKpower); (ii) ElGamal en-

cryption plaintext knowledge (NIZKknowledge); (iii) re-encryption
correctness (NIZKDVP-reenc); (iv) knowledge of secret key (NIZKsk)
(v) shuffle correctness (NIZKshuffle); and (vi) decryption correct-

ness (NIZKDec). We adopt Bayer and Groth’s scheme [6] for shuffle

correctness and Gennaro et al.’s scheme [28] for decryption cor-

rectness. Here, we demonstrate the corresponding Sigma protocols.

In our scheme, they are transformed into NIZKs by Fiat-Shamir

heuristic [25]. By the result of Bernhard et al. [12], Fiat-Shamir

transformation on Sigma protocols yields simulation-sound ex-

tractability in the random oracle model.

Proof of voting power correctness. In the registration phase,

the voter will create a transaction that freezes some stake. Then,

he sends the transaction tx, encrypted voting power 𝐴, and proves

that the encrypted voting power is the same as the value of tx. In a

privacy-preserving blockchain cryptocurrency system, tx usually
contains an encrypted transaction value 𝑣 . In this case, the zero-

knowledge proof proves that 𝐴 and 𝑣 encrypt the same value. If

the transaction value is encrypted by lifted Elgamal encryption

scheme, then Figure 13 shows the Sigma protocol for voting power

correctness. If it is encrypted by a hybrid encryption scheme (e.g.,

ZCash [8]), then we can utilize other zero-knowledge protocols for

general circuits (e.g. Groth16 [31], Bulletproofs [14]).

Proof of ElGamal encryption plaintext knowledge. In the

voting phase, we use a NIZK for ballot plaintext knowledge to

prevent copying the other voter’s choice. This can be proven with

the Sigma protocol depicted in Figure 14.

Proof of re-encryption correctness. In the registration phase, the
RA needs to generate a designated verifier proof for re-encryption

correctness. To make it a designated verifier proof, the statement is

“this is a correct re-encryption OR I know the verifier’s blockchain

secret key” so that the verifier can simulate the proof. The Sigma

protocol for re-encryption correctness is depicted in Figure 15. By

the CDS composition [23], we can compose the Sigma protocol

for re-encryption correctness and the standard Schnorr protocol to

construct the designated verifier proof of re-encryption correctness.

CRS: 𝑔, ℎ,𝑚.

Statement: 𝐴 = (𝐴1, 𝐴2), 𝑣 = (𝑣1, 𝑣2).
Witness: 𝛼, 𝑟1, 𝑟2 such that 𝐴 = (𝑔𝑟1 , 𝑔𝛼ℎ𝑟1) ∧ 𝑣 =

(𝑔𝑟2 , 𝑔𝛼𝑚𝑟2).
Prover:

• Pick random 𝛼 ′, 𝑟 ′
1
, 𝑟 ′
2
←

$
Z𝑝 ;

• Compute

𝑎1 := 𝑔
𝑟 ′
1 , 𝑎2 := 𝑔

𝛼 ′ℎ𝑟
′
1 , 𝑎3 := 𝑔

𝑟 ′
2 , 𝑎4 := 𝑔

𝛼 ′𝑚𝑟 ′
2 ;

• 𝑃 → 𝑉 : 𝑎1, 𝑎2, 𝑎3, 𝑎4.

Verifier:
• 𝑉 → 𝑃 : random 𝑒 ←

$
Z𝑝 .

Prover:
• Compute

𝑧1 := 𝑟
′
1
+ 𝑒 · 𝑟1, 𝑧2 := 𝑟 ′

2
+ 𝑒 · 𝑟2, 𝑧3 := 𝛼 ′ + 𝑒 · 𝛼 ;

• 𝑃 → 𝑉 : 𝑧1, 𝑧2, 𝑧3.

Verifier:
• Output 1 if and only if the following holds:

– 𝑔𝑧1 = 𝑎1 · 𝐴𝑒
1
;

– 𝑔𝑧3ℎ𝑧1 = 𝑎2 · 𝐴𝑒
2
;

– 𝑔𝑧2 = 𝑎3 · 𝑣𝑒
1
;

– 𝑔𝑧3ℎ𝑧2 = 𝑎4 · 𝑣𝑒
2
.

