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Abstract. We present mining-based techniques to reduce the size of
various cryptographic outputs without loss of security. Our approach
can be generalized for multiple primitives, such as cryptographic key
generation, signing, hashing and encryption schemes, by introducing a
brute-forcing step to provers/senders aiming at compressing submitted
cryptographic material.
Interestingly, mining can result in record-size cryptographic outputs, and
we show that 5%-12% shorter hash digests and signatures are practically
feasible even with commodity hardware. As a result, our techniques make
compressing addresses and transaction signatures possible in order to
pay less fees in blockchain applications while decreasing the demand for
blockchain space, a major bottleneck for initial syncing, communication
and storage. Also, the effects of “compressing once - then reuse” at mass
scale can be economically profitable in the long run for both the Web2
and Web3 ecosystems.
Our paradigm relies on a brute-force search operation in order to craft
the primitive’s output such that it fits into fewer bytes, while the “miss-
ing” fixed bytes are implied by the system parameters and omitted from
the actual communication. While such compression requires computa-
tional effort depending on the level of compression, this cost is only
paid at the source (i.e., in blockchains, senders are rewarded by lowered
transaction fees), and the benefits of the compression are enjoyed by the
whole ecosystem. As a starting point, we show how our paradigm applies
to some basic primitives commonly used in blockchain applications but
also traditional Web2 transactions (such as shorter digital certificates),
and show how security is preserved using a bit security framework. Sur-
prisingly, we also identified cases where wise mining strategies require
proportionally less effort than naive brute-forcing, shorter hash-based
signatures being one of the best examples. We also evaluate our approach
for several primitives based on different levels of compression. Our eval-
uation concretely demonstrates the benefits both in terms of financial
cost and storage if adopted by the community, and we showcase how our
technique can achieve up to 83.21% reduction in smart contract gas fees
at a cost of less than 4 seconds of computation on a single core.

⋆⋆ Panagiotis Chatzigiannis did part of this work during his PhD studies at George
Mason University.



1 Introduction

In blockchain applications like Bitcoin [33] and Ethereum [42], a distributed
common ledger is maintained among all participants. As the size of the ledger
monotonically increases, most blockchains have large storage requirements for
nodes, which can be several hundreds of gigabytes, even after applying techniques
to prune or compact the needed storage. In addition, there is typically an upper
bound of storage space per block (e.g., in Bitcoin it is 1MB [9])5, while concretely
for Bitcoin at the time of writing, 250 bytes roughly cost $1.5 of transaction fees
to be included in next block with high probability, while minting an ERC721
token which implements the Non-Fungible Token Standard (NFT) [35] using
a 33-byte IPFS link [13] costs $4.20. Therefore, blockchain space is a scarce
resource, and typically there are mechanisms in place to disincentivize posting
large amounts of data to the public ledger (e.g., in cryptocurrencies, transaction
fees are proportional to the size of that transaction in bytes).

In this work, we present several methods to trade off storage for computation
in several cryptographic primitives used in Web2 (i.e., succinct TLS keys and
certificates), blockchain applications, and generally in systems that can tolerate
sender’s work to be more demanding and time-consuming, especially when:

– receivers have limited resources (i.e., mobile, IoT);
– storage or data-size is financially expensive (i.e., blockchains, cloud storage

and ingress cost);
– multiple recipients perform verification/decryption/lookup (i.e., blockchains,

TLS digital certificates, IPFS lookups).

Our approach is based on the principle that a few extra operations on behalf of
the transaction’s sender, which could require crafting a valid transaction in a few
seconds or minutes instead of milliseconds, would be beneficial for the sender (by
lowering transaction fees) as well as all other blockchain participants (by fitting
more transactions per block or by reducing the overall blockchain size by a
constant factor). Our underlying paradigm for these operations is a brute-force
search in the cryptographic primitive’s inputs/randomness, in order to craft each
primitive’s output in a specific way that satisfies the modified system’s public
parameters, e.g., requiring some specific bits of the output to be constant. This
enables us to omit these bits from the output entirely, as these implied constant
bits can be “glued back” to the output by the receiver, effectively allocating
fewer bits per such output for communication and storage. For each primitive,
we argue that security is preserved compared to the standard primitive.

Finally, while in this paper we focus on the basic cryptographic primitives
commonly used in the blockchain space (where storage costs are of particu-
larly importance), our techniques can be potentially extended to a much wider
spectrum of cryptographic protocols (e.g., zero-knowledge proofs, lattices, multi-
party computation etc.) with the level of potential benefits depending on the
specific application where these primitives are deployed.

5 In Ethereum there is no upper bound in block size, but each block has a maximum
total gas [1], which has a similar effect.

2



1.1 Overview of our approach

As discussed above, our approach will be an iterative search of the primitive’s
input such that the conditions we require for the primitive’s output are satis-
fied. As a first example, in the key generation algorithm for discrete log-based
keys, we perform an iterative search for a secret key sk such that its derived
public key pk = gsk has a pre-determined ℓ-bit prefix. On other probabilistic
primitives, e.g., in a public key encryption scheme, we can simply brute-force
the scheme’s randomness to achieve the desired truncation. However if we need
to truncate a deterministic primitive (e.g., a hash function), a nonce (or salt)
must be used. Another possible technique is to introduce randomness within the
primitive’s payload without altering its semantics, e.g., slightly altering pixels in
images to nearby colors, or replacing spaces with non-printable characters in text
files. The latter approach is easy to implement, without modifying cryptographic
primitives, but is only applicable within certain application scenarios.

Based on the above, we distinguish between the 2 main ways of a brute-
force search on a primitive’s input: brute-forcing the internal randomness of a
primitive (if any) or brute-forcing the primitive’s payload (e.g., the message of
a signature). Brute-forcing the payload can be implemented in 3 different ways:

– Use a nonce, and send it along with the payload. This method is preferable
if the application already includes such a nonce.

– Use a nonce, and have the receiver perform a brute-force operation as well
to recover it. A similar method was recently proposed by Pornin for signa-
tures [37], but this is not suitable for our applications, as in those we try to
optimize on the verifier’s side.

– Brute-force the payload directly without changing its semantics, e.g., slightly
altering pixels, use non-printable chars instead of spaces etc.

