
Formal Definition and Verification for Combined
Random Fault and Random Probing Security

Sonia Beläıd1 , Jakob Feldtkeller2 , Tim Güneysu2,3 , Anna Guinet2 ,

Jan Richter-Brockmann2 , Matthieu Rivain1 , Pascal Sasdrich2 , and
Abdul Rahman Taleb1

1 CryptoExperts, Paris, France
{sonia.belaid, matthieu.rivain}@cryptoexperts.com

taleb.abdulrahman1@gmail.com
2 Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
{jakob.feldtkeller, tim.gueneysu, anna.guinet, jan.richter-brockmann,

pascal.sasdrich}@rub.de
3 DFKI, Bremen, Germany

Abstract. In our highly digitalized world, an adversary is not con-
strained to purely digital attacks but can monitor or influence the phys-
ical execution environment of a target computing device. Such side-
channel or fault-injection analysis poses a significant threat to otherwise
secure cryptographic implementations. Hence, it is important to consider
additional adversarial capabilities when analyzing the security of crypto-
graphic implementations besides the default black-box model. For side-
channel analysis, this is done by providing the adversary with knowledge
of some internal values, while for fault-injection analysis the capabilities
of the adversaries include manipulation of some internal values.
In this work, we extend probabilistic security models for physical attacks,
by introducing a general random probing model and a general random
fault model to capture arbitrary leakage and fault distributions, as well
as the combination of these models. Our aim is to enable a more accu-
rate modeling of low-level physical effects. We then analyze important
properties, such as the impact of adversarial knowledge on faults and
compositions, and provide tool-based formal verification methods that
allow the security assessment of design components. These methods are
introduced as extension of previous tools VERICA and IronMask which
are implemented, evaluated and compared.

Keywords: Physical Security · Random Probing Model · Random Fault
Model · Combined Analysis.

1 Introduction

State-of-the-art cryptographic schemes are usually analyzed in the common
black-box model, which operates under the assumption that the internal val-
ues of the scheme are hidden and protected from the adversary. However, over

https://orcid.org/0000-0002-9437-6425
https://orcid.org/0000-0001-9797-1257
https://orcid.org/0000-0002-3293-4989
https://orcid.org/0000-0001-8753-1266
https://orcid.org/0000-0002-8454-4755
https://orcid.org/0000-0002-9855-4161
https://orcid.org/0000-0002-5443-626X

2 Beläıd et al.

the last 25 years, physical attacks, which exploit the physical realization and im-
plementation of cryptographic algorithms, have questioned those assumptions.
In particular, Side-Channel Analysis (SCA) exploits dependencies between pro-
cessed values and physical execution characteristics such as timing behavior [32],
instantaneous power consumption [33], or electromagnetic emanations [28], to
conclude information about a secret. Similarly, Fault Injection Analysis (FIA)
manipulates the physical execution environment to create a faulty intermediate
state such that the resulting output gives a hint about the processed secret.
Common fault injection methods include clock and voltage glitching [47,21],
targeted electromagnetic (EM) pules [18,23], or focused laser beams [46]. Both
attack vectors question a different assumption of the cryptographic black-box
model: SCA that internal values are confidential and hidden from the adver-
sary and FIA that the internal values have integrity and cannot be manipulated
by the adversary. However, in a real attack scenario, the adversary is not re-
stricted to performing only one of the two attack types. Indeed, first practical
attack for Combined Analysis (CA), i.e., the combination of FIA and SCA, are
emerging [3,15,40,41,42,43].

Constructing effective countermeasures against such physical attacks requires
a deep understanding of attack properties and leakage behavior. To this end,
the research community endeavors to theoretically model the leakage emanating
from the victim device which is susceptible to exploitation by the adversary. In
particular for SCA, in the famous d-probing model introduced by Ishai, Sahai,
andWagner [31], the leakage is modeled by the exact values of d internal variables
of the adversary’s choice. A victim device is then deemed d-probing secure if any
such set of d intermediate variables is statistically independent on the processed
secret. While this probing model facilitates security proofs, it sometimes fails
to closely reflect the reality of embedded devices. For instance, it does not cap-
ture horizontal attacks [8], which exploit in particular repeated manipulation of
variables within an execution. Consequently, the community is starting to focus
on more realistic leakage models, like the ϵ-random probing model [31,2,10]. In
the latter, the leakage is assumed to gather the exact value carried by each wire
of the circuit with probability p. The security is then determined by the proba-
bility ϵ of the adversary to obtain a secret-dependent probe combination. This
model tightly reduces to the security in the practical noisy leakage model [35,22],
where each variable leaks a noisy function of its value. Nevertheless, the random
probing model is still insufficient in modeling low-level physical effects because it
assigns the same independent probability to each intermediate variable whereas
the underlying noise is likely to be different and the independence assumption
is not verified in practice.

For modeling of FIA the adversary is given the ability to manipulate a set
of intermediate variables in a predefined way and then their impact on the sys-
tem output is analyzed. Models from the literature often take inspiration from
probing models for SCA. Specifically, the k-fault model [30] allows the adversary
to manipulate up to k intermediate values, while the random fault model [19]
defines a fault probability q and manipulates each internal values with proba-

Combined Random Fault and Random Probing Security 3

bility q. In both models, the adversary wins when they get a faulty output that
cannot be detected or corrected, whereas the random fault model determines
the probability µ with which this happens. There again, while beneficial for a
first approximation of physical security, the current models come with signifi-
cant abstractions. In particular, the deterministic k-fault model cannot capture
the imprecise nature of physical attacks due to the probabilistic fault behavior,
while the random fault model fails to precisely model low-level physical charac-
teristics of fault injection due to the same independent probability for each fault.
Naturally, models for CA combine the capabilities of the individual models. All
those models allow the analysis of certain types of secret-dependent leakages and
enable pre-silicon evaluation.

Contribution. In this work, we provide a generalization of the probabilistic mod-
els for physical attacks by considering arbitrary leakage and fault distributions.
In particular, we introduce a general random probing model, a general random
fault model, and a general random combined model in Section 3, all of which, but
especially our random combined model, are analyzed for interesting properties.
Specifically, we analyze the impact of the adversarial knowledge on the injected
faults on combined security. Since the resulting analysis complexity is very high,
we introduce notions for compositions for all three models in Section 4. For our
general random probing model, this is a straightforward extension of an exist-
ing notion for the ϵ-random probing model. To the best of our knowledge, for
the other two models, this is the first attempt at composition in a probabilistic
model. Within these security models, we investigate the formal verification of
the proposed combined composition notions for gadgets. Specifically, we intro-
duce two methods of tool-based analysis using VERICA [37] and IronMask [11].
We explain how to extend these tools to verify the proposed notions and present
the implementation details in Section 5. In particular, our extension of VERICA

can analyze arbitrary circuits with exact precision (up to some threshold) but
is comparably slow. In contrast, our extension of IronMask is much faster but
has restrictions in the type of designs it can handle and makes some approxima-
tions. We finally provide an extensive evaluation and comparison of the tools in
Section 6.

2 Preliminaries

In the following, we give a short overview of the used notation and circuit model.
Afterwards, we provide the basic concepts required to understand the contribu-
tion of this paper. Specifically, we introduce countermeasures for SCA and FIA,
and discuss security proofs via simulation.

2.1 Notation

Throughout the paper, we use a sans-serif font for functions (e.g., f) and an
upper-case calligraphic font for sets (e.g., S). We designate S the complement

4 Beläıd et al.

of a set S, |S| its cardinality, and DS a discrete probability distribution defined
over the event set S. Further, we name

∏
i DSi the joint probability distribution

of independent distributions DSi where the joint probability is computed as the
multiplication of the individual probabilities, i.e., Pr[a∩b] = Pr[a]·Pr[b], and with
≡ the equality of distributions. To simplify the notation for n-times replication
we denote with Vn = {(0)n, (1)n} the set that contains the zero vector (0)n and
the one vector (1)n of size n. Other notations will be introduced throughout the
paper where necessary.

2.2 Circuit Model

In this work, we model a circuit C as a Direct Acyclic Graph (DAG) C = {G,W},
where vertices g ∈ G represent logical gates and edges w ∈ W represent wires
carrying a Boolean value and connecting individual gates. We restrict the set of
combinational gates to Gc = {inv, and, xor, or} and the set of memory gates to
Gm = {reg}. Further, we define a set of input and output gates Gio = {in, out},
where in produces and out absorbs a Boolean value, and a set of probabilistic
gates Grand = {rand}, where rand produces a uniform-random Boolean value.
Finally, we define the set of constant gates Gconst = {zero, one}, where each
gate produces the respective Boolean value. Hence, each gate is from the set
Gall = Gc ∪ Gm ∪ Gio ∪ Grand ∪ Gconst. Given this, each gate implements a deter-
ministic or probabilistic Boolean function fg : Fh

2 → F2, with 0 ≤ h ≤ 2, of
the respective functionality. Further, let Gf = {Fh

2 → F2 | h ≤ 2} be the set of
all possible Boolean functions for this purpose. With respect to the fan-out of
wires, we consider two different scenarios depending on the analysis of hardware
or software. For hardware (cf. Section 5.2), we create a copy of the wire for each
gate that is connected, i.e., for a wire with fan-out n we create n copies. Here
a gate output can be connected to any number of copies of the same wire. For
software (cf. Section 5.3), we say that each gate can have at most one output
and introduce a special copy operation, that outputs two times the input. Hence,
to represent a wire with fan-out n we require 2n− 1 wires to construct a tree of
copys.

2.3 Countermeasures

Masking. A popular countermeasure against SCA is Boolean masking [14,29],
due to its sound formal foundation. The core idea is to split a secret x ∈ F2

into a vector ⟨x0, . . . , xs−1⟩ ∈ Fs
2, with xi ∈ F2, such that x =

⊕s−1
i=0 xi and

each subset {xi | i ∈ [0, s − 1]} with cardinality smaller than s is statistically
independent of x. We refer to a component xi as a share of x with share index
i. Similarly, a circuit is transformed to a masked circuit, which operates over
shares of the inputs. In this paper, we assume the initial encoding enc of inputs
and the final decoding dec of outputs (generating shares or recreating the secret,
respectively) not as part of the masked circuit.

Combined Random Fault and Random Probing Security 5

Replication. A popular countermeasure against FIA is the replication of the
circuit in combination with a majority function for error correction purposes.
In particular, a value x ∈ F2 is replicated to a vector ⟨x0, . . . , xn−1⟩ ∈ Fn

2 with
n = 2k + 1, such that ∀i, j ∈ [0, n − 1] : xi = xj . Then, up to k faults can be
corrected with a majority function maj. Likewise, a circuit is replicated n times,
where every replication operates on a unique set of value replications.

2.4 Security Proofs via Simulation

Security proofs in the context of SCA are often conducted based on simulation.
For this, two worlds are introduced. The first world represents a real implemen-
tation, while the second world is made trivially secure by removing the secret
that an adversary tries to learn. If an adversary is not able to distinguish be-
tween the two worlds then the view of the adversary is proven to be independent
of the secret. The proof works by construction of a simulator that recreates the
distribution of the observed values without access to any secret.

However, in this work, we do not require perfect simulation but allow the
simulator to be wrong with a small probability. In particular, we require a simu-
lator to create a distribution that is ϵ close to the observed distribution. We say
that any two probability distributions D1 and D2 are ϵ-close (D1

∼∼∼ϵ D2) if their
statistical distance is upper-bounded by ϵ, i.e.,

1

2

∑
x

|PrD1
[x]− PrD2

[x]| ≤ ϵ.

3 Security Model

We start our contribution by defining probabilistic security models for SCA,
FIA, and CA. For this, we build on existing models but capture a more general
attack scenario.

3.1 General Random Probing Security

Adversary Model. We introduce a new generalization of the random probing
model [31,2,10] called general random probing model. Here, a probing adversary
Ap can invoke a circuit C multiple times and on each invocation, the exact
values of a random subset of wires in C are leaked to Ap. We denote the leaking
combination of wires, i.e., the subset of the wires of the circuit that is given to
Ap, with W̃ ⊆ W. Let W∞ = {W̃ ⊆ W} be the set of all wire combinations
in C and DW∞ an arbitrary discrete probability distribution defined over W∞.
Further, we define the following two functions to first select a random element
fromW∞ and then determine the values carried by the selected wires for a given
input:

LeakingWires(C ,DW∞) : The leaking-wire sampler selects for a given circuit
C a wire combination W̃ with probability PrDW∞ [W̃].

6 Beläıd et al.

AssignWires(C , W̃, x) : The assign-wire sampler takes a fixed input x for C

and outputs the values assigned to the wires w ∈ W̃ as a tuple in F|W̃|
2 . If C

is probabilistic so is AssignWires().

Then, the view ofAp is formally defined as the random probing leakage LW̃(C , x),
which is given by the random experiment

W̃ ← LeakingWires(C ,DW∞) ,

LW̃(C , x)← AssignWires(C , W̃, x) .

Security Definition. Intuitively, a circuit C is secure in our model if the view
of Ap can be simulated with high probability without access to the secret, i.e.,
there exists a simulator Sim that recreates the distribution of the leaking wires
W̃ without knowledge of the secret, such that the failure probability of Sim is
bounded by some (small) ϵ. A more formal definition is given in Definition 1.
Throughout this work, we consider enc to be some encoding function, e.g., defined
by Boolean masking (cf. Section 2.3).

Definition 1 (General Random Probing Security). A circuit C is said
to be (DW∞, ϵ)-random probing secure with respect to an encoding enc if there
exists a simulator Sim such that for all inputs x:

Sim(C , W̃) ∼∼∼ϵ LW̃(C , enc(x)) .

The required simulator Sim can be constructed by returning a simulation
failure ⊥ whenever the exact distribution LW̃(C , enc(x)) cannot be recreated
without access to x and ensuring that

Pr[Sim(C , W̃) =⊥] = ϵ ,

and, conditionned to the event Sim(C , W̃) ̸=⊥,

Sim(C , W̃) ≡ LW̃(C , enc(x)) .

Relation to Random Probing Model. The random probing model [31,2,10]
is a specific instance of the above-defined general random probing model. Specif-
ically, the probability distribution DW∞ is selected such that each wire w ∈ W
leaks with the same probability p independent of all other wires.