Sigma protocol for voting power correctness

Figure 13: Sigma protocol for voting power correctness

CRS: 𝑔, ℎ.
Statement: 𝑐 = (𝑐1, 𝑐2).
Witness: 𝑚, 𝑟 such that 𝑐1 = 𝑔

𝑟 ∧ 𝑐2 =𝑚 · ℎ𝑟 .
Prover:

• Pick random 𝑟 ′ ←
$
Z𝑝 ,𝑚′ ←$

G;
• Compute 𝑎1 := 𝑔

𝑟 ′ , 𝑎2 :=𝑚
′ · ℎ𝑟 ′ ;

• 𝑃 → 𝑉 : 𝑎1, 𝑎2.

Verifier:
• 𝑉 → 𝑃 : random 𝑒 ←

$
Z𝑝 .

Prover:
• Compute 𝑧1 := 𝑟

′ + 𝑒 · 𝑟, 𝑧2 :=𝑚′ ·𝑚𝑒
;

• 𝑃 → 𝑉 : 𝑧1, 𝑧2.

Verifier:
• Output 1 if and only if the following holds:

– 𝑔𝑧1 = 𝑎1 · 𝑐𝑒
1
;

– 𝑧2 · ℎ𝑧1 = 𝑎2 · 𝑐𝑒
2
.

Sigma protocol for plaintext knowledge

Figure 14: Sigma protocol for ElGamal encryption plaintext
knowledge

15

Zeyuan Yin, Bingsheng Zhang, Andrii Nastenko, Roman Oliynykov, and Kui Ren

CRS: 𝑔, ℎ.
Statement: 𝑢 = (𝑢1, 𝑢2), 𝑣 = (𝑣1, 𝑣2).
Witness: 𝑟 such that 𝑣1 = 𝑢1 · 𝑔𝑟 ∧ 𝑣2 = 𝑢2 · ℎ𝑟 .
Prover:

• Pick random 𝑟 ′ ←
$
Z𝑝 ;

• Compute 𝑎1 = 𝑔
𝑟 ′ , 𝑎2 := ℎ

𝑟 ′
;

• 𝑃 → 𝑉 : 𝑎1, 𝑎2.

Verifier:
• 𝑉 → 𝑃 : random 𝑒 ←

$
Z𝑝 .

Prover:
• Compute 𝑧 := 𝑟 ′ + 𝑒 · 𝑟 ;
• 𝑃 → 𝑉 : 𝑧.

Verifier:
• Output 1 if and only if the following holds:

– 𝑔𝑧 = 𝑎1 · (𝑣1/𝑢1)𝑒 ;
– ℎ𝑧 = 𝑎2 · (𝑣2/𝑢2)𝑒 .

Sigma protocol for re-encryption correctness

Figure 15: Sigma protocol for re-encryption correctness

CRS: 𝑔, ℎ.
Statement: 𝑐 = (𝑐1, 𝑐2).
Witness: 𝑥, 𝑟 such that 𝑐1 = 𝑔

𝑟 ∧ 𝑐2 = 𝑔
𝑥 · ℎ𝑟 .

Prover:
• Pick random 𝑟 ′ ←

$
Z𝑝 , 𝑥 ′ ←$

G;
• Compute 𝑎1 := 𝑔

𝑟 ′ , 𝑎2 := 𝑔
𝑥 ′ · ℎ𝑟 ′ ;

• 𝑃 → 𝑉 : 𝑎1, 𝑎2.

Verifier:
• 𝑉 → 𝑃 : random 𝑒 ←

$
Z𝑝 .

Prover:
• Compute 𝑧1 := 𝑟

′ + 𝑒 · 𝑟, 𝑧2 := 𝑥 ′ + 𝑒 · 𝑥 ;
• 𝑃 → 𝑉 : 𝑧1, 𝑧2.

Verifier:
• Output 1 if and only if the following holds:

– 𝑔𝑧1 = 𝑎1 · 𝑐𝑒
1
;

– 𝑔𝑧2 · ℎ𝑧1 = 𝑎2 · 𝑐𝑒
2
.

Sigma protocol for knowledge of secret key

Figure 16: Sigma protocol for knowledge of secret key

Proof of knowledge of secret key. To publish a fake registra-

tion item on the BB, the voter needs to prove knowledge of the

corresponding secret key. This is a variant of the Schnorr protocol,

depicted in Figure 16.

