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The majority of fault-tolerant distributed algorithms are designed assuming a nominal corruption model, in

which at most a fraction 𝑓𝑛 of parties can be corrupted by the adversary. However, due to the infamous Sybil

attack, nominal models are not sufficient to express the trust assumptions in open (i.e., permissionless) settings.

Instead, permissionless systems typically operate in a weighted model, where each participant is associated

with a weight and the adversary can corrupt a set of parties holding at most a fraction 𝑓𝑤 of total weight.

In this paper, we suggest a simple way to transform a large class of protocols designed for the nominal

model into the weighted model. To this end, we formalize and solve three novel optimization problems, which

we collectively call the weight reduction problems, that allow us to map large real weights into small integer

weights while preserving the properties necessary for the correctness of the protocols. In all cases, we manage

to keep the sum of the integer weights to be at most linear in the number of parties, resulting in extremely

efficient protocols for the weighted model. Moreover, we demonstrate that, on weight distributions that emerge

in practice, the sum of the integer weights tends to be far from the theoretical worst-case and, sometimes,

even smaller than the number of participants.

While, for some protocols, our transformation requires an arbitrarily small reduction in resilience (i.e.,

𝑓𝑤 = 𝑓𝑛 − 𝜖), surprisingly, for many important problems we manage to obtain weighted solutions with

the same resilience (𝑓𝑤 = 𝑓𝑛) as nominal ones. Notable examples include erasure-coded distributed storage

and broadcast protocols, verifiable secret sharing, and asynchronous consensus. Although there are ad-hoc

weighted solutions to some of these problems, the protocols yielded by our transformations enjoy all the

benefits of nominal solutions, including simplicity, efficiency, and a wider range of possible cryptographic

assumptions.

Since the release of the first version of this paper online, a version of the weight reduction approach has

been integrated into a major layer-1 blockchain system for implementing a randomness beacon.
1

1 INTRODUCTION
1.1 Weighted distributed problems
Traditionally, distributed problems are studied in the egalitarian setting where 𝑛 parties communi-

cate over a network and any 𝑡 of them can be faulty or corrupted by a malicious adversary. Different

combinations of 𝑛 and 𝑡 are possible depending on the problem at hand, the types of failures (crash,

omission, semi-honest, or malicious, also known as Byzantine), and the network model (typically,

asynchronous, semi-synchronous, or synchronous). However, for most distributed protocols, 𝑡 has

to be smaller than a certain fraction of 𝑛. For example, most practical Byzantine fault-tolerant

consensus protocols [21, 22] can operate for any 𝑡 < 𝑛
3
. We call such models nominal and use 𝑓𝑛 to

denote their resilience, i.e., a nominal protocol with resilience 𝑓𝑛 operates correctly as long as less

than 𝑓𝑛𝑛 parties are corrupt, where 𝑛 is the total number of participants.

However, this simple corruption model is not always sufficient to express the actual fault

structure or trust assumptions of real systems. As a result, we see many practical blockchain

protocols adopt a more general, weighted model, where each party is associated with a real weight
that, intuitively, represents the number of “votes” this party has in the system. The assumption on

the number of corrupt parties in this setting is replaced by the assumption that the total weight of
the corrupt parties is smaller than a fraction 𝑓𝑤 of the total weight of all participants. For example,

1
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in permissionless systems, the weight can correspond to the amount of “stake” or computational

resources a participant has invested in the system and, in the context of managed systems, to a

function of the estimated failure probability.

There are two main reasons to adopt the weighted model in the context of blockchain systems.

First and foremost, it protects the system from the infamous Sybil attacks, i.e., malicious users

registering themselves multiple times in order to obtain multiple identities, thereby surpassing the

resilience threshold 𝑓𝑛 . Secondly, it is speculated that users with a greater amount of resources

(monetary, computational, or otherwise) invested in the system, and consequently a higher weight,

will be more committed to the system’s stability and less likely to engage in malicious behavior.

1.2 Weighted voting and where it needs help
Perhaps, the most prevalent tool used for the design of distributed protocols is quorum systems [35,
45, 48]. Intuitively, to achieve fault tolerance, each “action” is confirmed by a sufficiently large set of

participants (called a quorum). Then, if two actions are conflicting or somehow interdependent (e.g.,

writing and reading a file in a distributed storage system), then the parties in the intersection of the

quorums are supposed to ensure consistency. Thus, many distributed protocols can be converted

from the nominal to the weighted setting simply by changing the quorum system, i.e., instead

of waiting for confirmations from a certain number of parties, waiting for a set of parties with

the corresponding fraction of the total weight. We call this strategy weighted voting and it often

allows translating protocols from the nominal to the weighted model while maintaining the same

resilience (i.e., 𝑓𝑤 = 𝑓𝑛) and, in some cases, with virtually no overhead.

However, weighted voting has two major downsides. First and foremost, many protocols rely on

primitives beyond simple quorum systems and weighted voting is often not sufficient to translate

these protocols to the weighted model. Notable examples include threshold cryptography [11, 31],

secret sharing [17, 55], erasure and error-correcting codes [44], and numerous protocols that rely

on these primitives.

Another example relevant to blockchain systems is Single Secret Leader Election protocols [12,

23, 24]. It illustrates that not all protocols that cannot be easily converted to the weighted model

by applying weighted voting belong to the categories above and motivates the general approach

taken in this paper.

The second drawback of weighted voting is that it requires a careful examination of the protocol

in order to determine whether weighted voting is sufficient to convert it to the weighted model, as

well as non-trivial modifications to the protocol implementation. It would be much nicer to have a

“black-box” transformation that would take a protocol designed and implemented for the nominal

model and output a protocol for the weighted model. In this paper, we offer both “open-box” and

“black-box” transformations.

1.3 Our contribution
Our contribution to the fields of distributed computing and applied cryptography is twofold:

(1) We present a simple and efficient black-box transformation that can be applied to convert a

wide range of protocols designed for the nominal model into the weighted model. Crucially,

one can determine the applicability of our transformation simply by examining the problem
that is being solved (e.g., Byzantine consensus) instead of the protocol itself (e.g., PBFT [22])

and it does not require modifications to the source code, only a slim wrapper around

it. The price to pay for this transformation is an arbitrarily small decrease in resilience

(𝑓𝑤 = 𝑓𝑛 − 𝜖 , where 𝜖 > 0) and an increase in the communication and computation

complexities proportional to
𝑓𝑤
𝜖
.
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(2) Furthermore, by opening the black box and examining the internal structure of distributed

protocols, we discover that by combining our transformation with weighted voting, in many

cases, we can obtain weighted algorithms without the reduction in resilience (𝑓𝑤 = 𝑓𝑛) and

with a minor or non-existent performance penalty.

distributed
problem

nominal
solutions

weight-reduction
problem 𝑓𝑤 𝑓𝑛

worst-case average
comm. overhead

worst-case average
comp. overhead

Derived Protocols

Efficient Asynchronous

State-Machine Replication

[27, 32, 41,

47, 57]

WR for RNG

WQ for Broadcast

1/3 1/3 × 1.33 for Broadcast
× 1.33 for RNG

× 3.56 for Broadcast
× 1.33 for RNG

Structured Mempool [27] WQ for Broadcast 1/3 1/3 × 1.33 for Broadcast × 3.56 for Broadcast
Validated Asynchronous

Byzantine Agreement

[6, 18] WR for RNG 1/3 1/3 × 1.33 for RNG × 1.33 for RNG

Consensus with Checkpoints [8] WR for signing 1/3 1/3 × 1.33 for signing × 1.33 for signing
Useful Building Blocks

Erasure-Coded

Storage and Broadcast

[20, 37, 49,

50, 53, 59]

WQ 1/3 1/3 × 1.33 × 3.56
WR (BB) 1/4 1/3 – × 3

Error-Corrected Broadcast [29]

WQ 1/3 1/3 × 1.33 × 7.11
WR (BB) 1/4 1/3 – × 3

Verifiable Secret Sharing [55] WR 1/3 1/3 × 1.33 × 1.33
Common Coin [19, 52]

WR 1/3 1/2 × 1.33 × 1.33Blunt Threshold Signatures [11, 56, 58]

Blunt Threshold Encryption [31]

Blunt Threshold FHE [14, 39]

Tight Secret Sharing

Sec. A.2

(this paper)

WR 1/3 1/3 × 1.33 × 1.33Tight Threshold Signatures

Tight Threshold Encryption

Tight Threshold FHE

Linear BFT Consensus [60]

WR (BB) 1/4 1/3 × 2.67 × 2.67
Chain-Quality SSLE [12]

Table 1. Examples of suggested weighted distributed protocols with the upper bounds on communication
and computation overhead compared to the nominal solutions with the same number of participants. See
Appendices A and B and section 6 for details on how these numbers were obtained. In Section 7, we study
real-world weight distributions and conclude that, in practice, the overhead should be much smaller. “WR”
and “WQ” refer to weight-reduction problems defined in Section 2. “WR (BB)” refers to the black-box
transformation described in Appendix A.3.

We summarize some examples of our techniques applied to a range of different protocols in

Table 1. The last two columns of the table give the upper bound on the overhead of the obtained

weighted protocols compared to their nominal counterparts executed with the same number of

parties. Note, however, that, in many cases, the overhead applies only to specific parts of the

protocol, which may not be the bottlenecks. Thus, further experimental studies may reveal that the

real overhead is even lower or non-existent, even with worst-case weight distribution. Columns

“𝑓𝑤” and “𝑓𝑛” specify the resilience of the obtained weighted protocols and the original nominal

protocols, respectively. As was discussed before, in most cases, we manage to avoid sacrificing

resilience (i.e., 𝑓𝑤 = 𝑓𝑛).

Furthermore, the main building block of our constructions, the weight reduction problems, may

be of separate interest and may have important applications beyond distributed protocols. It is,

indeed, an interesting and somewhat counter-intuitive observation that large real weights can be

efficiently reduced to small integer weights while preserving the key structural properties.