Randomness search. In the case where we perform a brute-force search on
a primitive’s randomness, it is particularly important on how this search is al-
gorithmically performed. Simply incrementing the randomness can potentially
lead to attacks in some applications, (e.g., in RSA, two random values having
a difference of 1 might result in the same key pair from the primality checks)
and the safest way is to generate fresh randomness for each iteration [10,11].
While this is costlier in terms of computation (it needs to invoke the system’s
pseudorandom number generator /dev/urandom each time), a potential cheaper
alternative is to increment by a large constant instead (although this needs to
be carefully considered for each primitive). For the case of hash functions, ran-
domness generation should be performed similarly as in Randomized Hashing
for Digital Signatures [24]. We also highlight a recent attack on an Ethereum
vanity address generator [6], where the randomness for brute-forcing the prefix
on addresses was only 32 bits, making a reverse brute-force search to recover the
corresponding private keys feasible, which in turn led to loss of funds [8].
The role of bit security. In our work, we will use a recent bit security frame-
work [41] to analyze the security of our proposed scheme modifications. Bit-
security is commonly used to describe the level of security offered by a concrete

3



instantiation of a cryptographic primitive P and offers a middle ground approach
between the common asymptotic proof approach and the concrete security ap-
proach. Informally, we say that P has κ-bit security if it takes an adversary 2κ

operations to break it, or alternatively, an efficient adversary breaks the scheme
with at most ϵ < 2−κ probability. This implies that for any attack with compu-
tational cost T and success probability ϵ, it must hold that T/ϵ > 2κ. Intuitively,
bit-security captures that P is as secure as an idealized perfect cryptographic
primitive with an κ-bit key.
Our results. We show how to apply our truncation paradigm on some common
cryptographic primitives, such as hash digests, ECC public keys and signature
outputs, resulting in about 7% compression (2 bytes less) in less than a second
for ed25519 signatures, and less than 10 milliseconds for compressed Blake3
digests. We also discuss truncation in ElGamal enryption and Diffie-Hellman
based encryption (used for blockchain one-time wallet addresses known as stealth
addresses, which are used to improve anonymity in cryptocurrency transactions).
Using the framework by Watanabe and Yasunaga [41], we show that bit security
of the original primitive is preserved after our modifications, and we evaluate
the computational overhead compared to the communication/storage savings.
In addition, we consider primitives that involve an auxiliary output such as
Winternitz one-time signatures, and we show how our paradigm has the potential
to be even more efficient when applied in these cases. Note that these “truncated”
versions of the primitives we considered only serve as a starting point, as our
paradigm can be applied to the whole space of cryptography.
Evaluation. To showcase the usefulness and impact of our truncation paradigm
in blockchain applications, we first show that for discrete-log based primitives
such as EC public keys and signatures, we can truncate 1 bit in 256-bit curves
at the cost of 3ms - 30ms computation depending on the curve, primitive and
hardware. In addition, for hash-based primitives, we show that in 256-bit hash
functions, 1 bit can be truncated at the cost of 36µs - 166µs computation de-
pending on the hash function and the hardware. We also evaluate the potential
for truncating primitives that are based on a combination of elliptic curve and
hash operations, which approximate the costs of truncating discrete-log based
primitives as expected.

With those costs in mind, we showcase the potential savings in common
blockchain applications. We first use Bitcoin as an example, as its transactions
include a combination of primitives that can be truncated, namely public keys,
signatures and hashes, and show that with modest truncation we can easily
achieve savings in transaction fees and block space by 3%. Most importantly
however, our approach proves to be highly effective in smart contract applications
such as ERC721 contracts, where gas fees can be reduced by over 83% at the
computational cost of only 3.84 seconds per contract call on average.

1.2 Related works

Knudsen [29] first observed the possibility of truncating the output of a salted
hash function after agreeing on a publicly-known ℓ-bit prefix, by performing a
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brute-force computation on the salt, and showed that this increased security
against collision attacks by 2ℓ/2 while still maintains security against preim-
age attacks (without a formal argument for the second). A 2012 publication by
NIST [25] discussed the impact of truncating the output of hash function to
their security. Note however this publication only considered a “naive” trunca-
tion without considering a publicly known fixed prefix as in [29], which naturally
reduces the hash function’s security.

A more recent work by Pornin [37] presented techniques to reduce the size
of EdDSA and ECDSA signatures, however these techniques required compu-
tational work on behalf of the verifier. Kudinov et al. [38] applied a similar
technique for Winternitz one-time signature scheme (WOTS), which we com-
pare and discuss in detail in Section A.2. Ethereum developers also proposed
the use of addresses with a prefix of many zeroes in order to reduce gas fees
(called “gas golfing”) [2]. Also a recent work by Fleischhacker et al. [27] pre-
sented algorithms on compressing sparsely-encrypted vectors. A recent work by
Blocki and Lee [15] showed how to compress Schnorr signatures, however this
type of compression might affect security [21]. Finally, Fregly et al. [28] proposed
a new technique called Merkle Tree Ladders for compressing signature schemes.
Nevertheless, our approach is orthogonal to the last two approaches and can be
applied on top of such techniques.

In the blockchain space, a technique that resembles our paradigm is Bitcoin
vanity address generator [7], which attempts to create a new valid Bitcoin public
address (i.e., a double-hashed ECDSA public key) given a user-specified address
prefix. Later, this approach was leveraged to create slightly shorter signatures
in Bitcoin [3,5]. We note that our approach is orthogonal to other blockchain
storage compressing techniques (such as zk-SNARKs [4,17] or accumulators [16]),
as such techniques can be naturally applied on top of a blockchain that has
already compressed cryptographic material through Truncator.

Paper organization. The rest of our paper is organized as follows: In section
2 we provide the necessary cryptographic background. In section 3 we show the
methodology of our truncation paradigm on hash functions, public keys and
signatures. In section 4 we showcase the concrete benefits of our methods. In
section 5 we discuss the potential impact of Truncator, and conclude in section
6. In the Appendix we provide additional examples of truncated primitives (as
in some cases the benefits would be even higher), and also provide a “FAQ”
section that addresses some common misconceptions on our methodologies.