C PROOF OF BALLOT PRIVACY, STRONG
CONSISTENCY, AND STRONG
CORRECTNESS

In this section, we prove that our scheme provides ballot privacy.

We also show that our scheme has strong consistency and strong

correctness by Bernhard et al. [10], which are necessary for a voting
scheme to guarantee ballot privacy.

C.1 Ballot privacy
Proof of theorem 1. To prove this theorem, we construct the SimTally
algorithm and prove indistinguishability through a series of games.

SimTally algorithm. The SimTally(BB, 𝑟) algorithm performs the

Tally procedure on BB, except that 1) all the proofs are simulated

and 2) in steps 14 and 17 of the Tally procedure, the decryption

results are based on 𝑟 .

Now, we prove the indistinguishability through a sequence of

games. We start with the adversary interacting with the challenger

with 𝑏 = 0 and end up with the adversary interacting with the

challenger with 𝑏 = 1.

Game𝐺0. Let𝐺0 be the experiment Exp
𝐵𝑃
A,V [0] (𝜆, C) (see Figure 8

and Definition 1).

Game 𝐺1. Game 𝐺1 is the same as 𝐺0, except that all proofs in the

Tally procedure are simulated.

Claim 1: Because of the zero-knowledge property of the proofs, 𝐺1

and 𝐺0 are indistinguishable.

Game 𝐺2. Game 𝐺2 is the same as 𝐺1, except that Oboard returns

BB1 instead of BB0.
Claim 2: If the ElGamal encryption scheme is IND-CPA secure and

the NIZK NIZKknowledge is complete, simulation-sound extractable,

and zero-knowledge, then 𝐺2 and 𝐺1 are indistinguishable.

Proof: Let 𝑛 be the number of OvoteLR calls made by the adversary

A. We now build a series of games 𝐻0, . . . , 𝐻𝑛 and prove indis-

tinguishability by a hybrid argument. Game 𝐻𝑖 tracks a bulletin

board BB. When the adversary calls Ocast(𝛽), the challenger per-
forms BB← BB| |𝛽 ; for the first 𝑖 calls to OvoteLR, the challenger
performs BB ← BB| |𝛽1; for the remaining calls, the challenger

performs BB← BB| |𝛽0. Note that 𝐻0 = 𝐺1 and 𝐻𝑛 = 𝐺2.

As proved by Bernhard et al. [12], an IND-CPA secure encryption

with simulation-sound extractable ZKP is NM-CPA (non-melleable)

secure. The NM-CPA experiment is depicted in Figure 17. The

adversary may only call the oracle Odec once. The adversary wins

if 𝑏′ = 𝑏 and his advantage is defined as | Pr[𝑏′ = 𝑏] − 1/2|.
Now, we show that if an adversary A𝑖 can distinguish 𝐻𝑖 from

𝐻𝑖−1, we can construct adversary B𝑖 that breaks the NM-CPA prop-

erty of the encryption scheme. Adversary B𝑖 receives the public
key pk from its challenger. At the start of the game, B𝑖 performs

the Setup procedure and sets pkT = pk. It answers the 𝑗 th OvoteLR
query as follows:

• If 𝑗 < 𝑖 , it sets BB← BB| |𝛽1.
• If 𝑗 = 𝑖 , it sends 𝑣0, 𝑣1 to the NM-CPA challenger and re-

ceives a challenge ciphertext 𝑐∗. It uses 𝑐∗ to obtain a ballot

𝛽∗ and sets BB← BB| |𝛽∗.
• If 𝑗 > 𝑖 , it sets BB← BB| |𝛽0.

16

A Scalable Coercion-resistant Voting Scheme for Blockchain Decision-making

Exp
NM-CPA
A (𝜆) :

(pk, sk) ← Keygen(1𝜆);
𝑚0,𝑚1 ← A(pk);
𝑏 ←

$
{0, 1};

𝑐∗ ← Encpk (𝑚𝑏);
𝑏′ ← AOdec (pk, 𝑐∗);
Odec(𝒄) :
if 𝑐∗ ∈ 𝒄 then return ⊥;
for each 𝑖, 𝑚𝑖 ← Dec(sk, 𝑐𝑖);
return 𝒎 = {𝑚𝑖 }𝑖 .