4 Andrei Tonkikh and Luciano Freitas

1.4 Empirical study
The performance of the weighted protocols constructed as suggested in this paper is sensitive to

the distribution of weights of the participants. While we provide upper bounds and thus analyze

our protocols for the worst weight distribution possible, it is interesting whether such weight

distributions emerge in practice.

To study real-world weight distributions, we tested our weight reduction algorithms on the

distribution of funds from multiple existing blockchain systems [7, 36, 43, 46] ranging in size from

a hundred parties [2, 7] up to multiple tens of thousands [1, 46]. We perform an in-depth analysis

in Section 7.

Roadmap
The paper is organized as follows: we formally define weight reduction problems in Section 2 and

provide upper bounds for them in Section 3. We then proceed to present our solver called Swiper

in Section 4. Section 5 briefly outlines some of the direct applications of these problems, with more

detailed discussion postponed to Appendices A and B. Section 6 illustrates how to integrate weight

reduction into larger protocols and how to combine it with weighted voting in order to maintain

the same resilience as in nominal solutions. In Section 7 and appendix D, we discuss the results of

the empirical study we performed on real-world weight distribution. We discuss related work in

Section 8 and conclude the paper in Section 9.

2 WEIGHT REDUCTION PROBLEMS
In this section, we define the key building block to our construction, the weight reduction problems,
which is a class of optimization problems that map (potentially, large) real weights𝑤1, . . . ,𝑤𝑛 ∈ R≥0
to (ideally, small) integer weights 𝑡1, . . . , 𝑡𝑛 ∈ Z≥0 while preserving certain key properties. For

convenience, we use the word “tickets” to denote the units of the assigned integer weights, i.e., if

𝑡1, . . . , 𝑡𝑛 is the output of a weight reduction problem, we say that party 𝑖 is assigned 𝑡𝑖 tickets.

Notation

To avoid repetition, throughout the rest of the paper, we use the following notation:

(1) [𝑛] := {1, 2, . . . , 𝑛}
(2) for any 𝑆 ⊆ [𝑛]:𝑤 (𝑆) := ∑

𝑖∈𝑆 𝑤𝑖

(3) for any 𝑆 ⊆ [𝑛]: 𝑡 (𝑆) := ∑
𝑖∈𝑆 𝑡𝑖

(4) 𝑊 := 𝑤 ( [𝑛]) = ∑𝑛
𝑖=1𝑤𝑖

(5) 𝑇 := 𝑡 ( [𝑛]) = ∑𝑛
𝑖=1 𝑡𝑖

2.1 Weight Restriction
The first weight reduction problem is Weight Restriction (or simply WR). It is parameterized by

two numbers 𝛼𝑤, 𝛼𝑛 ∈ (0, 1) and requires the mapping to preserve the property that any subset of

parties of weight less than 𝛼𝑤 obtains less than 𝛼𝑛 tickets. More formally:

Problem statement 1 (Weight Restriction)

Given 𝛼𝑤, 𝛼𝑛 ∈ (0, 1) and 𝑤1, . . . ,𝑤𝑛 ∈ R≥0 as input, find 𝑡1, . . . , 𝑡𝑛 ∈ Z≥0 such that

∑𝑛
𝑖=1 𝑡𝑖 is

minimized, subject to the following restrictions:

(1) ∀𝑆 ⊆ [𝑛] such that𝑤 (𝑆) < 𝛼𝑤𝑊 : 𝑡 (𝑠) < 𝛼𝑛𝑇
(2) 𝑇 ≠ 0
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In Appendix A, we apply Weight Restriction to implement the black-box transformation an-

nounced in Section 1.3 as well as weighted versions of secret sharing and threshold cryptography

with different access structures. In Section 3, we prove the following theorem:

Theorem 2.1 (WR upper bound). For any 𝛼𝑤, 𝛼𝑛 ∈ (0, 1) such that 𝛼𝑤 < 𝛼𝑛 : there exists a solution
to the Weight Restriction problem with 𝑇 ≤

⌈
𝛼𝑤 (1−𝛼𝑤 )
𝛼𝑛−𝛼𝑤

𝑛

⌉
Tomake sense of this expression note that: (1) it is proportional to𝑛; (2) it is inversely proportional

to the “gap” between 𝛼𝑤 and 𝛼𝑛 ; (3) the numerator 𝛼𝑤 (1 − 𝛼𝑤) is smaller than 1 and, in fact, never

exceeds 1/4. For a fixed 𝛼𝑤 , one can see 𝛼𝑤 (1 − 𝛼𝑤) as the “constant” and 𝑂

(
𝑛

𝛼𝑛−𝛼𝑤

)
as the

“complexity”.

2.2 WeightQualification
The next weight reduction problem we study isWeight Qualification (or simply WQ). It requires the

mapping to preserve the property that any subset of parties of weight more than 𝛽𝑤 obtains more

than 𝛽𝑛 tickets. In some sense, WQ is the opposite of the Weight Restriction problem discussed

above. More formally:

Problem statement 2 (WeightQualification)

Given 𝛽𝑤, 𝛽𝑛 ∈ (0, 1) and 𝑤1, . . . ,𝑤𝑛 ∈ R≥0 as input, find 𝑡1, . . . , 𝑡𝑛 ∈ Z≥0 such that

∑𝑛
𝑖=1 𝑡𝑖 is

minimized, subject to the following restrictions:

(1) ∀𝑆 ⊆ [𝑛] such that𝑤 (𝑆) > 𝛽𝑤𝑊 : 𝑡 (𝑠) > 𝛽𝑛𝑇

(2) 𝑇 ≠ 0

In Appendix B, we show how to apply Weight Qualification to implement weighted versions of

storage and broadcast protocols that rely on erasure and error-correcting codes for minimizing

communication and storage complexity.

Interestingly, there exists a simple reduction between WR and WQ:

Theorem 2.2. For any 𝛽𝑤, 𝛽𝑛 ∈ (0, 1) and𝑤1, . . . ,𝑤𝑛 ∈ R≥0, the following problems are identical:

(1) 𝑊𝑄 (𝛽𝑤, 𝛽𝑛,𝑤1, . . . ,𝑤𝑛)
(2) 𝑊𝑅(1 − 𝛽𝑤, 1 − 𝛽𝑛,𝑤1, . . . ,𝑤𝑛)

Proof. Let us prove that any valid solution to𝑊𝑅(1 − 𝛽𝑤, 1 − 𝛽𝑛,𝑤1, . . . ,𝑤𝑛) is a valid solution

to 𝑊𝑄 (𝛽𝑤, 𝛽𝑛,𝑤1, . . . ,𝑤𝑛). The inverse can be proven analogously. Indeed, if ∀𝑆 ⊆ [𝑛] such
that 𝑤 (𝑆) > 𝛽𝑤𝑊 : 𝑤 ( [𝑛] \ 𝑆) = 𝑊 − 𝑤 (𝑆) < (1 − 𝛽𝑤)𝑊 . Hence, 𝑡 ( [𝑛] \ 𝑆) < (1 − 𝛽𝑛)𝑇 and

𝑡 (𝑆) = 𝑇 − 𝑡 ( [𝑛] \ 𝑆) > 𝛽𝑛𝑇 . □

From Theorems 2.1 and 2.2, we obtain the following:

Corollary 2.3 (WQ upper bound). For any 𝛽𝑤, 𝛽𝑛 ∈ (0, 1) such that 𝛽𝑛 < 𝛽𝑤 : there exists a
solution to the Weight Qualification problem with 𝑇 ≤

⌈
𝛽𝑤 (1−𝛽𝑤 )
𝛽𝑤−𝛽𝑛 𝑛

⌉
2.3 Weight Separation
Finally, Weight Separation, in a sense, combines WR and WQ: it has parameters 𝛼 and 𝛽 and,

intuitively, guarantees that any set of weight 𝛽 gets more tickets than any set of weight 𝛼 . Intuitively,

it is similar to solving𝑊𝑅(𝛼,𝛾) and𝑊𝑄 (𝛽,𝛾) for some unknown 𝛾 ∈ (𝛼, 𝛽) at the same time, i.e.,
with the just a single ticket assignment.
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Problem statement 3 (Weight Separation)

Given 𝛼, 𝛽 ∈ (0, 1) and 𝑤1, . . . ,𝑤𝑛 ∈ R≥0 as input, find 𝑡1, . . . , 𝑡𝑛 ∈ Z≥0 such that

∑𝑛
𝑖=1 𝑡𝑖 is

minimized, subject to the following restrictions:

(1) ∀𝑆1, 𝑆2 ⊆ [𝑛] such that𝑤 (𝑆1) < 𝛼𝑊 and𝑤 (𝑆2) > 𝛽𝑊 : 𝑡 (𝑆1) < 𝑡 (𝑆2)
(2) 𝑇 ≠ 0

In this paper, we primarily focus on Weight Restriction and Weight Qualification as they are

sufficient for most applications and, being less restrictive on the ticket assignment, permit more

efficient solutions. Nevertheless, for completeness, we provide an upper bound onWeight Separation

as well.

Theorem 2.4 (WS upper bound). For any 𝛼, 𝛽 ∈ (0, 1) such that 𝛼 < 𝛽 : there exists a solution to
the Weight Separation problem with 𝑇 ≤ (𝛼+𝛽 ) (1−𝛼 )

𝛽−𝛼 𝑛.

Note that the numerator (𝛼 + 𝛽) (1 − 𝛼) is always smaller than 1 for 0 < 𝛼 < 𝛽 < 1.

3 UPPER BOUNDS
In this section, we provide formal proofs for Theorems 2.1 and 2.4 and corollary 2.3.

3.1 Upper bounds on Weight Restriction and Weight Separation
Let us start with some auxiliary definitions. A ticket assignment 𝑡 is a vector of𝑛 numbers: 𝑡1, . . . , 𝑡𝑛 ∈
Z≥0. With a slight abuse of notation, for a ticket assignment 𝑡 and a set 𝑆 ⊆ [𝑛], we use notation
𝑡 (𝑆) to denote

∑
𝑖∈𝑆 𝑡𝑖 . Let us say that a ticket assignment 𝑡 is viable if 𝑡 ( [𝑛]) ≠ 0 and ∀𝑆 ⊆ [𝑛] : if

𝑤 (𝑆) < 𝛼𝑤𝑊 , then 𝑡 (𝑆) < 𝛼𝑛𝑡 ( [𝑛]), that is if it satisfies the requirements of the Weight Restriction

problem as defined in Section 2.