As shown by Duc et al. [22], the random probing model can be seen as an
intermediate model between the noisy leakage model [35] and the d-threshold
probing model [31]. Here, the assumption of the mutually independent leakage
probability p for all wires can be traced to the assumption of equal and mu-
tually independent noise in the noisy leakage model. However, the latter does
not necessarily hold in practice, neither in hardware nor in software [9]. By
defining the leakage over an arbitrary discrete probability distribution DW∞,
we can model scenarios where the noise of two wires is not independent (e.g.,

Combined Random Fault and Random Probing Security 7

because they operate in parallel with the same background computation) and,
hence, the leakage probability of the two wires is dependent. Similarly, depen-
dencies in the leakage probability can also be caused by physical defaults such
as glitches [34,36] and couplings [16,36] or by shared structures like the Power
Distribution Network (PDN) [44].

The introduction of the arbitrary discrete probability distribution DW∞ also
allows two different wires combinations of one wire {wi} and {wj} to have dif-
ferent leakage probabilities pi and pj , respectively. With that, it enables more
fine-grained modeling for the contribution of individual wires to the occurring
leakage of wire combinations (by a different weight for the wires wi and wj to
occur). For example, an EM probe usually does not capture the entire circuit
but only a subset of neighboring circuit elements. Hence, a subset of wires does
not contribute to the leakage at all and can be modeled by wire combinations
with zero probability. Modeling this correctly can lead to place-and-route algo-
rithms that take EM probing into account and minimize the observable leakage.
Other differences in the leakage probability may be caused by the difference in
the driver strengths of individual gates, or even by the type of operation a wire
is used for.

By introducing this general model, we hope to fuel research into the na-
ture of physical leakage by looking specifically into the leakage dependencies
and contributions of different circuit structures. However, due to the computa-
tional blow-up, we will stick to mutually independent leakage probabilities in
the practical implementation of our evaluation tools (cf. Section 5).

3.2 General Random Fault Security

Adversary Model. We use the adversary model proposed by Feldtkeller et
al. [26] that is based on a fault model from Richter-Brockmann et al. [39]. Here,
a faulting adversary can invoke a circuit C multiple times, where on each invo-
cation, a random subset of gates are manipulated according to a specified fault
transformation. More specifically, a fault consists of a fault location g ∈ G, i.e., a
gate of the circuit, and a fault transformation τ : Gf → Gf , i.e., a transformation
of the Boolean function a gate implements, where the fault model restricts the
allowed transformations. Popular fault transformations are, e.g., τset(g) = one,
τreset(g) = zero, or τflip(g) = inv(g). Hence, a fault is a pair f = (g, τ) and we

denote by F the set of all possible faults, by F∞ = {F̃ ⊆ F} the set of all
possible fault combinations F̃ with distinct locations (i.e., each g ∈ G occurs at
most once in F̃), and by DF∞ an arbitrary distribution defined over F∞. We
define the following function to select a fault combination for a single circuit
invocation:

AssignFaultGates(C ,DF∞) : For a given circuit C , the faulty-gate sampler
selects a fault combination F̃ with probability PrDF∞ [F̃] and outputs the

modified circuit C F̃ that we refer to as a faulty circuit.

8 Beläıd et al.

Note that F̃ can be empty and, if PrDF∞ [∅] > 0, then the sampler can output
the original circuit C = C ∅. For the sake of simplicity, it still falls within the
definition of a faulty circuit.

The original adversary model introduced by Feldtkeller et al. provides the
adversary with a correct and a faulty output of the circuit C . For our purposes,
we define the leakage of faults by the correctness of the output, which is a
conservative but popular choice for fault security [5,20,37,38]. For that, we define
a decoding or correction gadget for the context of faulty circuits:

GD : The decoding gadget realizes a function such that, given an input with at
most k bit faults, outputs a corrected result.

Then, we define the leakage by the correctness of the output of the faulty circuit.
More formally, we define the random fault leakage LF̃ (C , x) as the output of the
random experiment, with

C F̃ ← AssignFaultGates(C ,DF∞) ,

LF̃ (C)←

{
0 if ∀x : C (x) = GD(C F̃ (x)) ,

1 else.

In contrast to LW̃(C , enc(x)), the random fault leakage is not a distribution but,

for each fault combination F̃ , a constant Boolean value. With this, we define
the view of the adversary Af , after injecting a random fault into a circuit C , as
LF̃ (C). Note, that we focus on correction-based countermeasures here. However,
detection-based countermeasures can be treated analogously by considering the
result secure if a fault was detected correctly.

As with the general random probing model, this adversary model allows the
modeling of a wide range of different adversarial capabilities [26]. For example,
the set of fault combinations F∞ can be set to register combinations with long
computation paths to model clock glitches. Or it can be set to a set of adjacent
gates to model a laser attack. Similarly, a distribution of faults DF∞ with a small
variance can be used to model an adversary with precise faulting capabilities,
while a broader distribution can be used for a more dispersed fault behavior.

Security Definition. We extend the above adversary models by providing an
appropriate definition for security. Intuitively, we say a fault combination leads
to an insecure circuit behavior if there exists some input assignment that cannot
be corrected at the output. This is a very conservative assumption, in that it
assumes an adversary who can exploit every effective fault at the output to
gain full knowledge of the secret, and is popular in the literature [5,20,37,38].
To account for the random behavior of our adversary model, we say a circuit
is random fault secure if the probability that the adversary will get exploitable
information is bounded by some (small) µ.

Definition 2 (General Random Fault Security). A circuit C is (DF∞, µ)-
random fault secure with respect to a decoding GD if:

Pr[LF̃ (C) = 1] ≤ µ ,

Combined Random Fault and Random Probing Security 9

where LF̃ () is computed from the random experiment

C F̃ ← AssignFaultGates(C ,DF∞).

In this definition, the decoding gadget required for the computation of the
fault leakage LF̃ (C) cannot be faulted by Af . This is symmetric to the encoding
enc in random probing security, which is not probed, and can be justified by the
fact that a fault in a final correction can only leak the output of the circuit.
Note, however, that any correction implemented within the circuit is subject to
faults in our model.

Relation to Random Fault Model. Dhooghe and Nikova already proposed
a random fault model [19], which is inspired by the random probing model.
However, their model differs from our proposal in two key features: (i) They
consider faults in wires allowing only the fault transformations set, reset, and flip.
In contrast, we model faults by a transformation of gate functions which allows a
wide range of possible fault scenarios, including set, reset, and flip [39]. (ii) They
consider an adversary that has precise control over the location of the fault where
the occurrence of the fault is randomly determined by an independent probability
κ. In contrast, we allow an arbitrary distribution over fault combinations. Hence,
different fault locations can be dependent and the fault type can be uncertain as
well. This allows a wide range of possible adversarial scenarios [26]. Therefore,
our new model is a generalization of the previously proposed random fault model.

3.3 General Random Combined Security

Adversary Model. We now introduce a model for an adversary that can both
inject faults and place probes simultaneously. As such, the resulting combined
adversary will have the capability to manipulate a random set of gates of a cir-
cuit. Then, both the exact values of a random subset of wires and the correctness
of the circuit are leaked to the adversary. To formally capture the view of the
adversary, we define the random combined leakage LW̃,F̃ (C , x) as the output of
the random experiment

C F̃ ← AssignFaultGates(C ,DF∞) ,

W̃ ← LeakingWires(C F̃ ,DW∞) ,

LW̃,F̃ (C , x)← AssignWires(C F̃ , W̃, x) ∥ LF̃ (C) .

Again, we assume a correction-based countermeasure for simplicity. When
detection is used, it is important to include the detection flag in the random
combined leakage (which then need to be simulated alongside the leaking wires).

Considering the SCA aspect of CA, we require for security that the leaking
wires W̃ can be simulated without knowledge of the secret. However, for simula-
tion, the adversarial knowledge of the faulty circuit makes a difference. Imagine

10 Beläıd et al.

⊸

E
Pr[f : flip] = 1

2

(a) Fault scenario with a prob-
abilistic flip fault.

⊸

Pr[∅] = 1
2

⊸

Pr[flip] = 1
2

(b) View of the simulator with

known faulty circuit C F̃ .

$

⊸

(c) View of the simulator with
known fault distribution DF∞.

Fig. 1. Difference when knowing the injected fault versus knowing only the fault distri-
bution. When knowing the fault the circuit is deterministic (for deterministic inputs)
and a probe on the output propagates to all inputs. When only the fault distribution
is known, the circuit can get probabilistic (even with deterministic inputs) potentially
stopping the propagation of probes.

the scenario in Figure 1, where a flip fault is injected into a xor chain with prob-

ability 1
2 . If the adversary knows the faulty circuit C F̃ (and, hence, C F̃ is given

to the simulator) then all deterministic inputs to the xor chain are required to
simulate the probe at the end in both cases (non-faulty/faulty). In contrast, if

the adversary does not know C F̃ (and only the fault distribution DF̃∞ is given
to the simulator) then the fault randomizes the intermediate value and the out-
put of the final xor can be simulated by a uniform random value. Hence, the
fault effectively works as a mask refreshing. For this, we introduce two different
combined adversaries: one without and one with knowledge of the faulty circuit.

i) Unknown-Fault Random Combined Adversary. Our first adversary Auc is the
combination of Ap and Af without knowledge of the randomly chosen fault

combination F̃ . Specifically, the adversary gets no access to the faulty circuit C F̃

and the corresponding simulator gets only the circuit C and the fault distribution
DF∞ as input. Hence, the view ofAuc is defined by LW̃,F̃ (C , x) and the effects of
fault injection and probing is interleaved, i.e., we analyze the circuit in Figure 1c.

ii) Known-Fault Random Combined Adversary. The second adversary Akc is the

combination of Ap and Af with additional knowledge of the faulty circuit C F̃

(or equivalently, the selected fault combination F̃). For this, the corresponding

simulator has access to C F̃ for the simulation of the leaking wires. With this, the
view of Akc is defined by LW̃,F̃ (C , x) ∥ F̃ . Since the faulty circuit is known, we

can analyze LW̃(C F̃ , x) and LF̃ (C) independently, i.e., after the fault injection,
we only consider one of the two circuits in Figure 1b.

Combined Random Fault and Random Probing Security 11

When comparing the two adversaries, it becomes apparent that Auc is the
more realistic adversary model for CA because, in a real-world circuit, the ad-
versary usually does not know the exact effect of an injected fault. However, the
uncertainty about the faults makes the analysis of combined security much more
complex, due to the reciprocal effects of faults and probes. Fortunately, we can
show that any circuit secure against Akc is also secure against Auc. For this,
we see Akc mostly as a useful abstraction for analysis, allowing a clear path to
security verification.

In this sense, we can make a further distinction in the knowledge an adversary
has about the effect of fault injection. Specifically, we can separate the knowledge
about the fault location and its effect. For this, we use the known-fault adversary
Akc in combination with a fault transformation to a probabilistic gate function
fg, i.e., fg has an internal random tape that impacts the output of the gate. While
this pushes the analysis closer to Auc, it is important to evaluate the correctness
of the circuit for all values of the random tape, i.e., LF̃ (C) = 0 if the output can
be corrected for all inputs and random values of probabilistic gate functions.

Our model also allows to go in the opposite direction by empowering Akc

with direct control over the injected fault. Hence, we can model a chosen-fault
combined adversary as the adversary Akc that can freely choose the fault distri-
bution DF∞ of a (restrict) set of fault combinations F∞. In most cases, this will
lead to an adversary that directly chooses the location and transformation of the
injected fault, since any uncertainty will reduce the advantage of the adversary,
which removes the random nature of the model. Note, if the set F∞ is restricted
to the set of all gate combinations with up to k faults, this model is equivalent to
the popular threshold fault model [1,5,30,38,45]. However, since the semantics of
the security definition do not change (we do not care how the fault distribution
is generated), we do not introduce a specific adversary model for this case.

Security Definition. We provide security definitions for the setting of com-
bined adversaries. Intuitively, we say that a circuit is combined-secure if the
view of the corresponding adversary can be simulated and the output can be
corrected with high probability. For this, we introduce a new security parame-
ter γ that represents the advantage of the adversary, i.e., the probability that
the adversary gains some knowledge about the secret. In the combined setting,
the adversary wins if either there exists some fault leakage (LF̃ (C) = 1) or the
leaking wires in the faulty circuit cannot be simulated without knowledge of the
secret. To overcome the dependencies between those two events, we only conduct
the simulation of the leaking wires if there is no fault leakage. Hence, we get the
following two parameters (where we usually choose the lowest possible value):

µ ≥ Pr[LF̃ (C) = 1] ,

ϵ ≥ Pr[Sim(C , W̃) ≡⊥| LF̃ (C) = 0] .

Here, µ is defined exactly as in Definition 2, while ϵ is the probability that the
simulation fails knowing that LF̃ (C) = 0. We then express the advantage of the

12 Beläıd et al.

combined adversary by
γ ≥ µ+ (1− µ)ϵ .

To compute ϵ, we introduce a new subset of the fault combination B ⊆ F∞,
such that B captures all fault combinations that always yield a result that can
be corrected, i.e., B = {F̃ ∈ F∞ | LF̃ (C) = 0}. Then, we define the distribution
DB as the scaled distribution DF∞ conditioned to the event LF̃ (C) = 0.

We start with the security definition for the adversary Auc, where the random
combined leakage needs to be simulated. In a sense, this is the most natural
definition as the adversary has no knowledge about the circuit transformation
caused by the injected fault.

Definition 3 (Unknown-Fault Random Combined Security). A circuit
C is (DW∞,DF∞, γ)-Unknown-Fault Random Combined Secure (RCSUF) with
respect to an value encoding enc and a error decoding GD if there exists some
µ, ϵ ≤ 1 such that C is (DF∞, µ)-random fault secure with respect to GD, there
exists a simulator Sim such that for all inputs x:

Sim(C ,DF∞) ∼∼∼ϵ LDW∞,DB(C , enc(x)) ,

and
µ+ (1− µ)ϵ ≤ γ ,

where LDW∞,DB() is computed from the random experiment

W̃ ← LeakingWires(C ,DW∞) ,

C F̃ ← AssignFaultGates(C ,DB) .