2 Preliminaries

Notation. We denote a probabilistic polynomial-time (PPT) algorithm B with

input a and output b as b
$←− B(a). We denote the security parameter by λ,

the bit security by κ and the truncation parameter (i.e., the number of bits
truncated) by ℓ.
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2.1 Computational Hardness Assumptions

Definition 1 (Discrete-logarithm problem). The discrete-logarithm prob-
lem for a cyclic group G of order q = |λ| is hard if ∀ ppt algorithms A, ∃
negligible function negl s.t.:

Pr


g generator of G;

h
$←− G;

x← A(g, h);
if gx = h output 1, else output 0

 = 1 ≤ negl(λ)

2.2 Definitions of Cryptographic Primitives

Definition 2 (Hard Relation). A relation R with a randomized PPT sam-
pling algorithm Gen is a hard relation if:

– For any (x, y)
$←− Gen() we have (x, y) ∈ R.

– ∃ a PPT algorithm that decides if (x, y) ∈ R.

– ∀ PPT algorithms A, Pr
[
(x, y)

$←− Gen();x∗ ← A(y);R(x∗, y) = 1
]
≤ negl(λ)

2.3 Bit security of cryptographic primitives

We use the bit-security framework defined in recent work by Watanabe and
Yasunaga [41] and provide an brief overview here (the alternative framework
from [32] can also be used instead and gives the same results).

Basic intuition. Abstractly, if a cryptographic primitive has κ-bit security, then
the intuition is that any adversary would need at least 2κ operations to break
it where the computational cost comes from the security game played by the
adversary and the challenger. To precisely quantify bit security, the framework
models two adversaries: an inner adversary A which plays the “usual” security
game against the challenger, and an outer adversary B which invokes A a total
of NA,B times in order to amplify its final winning probability ϵA,B.

In an κ-bit security game, the challenger chooses a secret u ∈ {0, 1}κ uni-
formly at random, and sends the challenge X(u) to A. The game is classified as
a search game when u >> 1, and as a decision game when u = 1. For instance in
the IND-CPA security game, A’s goal is to distinguish between two encryptions (
i.e., u is 0 or 1) while in the simple discrete-logarithm experiment the adversary’s
goal is to output the value of u for a challenge gu. Based on this distinction, the
framework’s structure is somewhat different according to the security game type.
In search games, each inner adversary is invoked with a fresh random secret u,
and the probability that B wins is defined as the probability that some A wins
( i.e., finds the appropriate search quantity). In contrast, for decision games,
each inner adversary plays an independent game with consistent secret u across
all invocations. B can use the outputs from all inner adversaries to produce its
output u′; its probability of winning can now be defined as Pr[u = u′].
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Definition 3 (Bit Security [41]). The bit security of an κ-bit game G is
defined by:

BSµG = min
A,B
{log2(NA,B · TA) : ϵA,B ≥ 1− µ}

= min
A

{
log2(TA) + log2

(
min
B
{NA,B : ϵA,B ≥ 1− µ}

)}
where NA,B is the number of instances of A invoked by B, TA is the computa-
tional complexity for playing the inner game by A and µ > 0 some small constant
for B success probability 1− µ.

Based on the above definition and Theorems 1 and 2 provided in [41], the
framework for a primitive with a search-type game provides an approximate bit
security of κ = log2(TA/ϵA) where ϵA is A’s success probability in the security
game. For primitives with decision-type games ( e.g., PRG, encryption, DDH)
the framework approximates a lower bound for κ ≥ log2(TA/δ) where δ is the
advantage of A when playing a decision game.

3 Truncating cryptographic primitive outputs

Using the bit-security framework from Section 2.3, we now show how a number
of different primitives can be compressed or truncated without affecting their
concrete security.

3.1 Truncated Hash Functions

We first consider the truncation of simple hash functions. Let H : {0, 1}∗ →
Y = {0, 1}λ be a (cryptographic) hash function. Suppose that we wish to com-
municate the λ-bit hash output H(x) of an input x. To compress the amount
of communication required, we now define a truncated hash function H ′. For
truncation parameter ℓ, we define H ′ as a function from {0, 1}∗ to {0, 1}λ−ℓ;
this will intuitively denote the output of H truncated by ℓ bits.

How to pick the prefix. We start by fixing an ℓ-bit string s = s1, . . . , sℓ.

Truncated Hashing

H ′
s(x):

For r = 0, 1, 2, . . . :
y ← H(r ∥ x)
If y ∈ Ys, then output y

Fig. 1. Truncated Hash Function

We assume that the prefix was sampled uni-
formly at random from the space of ℓ-bit
strings (this could be considered as a part of
a setup phase). Let Ys ⊆ Y denote the sub-
set of Y that contains exactly those outputs
that begin with s. We consider the prefix for
simplicity, but in general the truncated bits
can be in any positions and do not have to
be consecutive—this would also support e.g.,
truncation to a subgroup of the output group. Intuitively, our truncated func-
tion H ′ = H ′

s will now sample a nonce r such that y = H(r ∥ x) ∈ Ys; this will
be taken as the output of H ′. The upshot is that now the first ℓ bits do not
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need to be communicated as part of the hash output; this can be done since the
string s, while part of the hash output, will be publicly known to the receiver
and therefore assumed to be implicit without needing to be communicated.

We now argue that the bit-security (against hash function preimage attacks)
is preserved despite outputting fewer bits of the digest.

Theorem 1. Let H : {0, 1}∗ → {0, 1}λ a hash function with κ-bit security and
computational cost TH . Then the truncated hash function H ′

s : {0, 1}∗ → {0, 1}λ
where the first ℓ bits are fixed to string s ∈ {0, 1}ℓ is also κ-bit secure.

Proof. Applying the bit-security paradigm from Definition 3 to the hash func-
tion H, let A denote the inner adversary that minimizes log2(TA/ϵA) where TA
denotes the computational complexity of A and ϵA denotes its success proba-
bility. Then κ = log2(TA/ϵA). We now need to show that the truncated hash
function H ′

s also provides κ bits of security. For this, first, notice that an eval-
uation of H ′

s takes on expectation 2ℓ times the cost to evaluate H. However,
since the output is also truncated by ℓ, the success probability of the inner ad-
versary to find a preimage will also increase by a factor of 2ℓ. This means that
the expected bit-security of any A′ playing the game for H will be given by
log2((TA′/2ℓ)/(ϵA′/2ℓ) = log2(TA′/ϵA′). Since this value is minimized for adver-
sary A, we obtain that the bit-security of H ′ will also be log2(TA/ϵA) = κ.