In this section, we formally prove Theorem 2.1 by constructing a viable ticket assignment 𝑡

such that 𝑡 ( [𝑛]) ≤
⌈
𝛼𝑤 (1−𝛼𝑤 )
𝛼𝑛−𝛼𝑤

𝑛

⌉
. As the starting point, we consider a family of ticket assignments

parameterized by a single number 𝑠 > 0: 𝑡𝑠,𝑖 := ⌊𝑤𝑖𝑠 + 𝛼𝑤⌋.

Initial bound. As a warm-up and in order to later bootstrap our algorithm in Section 4, let us prove

that, for 𝑠 :=
𝛼𝑛 (1−𝛼𝑤 )𝑛
(𝛼𝑛−𝛼𝑤 )𝑊 , 𝑡𝑠 is viable. This will yield our first upper bound on Weight Restriction that

we will then further improve.

Let 𝑡 denote 𝑡𝑠 and let 𝑆 be a subset of [𝑛] such that𝑤 (𝑆) < 𝛼𝑤𝑊 and 𝑡 (𝑆) is maximum among

all subsets of weight less than 𝛼𝑤𝑊 . We need to prove that 𝑡 (𝑆) < 𝛼𝑛𝑡 ( [𝑛]), which is equivalent to

showing that (1 − 𝛼𝑛)𝑡 (𝑆) < 𝛼𝑛𝑡 (𝑆), where 𝑆 := [𝑛] \ 𝑆 . Indeed:

𝑡 (𝑆) < 𝛼𝑛𝑇 ⇔ 𝑡 (𝑆) < 𝛼𝑛 (𝑡 (𝑆) + 𝑡 (𝑆)) ⇔ (1 − 𝛼𝑛)𝑡 (𝑆) < 𝛼𝑛𝑡 (𝑆)

To this end, let us provide an upper bound on 𝑡 (𝑆) and a lower bound on 𝑡 (𝑆):

𝑡 (𝑆) =
∑︁
𝑖∈𝑆

𝑡𝑖 =
∑︁
𝑖∈𝑆
⌊𝑤𝑖𝑠 + 𝛼𝑤⌋ ≤

∑︁
𝑖∈𝑆
(𝑤𝑖𝑠 + 𝛼𝑤) < 𝛼𝑤𝑊𝑠 + 𝛼𝑤 |𝑆 |

𝑡 (𝑆) =
∑︁
𝑖∉𝑆

⌊𝑤𝑖𝑠 + 𝛼𝑤⌋ ≥
∑︁
𝑖∉𝑆

(𝑤𝑖𝑠 + 𝛼𝑤 − 1) > (1 − 𝛼𝑤)𝑊𝑠 − (1 − 𝛼𝑤) (𝑛 − |𝑆 |)
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Now we can prove that 𝑡 is viable. Notice that “<” changes to “≤” because both the upper bound

on 𝑡 (𝑆) and the lower bound on 𝑡 (𝑆) are strict:
(1 − 𝛼𝑛)𝑡 (𝑆) < 𝛼𝑛𝑡 (𝑆)

⇐ (1 − 𝛼𝑛) (𝛼𝑤𝑊𝑠 + 𝛼𝑤 |𝑆 |) ≤ 𝛼𝑛 ((1 − 𝛼𝑤)𝑊𝑠 − (1 − 𝛼𝑤) (𝑛 − |𝑆 |))

⇔ 𝑠 ≥ 𝛼𝑛 (1 − 𝛼𝑤)𝑛(𝛼𝑛 − 𝛼𝑤)𝑊
− 1

𝑊
|𝑆 |

Since |𝑆 | ≥ 0, this inequality is trivially satisfied for 𝑠 :=
𝛼𝑛 (1−𝛼𝑤 )𝑛
(𝛼𝑛−𝛼𝑤 )𝑊 . Hence, 𝑡 is viable. Intuitively,

what we see here is that the bigger 𝑠 is–the closer 𝑡𝑠 approximates the input weights 𝑤1, . . . ,𝑤𝑛

and, for a sufficiently large 𝑠 , regardless of the input weights, the approximation is guaranteed to

be good enough to satisfy the Weight Restriction requirement.

Let us now provide an upper bound on the number of tickets resulting from such distribution:

𝑡 ( [𝑛]) =
∑︁
𝑖∈[𝑛]
⌊𝑤𝑖𝑠 + 𝛼𝑤⌋ ≤

∑︁
𝑖∈[𝑛]
(𝑤𝑖𝑠 + 𝛼𝑤) ≤𝑊𝑠 + 𝑛𝛼𝑤 =

𝛼𝑛 (1 − 𝛼𝑤)
𝛼𝑛 − 𝛼𝑤

𝑛 + 𝑛𝛼𝑤 =
𝛼𝑛 − 𝛼2𝑤
𝛼𝑛 − 𝛼𝑤

𝑛

This upper bound is suboptimal and we will significantly improve it. Even here you can see

that, assuming 𝛼𝑛 and 𝛼𝑤 are constants and 𝛼𝑤 < 𝛼𝑛 , the total number of tickets is at most 𝑂 (𝑛).
However, to achieve the results stated in Theorem 2.1, we need a slightly more elaborate approach

as presented in the rest of this section.

Improved bound. Let 𝑠∗ be a locally minimal viable value for 𝑠 , i.e., a positive number such that 𝑡𝑠∗

is viable, but 𝑡𝑠∗−𝜀 is not, for any sufficiently small 𝜀. Since we already proved that viable values of 𝑠

exist, it is easy to see that such 𝑠∗ exists. Moreover, there must be some 𝑗 such that 𝑠∗𝑤 𝑗 + 𝛼𝑤 is an

integer. Indeed, if this does not hold, we would be able to slightly decrease 𝑠∗ without changing the
ticket assignment, which would contradict the assumption that 𝑠∗ is a local minimum. Let 𝑡∗ := 𝑡𝑠∗
and 𝐽 := { 𝑗 ∈ [𝑛] | 𝑠∗𝑤𝑖 + 𝛼𝑤 is an integer}. Let 𝑡 ′ be a ticket assignment in which we take one

ticket from each party in 𝐽 , i.e.:

𝑡 ′𝑖 :=

{
𝑡∗𝑖 − 1 if 𝑖 ∈ 𝐽
𝑡∗𝑖 otherwise

Notice that 𝑡 ′ is equal to 𝑡𝑠∗−𝜀 for a sufficiently small 𝜀 > 0.
2
Hence, by construction, 𝑡 ′ is not

viable. Now, let us consider a set of “intermediate” ticket assignments: we will be taking tickets

from parties in 𝐽 as long as the ticket assignment stays viable. We will end up with two ticket

assignments: 𝑡 and ˆ̂𝑡 such that 𝑡 is viable and ˆ̂𝑡 is not, and 𝑡 ( [𝑛]) = ˆ̂𝑡 ( [𝑛]) + 1. All that is left is to
prove that 𝑡 ( [𝑛]) ≤

⌈
𝛼𝑤 (1−𝛼𝑤 )
𝛼𝑛−𝛼𝑤

𝑛

⌉
or, equivalently, that ˆ̂𝑡 ( [𝑛]) ≤

⌈
𝛼𝑤 (1−𝛼𝑤 )
𝛼𝑛−𝛼𝑤

𝑛

⌉
− 1.

Since ˆ̂𝑡 is not viable, either ˆ̂𝑡 ( [𝑛]) = 0 or there must exist a set 𝑆 ⊆ [𝑛] such that𝑤 (𝑆) < 𝛼𝑤𝑊
and ˆ̂𝑡 (𝑆) ≥ 𝛼𝑛 ˆ̂𝑡 ( [𝑛]). As the former case is trivial, we will focus on the latter. Let us provide an

upper bound on ˆ̂𝑡 (𝑆) and a lower bound on ˆ̂𝑡 (𝑆), where 𝑆 := [𝑛] \ 𝑆 . To this end, let us note that,
for any 𝑖 ∈ [𝑛], it holds that ˆ̂𝑡𝑖 ≥ 𝑤𝑖𝑠

∗ + 𝛼𝑤 − 1. Indeed, there are two cases to consider:

(1) if ˆ̂𝑡𝑖 = 𝑡
∗
𝑖 , the inequality holds trivially as ˆ̂𝑡𝑖 = 𝑡

∗
𝑖 = ⌊𝑤𝑖𝑠

∗ + 𝛼𝑤⌋;
(2) otherwise, ˆ̂𝑡𝑖 = 𝑡

∗
𝑖 − 1. However, by construction, it means that𝑤𝑖𝑠

∗ + 𝛼𝑤 is an integer and,

thus 𝑡∗𝑖 = 𝑤𝑖𝑠
∗ + 𝛼𝑤 and ˆ̂𝑡𝑖 = 𝑤𝑖𝑠

∗ + 𝛼𝑤 − 1.
2
Indeed, if we decrease 𝑠∗ by any positive amount, each party in 𝐽 will lose at least 1 ticket as they will step over the

rounding threshold. However, it is also easy to see that 𝜀 can be made small enough so that no other party will lose a ticket

and no party in 𝐽 will lose more than one ticket.
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Hence:

ˆ̂𝑡 (𝑆) =
∑︁
𝑖∈𝑆

ˆ̂𝑡𝑖 ≤
∑︁
𝑖∈𝑆

𝑡∗𝑖 =
∑︁
𝑖∈𝑆
⌊𝑤𝑖𝑠

∗ + 𝛼𝑤⌋ < 𝛼𝑤𝑊𝑠∗ + 𝛼𝑤 |𝑆 |

ˆ̂𝑡 (𝑆) =
∑︁
𝑖∉𝑆

ˆ̂𝑡𝑖 ≥
∑︁
𝑖∉𝑆

(𝑤𝑖𝑠
∗ + 𝛼𝑤 − 1) > (1 − 𝛼𝑤)𝑊𝑠∗ − (1 − 𝛼𝑤) (𝑛 − |𝑆 |)