While simple, this definition is difficult to analyze due to the interleaving
of probes and faults within the simulator. Therefore, we provide a second secu-
rity definition tailored to Akc. Because this adversary knows the faulty circuit

C F̃ , the interleaving of probes and faults is eliminated. Hence, the analysis gets
simpler and we will later show that security in this model implies security with
unknown faults.

Definition 4 (Known-Fault Random Combined Security). A circuit C
is (DW∞,DF∞, γ)-Known-Fault Random Combined Secure (RCSKF) with re-
spect to an value encoding enc and an error decoding GD if there exists some
µ, ϵ ≤ 1 such that C is (DF∞, µ)-random fault secure with respect to GD, there
exists a simulator Sim such that for all inputs x it holds that

C F̃ ← AssignFaultGates(C ,DB) ,

Sim(C F̃) ∼∼∼ϵ LW̃(C F̃ , x),

and
µ+ (1− µ)ϵ ≤ γ ,

where LW̃() is computed from the random experiment

W̃ ← LeakingWires(C F̃ ,DW∞) .

Combined Random Fault and Random Probing Security 13

Reduction between Security Definitions. It is evident that the adversary
Akc has more knowledge about the probed circuit structure than Auc. Hence,
it seems reasonable that RCSUF is the more general security notion and we can
reduce its security to RCSKF. In other words, if a circuit is RCSKF, then it is
always RCSUF.

In particular, we can show that if there exists a simulator SimKF for the
adversary Akc then we can always construct a simulator SimUF for the adver-
sary Auc with at most the failure probability of SimKF . For that, consider that
RCSKF requires the simulation for a given but randomly chosen faulty circuit

C F̃ . Hence, we can compute the failure probability of SimKF as the sum of the
failure probability for each faulty circuit weighted by the probability of that
circuit to occur, i.e.,

ϵkf =
∑
F̃

Pr[F̃]ϵF̃kc , (1)

where ϵF̃kc is the failure probability of SimKF given the faulty circuit C F̃ . We can
then construct a simulator that randomly selects a faulty circuit and calls SimKF

for the wire simulation. Note, that standalone fault security is not affected by
the choice of the adversary. We show a more formal argumentation below.

Theorem 1. Let C be a circuit that is (DW∞,DF∞, γkc)-RCSKF. Then C is
(DW∞,DF∞, γuc)-RCSUF with γuc ≤ γkc.

Proof. Let C be a (DW∞,DF∞, γkc)-RCSKF circuit. Then, by definition of
RCSKF, C is (DF∞, µ)-random fault secure and there exists a simulator SimKF

with failure probability ϵkc for the probing leakage LW̃(C F̃ , x) such that

γkc ≥ µ+ (1− µ)ϵkc .

Now we construct a simulator SimUF for RCSUF out of SimKF . This is pos-
sible because SimUF has to simulate the same events as SimKF since the set of
fault combinations with LF̃ (C) = 1 remains untouched by the knowledge of the
adversary. The simulator SimUF is constructed by the following two steps:

1. Call C F̃ ← AssignFaultGates(C ,DB),
2. Return SimKF (C

F̃ , W̃).

When this simulator does not fail it is a perfect simulation of the leaking wires
because it draws F̃ from the correct distribution and SimKF produces a perfect

simulation for any faulty circuit C F̃ (if it does not fail). Given this, the failure
probability of SimUF is given by

ϵuf =
∑
F̃

Pr[F̃]ϵF̃kc ,

where ϵF̃kc is the failure probability of SimKF given the faulty circuit C F̃ . Hence,
we have ϵuc = ϵkc (see Equation 1) for this simulator (however, there could be
a simulator with a smaller failure probability). Together with (F∞, µ)-random
fault security of C , it follows that C is (DW∞,DF∞, γuc)-RCSUF with γuc ≤ γkc.
□

14 Beläıd et al.

In the remainder of this paper, we will mostly focus on RCSKF for the sake of
simplicity.

Relation Random Combined Model. In addition to the random fault model,
Dhooghe and Nikova also propose a combined version of the random probing and
random fault model [19]. Their model does not leak the exact occurring fault to
the adversary (similar to RCSUF). Since they use their version of the random
fault model and the traditional random probing model, the combination has the
same limitations as the individual models. In addition, our model introduces a
new security parameter γ that captures the overall advantage of the combined
adversary. As with the individual models, the parameters of our combined model
can be chosen such that it is equal to the definition from Dhooghe and Nikova.
While Dhooghe and Nikova propose this model in an appendix of their work,
they do not conduct any analysis or further investigations of it.

4 Compositional Notions

Analyzing entire circuits for their security is often prohibitively complex. As a
result, the research community focuses on the construction of so-called gadgets,
i.e., small circuits implementing a small function (often single binary opera-
tions) in a secure manner such that security is guaranteed even under composi-
tion [7,10,13,20,27,37]. To abstractly argue about the security via composition,
we first define a composability notion, which defines the properties a gadget
must fulfill, usually, by restricting the propagation of leakage or faults. Second,
we outline and prove the conditions of composition, i.e., how the gadgets can be
securely combined, in a composition theorem.

4.1 Composition in the Random Probing Model

For the general random probing model, we can build upon the notion of Random
Probing Composability (RPC) proposed by Beläıd et al. [10] and extend it for
general distributions. At a high level, RPC provides Ap with the usual random
probing leakage for the gadget and additionally with a tuple O of arbitrary but
bounded sets of probes on shares of each output. More specifically, for each
unshared output with index i, there is a bounded set Oi that contains the share
indices of the probed output shares. Then, a gadget is composable if the view
of Ap can be simulated with high probability using only bounded sets of input
shares, i.e., for each unshared input i the simulator requires only a bounded set
of share indices Ii. Here, the set of input and output shares are bounded by
the same parameter d, i.e., |Oi| ≤ d and |Ii| ≤ d. The extension to arbitrary
probability distributions is straightforward: the internal wire selection uses DW∞

instead of a wire-independent leakage probability.

Definition 5 (General Random Probing Composability (GRPC)). A
gadget G : (Fs

2)
h → (Fs

2)
m is (d,DW∞, ϵ)-GRPC if there exists a deterministic

Combined Random Fault and Random Probing Security 15

algorithm ShareSelect and a probabilistic simulator Sim such that for every
input x and for every tuple of sets O = (Oi)i∈[m], with ∀i : Oi ⊆ [s] and
|Oi| ≤ d, there exists a ϵ ≤ 1 such that the random experiment

W̃ ← LeakingWires(G ,DW∞)

I := (I1 . . . Ih)← ShareSelect(W̃,O)
out← Sim(x|I , I,O, W̃)

yields
Pr[(|I1| > d) ∨ . . . ∨ (|Ih| > d)] ≤ ϵ

out ≡ (AssignWires(G , W̃, x), y|O) ,

with y ← G(x).

Arguing about the composition of gadgets requires knowledge of the joint
probability distribution for the leakage in multiple gadgets. Using a complex
(and for some scenarios more realistic) joint probability distribution, where the
leakage of different gadgets is mutually dependent, contradicts the core idea of
composition, i.e., the independent analysis of individual gadgets. Hence, in the
following, we assume mutually independent leakage distributions for each gadget.
While this is certainly a restriction in the generality of our notion, we think it
is justified by the significant gains of the gadget-based approach.

Gadgets supporting GRPC can be composed in an arbitrary way as long as
each output of a gadget is used only once as input to another gadget. However,
the failure probability increases linearly with the number of used gadgets. Our
theorem is actually a generalization of Theorem 1 from Beläıd et al. [10], and
the proof is similar except for the computation of the global failure probability.
Instead of being 1− (1− ϵ)|C |, bounded by |C | · ϵ, the latter naturally becomes

1−Π
|C |
i=1(1− ϵi) to reflect more tightly the individual gadget-simulation failures.

Theorem 2. Let C be a circuit constructed by composition of (d,DW∞
i , ϵi)-

GRPC gadgets Gi, for i ∈ {1, . . . , |C |}, such that each output of Gi is used
as input of at most one other gadget Gj or as output of C . Given this, C is

(
∏|C |

i=1 DW∞
i , 1−Π

|C |
i=1(1− ϵi))-random probing secure.

Relation to (Random) Probing-Secure Composition. As mentioned, our
notion is a direct extension of RPC [10] to arbitrary probe distributions. Another
concept for the construction of random probing secure circuits is expansion [4,10].
For this, a circuit compiler, which replaces each gate with a respective secure
gadget, is applied e-times to a circuit. Hence, for e = 1, we get the normal
gadget-based approach. However, for e = 2, each share in the previous masked
circuit is shared again and each gate of a gadget is replaced with the respective
gadget of the gate again. In essence, this reduces the leakage probability of
wires as now the simulation of entire gadgets needs to fail in order to leak a
single share (of the originally masked circuit). Hence, the leakage probability

16 Beläıd et al.

p is replaced by the simulation-failure probability ϵ. Using the right gadgets
can result in an exponential (in e) security increase, but also an exponential
increase in implementation costs. We leave the generalization to arbitrary probe
distributions for future work.

In the standard Ishai-Sahai-Wagner (ISW) probing model [31], where an
adversary can choose up to d wires to be probed, the requirements for com-
positions are now well understood. In particular, it requires to restrict and
guide the flow of probe propagation through the circuit. While (Strong) Non-
Interference ((S)NI) [6,7] restricts the number of input shares that can be used for
the simulation of probes, Probe-Isolating Non-Interference (PINI) [13] restricts
the location (in terms of share domains) of input shares the simulator can use.
Hence, (G)RPC has some similarity with (S)NI, in that it restricts the number of
input shares a simulator can access. However, in contrast to (S)NI, the number
of shares the simulator can access is a fixed parameter that is independent of
the amount of leakage within the gadget.

4.2 Composition in the Random Fault Model

We continue with compositional statements for the random fault model. In con-
trast to the random probing model, to the best of our knowledge, there exists no
prior work that looks into the composition of the random fault model. However,
because of the duality of probes and faults, we can adapt the above notation
from the random probing to the random fault case. However, instead of adding
probes on outputs we now consider additional faults on inputs and check for
correction instead of simulation.

To properly argue about the composition we need to specify the used coun-
termeasure (similar to masking for probing). Hence, in the following, we will only
consider circuits secured by simple repetition against a fault adversary. In par-
ticular, we will use 2k + 1 repetitions such that a majority vote can be used for
the correction of up to k faults. Then, for composition, we consider an adversary
that can inject a random fault combination into the gadget where additionally
a tuple I ′ of arbitrarily but bounded sets of inputs are potentially manipulated
by faults. More specifically, for each input with index i, there is a bounded set
I ′i that contains the replication indices of inputs that may be affected by a fault.
Here, we consider each replication in I ′i to be a unique and independent input,
to account for all possible distribution changes due to a fault in previous parts of
the composed circuit. Hence, a fault on an input wire can be seen as an arbitrary
change in the value distribution over F2. Then, a gadget is composable, if the
output can be corrected with high probability.

To formally define our notion of composition in the presence of a random
fault adversary, we start by defining Restricted Random Fault Composability
(RRFC), which states the required property for a fixed tuple of input faults I ′.

Definition 6 (Restricted Random Fault Composability). Let n = 2k+1
and I ′ = (I ′i)i∈[h] be a tuple of sets such that I ′i ⊆ [n], for all i: |I ′i| ≤ k. A gadget

Combined Random Fault and Random Probing Security 17

G : (Fn
2)

h → (Fn
2)

m with is (I ′, k,DF∞, µ)-RRFC if there exists a deterministic
algorithm ReplicationSelect such that the random experiment

G F̃ ← AssignFaultGates(G ,DF∞) ,

O′ := (O′
1, . . . ,O′

m)← ReplicationSelect(G F̃ , I ′)

LI′,F̃ (G)←

{
0 if ∀i ≤ m : |O′

i| ≤ k ,

1 else.

yields
Pr[LI′,F̃ (G) = 1] ≤ µ

G F̃ (x′)|O′ ≡ G(x)|O′

for all inputs x ∈ Vh
n and faulty inputs x′ ∈ (Fn

2)
h with x|I′ = x′|I′ .

Then, a gadget supports Random Fault Composability (RFC) with some
bound µ if for all possible tuples I ′ the RRFC failure probability is bounded by
µ.

Definition 7 (Random Fault Composability). A gadget G : (Fn
2)

h →
(Fn

2)
m with n = 2k+1 is (k,DF∞, µ)-RFC if for all tuples of sets I ′ = (I ′i)i∈[h]

with ∀i : I ′i ⊆ [n] and |I ′i| ≤ k the gadget G is (I ′, k,DF∞, µI′)-RRFC and
maxI′{µI′} ≤ µ.

While we split the definition of RFC into two parts (for reasons that become
apparent when we look at composition under a combined adversary) it is easy to
see that there is a close symmetry with the definition of GRPC. Where GRPC
goes through all possible tuples of output probes O, RFC goes through all possi-
ble tuples of input faults. Where GRPC restricts the number of shares per input
the simulator can use for a successful simulation, RFC restricts the number of
replications per output that can be affected by a fault.

We now show that gadgets supporting RFC can be composed arbitrarily.
Under the assumption of mutually independent fault distributions for each gad-
get, the failure probability increases linearly with the number of gadgets in the
circuit.

Theorem 3. Let C be a circuit constructed by composition of (k,DF∞
i , µi)-

RFC gadgets Gi, for i ∈ {1, . . . , |C |}. Then, C is (
∏|C |

i=1 DF∞
i , 1−

∏|C |
i=1(1−µi))-

random fault secure.

Proof. Let the faulty circuit be C F̃ ← AssignFaultGates(C ,
∏|C |

i=1 DF∞
i), with

F̃ the set of faults selected with Pr∏|C |
i=1 DF∞

i
[F̃]. We can divide F̃ into |C | disjoint

fault sets F̃i ⊆ F̃ such that F̃i belongs to Gi and is selected with PrDF∞
i
[F̃i].