Figure 17: NM-CPA Experiment ExpNM-CPA
A (𝜆)

When the adversaryA𝑖 calls Otally, B𝑖 proceeds as follows. Let
Γ := (𝒖𝑖1 , 𝜋𝑖1), . . . , 𝑐∗ = (𝒖 𝑗 , 𝜋 𝑗), . . . , (𝒖𝑖𝑘 , 𝜋𝑖𝑘) be the vote cipher-
texts and proofs in the valid ballots. B𝑖 queries Odec using Γ\𝑐∗
and obtains (𝑣𝑖1 , . . . , 𝑣 𝑗−1, 𝑣 𝑗+1, . . . , 𝑣𝑖𝑘) = Odec(Γ\𝑐∗). It sets the
decryption result as (𝑣𝑖1 , . . . , 𝑣 𝑗−1, 𝑣0, 𝑣 𝑗+1, . . . , 𝑣𝑖𝑘) and continues

the Tally procedure by simulating the proofs.

We can see that if 𝑏 = 0 in B𝑖 ’s NM-CPA game, then B𝑖 perfectly
simulates 𝐻𝑖−1; if 𝑏 = 1 in B𝑖 ’s NM-CPA game, then B𝑖 perfectly
simulates 𝐻𝑖 . Thus, B𝑖 breaks NM-CPA games if A𝑖 distinguishes

𝐻𝑖 from 𝐻𝑖−1. By a standard hybrid argument, 𝐻0 = 𝐺1 is indistin-

guishable from 𝐻𝑛 = 𝐺2.

Observe that the adversary’s view in 𝐺2 is identical to the view

in the experiment Exp
𝐵𝑃
A,V [1] (𝜆, C). This concludes the proof. □

C.2 Strong consistency and strong correctness
Here, we show that our scheme meets strong consistency and

strong correctness as defined by Bernhard et al. [10]. Intuitively,
strong consistency ensures that the result 𝑟 is equal to the result

function applied directly to the valid ballots. Strong correctness

ensures that no adversary can generate a bulletin board BB such

that Validate(BB, 𝛽) = ⊥ for an honestly generated ballot 𝛽 . The

strong consistency experiment and strong correctness experiment

are depicted in Figure 18 and Figure 19, respectively.

Exp
s-cons
A,V (𝜆, C) :

((pkRA, skRA), (pkT, skT)) ← Setup(1𝜆, C);
BB← A(skRA, pkT);
(𝑟,Π) ← Tally(BB, skT);
if 𝑟 ≠ 𝜌 (Extract(skT, 𝛽1), . . . , Extract(skT, 𝛽𝑛))
then return ⊤ else return ⊥.

Figure 18: Strong Consistency Experiment Exps-consA,V (𝜆, C)

Definition 4. Strong consistency. LetV = {Setup,Reg, FakeReg,
E_reg,V_vote, E_vote,Validate, Tally,VerifyElection} be an election
scheme for a candidate list C, security parameter 𝜆, and result func-
tion 𝜌 . We say thatV meets strong consistency if there exists functions
Extract and ValidInd that satisfy the following conditions:

(1) For ((pkRA, skRA), (pkT, skT)) ← Setup(1𝜆, C), for all (pk, sk)
output by Reg(𝑖𝑑), and for any ballot 𝛽 ← V_vote(pk, sk, 𝑣),
we have Extract(skT, 𝛽) = 𝑣 .

(2) For any bulletin board and ballot generated by any PPT ad-
versaryA such that (BB, 𝛽) ← A and Validate(BB, 𝛽) = ⊤,
then ValidInd(𝛽) = ⊤.

(3) For any PPT adversaryA, the advantage Pr[Exps-consA,V (𝜆, C) =
⊤] is a negligible function in the security parameter 𝜆.

Exp
s-corr
A,V (𝜆, C) :

((pkRA, skRA), (pkT, skT)) ← Setup(1𝜆, C);
(𝑖𝑑, 𝑣,BB) ← A(skRA, pkT);
𝛽 ← V_vote(pk𝑖𝑑 , sk𝑖𝑑 , 𝑣);
if Validate(BB, 𝛽) = ⊥ then return ⊤ else return ⊥.