By construction, ˆ̂𝑡 (𝑆) ≥ 𝛼𝑛 ˆ̂𝑡 ( [𝑛]) and ˆ̂𝑡 ( [𝑛]) = ˆ̂𝑡 (𝑆) + ˆ̂𝑡 (𝑆). Hence, (1 − 𝛼𝑛) ˆ̂𝑡 (𝑆) ≥ 𝛼𝑛 ˆ̂𝑡 (𝑆). From
this, we can derive an upper bound on 𝑠∗:

(1 − 𝛼𝑛) ˆ̂𝑡 (𝑆) ≥ 𝛼𝑛 ˆ̂𝑡 (𝑆)
⇒ (1 − 𝛼𝑛) (𝛼𝑤𝑊𝑠∗ + 𝛼𝑤 |𝑆 |) > 𝛼𝑛 ((1 − 𝛼𝑤)𝑊𝑠∗ − (1 − 𝛼𝑤) (𝑛 − |𝑆 |))

⇒ 𝑠∗ <
𝛼𝑛 (1 − 𝛼𝑤)𝑛
(𝛼𝑛 − 𝛼𝑤)𝑊

− |𝑆 |
𝑊

Finally, we can combine everything into an upper bound on ˆ̂𝑡 ( [𝑛]):

ˆ̂𝑡 ( [𝑛]) ≤
ˆ̂𝑡 (𝑆)
𝛼𝑛

<
𝛼𝑤

𝛼𝑛
(𝑊𝑠∗ + |𝑆 |) < 𝛼𝑤

𝛼𝑛

(
𝛼𝑛 (1 − 𝛼𝑤)𝑛
𝛼𝑛 − 𝛼𝑤

− |𝑆 | + |𝑆 |
)
=
𝛼𝑤 (1 − 𝛼𝑤)
𝛼𝑛 − 𝛼𝑤

𝑛

Since ˆ̂𝑡 ( [𝑛]) is an integer and the inequality is strict, we can rewrite it as ˆ̂𝑡 ( [𝑛]) ≤
⌈
𝛼𝑤 (1−𝛼𝑤 )
𝛼𝑛−𝛼𝑤

𝑛

⌉
−1.

As, by construction, 𝑡 is viable and 𝑡 ( [𝑛]) = ˆ̂𝑡 ( [𝑛]) + 1, we found a viable ticket assignment with at

most

⌈
𝛼𝑤 (1−𝛼𝑤 )
𝛼𝑛−𝛼𝑤

𝑛

⌉
tickets, thus concluding the proof of Theorem 2.1 and corollary 2.3. □

3.2 Upper bound on Weight Separation

Let 𝛾 :=
𝛼+𝛽
2
. For Weight Separation, we analyze a family of ticket assignments of form 𝑡𝑠,𝑖 :=

⌊𝑤𝑖𝑠 + 𝛾⌋. Let us consider the case when the WS conditions are violated, i.e., there exist sets 𝑆1 and

𝑆𝑤 such that 𝑤 (𝑆1) < 𝛼𝑊 , 𝑤 (𝑆2) > 𝛽𝑊 , and 𝑡 (𝑆1) ≥ 𝑡 (𝑆2). This means that at least one of two

events happened: 𝑡 (𝑆1) ≥ 𝛾𝑇 or 𝑡 (𝑆2) < 𝛾𝑇 , or, equivalently, 𝑡 (𝑆2) > (1 − 𝛾)𝑇 .
Let us first consider the case when 𝑡 (𝑆1) ≥ 𝛾𝑇 . This can only happen when 𝑠 <

𝛾 (1−𝛾 )𝑛
(𝛾−𝛼 )𝑊 . The

proof is done using the same set of techniques as in Section 3.1:

𝑡 (𝑆1) =
∑︁
𝑖∈𝑆1

𝑡𝑖 =
∑︁
𝑖∈𝑆1
⌊𝑤𝑖𝑠 + 𝛾⌋ ≤

∑︁
𝑖∈𝑆1
(𝑤𝑖𝑠 + 𝛾) < 𝛼𝑊𝑠 + 𝛾 |𝑆 |

𝑡 (𝑆1) =
∑︁
𝑖∉𝑆1

⌊𝑤𝑖𝑠 + 𝛾⌋ ≤
∑︁
𝑖∉𝑆1

(𝑤𝑖𝑠 + 𝛾 − 1) > 𝛽𝑊𝑠 − (1 − 𝛾) (𝑛 − |𝑆 |)

𝑡 (𝑆1) ≥ 𝛾𝑇 ⇔ (1 − 𝛾)𝑡 (𝑆1) ≥ 𝛾𝑡 (𝑆1)
(1 − 𝛾) (𝛼𝑊𝑠 + 𝛾 |𝑆 |) > (1 − 𝛾)𝑡 (𝑆1) ≥ 𝛾𝑡 (𝑆1) > 𝛾 (𝛽𝑊𝑠 − (1 − 𝛾) (𝑛 − |𝑆 |))

𝑠 <
𝛾 (1 − 𝛾)𝑛
(𝛾 − 𝛼)𝑊

Analogously, in the casewhen 𝑡 (𝑆2) > (1−𝛾)𝑇 , we can prove that 𝑠 < (1−𝛾 ) (1−(1−𝛾 ) )𝑛
( (1−𝛾 )−(1−𝛽 ) ) 𝑊 =

𝛾 (1−𝛾 )𝑛
𝛽−𝛾 .

We specifically chose 𝛾 =
𝛼+𝛽
2

so that the two bounds coincide: 𝑠 <
2𝛾 (1−𝛾 )𝑛
(𝛽−𝛼 )𝑊 . Hence, it is sufficient to

select 𝑠 :=
𝛾 (2−𝛼−𝛽 )𝑛
(𝛽−𝛼 )𝑊 to guarantee that neither of the two events happens and 𝑡 (𝑆1) < 𝛾𝑇 ≤ 𝑡 (𝑆2).
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Let us now compute a bound on the total number of tickets:

𝑇 ≤ 𝑠𝑊 + 𝛾𝑛 =
(𝛼 + 𝛽) (1 − 𝛼)

𝛽 − 𝛼 𝑛

□

4 SWIPER: APPROXIMATE SOLVER FORWEIGHT REDUCTION PROBLEMS

System Total
weight # parties

# tickets using Swiper
𝛼𝑤 = 1/4 𝛼𝑤 = 1/3 𝛼𝑤 = 1/3 𝛼𝑤 = 2/3
𝛼𝑛 = 1/3 𝛼𝑛 = 3/8 𝛼𝑛 = 1/2 𝛼𝑛 = 3/4
𝛽𝑤 = 3/4 𝛽𝑤 = 2/3 𝛽𝑤 = 2/3 𝛽𝑤 = 1/3
𝛽𝑛 = 2/3 𝛽𝑛 = 5/8 𝛽𝑛 = 1/2 𝛽𝑛 = 1/4

Aptos [2, 7] 8.4708 × 108 104 58 206 27 110

Tezos [4, 36] 6.7579 × 108 382 133 419 61 258

Filecoin [3, 43] 2.5242 × 1019 3700 3106 8225 1535 4699

Algorand [1, 46] 9.7223 × 109 42 920 745 13449 291 6354

Table 2. Number of tickets allocated by the Swiper protocol on sample weight distributions.

To facilitate applications of weight reduction problems, we designed Swiper – a fast approximate

solver for Weight Restriction and Weight Qualification. We are also planning on adding support for

Weight Separation shortly. Swiper enjoys a number of desirable properties:

(1) Robustness: It always respects the upper bounds stated in Section 2. This means that even

under a malicious distribution of weights, the number of assigned tickets will be within a

known limit, linear in the number of parties.

(2) Determinism: Swiper is a deterministic protocol. Hence, assuming the initial weights are

common knowledge, each party can run it locally and all parties will obtain the same result.

This eliminates the need for executing a complex consensus protocol to agree on the ticket

assignment.

(3) Practical allocation efficiency: As we study extensively in Section 7, Swiper performs

really well on real-world weight distributions, allocating even fewer tickets that is predicted

by the upper bounds. In Table 2, we summarize the number of tickets allocated by Swiper

on the distribution of funds in four major blockchain systems [1, 2, 3, 4] with some example

thresholds. Notice that, in many cases, the number of tickets is actually below the number

of users. This happens partly due to the distributions being significantly skewed and a large

number of users actually owning only a small fraction of the total funds.

(4) Computational efficiency:Assuming that the thresholds (𝛼𝑤, 𝛼𝑛, 𝛽𝑤, and 𝛽𝑛) are constants,

Swiper run-time is just �̃� (𝑛2). For especially large systems, there is also a quasilinear mode

with runtime �̃� (𝑛). In practice, it yields almost the same number of tickets as the full solver,

but the upper bounds for this mode are not as good even though the total number of tickets

is still provably at most linear in 𝑛. Moreover, Swiper is optimized to run fast in practice.

Generating Table 2 takes only about 30 seconds in full mode and 15 seconds in quasilinear

mode on a single core with a Python implementation. For low-latency applications, an

implementation in a more performance-oriented programming language may be required.
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To respect the double-blind policy of the conference, we provide the full code for Swiper in an

anonymous GitHub repository.
3

At its core, Swiper simply follows the structure of the proof in Section 3.1. However, making it

efficient requires several important observations.