We go iteratively through the gadgets, starting with the gadgets only con-
nected to the inputs of C . Let Gi be such a gadget. Then, by definition of
(k,DF∞

i , µi)-RFC, the gadget Gi is (I ′Gi
, k,DF∞

i , µi)-RRFC for the tuple of

18 Beläıd et al.

empty sets I ′Gi
= (I ′Gi,j

= ∅)j∈[h]. Hence, there exists a tuple of sets O′
Gi

such

that Pr[LI′
Gi

,F̃ (G) = 1] ≤ µ and G F̃i
i (x)|O′

Gi

≡ Gi(x)|O′
Gi

.

We continue with the child gadgets, i.e., gadgets that have inputs connected
to outputs of the just handled gadgets and (potentially) inputs of the circuit. Let
Gj be such a gadget. Again, we can create a tuple of sets I ′Gj

out of the respective

tuples O′
Gi

of the parent gadgets Gi. Because of (k,DF∞
j , µj)-RFC there exists

tuple of setsO′
Gj

such that Pr[LI′
Gj

,F̃ (G) = 1] ≤ µ and G
F̃j

j (x)|O′
Gj

≡ Gj(x)|O′
Gj

.

We repeat this process until we reach the outputs of C .
Since we have n = 2k+1 replications, we can construct a decoding gadget GD

for C by computing the majority of the output wires w1
i , . . . , w

n
i for all i ∈ [m].

This decoding gadget will correct an output value as long as the number of faulty
replications is smaller or equal to k, which is always true if none of the gadgetsGi,
for i = 1, . . . |C |, fail with respect to RFC. The probability that at least one of |C |
gadgets fail is 1−

∏|C |
i=1(1−µi). Hence, Pr[C (x) ≡ GD(C F̃ (x))] ≤ 1−

∏|C |
i=1(1−µi),

which shows random fault security of C . □

Note, that the above composition loses some tightness in µ because a failure of
RFC in one gadget does not necessarily mean that the entire circuit is insecure,
e.g., if some faults cancel each other out in a later gadget.

Relation to Fault-Secure Composition. To the best of our knowledge, this is
the first work establishing a compositional property in the random fault model.
However, in the threshold fault model [30], where an adversary can place up
to k faults, composition is already discussed and notions usually have a strong
symmetry to notions in the ISW probing model. In particular, (Strong) Non-
Accumulation ((S)NA) [20] (later refined to Fault (Strong) Non-Interference
(F-(S)NI) [37]) restricts the number of faults that can propagate to the out-
put of a gadget, while Fault-Isolating Non-Interference (FINI) [27] limits fault
propagation within so-called redundancy domains. Both variants ensure that the
number of faults in the replication of a single value does not exceed the threshold
that allows correction (detection) of faults. In this sense, our proposed notion has
some similarity with (S)NA/F-(S)NI, in that it restricts the number of output
replications that are allowed to be affected by a fault. However, similar to the
contrast between (G)RPC and (S)NI, the number of allowed faulty outputs is
not dependent on the amount of injected faults. Also, we use the same symmetry
between faults and probes for the definition of our notion of composition.

4.3 Composition in the Random Combined Model

Finally, we provide a compositional statement for the random combined model,
i.e., under an adversary with both faulting and probing capabilities. Here, we
consider composition under an adversary that knows the injected fault and use
the reduction from Section 3.3 for the adversary with unknown faults. We leave
the tighter compositional statement in the setting with unknown faults for future

Combined Random Fault and Random Probing Security 19

work. In principle, the following notion is a combination of the two previous
notions for the individual cases, however, with subtle differences.

First, we count faults in inputs and outputs per input and output share.
More specifically, the tuple of indices for potentially faulty inputs has now a set
for each share of each input, i.e., I ′ = ((I ′i,j)i∈[s])j∈[h], where j is the index of
the input and i the share index. The same holds for the tuple of potential faulty
outputs O′ = ((O′

i,j)i∈[s])j∈[m], which is constructed by ReplicationSelect.
Hence, we bound the number of allowed faults per input and output share by k.

Second, and in contrast, probes on outputs are extended to all replications of
the probed value4. Hence, the tuple O = (Oi)i∈[m], where each Oi contains the
probed share indices of the i’th output, does not change. However, the meaning
of j ∈ Oi changes in so far as now all replications of the j’th share of the i’th
output need to be simulated. This is necessary to allow for a wide range of gadget
implementations where there are potential interdependencies between different
replications, e.g., via a correction module, that allows probe propagation across
replications [25]. Similarly, the simulator gets access to all replications of the
shares indicated in the tuple I = (Ii)i∈[h].

Third, we define the failure probability for probe simulation ϵI′ in dependence
on the tuple of faulty-input indices I ′. This is analog to the definition of RRFC
(Definition 6) and allows us to iterate over all possible tuples I ′ for our combined
composition. In particular, this enables a precise definition of the conditions
for Random Probing Composition under Faults (RPCUF), which is essentially
Definition 5 under a given tuple of potentially faulty inputs I ′ and a random
fault combination F̃ ∈ F∞.

Definition 8 (Random Probing Composition under Faults). Let I ′ =
((I ′i,j)i∈[s])j∈[h] be a tuple of sets such that ∀i, j : I ′i,j ⊆ [n] and |I ′i,j | ≤ k.

A gadget G : ((Fn
2)

s)h → ((Fn
2)

s)m with n = 2k + 1 is (I ′,DF∞, d,DW∞, ϵ)-
RPCUF if there exists a deterministic algorithm ShareSelect and a probabilistic
simulator Sim such that for all faulty inputs x′ ∈ ((Fn

2)
s)h, for which there exists

an x ∈ (Vs
n)

h with x|I′ = x′|I′ , and every tuple of sets O = (O1, . . . ,Om), with
∀i : Oi ⊆ [s] and |Oi| ≤ d, the random experiment

G F̃ ← AssignFaultGates(G ,DF∞)

W̃ ← LeakingWires(G F̃ ,DW∞)

I := (I1 . . . Ih)← ShareSelect(W̃,O)
out← Sim(x′|I , I, I ′,O, W̃)

yields
Pr[(|I1| > d) ∨ . . . ∨ (|Ih| > d)] ≤ ϵ

out ≡ (AssignWires(G F̃ , W̃, x′), y′|O)

with y′ ← G F̃ (x′).

4 The same procedure should be used when analyzing replicated circuits for stand-
alone GRPC.

20 Beläıd et al.

Fourth, and similar to Section 3.3, we only check for side-channel security if
the gadget is fault secure to keep the failure probabilities for probe simulation
ϵI′ and correctness µI′ independent. For this, we again introduce a subset of
fault combinations BI′ ⊆ F∞, such that BI′ captures all fault combinations
that, in combination with potential faults on the inputs with indices in I ′, lead
to a gadget output that can be corrected, i.e., BI′ = {F̃ ∈ F∞ | LI′,F̃ (G) = 0}.
Note, that we define this set to be dependent on the tuple I ′. The corresponding
distribution DBI′ is defined as the scaled distribution DF∞ conditioned on the
event LI′,F̃ (G) = 0.

With this, we say that a gadget supports Known-Fault Random Combined
Composability (RCCKF) if, for any tuple I ′, the gadget supports RRFC and
RPCUF with negligible advantage for the adversary. To again compute a unified
failure probability we chose the maximum combined failure probability (i.e., the
probability that either RRFC fails or RPCUF fails under the condition that
RRFC holds) over all tuples I ′.

Definition 9 (Known-Fault Random Combined Composability). A gad-
get G : ((Fn

2)
s)h → ((Fn

2)
s)m is (d, k,DW∞,DF∞, γ)-RCCKF if for all tuples

of sets I ′ = ((I ′i,j)i∈[s])j∈[h], such that ∀i, j : I ′i,j ⊆ [n] and |I ′i,j | ≤ k, there
exists some µI′ , ϵI′ ≤ 1 such that the gadget G is (I ′, k,DF∞, µI′)-RRFC and
(I ′,DBI′ , d,DW∞, ϵI′)-RPCUF and it holds that maxI′{µI′ +(1−µI′)ϵI′} ≤ γ.

Under this definition, we can arbitrarily compose any RCCKF gadgets as long
as each output of a gadget is only used once as input to another gadget. This
restriction comes from the composition under probes (cf. Section 4.1). Then,
under the assumption of mutually independent fault and probing distributions
per gadget, the combined failure probability increases linearly in the number of
gadgets in the circuit.

Theorem 4. Let C be a circuit constructed by composition of gadgets G that
are (d, k,DW∞

i ,DF∞
i , γi)-RCCKF, for i ∈ {1, . . . , |C |}, such that each output of

Gi is used as input of at most one other gadget Gj or as output of C . Then, C
is

(

|C |∏
i=1

DW∞
i ,

|C |∏
i=1

DF∞
i , 1−

|C |∏
i=1

(1− γi))-RCSKF.

Intuitively, the proof follows the lines of the compositional statements for stand-
alone probing and faulting. Specifically, we first go from inputs to outputs
through the circuit to construct the respective tuples of potentially faulty in-
puts to each gadget to show composition under faults. Then, we go backward,
i.e., from outputs to inputs, through the gadgets and use the fact that the set
of faulty inputs is bounded in case of a fault combination that can be corrected
to show random probing security under faults.

Proof. Let the faulty circuit be C F̃ ← AssignFaultGates(C ,
∏|C |

i=1 DF∞
i), with

F̃ the set of faults selected with Pr∏
i DF∞

i
[F̃]. We can divide F̃ into |C | disjoint

Combined Random Fault and Random Probing Security 21

fault sets F̃i ⊆ F̃ such that F̃i belongs to Gi and is selected with PrDF∞
i
[F̃i].

Further, let W̃ be the set of leaking wires of C selected with Pr∏
i DW∞

i
[W̃]. We

can divide W̃ into |C | disjoint parts W̃i ⊆ W̃, each belonging to the gadget Gi

such that each W̃i was selected with PrDW∞
i
[W̃i].

Since each gadget Gi is (I ′, k,DF∞, µI′)-RRFC for all tuples I ′ it follows
with Theorem 3 that the circuit random fault secure with

µ = 1−
|C |∏
i=1

(1− µi) . (2)

Let B = {F̃ | F̃ =
⋃|C |

i=1 F̃i,∀I ′Gi
: LI′

Gi
,F̃i

(Gi) = 0} be the set of faults

considered secure in Theorem 3, i.e., all fault combinations that can be corrected
at the output of the respective gadgets. We denote by

BI′
Gi

= {F̃i ∈ F∞ | LI′
Gi

,F̃i
(Gi) = 0} ⊆ B

the set of fault combinations that can be corrected in a gadget Gi under faults
in the input indices in I ′Gi

, with ∀j : |I ′Gi,j
| ≤ k.

We now go backward through the circuit, starting with gadgets connected
to the outputs of C , considering only faults F̃ ∈ B. Let Gi be a gadget only
connected to outputs of C . By RPCUF of Gi, we can construct a simulator SimGi

that requires a subset of inputs (defined by the tuple IGi
) for the simulation of

the wires in W̃i under the faults F̃i and with faulty inputs with indices in I ′Gi
.

Let the failure probability of SimGi be ϵi.

We continue with the parent gadgets, i.e., gadgets that have outputs con-
nected to the inputs of just handled gadgets and (potentially) outputs of the
circuit. Let Gj be such a gadget. By RPCUF of Gj , we can construct a simu-
lator SimGj

that requires a subset of inputs (defined by the tuple IGj
) for the

simulation of the wires in W̃j and the output wires defined by the tuples IGi

of the child gadgets Gi under the faults F̃j and with faulty inputs with indices
in I ′Gj

. In particular, each gadget output with index ℓ is only used once in the
circuit and we use the corresponding set IGi,ℓ′ of the child gadget as OGj ,ℓ.
Again, we denote the failure probability of SimGi by ϵj . We repeat this process
until we reach the inputs of C .

Given this, we can construct the simulator Sim for C by composition of the
gadget simulators SimGi

. The failure probability ϵ of Sim is the probability that
at least one simulators SimGi fails, i.e.,

ϵ = 1−
|C |∏
i=1

(1− ϵi) . (3)

22 Beläıd et al.

Therefore, with Equation 2 and 3 we have

µ+ (1− µ)ϵ = 1−
|C |∏
i=1

(1− µi) +

|C |∏
i=1

(1− µi)(1−
|C |∏
i=1

(1− ϵi))

= 1−
|C |∏
i=1

(1− µi)(1− ϵi)

≤ 1−
|C |∏
i=1

(1− γi),

with γi = µi + (1− µi)ϵi being the combined failure probability of each gadget

Gi. It follows (
∏|C |

i=1 DW∞
i ,

∏|C |
i=1 DFi, 1−

∏|C |
i=1(1− γi))-RCSKF of C . □

Similar to Theorem 3, the above composition loses some tightness by only
considering fault combinations that can be corrected after each gadget. While the
set B gets bigger, and hence ϵ increases, when considering all fault combinations
that can be corrected at the output of C , the overall γ gets smaller. The reason
is that the respective fault combination is entirely captured in µ of the above
argument, however, it would only be partially captured (multiplied by some
ϵ ≤ 1) when considering the tighter definition of B. Hence, the provided γ is
indeed a upper bound of the combined failure probability.

Relation to Combined-Secure Composition. As with RFC, to the best
of our knowledge, this is the first work discussing compositional properties in
the context of the random combined model. However, again in the threshold
model, several compositional notions were discussed. Most of them are a com-
bination of compositional notions for probing and faulting, respectively. In this
respect, (Strong) Non-Interference Non-Accumulation ((S)NINA) [20] (later re-
fined to Combined (Strong) Non-Interference (C-(S)NI) [37]) is the combination
of (S)NA with (S)NI, and Combined-Isolating Non-Interference (CINI) [27] is
the combination of FINI and PINI, respectively. In the context of polynomial
masking, Berndt et al. [12] coined the notion of fault-resilient (S)NI, which is
the usual (S)NI notion that is invariant to fault injection. Our proposed com-
positional notation has some similarities with (S)NINA/C-(S)NI in that it is a
combination of stand-alone faulting and probing composition and the underlying
stand-alone notions relate to the respective stand-alone notions of (S)NA and
(S)NI.