Figure 19: Strong Correctness Experiment Exps-corrA,V (𝜆, C)

Definition 5. Strong correctness. LetV = {Setup,Reg, FakeReg,
E_reg,V_vote, E_vote,Validate, Tally,VerifyElection} be an election
scheme for a candidate list C, and security parameter 𝜆. We say that
V meets strong correctness if for any PPT adversary A:

Pr[Exps-corrA,V (𝜆, C) = ⊤]

is a negligible function in the security parameter 𝜆.

Theorem 4. Under the same assumptions as theorem 1, the voting
protocol described in section 4 provides strong consistency and strong
correctness.

Proof. We first define the functions Extract and ValidInd as

follows:

(1) Extract(skT, 𝛽) takes as input the extraction key skT and

the ballot 𝛽 = (pk, 𝒖, 𝜋, 𝜎). It checks the proof and signature
in 𝛽 . It returns ⊥ if any of these checks fail; otherwise, it

computes 𝑣 ← EC.DecskT (𝒖) and returns (pk, 𝑣).
(2) ValidInd(𝛽) checks the proof and signature in 𝛽 . It returns

⊤ if and only if the checks pass.

The first condition of strong consistency is satisfied by the complete-

ness of the zero-knowledge proofs, the correctness of signatures,

and the correctness of ElGamal encryption scheme.

The second condition of strong consistency is satisfied because

ValidInd executes a strict subset of the checks in Validate.
For the third condition, by the correctness of ElGamal decryption

and the correctness of shuffle, the election results output by the

Tally algorithm and the result function 𝜌 are identical.

To prove strong correctness, we observe that an honestly gener-

ated ballot is not appended to the bulletin board if the corresponding

pk already appears in another ballot. By the EUF-CMA property of

the signature scheme, the adversary A has negligible probability

of generating a valid signature under pk without knowing sk, so
A’s advantage in Exp

s-corr
A,V (𝜆, C) is negligible. □

D PROOF OF VERIFIABILITY
Proof of theorem 2. Let the adversary A output a set of registration

items, a set of votes, the result 𝑟 , and the tally proof Π. Let 𝑇 =

{𝛽1, . . . , 𝛽𝑛} be the valid ballots on the BB. By the homomorphism

of ElGamal encryption scheme and the soundness of the tally proofs,

17

Zeyuan Yin, Bingsheng Zhang, Andrii Nastenko, Roman Oliynykov, and Kui Ren

we can conclude that 𝑟 is the correct tally of 𝑇 = {𝛽1, . . . , 𝛽𝑛} if
VerifyElection(BB, (𝑟,Π)) returns ⊤.

Now, we prove that for each ballot 𝛽 ∈ 𝑇 , it is either not counted
or the re-randomized ballot of one of the following sets:

• 𝐻 = {(pkℎ
𝑖
, 𝑣ℎ
𝑖
, 𝛼ℎ

𝑖
, ∗)}𝑛ℎ

𝑖=1
, the votes of the honest voters

who have checked their ballots.

• 𝐻 ′ = {(pkℎ′
𝑖
, 𝑣ℎ

′
𝑖
, 𝛼ℎ

′
𝑖
, ∗)}𝑛ℎ′

𝑖=1
, the votes of the honest voters

who have not checked their ballots.

• Corrupted = {pk𝑐
𝑖
, 𝑣𝑐
𝑖
, 𝛼𝑐

𝑖
}𝑛𝑐
𝑖=1

, the votes of the corrupted

voters.

The soundness of NIZKpower and NIZKDVP-reenc ensures that the
registration items are formed correctly. The EUF-CMA property of

the signature scheme ensures that the adversary cannot create a

valid signature for an honest voter. Therefore, for each valid ballot

𝛽 ∈ 𝑇 , if it does not correspond to the above three sets, either it

will be dropped or will match a fake registration item in the Tally
procedure; in both cases, it will not be counted.

We now prove that the adversary cannot remove the votes of the

honest voters who have checked their ballots. By the soundness of

NIZKsk, the adversary cannot create a valid “fake registration item”

for pk if he does not know the corresponding sk. Thus, all the valid
ballots will match the corresponding real registration item and be

counted in the tally phase.