First and foremost, we observe that one can efficiently verify if a ticket assignment is viable (i.e.,

if it satisfies the Weight Restriction requirements) by solving the Knapsack problem [42] in time

𝑂 (𝑛2). While, in general, Knapsack is known to be NP-hard, in our specific case, it can be solved in

time 𝑂 (𝑇𝑛) by using dynamic programming on profits [42, Section 2.3]. Recall that in Section 3.1

we proved that by selecting 𝑠 :=
𝛼𝑛 (1−𝛼𝑤 )𝑛
(𝛼𝑛−𝛼𝑤 )𝑊 we will obtain a viable ticket assignment with at most

𝑂 (𝑛) tickets. In Swiper, we use this bound to bootstrap the protocol and, hence, we only ever solve

Knapsack with 𝑇 = 𝑂 (𝑛).
Second, we use binary search to find the local minima of 𝑠∗ and 𝑘∗ – the number of parties in 𝐽

that should be rounded up in the construction of Section 3.1. Indeed, while finding globally minimal

𝑠 that would still yield a viable ticket assignment may be difficult, we only need a local minimum,

and, thus, binary search is sufficient. The same applies to 𝑘∗.
Finally, we use a well-known approximation algorithm for Knapsack in the binary search before

using an actual Knapsack solver. Then, we use a special form of local-first binary search to precisely

find the optimal values. Thanks to this optimization, in practice, we only need to run the Knapsack

solver a few times, typically less than 5, instead of a logarithmic number. We completely omit this

step in the aforementioned quasilinear mode.

5 DIRECT APPLICATION EXAMPLES
Besides studying the weight reduction problems themselves, the major contribution of this paper is

in exploring applications of weight reduction in distributed computing and applied cryptography.

Unfortunately, due to the space limitations, the detailed discussion of the direct applications of

Weight Restriction and Weight Separation is delegated to Appendices A and B respectively. In this

Section, we briefly outline the intuition behind some of them. We will then discuss how to combine

them with weighted voting in Section 6.

5.1 Distributed random number generation
As amotivating example forWeight Restriction, consider theDistributed RandomNumber Generation
problem. Typically, it needs to satisfy two properties:

• If all honest parties cooperate, they can generate the next random number;

• Unless at least one honest party wants to open the next random number, it remains com-

pletely unpredictable to the adversary.

We say that it has blunt access structure (defined formally in Appendix A.1).

Perhaps, the simplest way it can be achieved [52] is by having a trusted party generate the

random number and pre-distribute it using secret sharing [55], such that each party gets a number

𝑡𝑖 of shares and any subset of parties possessing at least ⌈𝛼𝑛𝑇 ⌉ shares (where 𝑇 =
∑𝑛

𝑖=1 𝑡𝑖 ) can

reconstruct the secret, but no set of parties possessing less than this amount shares can learn

anything about the secret.

Thus, by setting 𝛼𝑤 to the resilience of the protocol (𝛼𝑤 := 𝑓𝑤) and 𝛼𝑛 ≤ 1

2
, we can guarantee

that:

• Corrupt participants will receive less than 𝛼𝑛𝑇 shares and, hence, will not be able to

reconstruct the random number unless some honest party also wants to open it;

3
https://github.com/swiper-double-blind/swiper-double-blind-submission

https://github.com/swiper-double-blind/swiper-double-blind-submission
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• Honest participants will receive more than (1 − 𝛼𝑛)𝑇 ≥ 𝛼𝑛𝑇 ⌉ shares and, hence, will be
able to reconstruct the random number.

Practical randomness beacons [19, 54] operate similarly, but replace the trusted party with a

distributed setup protocol and employ unique threshold signatures [11, 56] in order to be able to

reuse the same secret multiple times.

5.2 Black-box transformation
Weight Restriction also allows us to transform an arbitrary nominal protocol to the weighted model

with a slight reduction in resilience using what we call a “black-box transformation”. Intuitively,

given a nominal protocol with resilience 𝑓𝑛 , one can set 𝛼𝑛 := 𝑓𝑛 and 𝛼𝑤 := 𝑓𝑛 − 𝜖 for an arbitrary

small 𝜀. Then we can simulate a protocol with 𝑇 =
∑

𝑖∈[𝑛] 𝑡𝑖 virtual participants, with each party

𝑖 controlling 𝑡𝑖 of them. By the definition of Weight Restriction, if the adversary is limited to

corrupting parties of total weight 𝑓𝑤 := 𝛼𝑤 , it will also control less than 𝛼𝑛 = 𝑓𝑛 virtual participants

and, thus, will not be able to “break” the nominal protocol.

Assuming the initial weights are common knowledge, if all parties execute the same deterministic

algorithm for solving Weight Restriction (e.g., Swiper), they will also all agree on the new virtual

membership.

Notice, however, that this transformation may negatively affect any sort of “fairness” properties.

Indeed, after the mapping, some party may observe their relative weight decrease. We discuss the

issues of fairness in slightly more detail in Section 9.

5.3 Erasure and error-correcting coded storage and broadcast
The main application of Weight Qualification that we consider is erasure and error-correcting codes

in storage and broadcast protocols. Indeed, what we typically want when applying such codes,

is for any subset of honest parties of a certain weight (𝛽𝑤) to be able to reconstruct the original

encoded data if they collaborate. If we use tickets to determine how many fragments of the original

data a party gets, then this requirement directly translates to them obtaining at least a fraction 𝛼𝑛
of tickets, where 𝛼𝑛 is the rate of the code. Notice that, in these applications, we are not interesting

in restricting any set of parties from reconstructing the data as erasure codes are not designed

neither they are typically used to provide secrecy on their own.

We discuss how to apply WQ to obtain weighted versions of the state-of-the-art nominal storage

systems and broadcast protocols in much greater detail in Appendix B. Crucially, in order to move

from the nominal to the weighted model, we just slightly reduce the rate of the code, thus adding a

small communication overhead, but we can keep the resilience of the weighted protocol the same

as of its nominal counterpart (𝑓𝑤 = 𝑓𝑛).

6 DERIVED APPLICATIONS
In this section, we discuss indirect applications of weight reduction problems that are obtained

by using one or multiple building blocks discussed in Section 5 and appendices A and B. For

all applications discussed here, we manage to avoid losing resilience despite applying weight

reduction. In all cases, the majority of the protocol logic should be converted to the weighted model

by applying weighted voting, as discussed in Section 1.2.

6.1 Asynchronous State Machine Replication
For asynchronous state machine replication protocols [27, 32, 41, 47, 57], we simply need to use

a weighted communication-efficient broadcast protocol (discussed in Appendix B) and weighted

distributed random number generation (discussed in Appendix A.1). The distributed number
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generation part can use a nominal protocol with threshold 𝛼𝑛 = 1

2
and set 𝛼𝑤 := 1

3
, which is the

resilience of the rest of the protocol. Thus, in some sense, we level the resilience of different parts

of the protocol, without affecting the resilience of the composition.

6.2 Validated Asynchronous Byzantine Agreement
The same approach can be applied to generate randomness for Validated Asynchronous Byzantine

Agreement (VABA) [6, 18].

These protocols also require tight threshold signatures. However, in practice, multi-signatures [11,

51] are usually applied instead as they have almost no overhead over threshold signatures on the

system sizes where such protocols could be applied (below 1000 participants): it suffices to append

the multi-signature with an array of 𝑛 bits, indicating the set of parties that produced the signature.

Then, along with the verification of the validity of the multi-signature itself, anyone can verify that

the signers together hold sufficient weight.

Alternatively, one could apply the approach described in Appendix A.2 to implement tight

weighted threshold signatures. However, it would lead to an increase in message complexity of the

resulting protocol, which we want to avoid.

Finally, an ad-hoc weighted threshold signature scheme can be applied, such as the one recently

proposed in [28]. Note that these signatures cannot be used for distributed randomness generation

as they lack the necessary uniqueness property, and thus we still need to apply Swiper to obtain a

complete protocol.

6.3 Consensus with Checkpoints
We can apply the same approach for checkpointing proof-of-stake consensus protocols [8], but

this time for blunt threshold signatures (as discussed in Appendix A.1) instead of random number

generation. If, for some reason, one wants to use a tight threshold signature, the approach described

in Appendix A.2 can be applied at the cost of just 1 additional message delay per checkpoint.

Compared to ad-hoc solutions for weighted threshold signatures [28], we claim that our approach

is more computationally efficient as it is basically as fast as the underlying nominal protocol. For

example, 1 pairing to verify a BLS signature [11] compared to 13 pairings to verify a signature

in [28]. Moreover, the weight reduction approach is more general and can support other types of

threshold signatures, such as RSA [56] and Schnorr [58], the latter being particularly important in

the context of checkpointing to Bitcoin [8].

7 ANALYZINGWEIGHT RESTRICTION ON SAMPLE SYSTEMS
We performed two kinds of experiments on real blockchain data. In the first experiment, shown in

the left column of Figure 1, we analyzed the influence of the choice of parameters 𝛼𝑤 and 𝛼𝑛 for

the original data retrieved from the blockchains; the value of 𝛼𝑛 was varied in the range [0.1, 1],
while the value of 𝛼𝑤 was tested in the range [0.1 × 𝛼𝑛, 0.9 × 𝛼𝑛]. In the experiments showcased

in the right column of Figure 1, we kept these parameters fixed and analyzed the influence of the

number of parties in the metrics we tracked. In order to simulate having the same blockchain with

different numbers of parties, we used the statistical technique known as bootstrapping. To this end,

we performed 380 experiments sampling parties with replacement from the blockchain data and

taking the average of the results.

In each experiment, we tracked the total number of tickets distributed, the maximum number of

tickets held by a single party, and the number of parties that get at least one ticket (in the figures,

we label them as the number of holders). In Figure 1, we show the results for the Tezos blockchain.

The results for Algorand, Aptos, and Filecoin are available in Appendix D. The analysis of the

results reveals the following information: the upper bound given in Section 2 is very pessimistic for
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Fig. 1. Experiment results using Tezos (380 samples per data point)

weight distributions emerging in practice, with the total number of tickets rarely surpassing the

number of parties for different values of 𝛼𝑛 and 𝛼𝑤 . The total number of tickets varies extremely

close to a linear function on the number of parties, as well as the number of holders. The maximum

number of tickets, on the other hand, seems to saturate when the number of parties in absolute

terms surpasses the order of magnitude of 1000, remaining almost constant after that point.

8 RELATEDWORK

Knapsack. The Knapsack problem and its variations hold huge importance in theoretical computer

science and have numerous applications in both theory and practice. The weight reduction problems

studied in this paper seem to be related to, or can even be seen as a variation of the famous

Knapsack problem. For example, one can see Weight Restriction as the problem of constructing

“worst possible” profits for a Knapsack instance given the weights and the capacity. We refer to [42]

for a comprehensive survey on the topic.
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Virtual users. The simplest solution for creating a weighted threshold cryptographic system is

to simply have a user of weight𝑤 to become𝑤 virtual users and to give one key to each of them.