An interesting direction for future research into the composition in the ran-
dom combined model is the notion of expansion (as considered in the random
probing model) and the investigation of gadgets where the random probing se-
curity is invariant to faults.

Combined Random Fault and Random Probing Security 23

5 Automatic Verification of Protected Implementations

We implement the verification of the new notion of random combined security
(and its composability variants) for cryptographic circuits by extending the ver-
ification tools VERICA [37] and IronMask [11]. At the state of the art, VERICA

can be employed for combined hardware security verification considering the
glitch-extended probing model [24] and the zeta fault-injection model [39], while
IronMask is able to verify various (random, glitch-extended) probing security no-
tions in an efficient way by relying on an algebraic characterization for specific
gadgets.

In our work, we first aim to establish a common foundation for the practical
verification of circuits under the new security models. Subsequently, we provide
detailed insights into our extensions, denoted as VERICA+ and IronMask+, en-
abling the verification of combined security properties in cryptographic circuits.

5.1 Verification of the Generalized Security Models

We provide explicit formulas and practical verification choices for the computa-
tion of the simulation and correction failure probabilities in the general random
probing model, the general random fault model, and the known-fault random
combined security. These then serve as a basis for the extensions VERICA+ and
IronMask+.

General Random Probing Security. For the general random probing secu-
rity (cf. Definition 1), we now assume independent and different leakage prob-
abilities pw for each wire w in W, to ease the computation for the verification.
Then, the probability of a leaking wire combination W̃ is the product of leakage
probabilities of each wire w ∈ W̃ times the product of (1−pw′) of the remaining
wires w′ ∈ W \W̃. Consequently, let ϵ be the simulation failure probability such
that

ϵ =

|W|∑
i=1

∑
W̃∈W∞

#i

∏
w∈W̃

pw
∏

w′∈W\W̃

(1− pw′) , (4)

where W∞
#i ⊆ W∞ is the set of wire combinations of exactly i wires that lead to

a simulation failure, i.e., W̃∞
#i = {W̃ ∈ W∞ | |W̃| = i and Sim(C , W̃) =⊥}. The

above equation generalizes the computation of the simulation failure probability
in the random probing security from Beläıd et al. [10]. Precisely, Equation 4 is
only equivalent to the latter if we consider that all wires are leaked with the
same probability p.

Practically, a circuit may be too large for exhaustively checking all wire com-
binations. Therefore, VERICA+ and IronMask+ compute the outer sum of Equa-
tion 4 only up to a threshold α, i.e., for i ∈ [1, α]. For any combinations of more
than α wires, we can either consider that (1) they do not result in a simulation
failure (∀i ∈]α, |W|] ,W∞

#i = ∅) to obtain a lower bound ϵmin, or (2) they all

24 Beläıd et al.

lead to a simulation failure (∀i ∈]α, |W|] , W̃∞
#i = {W̃ ∈ W∞ | |W̃| = i}) to

obtain an upper bound ϵmax. Those lower and upper bound computations follow
the same method used for the random probing security by Beläıd et al. in [10].

General Random Fault Security. For the general random fault model (cf.
Definition 2), again for usability purposes of the verification process, we now
assume independent and different fault probabilities qf for each fault f = (g, τ).

The probability of a fault combination F̃ is thus the product of the individual
fault probabilities of the said combination times the product of (1− qf ′) for all
faults f ′ not present in it. Let µ be the correction failure probability defined by

µ =

|F|∑
i=1

∑
F̃∈F∞

#i

∏
f∈F̃

qf
∏

f ′∈F\F̃

(1− qf ′) , (5)

where F∞
#i ⊆ F∞ is the set of fault combinations of exactly i faults that cannot

be corrected (such that F̃ ∈ F∞
#i iff LF̃ (C) = 1).

For practical reasons, Equation 5 is computed for up to β faults during secu-
rity verification; the outer sum thus reduces to

∑β
i=1. Similarly to the previous

models, we derive the lower bound µmin and the upper bound µmax of µ by
assuming that any combination of more than β faults can be, respectively, cor-
rected or not.

Known-Fault Random Combined Security. For simplicity, we restrict our-
selves to RCSKF (cf. Definition 4) in the practical tool implementations. We then
rely on the discussed security reduction for RCSUF (cf. Section 3.3) and leave
room for a tighter RCSUF security analysis for future work. That said, three
parameters are reported for RCSKF:

1. the correction failure probability µ as described in Equation 5,

2. the known-fault simulation failure probability ϵkf if fault combinations can
be corrected, such that

ϵkf =
1

1− µ

|F|∑
i=1

∑
F̃∈B#i

ϵF̃kc
∏
f∈F̃

qf
∏

f ′∈F\F̃

(1− qf ′) , (6)

where B#i is the set of fault combinations of i faults that can be corrected and

ϵF̃kc is the known-corrected-fault simulation failure probability (Equation 4).

The above formula is obtained by observing that for any F̃ ∈ B, we have
PrDB[F̃] = 1

1−µ PrDF∞ [F̃] = 1
1−µ

∏
f∈F̃ qf

∏
f ′∈F\F̃ (1− qf ′).

3. and the advantage of the combined adversary γkc:

γkc = µ+ ϵkf · (1− µ) . (7)

Combined Random Fault and Random Probing Security 25

Again, due to practical limitations, we compute the lower and upper bounds

of µ up to β faults and the lower and upper bounds of ϵF̃kc up to α wires, if
fault combinations can be corrected. Then, the lower and upper bounds of ϵkf
are derived from the ones of ϵF̃kc. Note, however, that those bounds on ϵF̃kc are
related to the upper bound of µ. The reason is, that we cannot compute the

respective ϵF̃kc for F̃ ∈ B#i with i > β, since this would mean to iterate over all
faulty circuits with more than β faults. Then, the lower and upper bounds of γkc
are computed from the corresponding bounds of both ϵkf and µ. The respective
bounds of those three parameters are then returned.

Compositional Notions. We provide algorithms in Appendix A to describe
how to perform the security verification of the compositional notions from Sec-
tion 4, which have been implemented in the extensions of IronMask and VERICA.

5.2 Extension of VERICA Verification

In this section, we first discuss the implementation of the (general) random
probing model in VERICA+. Then, we present additional considerations for the
computation of the fault probability to assess the general random fault and
known-fault random combined security notions.

A Tighter Lower Bound in the (General) Random Probing Model. We
first present a novel approach to compute a tighter lower bound of the simulation
failure probability in the random and general random probing models, than the
one mentioned in Section 5.1 and in [10]. Concurrently, VERICA+ provides an
upper bound of the simulation failure probability in both models, which relies
on this new method and is described in Section B.3.

The core insight is that adding wires to a leaking wire combination that fails
simulation W̃fail will result in another simulation failure. The idea is thus to de-
rive the set of larger wire combinations containing this leaking wire combination
that is found to fail simulation by VERICA+. In addition, we want to build this
set without including redundant combinations or using additional memory5, in
a deterministic way.

More precisely, VERICA+ considers only the intermediate wires of a given
circuit C , and labels them in topological order, i.e., the wire w1 is close to an
input of C and w|W| to an output. However, finding the setsW∞

#i from Equation 4
is infeasible for a large number of wires i. Contrary to the naive breadth-first
approach that is implemented in the original version of VERICA [37], the idea
now is to find failing leaking wire combinations W̃fail in a depth-first manner for
up to α wires, α ∈ [1, |W|], and deriving the larger wire combinations containing
them (up to |W| wires), by incrementally walking through a binomial tree B|W|.

5 It is not desirable to store all the found wire combinations that lead to a simulation
failure, due to the computational blow-up.

26 Beläıd et al.

Definition 10 (Binomial tree [17]). Let l ∈ N be an index, l > 0. A binomial
tree is defined recursively as an ordered tree such that a binomial tree of order 0
is a single node, and a binomial tree Bl of order l has a root node whose children
are root nodes of binomial (sub)trees of descending orders from (l − 1) to 1.

Definition 10 is illustrated in Figure 5 in Appendix B.1. For VERICA+, we
define the binomial tree B|W| of order |W| that has a height |W| and 2|W| nodes.
By definition, the number of nodes at depth l equals the binomial coefficient(|W|

l

)
. The nodes of B|W| are labeled by the collection of indices of the wires in

W, i.e., each label represents a unique wire w ∈ W, except the root node. At
depth l, the nodes sharing a parent are labeled in ascending order from l to |W|,
from leftmost to rightmost node.

VERICA+ traverses B|W| in pre-order fashion6, from the root to a chosen depth
α, which is the threshold number of wires to verify (cf. Section 5.1). During the
traversal, if VERICA+ visits the child of a node, it adds the wire labeled by the
said child to a set of leaking wires, which represents the currently considered
wire combination W̃. VERICA+ then runs the verification on the latter. If it
fails, VERICA+ updates the computation of the lower and upper bound of the
simulation failure probability, in the considered security model, as detailed in
the following. Directly after, VERICA+ goes back to the parent node by removing
the wire indexed by the current node from the set of leaking wires; the children
nodes are not visited even if the depth α has not been reached. However, if the
simulation does not fail, and the depth α is not attained, the tool continues the
procedure on the children nodes. The root of B|W| represents the empty set ∅;
thus, VERICA+ verifies l wires at depth l. At the end of the tree traversal, the
lower and upper bounds of the simulation failure probability are returned.

If the verification set fails at a depth level in [1, α], VERICA+ updates the
computation of the lower bound of the simulation failure probability ϵmin in the
general random probing security with

∏
w∈W̃fail

pw ·
∏

w′∈W
w′ /∈W̃fail

w′ /∈Wsub

(1− pw′) ·

subtree cut (Poisson binomial CDF)=1︷ ︸︸ ︷
|Wsub|∑
k=0

∑
W̃∈W∞

#k

W̃⊆Wsub

∏
w∈W̃

pw
∏

w′∈Wsub

w′ /∈W̃

(1− pw′) (8)

⇔
∏

w∈W̃fail

pw ·
∏

w′∈W
w′ /∈W̃fail

w′ /∈Wsub

(1− pw′) ,

where Wsub is the set of wires in the children nodes (subtree). Then, VERICA+

continues the walk back to the parent node. It thus ‘cuts’ the subtree of the
current node to include it entirely in the computation of ϵmin with the Poisson
binomial Cumulative Distribution Function (CDF) for a sample of size |Wsub|.
6 In pre-order traversal, the root of the tree is first visited, then the leftmost subtree
is recursively traversed, and afterward, the right subtree up to the rightmost one.

Combined Random Fault and Random Probing Security 27

Indeed, with the double summation, we construct all wire combinations from
the wires in Wsub that fail the simulation along with the wires in W̃fail. And
since the Poisson binomial CDF is evaluated for |Wsub|, it equals one. There-
fore, Equation 8 is simplified to the product of wire probabilities in the failing
wire combination W̃fail times the product of probabilities of wires that are nei-
ther in the failing combination nor in the subtree of the current node.

The same can be calculated for the random probing security by consider-
ing each wire to leak with probability p. The exact formula is provided in Ap-
pendix B.2. A pseudo-code of the binomial tree traversal with the calculation of
the bounds is provided in Algorithm 4 in Appendix B.4.

Example. Figure 2 depicts an example of the binomial tree traversal for α = 3
and |W| = 4. In the general random probing model, VERICA+ updates ϵmin with
pw1

pw2
for the first product of Equation 8, times 1 for the second product (all

wires are already included in the failing wire combination or the children nodes).

1

2

3

4

4

3

4

4

2

3

4

4

3

4

4

B|W|=4

∅

depth 1

depth 2

depth 3
(α = 3)

(unvisited depth)

{w1}

{w1, w2}
simulation failure

{w1, w2, w3} {w2, w3, w4}

{w3, w4}

Fig. 2. Example of a binomial tree B|W|=4 to find the exact failing leaking combinations
up to α = 3 wires (depth 3). The dashed node will not be visited in any case. The blue
edges denote the path walked by VERICA+. At the node representing w2 at depth 2
(in red), the leaking set is {w1, w2} and fails simulation. Thus, VERICA+ does not visit
the children nodes and updates the computation of ϵmin. It continues by verifying the
set {w1, w3} (blue dashed arrow).

If no subtree can be cut for optimization (Wsub = ∅ in Equation 8), the
verification is equivalent to iteratively testing all combinations of 1, . . . , α wires.
This is only the case if w|W| leaks or there is no leakage. In general, the more the
failing wires or wire combinations are located to the rightmost part of the tree,
the less tight the lower bound is or the closer this approach is to the one presented
in Section 5.1. That is because the binomial tree is not symmetric. However, if
α = |W|, we ensure to find the exact value of the simulation failure probability

28 Beläıd et al.

with this method, since failing wire combination are picked in a deterministic
way without redundancy.

Remark 1. The approach in this section is not applicable to injected faults, since
adding faults to a non-correctable fault combination does not necessarily result
in a failed correction. Thus, it is not used for the general random fault model.

Probability of a Fault Combination. In this section, we explain how VER-

ICA+ exactly computes the probability of a fault combination F̃ which is required
for the evaluation of the correction failure probability µ (cf. Section 5.1), if the
said fault combination can not be corrected.

We recall that each fault f is a pair (g, τ), where g is a gate and τ : Gf → Gf
is the transformation of the Boolean function encoded by the gate. As explained
in Section 5.1, for practicality reasons, VERICA+ considers that each fault f has
a probability qf and the probability of a fault combination is:

Pr[F̃] =
∏
f∈F̃

qf ·
∏

f ′∈F\F̃

qf ′ . (9)

For each fault, we can further write:

qf = Pr[τ ∩ g] = Pr[τ | g] Pr[g] , (10)

where Pr[g] is the probability that a gate g ∈ G is targeted and then a specific
fault transformation τ occurs with probability Pr[τ | g].