3.2 Truncated DL-based public keys

Let G be a cyclic group of prime order p and g be a generator of G. The key
generation algorithm, KeyGen(1λ) for DL based keys works as follows: sk =

x, pk = gx where x
$←− Zp.

Let y1y2 . . . yλ denote the binary representation of pk which forms the output
space for public keys Y . For truncation parameter ℓ < λ, we fix an ℓ-bit string
s = s1, . . . , sℓ. Let Ys ⊆ Y denote the subset of Y that contains exactly those
outputs that begin with s. (As with hash functions above, we consider truncation
on the prefix for simplicity.) The new key generation algorithm KeyGen′(1λ) now

works as follows: x
$←− Zp, compute pk = gx, if pk ̸∈ Ys repeat by picking a new

x, else output pk ∈ Ys. We note that for the case of public keys, while sampling
a “valid” private key requires this overhead of additional repeated “brute-force”
style operations, the space savings are permanent for the key’s lifetime, which
makes this compression attractive particularly for blockchain applications.

Theorem 2. Let KeyGen(1λ) be a key generation algorithm for the DL hard
relation with κ-bit security and computational cost TA. Then the truncated key
generation algorithm KeyGen′(1λ) where the first ℓ bits are fixed to string s ∈
{0, 1}ℓ is also κ-bit secure.

Proof. The key generation algorithm for DL based keys is a hard relation (as
defined in Def. 2) under the DL problem. Following the bit security definitional
approach, a hard relation is a search-type game which provides bit security of
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log2(TA/ϵA) where ϵA is A’s success probability in the security game and TA is
the computational cost of the adversary. We argue that our truncated algorithm
maintains the same bit security as the one offered by the underlying group G 6.

Without loss of generality, assume that the truncation parameter ℓ = λ − 1
and thus the size of the public key is 1 bit. Then, our truncated key sampling
method for public key space Ys creates a secret key space X ′ where |X ′| =
2. However, an adversary cannot efficiently compute X ′ as this would directly
reduce to breaking the DL assumption with non-negligible probability.

We now need to show that the truncated key generation algorithm also pro-
vides κ bits of security. If x’s are sampled uniformly at random, computing
the truncated pk will take on expectation 2ℓ time. However, since the pos-
sible secret key space is also truncated by ℓ, the success probability of the
inner adversary will also increase by a factor of 2ℓ. This means that the ex-
pected bit-security of any A′ playing the game for KeyGen′ will be given by
log2((TA′/2ℓ)/(ϵA′/2ℓ) = log2(TA′/ϵA′).

3.3 Truncated Schnorr Signatures

KeyGen(G, p, g) Sign(sk,m, s) Verify(σ,m, pk)

x
$←− Zp 1. r

$←− Zp Parse σ = (s, e)
sk← x 2. I ← gr I ← gspk−e

pk← gx 3. e← H(I ∥ m) If (H(I ∥ m) = e) then
return (pk, sk) 4. If e ̸∈ Ys return to step 1. return 1

5. s← r + sk · e mod p else return 0
6. return σ = (s, e)

Fig. 2. The Truncated Schnorr Signature Scheme

We now consider compression on DL-based signatures, and we show an ap-
plication of our approach on Schnorr signatures as an example. In Figure 2 we
present a version of our truncated Schnorr signature (we use red font to indicate
the differences from standard Schnorr Signatures).

As before, let G be a cyclic group of prime order p and g be a generator of G.
Let H() be a random oracle implemented with a hash function that outputs a
uniformly random element e ∈ Zp where p is a prime of size 2λ-bits (in order to
achieve λ-bit security)7. We truncate the hash function as in Sec. 3.1 and denote

6 For the case of secp256k1 discrete log keys, if the group size is λ-bits, then the
probability of success for the adversary is roughly 1/2λ/2 and thus the bit security
is λ/2-bits, i.e., in secp256k1 a 256-bit key roughly offers 128-bit security [34].

7 We note that one could create a short Schnorr signature, by assuming an H() that
maps to random λ-bit values, thus the final signature σ is of size 3λ-bits (2λ-bits to
encode s and λ-bits to encode e) [15]. Our truncation technique can also apply on
top of short Shnorr signatures.
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Ed25519
public
keys

secp256k1
public
keys

Schnorr
Ed25519
signature

ECDSA
secp256k1
signature

SHA2-256 SHA3-256 BLAKE3-256

Macbook Pro M1 MAX 3.0589 ms 4.0909 ms 3.2539 ms 15.649 ms 63.033 µs 71.786 µs 36.335 µs
AWS t3.xlarge 5.5355 ms 7.4514 ms 5.5283 ms 30.529 ms 110.11 µs 166.18 µs 43.198 µs

Table 1. Evaluation on truncated primitives for ℓ=8.

the truncation string by s given as input to the signing algorithm. The resulting
signature σ = (s, e) will save ℓ bits (the truncation parameter).

Note that while our truncation approach could alternatively be applied to the
value s, this is not efficient since e is computed first during Sign. Also, attempting
to truncate signature values e and s simultaneously would exponentially increase
the truncation time. Therefore in general, for primitives where the output con-
sists of two or more elements, it is recommended to truncate the element that is
computed first in the algorithm.

Also note that space savings in truncated signature schemes are independent
from the existing savings from truncated public keys. The reason is simple - as
the set of truncated public keys Y (pk)

s is a subset of the whole space of public
keys Y (pk), any signature (truncated or not) produced using the respective sk
which corresponds to a pk ∈ Y (pk)

s inherits the same properties as if the sk, pk
pair was chosen without applying step 4 in Fig. 2.

The security of Schnorr signatures (existential unforgeability) has been thor-
oughly analyzed in the literature [36,39]. We now argue that our truncated
Schnorr signature scheme maintains the same bit security as the underlying
non-truncated version. The theorem below is straightforward given Theorem 1.

Theorem 3. Let SchnorrSign be a Schnorr signature scheme with κ-bit security
and computational cost TA. Then the truncated signing algorithm as defined in
Fig.2 where the first ℓ bits are fixed to string s ∈ {0, 1}ℓ, is also κ-bit secure.