Finally, if a corrupted voter generates a ballot that encrypts an

invalid candidate, it will be dropped in the tally phase. We can

conclude that if the result 𝑟 verifies, then it must correspond to the

result of the tally function 𝜌 computed on all the votes by honest

voters who checked their ballots, at most 𝑛𝑐 votes cast by corrupted

voters, and a subset of votes cast by honest voters who did not

check their ballots. □

E PROOF OF COERCION-RESISTANCE
Proof of theorem 3.To prove this theorem,we first construct SimTally
and SimView algorithms and prove indistinguishability through a

series of games.

SimTally algorithm. The SimTally(BB, 𝑟) algorithm is the same

as the one we define in the proof of theorem 1. It performs the Tally
procedure on BB, except that 1) all the proofs are simulated and 2)

in steps 14 and 17 of the Tally procedure, the decryption results are

based on 𝑟 .

SimView algorithm. The SimView(sk𝑖𝑑) performs as follows. Let

⟨𝐾,𝐴, tx, 𝛿⟩ be the registration message and ⟨�̃�, 𝐴, tx, 𝛿, 𝜎RA⟩ be the
real registration item on BB. It computes 𝐾 ′′ ← EC.EncpkT (pk

′)
and claims that �̃� is re-encryption of 𝐾 ′′ by simulating the desig-

nated verifier proof NIZKDVP-reenc, which requires sk𝑖𝑑 . It returns
the simulated view by replacing 𝐾 with 𝐾 ′′ and the real proof with
the simulated proof.

Now, we prove the indistinguishability through a sequence of

games. We start with the adversary interacting with the challenger

with 𝑏 = 0 and end up with the adversary interacting with the

challenger with 𝑏 = 1.

Game 𝐺0. Let 𝐺0 be the experiment Exp
𝐶𝑅
A,V [0] (𝜆, C) (see Fig-

ure 10 and Definition 3).

Game 𝐺1. Game 𝐺1 is the same as𝐺0, except that all proofs in the

Tally procedure are simulated.

Claim 1: Because of the zero-knowledge property of the proofs, 𝐺1

and 𝐺0 are indistinguishable.

Game 𝐺2. Game 𝐺2 is the same as 𝐺1, except that 1) Oreceipt
returns 𝛽1 and the simulated view, and 2) Oboard returns BB1
instead of BB0.
Claim 2: If the ElGamal encryption scheme is IND-CPA secure, the

NIZKsNIZK𝑖 , 𝑖 ∈ {knowledge,DVP-reenc, sk} are complete, sound,

and zero-knowledge, and NIZKsk,NIZKknowledge are simulation-

sound extractable, then 𝐺2 and 𝐺1 are indistinguishable.

Proof: First, the adversary cannot distinguish the real view and

the simulated view in the registration phase because of the zero-

knowledge property of the designated verifier proof.

Second, by the simulation-sound extractability ofNIZKsk, the ad-
versary cannot duplicate a “fake registration item” by re-randomizing

an existing one. Thus, he cannot distinguish a fake ballot from a

real ballot by the Tally procedure.

Now, except for seeing the simulated view instead of the real

view, the only difference between 𝐺2 and 𝐺1 is that the adversary

sees different encrypted ballots. Then, the rest of the proof is very

similar to the proof of theorem 1. We define a sequence of games

that replace the ballots on BB0 with the ballots on BB1 one by one.

By a standard hybrid argument, the indistinguishability between

𝐺2 and 𝐺1 is reduced to the NM-CPA property of the underlying

encryption scheme.

Finally, we observe that the adversary’s view in𝐺2 is identical to

the view in the experiment Exp
𝐶𝑅
A,V [1] (𝜆, C). This concludes the

proof. □

18

	Abstract
	1 Introduction
	1.1 Our Approach
	1.2 Related Work

	2 System Overview
	2.1 The JCJ Protocol
	2.2 Our Technique
	2.3 Overview of Our Scheme

	3 Threat Model
	4 The Protocol
	4.1 Cryptographic primitives
	4.2 Protocol Description

	5 Security Analysis
	5.1 Ballot Privacy
	5.2 Verifiability
	5.3 Coercion-resistance

	6 Discussion
	7 Implementation and Evaluation
	8 Conclusion
	References
	A Definitions
	B NIZKs
	C Proof of Ballot Privacy, Strong Consistency, and Strong Correctness
	C.1 Ballot privacy
	C.2 Strong consistency and strong correctness

	D Proof of Verifiability
	E Proof of Coercion-resistance