Furthermore, VERICA+ allows a different number of fault transformations per
gate. Let Tg be the set of all possible fault transformations of a specific gate g,
which are considered to be equally likely to occur in VERICA+ (Assumption 1).
Hence, the probability of a particular fault transformation τ applied to the gate
g is:

Pr[τ | g] = |Tg|−1 ,

which we substitute into Equation 10 to have qf = Pr[g] · |Tg|−1 for VERICA+.
Moreover, the latter also assumes that up to one fault transformation τ is injected
at a gate location, per verification analysis (Assumption 2). As a result, we can
rewrite Equation 9 for VERICA+ by

Pr[F̃] =
∏

(g,τ)∈F̃

Pr[g]

|Tg|
·

∏
(g′,τ ′)∈F\F̃

(1− Pr[g′]) , (11)

where we consider the product of probabilities to inject a fault transformation
into some gates times the product of probabilities to not inject any fault into the
remaining gates. Therefore, to compute the probability of a fault combination,
VERICA+ simply iterates over the gates in the circuit and differentiates the faulted
gates from the non-faulted ones.

Combined Random Fault and Random Probing Security 29

5.3 Extension of IronMask Verification

In this section, we commence by revisiting the core principles of IronMask. Next,
we expound on the extension of IronMask’s random probing security verification
for C(N)LR gadgets, defined to depict faulty circuits. Following this, we intro-
duce our novel Python script designed to evaluate the random fault security.
Finally, we comment on the limitation of our tool regarding general models and
its application to the verification of combined models and compositional notions.
Henceforth, we simply denote the extended version of IronMask as IronMask+, en-
compassing the evolutions outlined in this section.

Main Principles of IronMask. In [11], the authors introduce an exact ver-
ification procedure of the random probing security of masked gadgets. Their
procedure is implemented in a tool referred to as IronMask.7 This verification
tool supports any masking gadgets with linear randomness (i.e., LR-gadgets)
and also the so-called NLR-gadgets that are quadratic gadgets which might in-
clude non-linear randomness (e.g., by refreshing their inputs). Specifically, an
ℓ-to-m NLR-gadget is a gadget G with ℓ s-share inputs and m s-share outputs
such that:

G : (Ks)ℓ → (Ks)m

(x1, . . . , xℓ) 7→ (y1, . . . , ym) = Rℓ+1(F (R1(x1, r1), . . . , Rℓ(xl, rl)), rℓ+1)

where F is any arithmetic circuit which computes a homogeneous multi-linear
form, the Ri are linear arithmetic circuits and the ri are vectors of random values
uniformly drawn from a finite field K.

The (N)LR-gadgets are sufficient for capturing most basic operations of
masked implementations. However, to achieve combined security, additional in-
termediate correction blocks, such as majority votes, may be required. While the
primary purpose of these correction blocks is to provide fault resistance, they
often introduce highly non-linear behavior as a side effect.

Furthermore, when considering faults, they can alter the initial gadget struc-
ture. In this work, we focus solely on set or reset faults. Specifically, a gate
g might be faulted to output either the constant one or the constant zero,
i.e., τset(g) = one, τreset(g) = zero (see Section 3.2). Nevertheless, these two types
of faults do not affect the (N)LR format of the gadgets between the correction
blocks.

Following the additional constraints of combined security resistance and the
presence of faults, our objective is twofold:

(i) Integrating the verification of more intricate gadgets designed to satisfy a
property of combined composability. These gadgets consist of n = 2k + 1
replications of an original (N)LR-gadget with intermediate correction blocks,
where all the gates may be impacted by set or reset faults. We will refer to
these new gadgets as C(N)LR gadgets in the following (with the additional
’C’ letter to signify the presence of intermediate correction blocks).

7 https:github.com/CryptoExperts/IronMask

https:github.com/CryptoExperts/IronMask

30 Beläıd et al.

(ii) Not only verifying the random probing composability of input gadgets but
also considering faults to verify the random fault security, the known-fault
random combined security and their compositional variants.

Extended Verification of Random Probing Security. Below, we introduce
the new C(N)LR gadgets, which serve as inputs for our extension tool, IronMask+.
Subsequently, we elaborate on their verification process.

New C(N)LR-Gadgets. As previously outlined, IronMask takes the implementa-
tion of (N)LR-gadgets as input. Our extension continues to support these gad-
gets while also accommodating more intricate ones that we refer to as C(N)LR-
gadgets. These C(N)LR-gadgets are constructed by parallel replication of (N)LR-
gadgets, incorporating intermediate non-linear correction blocks (e.g., imple-
menting the majority function) and whose gates may be modified by set and
reset faults.

An example is provided in Figure 3 with the (1, 1)-CINI gadget from [25],
implementing a masked multiplication with two masked inputs a = (a0, a1) ∈ F2

2

and b = (b0, b1) ∈ F2
2, k = 1 (i.e., 3 copies) and two correction blocks referred to

as C0 and C1. Copies of the same variable x, that are defined for fault resistance,
are denoted x0, x1, and x2. For the sake of clarity, we do not represent copy
operations that are mandatory to replicate any variable that is to be used in
more than one gate.

Verification of C(N)LR-Gadgets. To date, no technique has been able to effi-
ciently and accurately verify the (random) probing security of highly non-linear
circuits. The computation of exact probe distributions quickly becomes pro-
hibitively inefficient, while techniques relying on the analysis of symbolic ex-
pressions of variables prove incomplete in the presence of non-linear randomness
(with the exception of specialized scenarios like the one developed in IronMask).
To approach completeness for a C(N)LR-gadget G , we propose a novel and effi-
cient verification methodology in three steps. This methodology operates under
the assumption that each output of a correction block remains correct provided
that no fault occurs along its corresponding path within the correction block.
Our method comes in three steps described below.

Step 1. Each wire in G is labeled with its symbolic expression made of the
outputs of the correction blocks (starting from the last one), the random values,
and the gadget inputs. Namely, we introduce symbolic variables sℓi,j to represent
copies of the outputs of each correction block Ci, where i is the correction block
index, j the share index and ℓ the replication index. Then, all the subsequent
variables are directly expressed according to these sℓi,j that are not anymore
further developed with their symbolic expression. For instance, the first output
of the gadget represented in Figure 3 would be labeled a00 · s00,0 ⊕ s01,0, with s00,0
the first copy of the first output of the first correction block C0 and s01,0 the first
copy of the first output of the second correction block C1.

Combined Random Fault and Random Probing Security 31

r0 r0 r0 r0 r0 r0

b00 b01 b10 b11 b20 b21

u0
0,0 u0

0,1 u1
0,0 u1

0,1 u2
0,0 u2

0,1

C0

s00,0 = (b0 + r0)
0

s10,0 = (b0 + r0)
1

s20,0 = (b0 + r0)
2

s00,1 = (b1 + r0)
0

s10,1 = (b1 + r0)
1

s20,1 = (b1 + r0)
2

a0
0

a0
1

r1

a1
0

a1
1

r1

a2
0

a2
1

r1

a0
1

a0
0

r1

a1
1

a1
0

r1

a2
1

a2
0

r1

u0
1,0 u1

1,0 u2
1,0 u0

1,1 u1
1,1 u2

1,1

C1

s01,0 =
(a0(b1 + r0) + r1)

0

s11,0 =
(a0(b1 + r0) + r1)

1

s21,0 =
(a0(b1 + r0) + r1)

2

s01,1 =
(a1(b0 + r0) + r1)

0

s11,1 =
(a1(b0 + r0) + r1)

1

s21,1 =
(a1(b0 + r0) + r1)

2

Fig. 3. CNLR gadget which implements a masked multiplication with 2-shared inputs,
3 replications and 2 intermediate correction blocks.

Step 2. The gadget G is modified with the following step that is repeated until
nothing can be further replaced (at most as many times as the number of correc-
tion blocks): the symbolic expression of each wire which depends on at least one
output copy sℓi,j of a correction block, which is not impacted by a fault injected

inside the correction block, is modified to replace sℓi,j by its correct symbolic
expression (i.e., an hypothetical input of the correction block for which no fault
had occurred in the path). In our example, if there is no fault on the path pro-
ducing s01,0 in C1, the symbolic expression of the first output of G would become
a00 · s00,0 ⊕ (a0 · s0,1 ⊕ r1).

Step 3. All the wires in the updated gadget G ′ are still labeled with symbolic
expression made of the outputs of the correction blocks, the random values, and
the gadget inputs. At this step, we can apply IronMask’s original verification on
each tuple of variables with slight modifications.

Recall that IronMask’s original verification operates within two steps. The first
step basically performs a Gaussian elimination on the probes that are linear
combinations of sub-products and random values that do not appear in the
sub-products. Given the structure of (N)LR gadgets, all the random values that
appear in these linear combinations are eliminated at this point. The second step
then manipulates probes that are either the remaining sub-products or linear
combinations of input shares and other random values. After a factorization

32 Beläıd et al.

step, described in [11], to linearize the probe expressions, a second Gaussian
elimination is finally performed.

In IronMask+, to consider both the output correction blocks or the interme-
diate variables of correction blocks (that are impacted by faults, from the first
steps), they need to be replaced by the corresponding inputs of their correction
block during the two verification steps. Specifically, the Gaussian elimination is
performed progressively for each probe in the considered tuple. Once the probe is
treated, each output of correction block or intermediate variable in its expression
is replaced by the corresponding 2k+1 inputs of its correction blocks. Similarly,
each intermediate variables of a correction block is replaced by the corresponding
2k+1 inputs of its correction blocks. They are then treated like regular probe in
the Gaussian elimination. The exact same scenario happens in the second step
of IronMask+’s verification during the second Gaussian elimination procedure. A
pseudo-code of this verification with blue highlights on the added replacements
is available in Algorithm 5 in Appendix C.

While IronMask provides complete verification without false positives, our
new methodology may yield artificial attack paths due to the third item. The
first two points of our methodology simply substitute symbolic expressions with
simplified expressions of equivalent value to aid in computation of correction
steps. However, the third item addresses non-linear terms not conforming to
IronMask’s format due to specific faults. In such cases, intermediate variables are
replaced by all their dependencies, which is a conservative approach. By granting
attackers access to sets of variables rather than functions of these variables, our
methodology enhances their potential reach. Put differently, if our extended
tool IronMask+ determines a tuple as not being a failure, then indeed it is not.
Conversely, if it indicates a failure path, there is a possibility of false positives
in certain scenarios.

Remark 2. One could easily extend our verification procedure to gadgets with
a different format (i.e., not covered by our (C)(N)LR gadgets), or whose autho-
rized faults might impact the non-linearity, by proceeding as in the third point.
Namely, as soon as the symbolic expressions of variables within a targeted tu-
ple are not eligible to a complete verification, they can trivially be replaced by
all their dependencies for the rest of the verification. Although not tight, this
method benefits from capturing all the possible attack paths.

Verification of Random Fault Security. IronMask+ is completed with a
Python script to generate all the faulty scenarios for a circuit that can be cor-
rected. It takes as input a circuit description, a single type of faults (set or reset),
a number of faults and a number of tolerated faults (usually linked to the num-
ber of replications 2k+1). The script then evaluates copies of the circuit outputs
in SageMath using symbolic computation (Boolean polynomial ring) based on
randoms and input shares (where the copy of the input share is considered as
the input share, i.e., a00 evaluates to a0). Then, for a combination of faults, the
circuit is re-evaluated in SageMath, and the outputs are compared: if, for any
of the output shares, there are strictly more than k faulty copies, it constitutes

Combined Random Fault and Random Probing Security 33

a faulty scenario that cannot be corrected. For the types of faults, we have ei-
ther set or reset, and if the fault is on a copy of an input share, it is treated
as a new symbolic variable, i.e., a00 with a fault becomes a new variable in the
Boolean polynomial ring, instead of evaluating to a0 when not faulty. However,
for faults on the randoms, the outputs are not compared to the original circuit
(golden circuit) but rather to the circuit with the same faults on the randoms
(as justified for combined analysis in [37]).

Verification of General and Combined Models. We briefly discuss the
possible extension of IronMask+ to general models and its application to verify
combined security and compositional notions.

General Models. We should note that we do not verify the general random prob-
ing security in IronMask+ for various probabilities. While this is not particularly
challenging to implement, it is significantly less efficient, as IronMask+ only com-
putes the cardinals of the leaking tuples based on their size (formerly referred
to as |W∞

#i| in Equation 4). Similarly, our Python script to verify the random
fault security currently applies for faults with the same probability for efficiency
reasons. Adapting to the general random fault model would simply require to
associate a specific probability to each faulty circuit.

Combined Security. The new verification of the random fault security with the
extension to C(N)LR gadgets makes it possible to verify the known-fault random
combined security directly from both advantages, as detailed in Section 5.1. The
attacker is computed following Equation 7 from the result of Equation 6 with
identical fault probabilities.

Compositional Notions. As in previous versions of IronMask, the compositional
notions are all based on the verification of the previously detailed properties
(random probing security, random fault security and known-fault random com-
bined security). As depicted in Appendix A, the main difference lies in exploring
all the input and output behaviors.

6 Evaluation

We selected three different gadgets for our experiments on both tools in the
new known-fault random combined model (cf. Definition 4 and Definition 9),
namely the (1, 1)-CPC1 gadget from [25], the flawed (1, 1)-HPCC

1 gadget from
[27], and the (1, 1)-SININA gadget originally proposed for software in [20] and
modified for hardware in [37]. Please note that the latter two gadgets were shown
to be insecure under composition [25,37]. The goal of our case studies is to
showcase the capabilities and limitations of VERICA+ and IronMask+ and give
a qualitative comparison between the gadgets. We specifically do not perform
an extensive security analysis of the mentioned gadgets under realistic leakage
and fault distributions. The determination of such distributions is left for future

34 Beläıd et al.

work. Note, however, that such an analysis would only differ in the absolute
values of the failure probabilities, not in the qualitative expressiveness of the
data.

All the tables displaying our results are structured in the same way. The first
column defines the evaluated gadget, while the second and third column displays
the number of wires (SCA locations) and the number of gates (FIA locations),
respectively. The fault transformation that can be performed is indicated by τ ,
while p represents the leaking random probing probability and q denotes the
random fault probability for each gate. Note that faults and leakage on different
wires are independent in this setting and the probabilities are the same for
each wire (except where we select only a subset of SCA and FIA locations,
where some probabilities are set to zero), for efficiency reasons. The remaining
columns present our results: µmin and µmax denote the bounds on the advantage
of the attacker in the random fault model or for RFC, while ϵmin and ϵmax

represent the bounds on the advantage of the attacker in the random probing
model or for RPCUF. For the computation, we selected a threshold of α = 2
and β = 2 for the number of probes and faults, respectively. Finally, γmin and
γmax represent the global attacker advantage for RCSKF or RCCKF. Whether
the bounds are computed for the general security or composition is indicated for
each table individually. Please be reminded, that the bounds on ϵ correlate to
the bounds on µmax. We first present our results in terms of security parameters
and verification timings for both tools individually. Finally, we conduct the same
experiments on both tools to validate the correctness and compare timings on
specific scenarios.