4 Evaluation

We performed a series of evaluation experiments8 to measure the trade-off be-
tween the truncation parameter and the computational effort for the primitives
we considered. Our evaluation series were performed using fastcrypto library in
Rust [22] on a Macbook M1 Pro as well as on an AWS t3.xlarge instance, using
a single CPU core (note that our truncation algorithms are naturally paralleliz-
able, but our implementation did not apply multi-threads focusing on the worst
case). Note that we used a repeated Monte Carlo simulation over 1 million runs
each time and the results were consistent.

In Table 1 we present our results for some of the cryptographic primitives9

discussed in Section 3, using a sample size of 100 for one byte of truncation

8 Our evaluation code is available at https://github.com/MystenLabs/truncator
9 Ed25519 is a deterministic scheme, but we assume analogy with a randomized ver-
sion, effectively representing Schnorr signature schemes in this list.
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(ℓ=8). For more bytes there is a factor of 28 computational cost blowup for each
additional byte truncated, therefore our results can be naturally extrapolated
to derive the expected costs for larger truncation, as shown in Fig. 3. Conse-
quently, the equilibrium between the tolerated computational overhead and the
desired truncation benefits ultimately depends on the specific primitive and its
application scenario (e.g., even a week’s worth of computational work might be
tolerable in order to reduce the public address size by 5 bytes in a blockchain
application, where the benefit will be permanent). Note that there are addi-
tional techniques we can apply to speed up the computation stage, e.g., using
pre-computed lookup tables for public key generation and perform elliptic curve
additions rather multiplications. We also evaluate truncated hashed public keys
as shown in Table 2 (which are a common practice to derive public addresses in
cryptocurrencies such as Bitcoin). Although we do not explicitly list evaluation
results for encryption schemes, we expect numbers similar to the ones we report
already, e.g., DL-based primitives such as ElGamal encryption results will be
similar to those of DL public keys.

Schnorr
Ed25519 +
SHA2-256

Shnorr
Ed25519 +
SHA3-256

Schnorr
Ed25519 +
BLAKE3-
256

ECDSA
secp256k1 +
SHA2-256

ECDSA
secp256k1 +
SHA3-256

ECDSA
secp256k1 +
BLAKE3-256

Macbook Pro M1 MAX 3.1746 ms 3.3702 ms 3.1199 ms 4.0191 ms 4.1623 ms 3.9293 ms

AWS t3.xlarge 5.4751 ms 5.4873 ms 5.6650 ms 7.0932 ms 7.0677 ms 7.4188 ms

Table 2. Hashed public key truncation for ℓ=8.

1 2 3 4 5

Truncation length (bytes)

10−3
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u
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Fig. 3. Truncating primitives for larger
truncation parameters by comparing the
Schnorr version over Ed25519 curve against
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Date Ether per Gas ETH/USD Truncation Savings Savings % with _mint() Savings % _setTokenURI() only

Jan 10 2022 218.55 Gwei $3156
33 to 32 $15.45 17.7% 41.5%
33 to 31 $30.73 35.21% 83.21%
65 to 64 $15.45 15% 29.36%

Jan 10 2023 24.83 Gwei $1336
33 to 32 $0.74 17.7% 41.5%
33 to 31 $1.48 35.21% 83.21%
65 to 64 $0.74 15% 29.36%

Table 3. Truncation savings in OpenZeppelin ERC721 smart contract.

5 Impact

Truncation of cryptographic outputs without loss of security can have tangi-
ble impact in a variety of business scenarios, especially in resource-constrained
environments such as blockchains. Below we discuss some indicative scenarios.

5.1 Lookup identifiers and certificates

One class of applications is large collections of collision-free unique identifiers
or certificates, which could be benefited directly by reducing both storage and
network cost. An example is IPFS [13] hash-links or database unique IDs derived
by hash digests. Typically, these fields are both queryable and cloned in multiple
database tables and indexers as primary keys. Additionally, the aforementioned
field types are the most common parameters in application programming inter-
faces (APIs), especially for lookups before accessing the actual mapped content.
In the IPFS example, shorter file hashes would result to:

1. shorter URLs; thus, less bytes transferred per request, slightly saving band-
width for users which might important for constraint environments where
internet bandwidth is expensive.

2. shorter indexer table fields for each IPFS node; thus saving memory and
hard disk space.

3. slightly faster serialization and encoding ( i.e., base58) performance due to
shorter length.

4. shorter IPFS URLs are usually pinned in external applications too ( i.e.,
blockchain); thus, less storage and network requirements for systems that
interact with IPFS nodes.

Another application is compressing digital certificates, commonly used in
TLS communication. Shorter certificates, both at the public key and signature
layers could reduce the footprint of exchanged messages across the web and
potentially, slightly reduce website response times.

5.2 Set reconciliation

It is very common that some distributed systems require set reconciliation to
synchronize their states. For example, in consensus systems and for indexer ser-
vices, a potentially large list of all elements (i.e., transaction, certificates or
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file hashes) is exchanged between nodes to allow for synchronization in order to
identify differences, i.e., when recovering from an outage. Applying our proposed
truncation techniques for signatures and hash functions can lead to compressed
identifiers. Thus we can get latency improvements by having reconciliations lists
that are shorter by a non-negligible percentage.

5.3 Blockchain applications

As discussed in the introduction, truncating cryptographic primitives can have
a substantial impact in a blockchain setting. On-chain storage is a particularly
scarce resource, since full nodes first need to download the full blockchain for
initial synchronization, which can be in the order of several hundreds of Gi-
gabytes, while all this data requires to be maintained and stored by all full
nodes participating. Naturally, it becomes particularly expensive to store any
cryptographic primitive in the blockchain (public keys, signatures etc.) and even
truncating those primitives by a few bytes with minimal computational effort
implies substantial cumulative savings. We show those potential savings in two
typical use-cases, namely in cryptocurrenies and smart contracts.