Shamir’s paper describing his secret sharing scheme [55] puts forward this solution. However, in

practice, the total weight tends to be prohibitively large, and “quantizing” it requires solving weight

reduction problems, which is the main subject of this paper.

Weighted voting. In [35], Gifford presents the idea of weighted voting for distributed storage

systems. The paper suggests assigning weights to replicas according to the estimated failure

probabilities and using weight-based quorums to store and retrieve data. We discuss the merits and

limitations of this approach in Section 1.2. The goal of our paper is to complement the weighted

voting approach and design a framework for implementing weighted distributed protocols that

can benefit from solutions and primitives that are initially designed for the nominal model. In

Appendices A and B and section 6, we discuss in detail how to combine weighted voting and weight

reduction to obtain extremely efficient weighted protocols without sacrificing resilience.

Ad-hoc solutions. There is a large body of work studying ad-hoc weighted cryptographic pro-

tocols [9, 10, 25, 28, 33, 38]. Compared to these works, the weight reduction approach studied

in this paper has a number of benefits, such as simplicity, efficiency, wider applicability, and a

wider range of possible cryptographic assumptions. Moreover, in many cases, ad-hoc solutions can

be combined with and benefit from weight reduction. In this paper, we also study other applica-

tions, non-cryptographic, applications, such as erasure and error-corrected distributed storage and

broadcast protocols.

Similar work by Benhamouda, Halevi, and Stambler. A recent work [10] mentioned a similar

idea of reducing real weights to integers to construct ramp secret sharing. This project has been

started and the first versions of Swiper has been drafted before the online publication and without

any knowledge of [10]. As the main focus of [10] is different, we believe that we do a much more

in-depth exploration of this direction by studying different kinds of weight reduction problems and

their applications beyond secret sharing, aswell as providingmuch tighter bounds and implementing

a solver that is not only linear in the worst case but also allocates very few tickets in empirical

evaluations on real-world weight distributions.

9 CONCLUDING REMARKS AND FUTUREWORK DIRECTIONS
In this paper, we have presented a family of optimization problems called weight reduction that, to

the best of our knowledge, has not been studied before. We provided practical protocols to find

good, albeit not optimal, solutions to these problems. As we have shown, it allows us to obtain

efficient implementations of many weighted distributed protocols.

We believe that weight reduction problems will play an important role in the future of blockchain

systems as they become more sophisticated and the need for threshold cryptography as well as

erasure coding and protocols like single secret leader election grows. At the time of writing, at least

one major layer-1 blockchain has already integrated a version of Weight Separation for generating

on-chain randomness.

In this paper, we attempted the first systematic study of this family of problems, but there are

still many important questions being left for future research.

Fairness. Weight reduction naturally leads to slight deviations in relativeweights of the participants.

While in this paper we focused on safety and liveness properties and showed that they can still be

preserved, we did not consider any kind of fairness properties. However, we believe that, somewhat

counter-intuitively, some form of fairness can be preserved as well. To this end, we are considering

two possible direction:



Swiper: a new paradigm for efficient weighted distributed protocols 15

(1) Expected fairness: In addition to deterministically assigned tickets, we can allocate some

small number of tickets randomly so that each party gets exactly the same fraction of tickets

as its fraction of weight in expectation. We believe that it can be done while still preserving

safety and liveness deterministically, i.e., even in the worst case, when all the “random”

tickets are received by the adversary.

(2) Integral fairness: Similarly, one can imagine a deterministic protocol that provides fairness
over time. In such a scheme, the ticket allocation will be updated periodically and each party

will get exactly the right number of tickets on average, over a large enough period.

Incentives. One important aspect of proof-of-stake blockchains is the distribution of incentives,

which should depend on the weight of each party. It is not immediately clear what is the right way

to allocate incentives in a system where weight reduction is being applied.

Other applications. While we covered a wide range of applications in this paper, we believe that

there must be others, including ones not related to distributed computing or applied cryptography.

Adversarial attacks. In this paper, we study the “worst case” weight distributions by providing

the upper bounds and the “organic case” by studying the real-world weight distributions. However,

in practice, under an adversarial attack, the weight distribution will be a hybrid one: the weights

of honest parties will be organic, but the weights of the adversarial parties may be redistributed

maliciously. It is an interesting avenue for future work to study how much an adversary can affect

the number of tickets (and, thus, the performance of the system) by redistributing their weight in a

malicious manner.

Complexity and more precise bounds. Finally, there are still many theoretical questions about

these problems. Are there polynomial-time exact solutions? What are the lower bounds? Can we

derive better upper bounds? Finally, what are some other interesting and useful weight reduction

problems, apart from the three defined in this paper?
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A APPLICATIONS OFWEIGHT RESTRICTION
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own, including many consensus and state machine replication protocols [6, 18, 27, 41]. However,

most threshold cryptosystems are based on the idea of splitting a secret key into a number of

discrete pieces such that any 𝑡 out of 𝑛 pieces are sufficient to reconstruct the secret key or perform

operations on it (e.g., create a threshold signature). Therefore, simple weighted voting, as described

in Section 1.2, cannot be applied to such systems.

A.1 Blunt Secret Sharing and derivatives
In cryptography, certain actions have an associated access structure A which determines all sets of

parties that are able to perform these actions once they collaborate. Traditional (𝑛, 𝑘 + 1)-threshold
systems can be seen as a particular access structure where A = {𝑃 ⊆ [𝑛] : |𝑃 | > 𝑘}. Analogously, a
weighted threshold access structure can be defined as A = {𝑃 ⊆ Π :

∑
𝑖∈𝑃 𝑤𝑖 > 𝛽

∑
𝑖∈Π𝑤𝑖 }.

We can also define the adversary structure F ⊆ 2
Π
, the set of all sets of parties that can be

simultaneously corrupted at any given execution. Often, the adversary structure is also defined

via a threshold, with a maximum corruptible weight fraction 𝛼 , i.e., F𝑤 (𝛼) = {𝑃 ⊂ Π :

∑
𝑖∈𝑃 𝑤𝑖 <

𝛼
∑

𝑖∈Π𝑤𝑖 }.
While threshold access structures are commonly studied in cryptography and are applied in

numerous distributed protocols, in practice, as we discuss in Section 6, it is often sufficient if the

access structure provides the following two properties:

• There exists at least one set entirely composed of honest parties that belongs to the access

structure. This typically guarantees the liveness properties of the accompanying protocol.

• Any set containing only corrupt parties does not belong to the access structure, as this

would break safety properties.
Hence, we define a blunt access structure as follows:

Definition A.1 (Blunt access structure). Given a set of parties Π and the adversary structure F ⊆ 2
Π
,

A is a blunt access structure w.r.t. F if (∀𝐹 ∈ F : 𝐹 ∉ A) and (∃𝐴 ∈ A : 𝐴 ∩ 𝐹 = ∅).

The following theorem shows that solving WR is sufficient to implement weighted cryptographic

protocols with blunt access structure by reduction to their nominal counterparts.

Theorem A.2. Given a set of parties, a nominal threshold access structure protocol P with threshold
𝑘 ≤ 𝑛/2, we obtain a blunt threshold access structure w.r.t. a weighted threshold adversarial structure
F𝑤 (𝛼), assuming 𝛼 < 𝑘

𝑛
, by solving Weight Restriction with parameters 𝛼𝑤 = 𝛼 and 𝛼𝑛 = 𝑘

𝑛
. This is

accomplished by instantiating P with �̂� = 𝑇 virtual users and allowing party 𝑖 to control 𝑡𝑖 of them.4

Proof. By definition of WR, once it distributes 𝑇 tickets, the number of tickets (and, hence,

virtual users) allocated to the corrupt parties will be less than 𝛼𝑛𝑇 = 𝑘
�̂�
. Hence, no element of the

adversary structure shall appear in the resulting access structure. In addition, honest participants

will receive more than (1 − 𝛼𝑛)𝑇 ≥ 𝛼𝑛𝑇 = 𝑘
�̂�
tickets (and, hence, virtual users), ensuring that there

exists a set consisting of only honest parties in the access structure. □

Note that all participants must agree on how many virtual users are assigned to each party as

nominal protocols typically assume that the membership is common knowledge. To this end, it

is sufficient for all parties to run an agreed upon deterministic weight-restriction protocol (e.g.,

Swiper).

Among other things, this way, one can obtain weighted versions of verifiable secret sharing [55],

distributed random number generation [19], threshold signatures [11], threshold encryption [31],

4
Recall that 𝑡𝑖 is the number of tickets assigned to party 𝑖 and𝑇 is the total number of tickets assigned by the solution to

the weight reduction problem (in this case, to WR). See Section 2 for details.
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and threshold fully-homomorphic encryption [39], all with blunt access structures. In the next

section, we discuss how to do it for other access structures.

A.2 Tight Secret Sharing and derivatives
Although a blunt access structure is sufficient for a large spectrum of applications, more restrictive

access structures are sometimes necessary as well. Here, we present a straightforward approach

that involves just one extra round of communication to transform a blunt access structure into

a weighted threshold access structure.
5
This means that our construction can be readily utilized

in any protocol that already uses threshold cryptography without requiring significant redesign

efforts. We showcase the transformation in Algorithm 1 using the particular example of a generic

secret sharing scheme with threshold 𝛼 .

Algorithm 1 Blunt to weighted access structure for party 𝑖

1: {𝑡1, . . . , 𝑡𝑛} ← WR({𝑤1, . . . ,𝑤𝑛}, 𝑓𝑤, 𝑓𝑛)
2: 𝑇 ← ∑𝑛

𝑖=1 𝑡𝑖

3: Operation Share(𝑚, {𝑤1, . . . ,𝑤𝑛}): // Executed by dealer.