6.1 Results on VERICA+

All our experiments for VERICA+ have been conducted on a machine equipped
with two AMD EPYC 7742 64-Core processors and 512GBmemory. This allowed
us to perform all experiments on 256 threads.

The analysis results and performance of VERICA+ for RCCKF of the three
gadgets under different scenarios can be found in Table 1. We first observe that,
under the same fault and leakage conditions, the (1, 1)-CPC1 gadget is more
secure than the other two gadgets. The reason is that this gadget is shown com-
posable in the threshold combined model (CINI [27]), while the other two have
shown to be flawed under composition in the threshold combined model [25,37].
The discrepancy between the (1, 1)-CPC1 and the (1, 1)-HPCC

1 gadget is mainly
caused by the probing factor, while the discrepancy to the (1, 1)-SININA gadget
is caused nearly entirely by the faulting factor. The reason is, that for the SIN-
INA gadget, there exist some input-fault combinations that cannot be corrected
properly (even without internal faults), specifically, when there are k faults in
all the inputs. Those input-fault combinations are always considered insecure
and, hence, dominate the failure probability for RFC because we determine the
maximum over the input faults. This also explains why some of the ϵ bounds
for the SININA are zero. Since those bounds are related to µmax, which is one,
there is no side-channel evaluation performed. In this case, any internal faults

Combined Random Fault and Random Probing Security 35

Table 1. RCCKF analysis of three gadgets with different fault and leakage probabil-
ities on VERICA+. Here, all faults and wire leakages happen with the same indicated
probability.

#Loc. Model Probabilities Time
Design FIA SCA τ q p µmin/µmax ϵmin/ϵmax γmin/γmax t

(1
,
1
)-
C
P
C

1

[2
5
]

174 98

set 0.010 0.010 0.3493/0.4250 0.4880/0.6189 0.6669/0.7809 55.9min
set 0.010 0.005 0.3602/0.4359 0.3069/0.3634 0.5565/0.6409 54.2min
set 0.005 0.010 0.2102/0.2236 0.5510/0.6239 0.6453/0.7080 55.8min
set 0.005 0.005 0.2251/0.2384 0.3455/0.3666 0.4928/0.5177 55.8min
reset 0.010 0.010 0.4403/0.5161 0.4716/0.6134 0.7043/0.8129 43.0min
reset 0.010 0.005 0.4403/0.5161 0.3027/0.3652 0.6097/0.6928 42.9min
reset 0.005 0.010 0.2724/0.2857 0.5468/0.6213 0.6703/0.7295 43.0min
reset 0.005 0.005 0.2898/0.3032 0.3417/0.3636 0.5325/0.5565 41.7min
flip 0.010 0.010 0.4475/0.5233 0.4764/0.6185 0.7107/0.8181 39.4min
flip 0.010 0.005 0.4475/0.5233 0.3067/0.3702 0.6170/0.6998 39.0min
flip 0.005 0.010 0.2786/0.2919 0.5502/0.6239 0.6755/0.7337 39.5min
flip 0.005 0.005 0.2958/0.3092 0.3444/0.3661 0.5383/0.5621 39.3min

(1
,
1
)-
H
P
C

C 1
[2
7
]

180 104

set 0.010 0.010 0.3713/0.4582 0.7204/0.8360 0.8242/0.9111 47.7min
set 0.010 0.005 0.3713/0.4582 0.5120/0.5942 0.6932/0.7801 48.0min
set 0.005 0.010 0.2451/0.2608 0.8188/0.8361 0.8632/0.8789 48.8min
set 0.005 0.005 0.2451/0.2608 0.5820/0.5943 0.6844/0.7001 47.6min
reset 0.010 0.010 0.4111/0.4979 0.7126/0.8360 0.8308/0.9177 42.3min
reset 0.010 0.005 0.4111/0.4979 0.5065/0.5942 0.7094/0.7962 42.3min
reset 0.005 0.010 0.2737/0.2894 0.8181/0.8361 0.8679/0.8836 42.1min
reset 0.005 0.005 0.2737/0.2894 0.5815/0.5943 0.6960/0.7117 42.3min
flip 0.010 0.010 0.4080/0.4949 0.7130/0.8358 0.8301/0.9171 40.6min
flip 0.010 0.005 0.4080/0.4949 0.5068/0.5940 0.7080/0.7949 40.5min
flip 0.005 0.010 0.2725/0.2881 0.8181/0.8361 0.8676/0.8833 40.7min
flip 0.005 0.005 0.2725/0.2881 0.5814/0.5942 0.6955/0.7111 40.6min

(1
,
1
)-
S
IN

IN
A

[3
7
,2
0
]

198 122

set 0.010 0.010 0.8760/1.0000 0.0000/0.0000 0.8760/1.0000 48.5min
set 0.010 0.005 0.8760/1.0000 0.0000/0.0000 0.8760/1.0000 48.5min
set 0.005 0.010 0.9762/1.0000 0.0000/0.0000 0.9762/1.0000 47.0min
set 0.005 0.005 0.9762/1.0000 0.0000/0.0000 0.9762/1.0000 48.6min
reset 0.010 0.010 0.8759/0.9999 0.0002/0.5326 0.8759/1.0000 50.8min
reset 0.010 0.005 0.8759/0.9999 0.0001/0.2633 0.8759/1.0000 50.8min
reset 0.005 0.010 0.9762/0.9999 0.0004/0.5326 0.9762/1.0000 49.0min
reset 0.005 0.005 0.9762/0.9999 0.0003/0.2633 0.9762/1.0000 49.9min
flip 0.010 0.010 0.8760/1.0000 0.0000/0.0000 0.8760/1.0000 45.5min
flip 0.010 0.005 0.8760/1.0000 0.0000/0.0000 0.8760/1.0000 45.5min
flip 0.005 0.010 0.9762/1.0000 0.0000/0.0000 0.9762/1.0000 47.0min
flip 0.005 0.005 0.9762/1.0000 0.0000/0.0000 0.9762/1.0000 45.5min

can at most make the gadget more secure (by compensating the impact of in-
put faults) and hence, the respective µ gets larger with smaller fault probability
q. Interestingly, flip faults seem to be slightly more powerful than the biased
set/reset faults. This is contrary to the belief that biased faults are more use-
ful [30] because they can render mask refreshing useless and can cause direct
leakage via conditional fault propagation [25]. This effect requires further inves-
tigation, which we leave for future work. Another interesting observation is that
for the (1, 1)-CPC1 gadget the bounds for µ are not consistent when keeping q
constant. This is because we determine the maximum γmin and report the re-
spective bounds for ϵ and µ. Since the ϵ changes with p the resulting maximum
in γmin can change as well, meaning that we report different bounds for µ. We
would like to reiterate that the selected fault and leakage distributions are not
realistic and, hence, the results in Table 1 do not reflect the absolute vulnerabil-

36 Beläıd et al.

Table 2. RCSKF analysis of the (1, 1)-CPC1 gadget [25], with computation threshold
for probes α = 2 and for faults β = 2, where only a subset of gates and wires are
faulted and potentially leaked to the adversary.

#Locations Model Probabilities Time
Location FIA SCA τ q p µmin/µmax ϵmin/ϵmax γmin/γmax t

all; all 98 174 reset 0.010 0.010 0.032/0.108 0.096/0.302 0.125/0.378 13.8 s

reg; rep. index 0 18 106 reset 0.010 0.010 0.005/0.005 0.051/0.126 0.056/0.130 0.9 s
reg; cone of c00 18 103 reset 0.010 0.010 0.005/0.005 0.045/0.115 0.049/0.120 0.8 s

1 2 3 4 5
0

0.2

0.4

ϵmax (binomial tree)

ϵmin (binomial tree)

ϵmax (without binomial tree)

ϵmin (without binomial tree)

Threshold Number of Leaking Wires α

F
a
il
u
re

P
ro
b
a
b
il
it
y
ϵ

Fig. 4. Comparison of the computation of the lower and upper bounds of the simulation
failure probability ϵ in the random probing model (p = 0.010), computed with and
without the optimization based on the binomial trees, for a (1, 1)-CPC1 gadget.

ity of the gadgets (except where input faults cause the fault failing probability
to be one).

With respect to performance, we can see that VERICA+ can estimate the
failure probabilities, by enumerating all fault and probe combinations with up
to two faults and probes, for all three gadgets in less than one hour. This is
only possible because of the massive parallelization exploited by VERICA+. In
comparison, the evaluation of RCSKF is much faster. As can be seen in Table 2,
the (1, 1)-CPC1 gadget can be analyzed within seconds. This speedup is possible
because RCCKF needs to perform essentially the same analysis as for RCSKF,
however, for all input-fault and output-probe combinations.

In addition, we showcase the ability of VERICA+ to analyze a design under
different fault and leakage probabilities (where each location is faulted or leaks
with independent probabilities). Specifically, we analyze the (1, 1)-CPC1 gad-
get [25] where we restrict the fault locations to registers only and the location
of leaking wires to either all wires of the first replication (rep. index 0) or all
wires that influence the output c00 (cone of c00). This could resemble an adversary
that uses clock glitching for fault injection and an EM probe for side-channel
analysis. Then, the two cases can be seen as representations of two possible lay-
outs of the chip design, such that either all values of one replication index or

Combined Random Fault and Random Probing Security 37

all the values that influence the same output value are placed in close proxim-
ity. To give some context, we also provide in Table 2 the results of an analysis
where all gates are faulted and all wires can leak. As can be seen, this allows
a tighter analysis for specific attack scenarios, potentially enabling a reduction
of the implementation cost if the attacker can be restricted in the possible fault
and leakage distributions.

Finally, we present a case study where we compare the computation of the
lower and upper bounds of the simulation failure probability for the random
probing security with and without the optimization based on binomial trees (cf.
Section 5), for the (1, 1)-CPC1 gadget, in Figure 4. Each wire is assumed to leak
with the same leaking wire probability p = 0.010, and no fault is injected. The
bounds of the simulation failure probability are evaluated for combinations of
α = 1, . . . , 5 wires for a more in-depth analysis.

We observe that the two methods provide similar probabilities for the upper
bound ϵmax (appearing as a unique solid line). However, the binomial tree ap-
proach gives a higher value for the lower bound ϵmin than without. Hence, we
see that the optimization provides a tighter lower bound and converges faster to
the actual value of the simulation failure probability ϵ.

6.2 Results on IronMask+

Contrary to VERICA+, all our experiments for IronMask+ have been conducted
on a single thread, on a machine equipped with an AMD Ryzen Threadripper
PRO 7995WX processor with 96 cores (192 threads) and 512GB of RAM. The
analysis outcomes and performance results of IronMask+ for RCCKF across the
three gadgets under various scenarios are detailed in Table 3.

In this extension, we exclusively focused on set and reset faults, deferring
the inclusion of other fault types for future work. As mentioned earlier, the cho-
sen fault and leakage distributions are not realistic, thus the results depicted in
Table 3 do not accurately represent the absolute vulnerability of the selected gad-
gets, although they follow the same trends as for VERICA+. Moreover, it is worth
noting that expanding the evaluation to encompass larger tuples would refine the
reported ranges. Nonetheless, it is notable that, as anticipated, IronMask+ per-
forms quite efficiently (especially given its execution on a single thread), thanks
to its evaluation of symbolic variables with efficient rules, which, on the other
hand, allows for some tolerance of false positives, as detailed in Section 5.

Regarding performance, the four computations involving different probabili-
ties under identical settings (gadget, fault type) can be partially generated con-
currently. For example, when considering the (1, 1)-SININA gadget for set faults
as introduced in [37,20], the selection of faulty circuits that can be corrected
takes 18 minutes and 38 seconds. Subsequently, identifying failure tuples within
these selected circuits requires 1 hour, 54 minutes, and 8 seconds. Both of these
operations are common to any combination of faults and probe probabilities.
Finally, computing security advantages based on the probabilities of faults and
probes requires between 63 and 66 minutes.

38 Beläıd et al.

Table 3. RCCKF analysis of three gadgets with different fault and leakage probabili-
ties on IronMask+. Here, all faults and wire leakages happen with the same indicated
probability.