Cryptocurrency transactions. As a first example, in Bitcoin, a common pay
to public key hash (P2PKH) transaction with 1 input and 2 outputs needs about
70 bytes for the input ECDSA signature, 33 bytes for the input ECDSA public
key and 20 bytes for each of the two RIPEMD-160 hash outputs10. By applying
our paradigm we can shorten the ECDSA signature by 2 bytes with 28 effort,
each of the hashes can be shortened by 1 byte with 28.5 effort, and we also make
a conservative assumption that the ECDSA public key is already truncated by 2
bytes, as the required 216 effort is only paid once when deriving the key pairs (and
as discussed previously, one might be willing to invest even more computation
as a one-time cost in order to save storage costs throughout the public key’s
lifetime). Therefore, with effort of roughly 210.5 total operations, we compress a
standard Bitcoin transaction by at least 6 bytes, which implies an fee reduction
by 3% and an equivalent increase of available space in Bitcoin’s blocks.

Smart contract applications. Our truncation paradigm can have a much
more significant impact in smart contracts. As an example, we applied our trun-
cation paradigm to a standard ERC721 Token Contract [35], which awards a
Non-Fungible Token (NFT) to a blockchain address. In this contract, its NFT
payload can be derived by several types of truncated cryptographic primitives,
for instance an InterPlanetary File System (IPFS) link. Through a series of ex-
periments, we observed that gas transaction costs vs. contract storage is not a
linear relation, but increase sharply every 32 bytes, as shown in Figure 4. We
distill the contract transaction costs between a transaction that includes minting
a token through the awardItem() function, and a transaction that only sets a
token’s Uniform Resource Identifier (URI). We observe that minting costs are

10 The transaction also includes the necessary OP codes which here we do not take into
account as they cannot be truncated.
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almost constant w.r.t. token payload length, therefore in smart contract trans-
actions which only set the tokenURI (and the token is already minted), such
savings can cumulatively make a huge impact.

Another important observation from our experiments is that the change in
gas costs becomes more significant in the first 32-byte block, i.e., for a payload of
31 bytes in the contract’s awardItem() function, the total contract transaction
costs are 81962 gas, for 32 bytes the contract costs 104109 gas and for 33 bytes the
contract costs 126508 gas (for _setTokenURI only, the costs are 8949, 31152 and
53322 respectively). For every additional byte, the gas costs then increase by 12
gas per byte, until 64 bytes with a cost of 126821 gas, while 65 bytes cost 149220
and then again increasing by 12 gas per byte until an additional 32-byte block
is needed. Given the above observations, truncating by even a single byte can
potentially lead to substantial savings in gas fees, while in common payloads with
33 bytes ( e.g., ECDSA keys in compressed format) the savings can be even more
significant when truncated to 31 bytes. As an additional comparison, creating
a 65-byte item through the awardItem() function costs 149220 gas, while a 64-
byte item costs 126821 gas. All these 1-byte or even 2-byte truncations can be
achieved by minimal computational effort as shown in Tables 1 and 2. While the
gas savings for a each contract call are similar when truncating a 33-byte payload
to 32 bytes, (i.e., from 126508 gas down to 104109 gas), by truncating further
to 31 bytes achieves even less transaction cost of 81962 gas. The latter implies
the savings can lower gas fees by 35.21% compared to the original transaction.
When considering only the _setTokenURI function, assuming the token minting
has already occurred, the savings are 83.21% compared to the original! These
significant savings can all be achieved at the cost of only 3.84 seconds average
computational time on a single core of Macbook Pro, after extrapolating the
results of Table 1 for ℓ = 16. In addition to the relative savings, in Table 3 we
also show the absolute dollar-amount savings for different truncation levels and
for different dates of 1 year span, as Ethereum’s average gas prices and Ethereum
to USD exchange rates can fluctuate significantly over time.

5.4 New cryptographic schemes

It seems that there is an interesting opportunity to wisely construct new crypto-
graphic schemes in such a way that they take advantage of Truncator’s techniques
at the protocol design phase. That said, future schemes could take into account
the possibility and feasibility of mining, and then securely alter any of the key
generation or other cryptographic operation functions to accommodate that.

An interesting direction is optimising hash-based signatures at the key deriva-
tion level aiming at high-performant mining with by far better results than brute
forcing. The following example could be a starting point for future research and
food for thought for rewriting existing schemes achieving record compression
levels for various primitive families.

In the following we examine how one can revisit Lamport [30] signatures by
rewriting the key generation flow in order to be ”mining-friendly”.
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In the traditional Lamport scheme, the private key consists of 256 indepen-
dent pairs of 256-bit random values (seeds), thus 512 elements and 16 KiB in
total. Each of these sub-private keys has a corresponding public key, its hash,
thus the total public key is also requiring 512 elements.

Typically we sign hashed messages and in Lamport, for each bit in the hash
we pick the corresponding sub-private value. For example, if the first bit in the
hash is a 0, we pick the first value in the first pair, otherwise if it was 1, then
we use the second value in the first pair etc. The total output for a 256-bit
hashed message results in 256 revealed elements which can be verified against
their corresponding public keys.

One would wonder if we could somehow compress Lamport signatures with-
out using the Wintenitz hash-chain variant and it seems that there is an elegant
solution that could take advantage of potential mining. The trick is to derive
the private parts in a tree fashion and not pick them independently. Figure 5
shows an example where if we wanted to sign a message that is all zeros we use
the top key and verifiers can derive all sub-keys via Merkle tree operations. Sim-
ilarly, if we have some adjacent similar bits we can use the corresponding tree
path to reduce how many keys one should submit. Obviously, the same applies
for adjacent set bits. The benefits of this approach, accompanied with message
hash mining, can be significant as one can retry hashing the message in order
to maximize the number of adjacent bits and thus reduce the signature payload,
resulting in a more optimized Lamport verification and shorter proofs.

6 Conclusion and Future Directions

We presented Truncator, a paradigm to truncate the output size of cryptographic
primitives with a computational trade-off. As a starting point, we showed how
our approach can be applied on basic cryptographic primitives, while show-
ing an additional benefit in certain types of primitives (e.g., in primitives with
auxiliary outputs such as checksums). We also demonstrated that our Trunca-
tor paradigm can achieve significant reduction in smart contract gas costs with
only a few seconds of additional computation per contract call. Although this
would require changes in the existing smart contract specifications, the over-
all benefits of our approach enjoyed by the whole blockchain ecosystem would
greatly outweigh this small computational cost, since this cost is only paid by
the transaction creator, while blockchain verifiers (e.g., miners or validators)
are not required to perform any additional computation, as they would simply
“glue back” the omitted ℓ bits which are implied and not communicated. In
addition, our paradigm opens many possibilities for exploration, such as its im-
plications in cryptoeconomics (e.g., the equilibrium of the trade-off when quan-
tifying the benefits and the initial investment in computation), or the ways of
applying it (e.g., delegating the computational effort to external services). An-
other potential avenue for future exploration is towards applying our truncation
paradigm into more advanced cryptographic primitives (e.g., for deriving trun-
cated non-interactive zero-knowledge proofs) and formally prove their security.
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Fig. 5. Binary tree KDF-Lamport,
where keys are derived via a Merkle tree
structure.