4: {𝑠1
1
, . . . , 𝑠

𝑡1
1
, . . . , 𝑠1𝑛, . . . , 𝑠

𝑡𝑛
𝑛 } ← (⌈𝑓𝑛𝑇 ⌉,𝑇 )-share(𝑚)

5: ∀𝑗 ∈ [𝑛] : send ⟨SHARES : 𝑠1𝑖 , . . . , 𝑠
𝑡𝑖
𝑖
⟩ to party 𝑖

6: Operation RETRIEVE: // Executed by the parties.

7: Send ⟨REQUEST⟩ to all parties

8: Upon receiving ⟨REQUEST⟩ from party 𝑗 :

9: //𝑤𝑟𝑒𝑞 is initially 0

10: 𝑤𝑟𝑒𝑞 ← 𝑤𝑟𝑒𝑞 +𝑤 𝑗

11: if 𝑤𝑟𝑒𝑞 ≥ 𝛼
∑𝑛

𝑖=1𝑤𝑖 then
12: send shares received from the dealer to all parties

13: Upon receiving ⌈𝑓𝑛𝑇 ⌉ shares:
14: Reconstruct message𝑚

In order to obtain the weighted access structure, the first step is to compute how many shares

need to be dealt to each party by solving the Weight Restriction problem. Using the nominal secret

sharing operations, we generate shares for the input message by treating each ticket as a “virtual

user”, setting the total number of shares to the total number of tickets, and using the parameter

𝑓𝑛 to set the reconstruction threshold. The dealer then sends to each party the number of shares

determined by the solution to WR.

In the reconstruction phase, each party keeps track of the total weight of parties that have

requested the reconstruction. Once the established threshold is surpassed, the participants trans-

mit the shares of the secret that they previously received from the dealer. Finally, the secret is

reconstructed once the threshold is surpassed.

The correctness of this transformation comes from the fact that before parties corresponding to

at least a fraction 𝛼 of the total weight request the reveal of the secret, the honest parties do not

send their shares, prohibiting the reconstruction of the secret as the shares of corrupted parties

are not sufficient, by design, to perform this action. However, once this threshold is surpassed, all

honest parties send their shares, and the secret is eventually retrieved, as their shares are, once

again, by design, sufficient to surpass the threshold of the nominal secret sharing scheme.

5
In fact, this can be further generalized to arbitrary access structures.
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Beyond simple secret sharing, one can obtain weighted versions of the same set of protocols as

was discussed at the end of Appendix A.1, but with arbitrary access structures.

A.3 Black-Box transformation
The same approach of allocating a number of virtual users according to the number of tickets as

described in Appendix A.1 can be applied to arbitrary distributed protocols. Intuitively, a distributed

protocol P with resilience 𝑓𝑛 (𝑓𝑤) in the nominal (weighted) model must solve the stated problem

iff less than 𝑓𝑛𝑛 parties (parties with weightless than 𝑓𝑤𝑊 ) are corrupted. Hence, by applying the

“virtual users” approach, we can essentially emulate the nominal model in the weighted one as

long as 𝑓𝑤 < 𝑓𝑛 . However, as we demonstrate later in this section on the example of the Single

Secret Leader problem, this approach has its limitations with respect to what kinds of distributed

problems can be solved with it.

We illustrate the black-box transformation with two examples, showing first an example where

it works smoothly and then an example where we have to slightly relax the problem statement for

it to be applicable.

Linear BFT consensus. One of the major contributions of the Hotstuff protocol [60] was to

achieve linear communication complexity BFT consensus. This result was achieved by designing

the communication of the protocol in a star pattern, where each participant only communicates

with the leader. Thus, in order for the leader to demonstrate that its proposal was accepted by a

quorum of replicas, the protocol uses threshold signatures which guarantee that a valid signature

can only be generated by combining at least 𝑛 − 𝑓 shares. This guarantees that incompatible values

are never both validated by a quorum since they shall intersect in at least 𝑓 + 1 replicas and at least

one of them will be correct, which cannot happen since honest replicas do not vote for different

values.

In this case, we cannot apply either of the construction Appendix A.1 as we need a tight access

structure for the threshold signature, nor can we apply the construction of Appendix A.2 as it

would make the communication complexity quadratic whereas the main goal of Hotstuff is to

keep it linear. However, what we can do is simply apply the virtual users approach in a black-box

manner: pick any threshold 𝑓𝑤 < 𝑓𝑛 , run a deterministic WR protocol, and determine how many

virtual identities should each party assume.

Single Secret Leader Election. SSLE [13] is a distributed protocol that has as an objective to

select one of the participants to be a leader with an additional constraint that only the elected party

knows the result of the election. Then, once the leader is ready to make a proposal, it reveals itself

and other participants can then correctly verify that the claiming leader was indeed elected by the

protocol.

The original paper contains nominal solutions for the protocol relying on ThFHE [14] and on

shuffling a list of commitments under the DDH assumption. The authors initially suggest that

their protocols could support weights by replicating each party to match their weights. As already

discussed, this would create a huge overhead in the protocol for systems with large total weight.

Interestingly, in the original protocol, it is required for the election to be fair, that is, for the
probability of each party being elected to be uniform. One could think however of an alternative

formulation to the protocol where chain-quaility is required instead, where we might specify

that the fraction of blocks produced by corrupt parties should not surpass 𝑓𝑛 when the adversary

might control a fraction of the weights up to 𝑓𝑤 . In this case, we can thus simply apply WR with

parameters 𝛼𝑤 = 𝑓𝑤, 𝛼𝑛 = 𝑓𝑛 , immediately guaranteeing such a notion.

Properties such as fairness are one of the limitations of our transformations since any property

that is a function of the weight of the parties may not be preserved after the transformation is
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applied. We discuss fairness in slightly more detail and speculate about possible fixes to this issue

in Section 9.

B APPLICATIONS OFWEIGHT QUALIFICATION
B.1 Erasure-Coded Storage and Broadcast
Erasure-coded storage systems [20, 37, 50, 53, 59], also known under the names of Information

Dispersal Algorithms (IDA) [53] and Asynchronous Verifiable Information Dispersal (AVID) [20], are

crucial to many systems for space and communication-efficient, secure, and fault-tolerant storage.

Moreover, as demonstrated in [20], they can yield highly communication-efficient solutions to the

very important problem of asynchronous Byzantine Reliable Broadcast [15, 16], a fundamental

building block in distributed computing that, among other things, serves as the basis for many

practical consensus [27, 32, 41, 47, 57], distributed key generation [5, 30], and mempool [27]

protocols.

The challenge of applying these protocols in the weighted setting is that (𝑘,𝑚) erasure coding, by
definition, converts the original data into𝑚 discrete fragments such that any 𝑘 of them are sufficient

to reconstruct the original information. Thus, each party will inevitably get to store an integer

number of these fragments, and the smaller𝑚 is, the more efficient the encoding and reconstruction

will be. Moreover, for the most commonly used codes–Reed Solomon–the original message must

be of size at least 𝑘 log𝑚 bits. Hence, using a large𝑚 may lead to increased communication as

the message may have to be padded to reach this minimum size. As we illustrate in this section,

determining the smallest “safe” number of fragments to give to each party is exactly the Weight

Qualification problem defined in Section 2.

Let us consider the example of [20] as it is the first erasure-coded storage protocol tolerating

Byzantine faults. We believe Weight Qualification can be applied analogously to other similar

works.

This protocol operates in a model where any 𝑡 out of 𝑛 parties can be malicious or faulty, where

𝑡 < 𝑛
3
. In other words, it has the nominal fault threshold of 𝑓𝑛 = 1

3
. The protocol encodes the data

using (𝑡 + 1, 𝑛) erasure coding, and the data is considered to be reliably stored once at least 2𝑡 + 1
parties claim to have stored their respective fragments. The idea is that, even if 𝑡 of them are faulty,

the remaining 𝑡 + 1 parties will be able to cooperate to recover the data.

In order to make a weighted version of this protocol, instead of waiting for confirmations from

2𝑡 + 1 parties, one needs to wait for confirmations from a set of parties that together possess more

than a fraction 2𝑓𝑤 of total weight, where 𝑓𝑤 = 𝑓𝑛 = 1

3
. A subset of weight less than 𝑓𝑤 of these

parties may be faulty. Hence, for the protocol to work, it is sufficient to guarantee that any subset

of total weight more than 2𝑓𝑤 − 𝑓𝑤 = 𝑓𝑤 gets enough fragments to reconstruct the data. To this

end, we can apply the WQ problem with the threshold 𝛽𝑤 = 𝑓𝑤 . We can set 𝛽𝑛 to be an arbitrary

number such that 0 < 𝛽𝑛 < 𝛽𝑤 . Then, we can use (⌈𝛽𝑛𝑇 ⌉,𝑇 ) erasure coding, where 𝑇 is the total

number of tickets allocated by the WQ solution. Hence, whenever a set of weight more than 2𝑓𝑤
of parties claim to have stored their fragments, we will be able to reconstruct the data with the

help of the correct participants in this set. As for the rest of the protocol, it can be converted to the

weighted model simply by applying weighted voting, as was discussed in Section 1.2.

As a result, we manage to obtain a weighted protocol for erasure-coded verifiable storage with

the same resilience as in the nominal protocol (𝑓𝑤 = 𝑓𝑛 = 1

3
). The “price” we pay is using erasure

coding with a smaller rate (𝛽𝑛 instead of 𝑓𝑤), i.e., storing data with a slightly increased level of

redundancy. However, note that 𝛽𝑛 can be set arbitrarily close to 𝑓𝑤 , at the cost of more total tickets

and, hence, more computation.
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Example instantiations. The communication and storage complexity of these protocols depends

linearly on the rate of the erasure code. Using Reed-Solomon with Berlekamp-Massey decoding

algorithm, the decoding computation complexity [34] is 𝑂 (𝑚2 · 𝑀
𝑟𝑚
) = 𝑂 (𝑚

𝑟
·𝑀), where𝑀 is the

size of the message (which we do not affect), 𝑟 is the rate of the code (in our case, 𝑟 = 𝛽𝑛), and

𝑚 is the number of fragments (in our case, the number of tickets allocated by the solution to the

WQ problem). For the sake of illustration, let us fix 𝛽𝑛 to be
1

4
. Then, the rate of the code used

in the weighted solution will be
4

3
times smaller than in the nominal solution. For the number of

fragments𝑚, let us substitute the upper bound from Corollary 2.3 (𝑚 ≤
⌈
𝛽𝑤 (1−𝛽𝑤 )
𝛽𝑤−𝛽𝑛 𝑛

⌉
). For 𝛽𝑤 = 1

3

and 𝛽𝑛 = 1

4
,𝑚 ≤ 8

3
𝑛. Hence, the overall slow-down compared to the nominal solution is

8

3
· 4
3
≈ 3.56.