Another future work direction is propos-
ing novel primitives specifically hand-
crafted to utilize mining techniques on
sender’s side, towards improved efficiency
for communication and receiver’s work.

Finally, as this work is partly inspired
by the recent unfortunate buggy “gas
golfing” software in Ethereum, where
weakly implemented functions incor-
rectly generated addresses (hashes) with
“prefixed zeroes for gas optimization” re-
sulting in millions of losses [2,31,8], we
expect our Truncator approach to be
naturally applied in the blockchain space
as a secure solution towards more suc-
cinct transactions, addresses and states.
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A Additional truncation paradigms

A.1 Truncation of Encryption

We now discuss how our truncation techniques can be applied on encryption
protocols. We focus on the cases of ElGamal and Diffie-Hellman (DH) based
encryption since they are both vital building blocks for various layer-2 blockchain
proposals. As an example, consider Zether [19] which uses ElGamal encryption
to build private transactions via Ethereum smart contracts, or numerous other
proposals which use ElGamal based commitments [20,26,23]. Monero’s stealth
addresses share techniques with key generation of DH based encryption.

We consider two scenarios: (1) truncation of ciphertexts and (2) truncation
of encryption keys.

Truncated of Ciphertexts ElGamal ciphertexts can be truncated using our
techniques. As above, let G be a cyclic group of prime order p and g be a gener-
ator of G. Let y1y2 . . . yλ denote the binary representation of a group element.
Let Y be the space of all group elements. For truncation parameter ℓ < λ, we fix
an ℓ-bit string s = s1, . . . , sℓ. Let Ys ⊆ Y denote the subset of Y that contains
exactly those outputs that begin with s.

In Figure 6 we present how truncated ElGamal encryption works (we use
red font to indicate the differences from original ElGamal). There are two places
in the encryption protocol where truncation could happen, either in the first
part of the ciphertext, c1, or in the second part, c2 while the only random value
which we could “mine” on, is the random selection of r in Step 2. In Figure 6 we
propose to truncate c1—this is because doing truncation in c2 would be more
costly as computing c2 before testing if it falls in Ys takes an extra multiplication
operation. This serves as a good example to highlight the fact that when there
are different choices on where to truncate parts of a protocol, a careful selection
is important for higher computation savings. Of course, parties could also opt
to truncate their public keys as explained above.

ElGamal encryption satisfies the security property of indistinguishability un-
der chosen plaintext attacks (IND-CPA) [40] under the DDH assumption. We
argue that the bit-security of truncated ElGamal is preserved.

Theorem 4. Let ElGamalEnc be the ElGamal encryption scheme with κ-bit se-
curity and computational cost TA. Then, the truncated encryption algorithm as
defined in Fig.6 where the first ℓ bits of c1 are fixed to string s ∈ {0, 1}ℓ, is also
κ-bit secure.

Proof (Sketch). Let A denote the CPA adversary, TA denote the computational
complexity of A and δ is the advantage of A when playing the IND-CPA game.
As discussed in Section 2.3, the framework of [41], approximates a lower bound
for κ ≥ log2(TA/δ) (since IND-CPA is a decision game).

Our truncation process applies to the random value r. Given that the security
of ElGamal relies on DDH, if the truncation process allows the adversary to
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recover r with non-neglible probability, then A could break the DDH assumption
and recover m (given that the message m is essentially masked by gr).

However, for the same reasons as discussed in Theorem 2, an adversary cannot
efficiently compute the new space defined for c1 as this reduces to security of
DL. Thus, the bit security for the IND-CPA decision game remains unchanged.

KeyGen(G, p, g) Enc(pk,m′, s) Dec((c1, c2), sk)

sk
$←− Z∗

p 1. map m′ to a group element m 1. Compute m = c2 ∗ c−sk
1

pk = gsk 2. r
$←− Z∗

p 2. Map m to m′

3. c1 = gr

4. If c1 ̸∈ Ys return to step 2.
5. c2 = m ∗ pkr
6. Return (c1, c2)

Fig. 6. The Truncated ElGamal Encryption Scheme

Truncation of Encryption Keys and a Blockchain Application Our tech-
niques can be used for the truncation of encryption keys. Consider the case of
Diffie-Hellman (DH) based encryption. The public keys are discrete-log based
keys and thus can be truncated using our technique described in Section 3.2.
This can have applications in the creation of stealth addresses as we explain
below.

For concreteness, we first recall how DH based encryption works.

Basic structure Consider two parties: the sender Alice, and the receiver Bob. The
basic DH based encryption structure has as follows: Consider a cyclic group G of

prime order p and with generator g; a key pair (sk, pk) is given by sk = x
$←− Zp

and pk = gx. Let (skA, pkA) = (a, ga) and (skB , pkB) = (b, gb) denote (long-term)
public keys for Alice and Bob respectively. For DH-based encryption, both Alice
and Bob can compute a shared secret s = gab using their own secret key and the
other party’s public key. A symmetric encryption key k can now be computed as
k = KDF(s) where KDF is a key derivation function (commonly, a cryptographic
hash). Alice and Bob can now communicate by encrypting messages using this
shared key.

A commonly used variant of the above protocol—ECDH—makes use of el-
liptic curve groups. Specifically, given an EC group G with base point G, under
additive notation, keys are now of the form (x,X = x ·G). As mentioned above,
both parties can truncate their (discrete-log based) public keys through mining
as described in Section 3.2.

Blockchain-based payments The above protocol can also enable receiver-private
blockchain payments; for concreteness, we will describe this using the ECDH
variant.
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Let (a,A = a ·G) and (b, B = b ·G) denote the long-term key-pairs of Alice
and Bob respectively. Assume that both parties post their receiving public keys
on a blockchain. Now in order to pay Bob, Alice first samples a fresh ephemeral
key (r,R = r · G) and computes what would be the shared symmetric key as
k = KDF(r · b · G) = KDF(r · B) using Bob’s on-chain public key B. Alice can
then send its payment to the ephemeral address corresponding to k · G + B;
notice that the payment can be spent using the private key k + b which only
Bob knows. Further, since k is known only to Alice and Bob, an observer cannot
infer the identity of the receiver. Now, Bob only needs to actively monitor the
blockchain to notice any payment sent to such an address.

A simple extension of this protocol splits the “spend” key (i.e., the key
used to spend the payment) and the “scan” key (to observe transactions on
the blockchain) of the receiver Bob; this is done to enable using a proxy to scan
the blockchain for payments since it avoids having to use the spend key for this.
The Monero blockchain makes use of this protocol for stealth addresses—which
provide receiver-private payments.

For both protocol variants, parties can use our mining-based truncation tech-
niques on their receiving public keys as well as the ephemeral address. The trun-
cation here happens analogous to the DL-based truncation described in Sec-
tion 3.2.

A.2 Truncating Primitives’ Auxiliary Outputs

While in the previous section we showed how to truncate the primitive’s main
output, we also consider special cases where some primitives might include a
secondary (or auxiliary) output. As an example, we consider the Winternitz one-
time signature scheme (WOTS) [18]. This scheme treats the message in blocks
of length specified by a parameter, while generating the respective private keys
used to sign the message by iteratively applying a hash function, as shown in
Fig. 7. However, to prevent forgery attacks from an eavesdropping adversary, an
auxiliary output is necessary to prevent using disclosed hash function preimages
(otherwise the adversary would be able to forge a signature on a different message
after learning the respective hash preimages). This output consists of a checksum
of the number of zero bits, which is appended to the main output in order to
prevent this forgery (i.e., flipping 1-bits to 0’s).

As the checksum value has a much higher probability to fall within the median
of the checksum range, we require the fixed-value checksum to be simply the
median of the range, as shown by the dark line in Fig. 8, which provides a way
of more efficient compression. This approach was briefly considered in the third
round of the NIST Post-Quantum Cryptography Standardization Process [12],
while Kudinov et al. [38] recently considered a technique similar to Truncator,
which requires a fixed checksum, therefore omitting it entirely from the signature.
However, in cases where signing cost is also important (e.g., in mobile or other
resource-constrained devices), in order to achieve more efficient truncation we
can specify a range of “valid” checksum values (denoted by the red area in Fig.
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Fig. 7. Winternitz one-time signature ex-
ample
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Fig. 8. WOTS checksum fre-
quency diagram for w = 16 and 1
million signatures.

8) which would only require 2 or 3 checksum bits, while exploiting the high
probability of those checksum values.

Therefore for primitives with “biased” auxiliary outputs like WOTS, the
computation cost paid upfront for truncating is significantly lower compared
to the “fixed-bit” approach discussed in Section 3. We evaluate this efficiency
benefit in Section 4.

Evaluation. We evaluate truncated WOTS separately, as it involves truncating
its auxiliary output instead of truncating the main output in the other primitives
we considered (i.e., requiring a fixed checksum instead of fixed bits). By consid-
ering the standard Winternitz parameter w = 16, the probability of successfully
finding an output with the median checksum is roughly 1.1%. This implies that
on average, truncated WOTS needs about 90 retries to output a valid one-time
signature. Consequently, since WOTS is used in SPHINCS [14], the state-of-the-
art stateless post-quantum signature scheme, with 64 hash elements output plus
3 elements as checksum, we can achieve about 4.5% compression with only 26.5

effort (because of the bell-like normal distribution frequency curve in Fig. 8),
compared to the “fixed-bit” approach used in truncated hash functions which
would require 212 effort to achieve the same level of compression. Note that we
could also reduce the size of checksum instead of completely eliminating it (i.e.,
to 1 element instead of 3 for w = 16), which would require a lot less effort on
the signer’s side. For instance, Table 4 shows that saving one WOTS checksum
element when w = 16 is almost certain per retry, while saving two elements in
the same scheme is possible after about 5 retries which make the result really
practical for slightly compressing SPHINCS signatures with minimal signer’s
effort.

B Frequently Asked Questions

In this section we address some common misconceptions that might arise from
the reader regarding our methodology.

How to compress a hashed public key (e.g., P2PKH in Bitcoin:
RIPEMD-160(SHA256(pk))? Answer: In this case, the brute-forcing is only
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saved elements WOTS (w = 16) WOTS (w = 256)

1 99.9% 12.5%

2 17.2% 0.1%

3 1.1% N/A
Table 4. Probability of saving WOTS checksum elements per retry for different modes
of WOTS (for w = 256 there are only 2 checksum points needed)

happening on the secret key, and the compression algorithm only cares about
the final output of RIPEMD-160. There is no need to brute-force both hash
functions and the DL-based keys in parallel.

In P2PKH, an attacker can target many preimages at once with
a single hash query. Answer: Although a single RIPEMD-160 hash query
corresponds to many different SHA256(pk) preimages, the attacker still doesn’t
get any advantage for deriving pk (let alone the sk).

In Theorem 1 for truncating hash functions, if ℓ = κ− 1 then there
are only two possible outputs of the hash function H, so collision
happens with 1/2 probability. Answer: While this claim is true, in order for
the adversary to perform a ℓ = κ− 1 truncation, this requires 2κ−1 exponential
work. This provides the intuition behind our theorems that security of truncated
primitives is preserved.

Since the truncated hash requires the sender to brute-force a nonce,
the verifier would need to perform a similar brute-force process, lead-
ing to increased overhead for the verifier. Answer: The verification costs
are not affected by our truncation paradigm. A nonce might not be needed in
the first place (e.g., the P2PKH example above), or it will be communicated to
the verifier using out of band channels.

The sender’s computation cost grows exponentially in the reduced
size, and thus only a few bytes can be saved within moderate time,
which may confine its real-world applications to some extreme cases.
Answer: While this is true, as we showcase in our examples (e.g, blockchain public
keys where the savings are permanent, smart contracts, WOTS), the savings can
be significant even when truncating primitives by a few bits.
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