One can also consider using FFT-based decoding algorithms [40]. Since the complexity of the

FFT-based decoding depends only polylogarithmically on the number of fragments𝑚, one can

select the rate of the code (𝑟 = 𝛽𝑛) to be much closer to 𝛽𝑤 and, thus, minimize communication and

storage overhead.

Some protocols [49] are designed for higher reconstruction thresholds, which allows them to be

more communication- and storage-efficient compared to [20]. For these cases, we will need to set

𝛽𝑤 := 2

3
. By setting 𝛽𝑛 := 1

2
and applying the upper bound from Corollary 2.3, we will obtain the

same reduction of factor
4

3
in rate and 2 times fewer tickets:𝑚 ≤ 1/3·2/3

2/3−1/2𝑛 = 4

3
. The computational

overhead will be
4

3
· 4
3
≈ 1.78.

B.2 Error-Corrected Broadcast
The exciting work of [29] illustrated how one can avoid the need for complicated cryptographic

proofs in the construction of communication-efficient broadcast protocols by employing error-

correcting codes, thus enabling a better communication complexity when a trusted setup is not

available. The protocol of [29] can be used for the construction of communication-efficient Asyn-

chronous Distributed Key Generation [5, 30] protocols.

Similarly to erasure codes, error-correcting codes convert the data into𝑚 discrete fragments,

such that any 𝑘 of them are sufficient to reconstruct the original information. However, they have

the additional property that the data can be reconstructed even when some of the fragments input

to the decoding procedure are invalid or corrupted. Reed-Solomon decoding allows correcting up

to 𝑒 errors when given 𝑘 + 2𝑒 fragments as input.

The protocol of [29] tolerates up to 𝑡 failures in a system of 𝑛 ≥ 3𝑡 + 1 parties (for simplicity,

we will consider the case 𝑛 = 3𝑡 + 1). Its key contribution is the idea of online error correction. Put
simply, the protocol first ensures that:

• Every honest party obtains a cryptographic hash of the data to be reconstructed;

• Every honest party obtains its chunk of the data.

Then, in order to reconstruct a message, an honest party solicits fragments from all other parties

and repeatedly tries to reconstruct the original data using the Reed-Solomon decoding and verifies

the hash of the output of the decoder against the expected value. As the protocol uses 𝑘 = 𝑡 + 1
and𝑚 = 𝑛, after hearing from all 2𝑡 + 1 honest and 𝑒 ≤ 𝑡 malicious parties, it will be possible to

reconstruct the original data (as 2𝑡 + 1 + 𝑒 ≥ 𝑘 + 2𝑒 , for 𝑘 = 𝑡 + 1).
To convert this protocol into the weighted model, it is sufficient to make sure that all honest

parties together possess enough fragments to correct all errors introduced by the corrupted parties.

To this end, we will apply theWQ problem.We will set 𝛽𝑤 to the fraction of weight owned by honest

parties, i.e., 𝛽𝑤 := 1 − 𝑓𝑤 = 2

3
(where 𝑓𝑤 will be the resilience of the resulting weighted protocol,

𝑓𝑤 = 𝑓𝑛 = 1

3
). However, it is not immediately obvious how to set 𝛽𝑛 to allow the above-mentioned

property.
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If we want to use error-correcting codes with rate 𝑟 , we need to guarantee that the fraction

of fragments received by the honest parties (which is at least 𝛽𝑛) is at least 𝑟 + 𝑒 , where 𝑒 is the
fraction of fragments received by the corrupted parties. However, since honest parties get at least

the fraction 𝛽𝑛 of all fragments, then 𝑒 ≤ 1 − 𝛽𝑛 . Hence, we need to set 𝛽𝑛 so that 𝛽𝑛 ≥ 𝑟 + (1 − 𝛽𝑛).
We can simply set 𝛽𝑛 := 𝑟

2
+ 1

2
for arbitrary 𝑟 < 1

3
.

Example instantiation. For the sake of an example, we can set 𝛽𝑤 := 2

3
, 𝑟 := 1

4
and 𝛽𝑛 := 5

8
. Then,

using the bound from Corollary 2.3, the number of tickets will be at most
2/3·1/3
2/3−5/8 · 𝑛 ≤

16

3
𝑛.

As was discussed above, for erasure codes, we can either use the Berlekamp-Massey decoding

algorithm or the FFT-based approaches. The same applies to error-correcting codes. As most

practical implementations use the former, we will focus on it. In this case, the communication

overhead will be
𝑟𝑛
𝑟𝑤
, where 𝑟𝑛 = 1

3
is the rate used in the nominal protocol and 𝑟𝑤 is the rate used

for the weighted protocol (in the example above, 𝑟 = 1

4
). The computation overhead is

𝑟𝑛
𝑟𝑤
· 𝑇
𝑛
, where

𝑇 is the number of tickets allocated by the WQ solution (in the example above,𝑇 ≤ 16

3
𝑛 in the worst

case). Hence, for the example parameters, the worst-case computational overhead is
4

3
· 16

3
≈ 7.11.

C EXACT SOLUTION TOWR USING MIXED INTEGER PROGRAMMING
The way we formulate𝑊𝑅 in section 2.1 can be directly translated into an instance of bi-level

optimization problem [26]. In such problems, we define an upper level optimization problem which

contains another (lower-level) optimization problem in its constraints, namely:

minimize

𝑛∑︁
𝑖=1

𝑡𝑖

subject to

𝑛∑︁
𝑖=1

𝑥𝑖𝑡𝑖 < 𝛼𝑛

𝑛∑︁
𝑖=1

𝑡𝑖

maximize

𝑛∑︁
𝑖=1

𝑥𝑖𝑡𝑖

subject to

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 < 𝛼𝑤

𝑛∑︁
𝑖=1

𝑤𝑖

𝑛∑︁
𝑖=1

𝑡𝑖 ≥ 1

𝑥𝑖 ∈ {0, 1}, 𝑡𝑖 ∈ {0, 1, 2, . . . }

The following theorem will be useful for simplifying this formulation and others we shall build.

Theorem C.1. Minimizing the total number of tickets that the adversary can obtain in Weight
Restriction is equivalent to minimizing the total number of tickets.

Proof. Let 𝑇𝐴 be the maximum number of tickets that the adversary can obtain in a solution of

WR that distributes𝑇 tickets in total. Then,𝑇 =

⌊
𝑇𝐴
𝛼𝑛

⌋
+ 1. This stems from the fact that the problem

requires 𝑇𝐴 < 𝛼𝑛𝑇 =⇒ 𝑇 > 𝑇𝐴/𝛼𝑛 . The minimum integer that satisfies this constraint is given by

the expression above. Because this is an increasing function, the theorem holds. □
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Theorem C.1 allows us to reformulate𝑊𝑅 as a minimax problem:

min

𝑡
max

𝑥

𝑛∑︁
𝑖=1

𝑥𝑖𝑡𝑖

subject to

𝑛∑︁
𝑗=1

𝑥𝑖𝑡𝑖 < 𝛼𝑛

𝑛∑︁
𝑖=1

𝑡𝑖

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 < 𝛼𝑤

𝑛∑︁
𝑖=1

𝑤𝑖

𝑛∑︁
𝑖=1

𝑡𝑖 ≥ 1

𝑥𝑖 ∈ {0, 1}, 𝑘𝑖 ∈ {0, 1, 2, . . . }
A common method for solving minimax problems in MIP is to minimize a new variable that

is greater or equal to all the feasible options, which eliminates in our case the variable 𝑥 , but

introduces 𝑂 (2𝑛) constraints to the problem, as the following:

minimize 𝐾𝐴

subject to 𝐾𝐴 < 𝛼𝑛

𝑛∑︁
𝑖=1

𝑘𝑖

∀𝐼 ⊆ [𝑛] s.t.
∑︁
𝑖∈𝐼

𝑤𝑖 < 𝛼𝑤𝑊 :

∑︁
𝑖∈𝐼

𝑘 [𝑖] ≤ 𝐾𝐴

𝑛∑︁
𝑖=1

𝑘𝑖 ≥ 1

𝑥𝑖 ∈ {0, 1}, 𝐾𝐴, 𝑘𝑖 ∈ {0, 1, 2, . . . }
We can replace the exponential constraints on every subset of weight less than 𝑓𝑤𝑊 by a

constraint on the Knapsack solution, as it will bound all feasible solutions. In order to do so, we can

hard-code a dynamic programming by profits solution to the Knapsack problem into the constraints.

Unfortunately, the resulting MIP still has a lot, albeit only a polynomial number, of constraints and,

thus, is prohibitively slow for inputs of size larger than a couple of dozens.

D EXPERIMENT RESULTS IN THE OTHER BLOCKCHAINS
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Fig. 2. Experiment results using Aptos (200 samples per data point)
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Fig. 3. Experiment results using Filecoin (30 samples per data point)



Swiper: a new paradigm for efficient weighted distributed protocols 27

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Total tickets

0.2 0.4 0.6 0.8 1.0
nfrac

102

103

104

Total tickets

( w, n) = (1/4,1/3)
( w, n) = (1/3,3/8)

( w, n) = (1/3,1/2)
( w, n) = (2/3,3/4)

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Max tickets

0.2 0.4 0.6 0.8 1.0
nfrac

0

200

400

600

Max tickets

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

# Holders

0.2 0.4 0.6 0.8 1.0
nfrac

0

200

400

600

# Holders

2000

4000

6000

8000

10000

12000

100

200

300

200

400

600

800

Fig. 4. Experiment results using Algorand (50 samples per data point)
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