#Loc. Model Probabilities Time
Design FIA SCA τ q p µmin/µmax ϵmin/ϵmax γmin/γmax t

(1
,
1
)-
C
P
C

1

[2
5
]

182 316

set 0.010 0.010 0.3900/0.6324 0.1559/0.8584 0.4851/0.9479 22h 21min 25s
set 0.010 0.005 0.3900/0.6324 0.2480/0.6175 0.5413/0.8594 22h 21min 3s
set 0.005 0.010 0.3307/0.3851 0.2364/0.8570 0.4889/0.9121 22h 20min 54s
set 0.005 0.005 0.3307/0.3851 0.3743/0.6134 0.5812/0.7623 22h 20min 59s
reset 0.010 0.010 0.3912/0.6336 0.1544/0.8563 0.4852/0.9473 21h 43min 18s
reset 0.010 0.005 0.3912/0.6336 0.2446/0.6124 0.5401/0.8580 21h 45min 17s
reset 0.005 0.010 0.3314/0.3858 0.2354/0.8560 0.4888/0.9116 21h 45min 45s
reset 0.005 0.005 0.3314/0.3858 0.3718/0.6107 0.5800/0.7609 21h 45min 22s

(1
,
1
)-
H
P
C

C 1
[2
7
]

188 322

set 0.010 0.010 0.3648/0.6232 0.2298/0.9899 0.5108/0.9962 24h 2min 24s
set 0.010 0.005 0.3648/0.6232 0.4669/0.9948 0.6614/0.9980 24h 7min 10s
set 0.005 0.010 0.3153/0.3744 0.3540/0.9900 0.5576/0.9937 24h 8min 55s
set 0.005 0.005 0.3153/0.3744 0.719/0.995 0.808/0.997 24h 11min 0s
reset 0.010 0.010 0.3649/0.6233 0.2298/0.9899 0.5109/0.9962 25h 8min 23s
reset 0.010 0.005 0.3649/0.6233 0.4668/0.9948 0.6614/0.9980 25h 8min 54s
reset 0.005 0.010 0.3153/0.3745 0.3540/0.9900 0.5577/0.9937 25h 8min 56s
reset 0.005 0.005 0.3153/0.3745 0.7191/0.9968 0.8077/0.9968 25h 9min 32s

(1
,
1
)-
S
IN

IN
A

[3
7
,2
0
]

230 364

set 0.010 0.010 0.6278/1.0000 0.0000/0.0000 0.6278/1.0000 3h 16min 28s
set 0.010 0.005 0.6278/1.0000 0.0000/0.0000 0.6278/1.0000 3h 16min 44s
set 0.005 0.010 0.9029/1.0000 0.0000/0.0000 0.9029/1.0000 3h 16min 54s
set 0.005 0.005 0.9029/1.0000 0.0000/0.0000 0.9029/1.0000 3h 18min 4s
reset 0.010 0.010 0.6278/1.0000 0.0000/0.8421 0.6278/1.0000 3h 14min 28s
reset 0.010 0.005 0,6278/1.0000 0.0000/0.5403 0,6278/1.0000 3h 13min 54s
reset 0.005 0.010 0.9029/1.0000 0.0000/0.8421 0.9029/1.0000 3h 13min 36s
reset 0.005 0.005 0.9029/1.0000 0.0000/0.5403 0.9029/1.0000 3h 16min 17s

Table 4. Comparison of verification results on (1, 1)-CINI [25] with reset faults and
probabilities p = 0.010 and q = 0.010.
Tools Design Probabilities CPU Time

µmin/µmax ϵmin/ϵmax γinf/γsup t

VERICA+

with copies
0.391/0.634 0.421/0.854 0.648/0.946 438d 11h 3min 28s

IronMask+ 0.391/0.634 0.154/0.856 0.485/0.947 21h 43min 18s

VERICA+

without copies
0.391/0.634 0.343/0.634 0.600/0.869 34d 15h 25min 52s

IronMask+ 0.391/0.634 0.243/0.659 0.539/0.875 20h 39min 46s

6.3 Correctness and Comparison Between Tools

In this section, we aim to compare the results of both tools for two main purposes:
verifying their correctness and comparing their verification time on concrete
examples. We arbitrarily choose one of the gadgets previously tested, namely
(1, 1)-CPC1 [25], with reset faults and probabilities p = 0.010 and q = 0.010. For
this specific test, we consider the same design and structure in both tools to have
a fair comparison, unlike the previous sections. The results of this comparison
are depicted in Table 4.

In particular, we explore two scenarios: one involving copies and the other
without. Unlike VERICA+, where intermediate variables are used only once per
fan-out of a gate, IronMask+ simulates the repeated usage of intermediate vari-
ables across multiple gates with special copy operations. Consequently, each vari-
able has a higher frequency of occurrence in IronMask+ compared to VERICA+.

Combined Random Fault and Random Probing Security 39

To ensure a fair comparison, in the first scenario (with copies), VERICA+ incor-
porates a copy-operation routine to emulate the behavior of IronMask+’s verifica-
tion. In the second scenario (without copies), we artificially eliminate the copies
in both tools, assuming that each wire has precisely one copy in the circuit.

We can see that the bounds µmin and µmax are identical for both tools. This
consistency arises from the fact that copies are not taken into account for faults,
as previously explained. Therefore, the presence or absence of copies has no
impact on the values of µmin and µmax. The alignment of these values across
both tools instills confidence in the correctness of the algorithms, considering
that each tool employs completely different strategies.

However, there are slight differences in ϵmin and ϵmax between the two tools.
VERICA+ employs optimizations that enable it to achieve tighter lower bounds
on the failure probability, while maintaining the same upper bound for both
tools. Consequently, ϵmin tends to be higher with VERICA+ in both scenarios,
resulting in tighter values. Regarding the upper bound on the failure proba-
bility, ϵmax, they exhibit very close values, with a small discrepancy where the
values computed with IronMask+ are slightly higher. This divergence stems from
the computation method for the upper bound, which leverages the previously
computed lower bound and assumes that all non-tested tuples of probes result
in failures. Since the lower bound computed in IronMask+ is lower, with fewer co-
efficients actually computed and the remaining ones replaced by zero, the upper
bound also shows a slight increase, with the uncomputed coefficients replaced by
their upper bounds, which are binomial coefficients. In essence, while the upper
bound of VERICA+ is tighter, the discrepancy is minimal given the exponentially
large number of non-tested tuples.

Finally, these results illustrate the increased efficiency of IronMask+, which
evaluates symbolic variables using efficient rules, compared to VERICA+, which
relies on an exhaustive approach to check the probing distribution. Thus, the
tools offer two different valuable trade-offs in terms of accuracy versus efficiency.

7 Conclusion

In this work, we extended and refined probabilistic models for physical attacks
with general leaking and fault probabilities. In particular, considering the ϵ-
random probing, the random fault and their combinations. This allows for precise
modeling of low-level physical effects that influence SCA and FIA leakage, by
dependent and different probabilities. For the resulting models, we investigated
important properties, like the impact of adversarial knowledge and composition,
and provided two ways of tool-bases analysis methods that enable the security
assessment of design components. In the end, we hope that our model fuels
research into the low-level physical effects of leakage and their expressions in
probability distributions, which we left for future work.

Acknowledgments. This work was co-funded by the European Union (ERC,
AMAskZONE, 101077506). Views and opinions expressed are however those of

40 Beläıd et al.

the authors only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them. In addition, the work described in
this paper has been supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy - EXC 2092
CASA - 390781972 and through the project CAVE (510964147), and by the
German Federal Ministry of Education and Research BMBF through the project
VE-HEP (16KIS1345) and 6GEM (16KISK038).

References

1. Aghaie, A., Moradi, A., Rasoolzadeh, S., Shahmirzadi, A.R., Schellenberg, F.,
Schneider, T.: Impeccable Circuits. IEEE Trans. Computers 69(3), 361–376 (2020)

2. Ajtai, M.: Secure computation with information leaking to an adversary. In: Fort-
now, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp. 715–724. ACM Press (Jun
2011). https://doi.org/10.1145/1993636.1993731

3. Amiel, F., Villegas, K., Feix, B., Marcel, L.: Passive and Active Combined Attacks:
Combining Fault Attacks and Side Channel Analysis. In: Fourth International
Workshop on Fault Diagnosis and Tolerance in Cryptography, 2007, FDTC 2007:
Vienna, Austria, 10 September 2007. pp. 92–102 (2007). https://doi.org/10.
1109/FDTC.2007.4318989, https://doi.org/10.1109/FDTC.2007.4318989

4. Ananth, P., Ishai, Y., Sahai, A.: Private circuits: A modular approach. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol.
10993, pp. 427–455. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/
978-3-319-96878-0_15

5. Arribas, V., Wegener, F., Moradi, A., Nikova, S.: Cryptographic Fault Diagnosis
using VerFI. In: HOST 2020. pp. 229–240. IEEE (2020)

6. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EU-
ROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (Apr
2015). https://doi.org/10.1007/978-3-662-46800-5_18

7. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.,
Zucchini, R.: Strong non-interference and type-directed higher-order masking.
In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
ACM CCS 2016. pp. 116–129. ACM Press (Oct 2016). https://doi.org/10.1145/
2976749.2978427

8. Battistello, A., Coron, J.S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer, Heidelberg (Aug
2016). https://doi.org/10.1007/978-3-662-53140-2_2

9. Beläıd, S., Cassiers, G., Mutschler, C., Rivain, M., Roche, T., Standaert, F., Taleb,
A.R.: Towards achieving provable side-channel security in practice. IACR Cryptol.
ePrint Arch. p. 1198 (2023), https://eprint.iacr.org/2023/1198

10. Beläıd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R.: Random prob-
ing security: Verification, composition, expansion and new constructions. In:
Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol.
12170, pp. 339–368. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/
978-3-030-56784-2_12

https://doi.org/10.1145/1993636.1993731
https://doi.org/10.1145/1993636.1993731
https://doi.org/10.1109/FDTC.2007.4318989
https://doi.org/10.1109/FDTC.2007.4318989
https://doi.org/10.1109/FDTC.2007.4318989
https://doi.org/10.1109/FDTC.2007.4318989
https://doi.org/10.1109/FDTC.2007.4318989
https://doi.org/10.1007/978-3-319-96878-0_15
https://doi.org/10.1007/978-3-319-96878-0_15
https://doi.org/10.1007/978-3-319-96878-0_15
https://doi.org/10.1007/978-3-319-96878-0_15
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-662-53140-2_2
https://eprint.iacr.org/2023/1198
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1007/978-3-030-56784-2_12

Combined Random Fault and Random Probing Security 41

11. Beläıd, S., Mercadier, D., Rivain, M., Taleb, A.R.: IronMask: Versatile verifica-
tion of masking security. In: 2022 IEEE Symposium on Security and Privacy. pp.
142–160. IEEE Computer Society Press (May 2022). https://doi.org/10.1109/
SP46214.2022.9833600

12. Berndt, S., Eisenbarth, T., Faust, S., Gourjon, M., Orlt, M., Seker, O.: Com-
bined fault and leakage resilience: Composability, constructions and compiler. In:
Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology - CRYPTO 2023 -
43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara,
CA, USA, August 20-24, 2023, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 14083, pp. 377–409. Springer (2023). https://doi.org/10.1007/

978-3-031-38548-3_13, https://doi.org/10.1007/978-3-031-38548-3_13
13. Cassiers, G., Standaert, F.: Trivially and Efficiently Composing Masked Gadgets

With Probe Isolating Non-Interference. IEEE Trans. Inf. Forensics Secur. 15, 2542–
2555 (2020)

14. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO. Lecture Notes in
Computer Science, vol. 1666, pp. 398–412. Springer (1999)

15. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M.: Passive and Active Combined
Attacks on AES: Combining Fault Attacks and Side Channel Analysis. In: 2010
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2010, Santa
Barbara, California, USA, 21 August 2010. pp. 10–19 (2010). https://doi.org/
10.1109/FDTC.2010.17, https://doi.org/10.1109/FDTC.2010.17

16. Cnudde, T.D., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.:
Does coupling affect the security of masked implementations? In: Guilley, S.
(ed.) Constructive Side-Channel Analysis and Secure Design - 8th International
Workshop, COSADE 2017, Paris, France, April 13-14, 2017, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 10348, pp. 1–18. Springer
(2017). https://doi.org/10.1007/978-3-319-64647-3_1, https://doi.org/10.
1007/978-3-319-64647-3_1

17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Second Edition. The MIT Press and McGraw-Hill Book Company (2001)

18. Dehbaoui, A., Dutertre, J., Robisson, B., Tria, A.: Electromagnetic Transient
Faults Injection on a Hardware and a Software Implementations of AES. In: FDTC
2012. pp. 7–15. IEEE Computer Society (2012)

19. Dhooghe, S.: The random fault model. IACR Cryptol. ePrint Arch. p. 1627 (2022),
https://eprint.iacr.org/2022/1627

20. Dhooghe, S., Nikova, S.: My gadget just cares for me - how NINA can prove
security against combined attacks. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol.
12006, pp. 35–55. Springer, Heidelberg (Feb 2020). https://doi.org/10.1007/
978-3-030-40186-3_3

21. Dobraunig, C., Eichlseder, M., Groß, H., Mangard, S., Mendel, F., Primas, R.:
Statistical ineffective fault attacks on masked AES with fault countermeasures.
In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol.
11273, pp. 315–342. Springer, Heidelberg (Dec 2018). https://doi.org/10.1007/
978-3-030-03329-3_11

22. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (May 2014). https://doi.org/10.
1007/978-3-642-55220-5_24

23. Dumont, M., Lisart, M., Maurine, P.: Electromagnetic Fault Injection : How Faults
Occur. In: FDTC 2019. pp. 9–16. IEEE (2019)

https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1007/978-3-031-38548-3_13
https://doi.org/10.1007/978-3-031-38548-3_13
https://doi.org/10.1007/978-3-031-38548-3_13
https://doi.org/10.1007/978-3-031-38548-3_13
https://doi.org/10.1007/978-3-031-38548-3_13
https://doi.org/10.1109/FDTC.2010.17
https://doi.org/10.1109/FDTC.2010.17
https://doi.org/10.1109/FDTC.2010.17
https://doi.org/10.1109/FDTC.2010.17
https://doi.org/10.1109/FDTC.2010.17
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-319-64647-3_1
https://eprint.iacr.org/2022/1627
https://doi.org/10.1007/978-3-030-40186-3_3
https://doi.org/10.1007/978-3-030-40186-3_3
https://doi.org/10.1007/978-3-030-40186-3_3
https://doi.org/10.1007/978-3-030-40186-3_3
https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24

42 Beläıd et al.

24. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.: Composable
Masking Schemes in the Presence of Physical Defaults & the Robust Probing
Model. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 89–120 (2018)

25. Feldtkeller, J., Güneysu, T., Moos, T., Richter-Brockmann, J., Saha, S., Sas-
drich, P., Standaert, F.: Combined private circuits - combined security refur-
bished. In: Meng, W., Jensen, C.D., Cremers, C., Kirda, E. (eds.) Proceed-
ings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2023, Copenhagen, Denmark, November 26-30, 2023. pp. 990–
1004. ACM (2023). https://doi.org/10.1145/3576915.3623129, https://doi.
org/10.1145/3576915.3623129

26. Feldtkeller, J., Güneysu, T., Schaumont, P.: Quantitative fault injection analysis.
In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology - ASIACRYPT 2023 -
29th International Conference on the Theory and Application of Cryptology and
Information Security, Guangzhou, China, December 4-8, 2023, Proceedings, Part
IV. Lecture Notes in Computer Science, vol. 14441, pp. 302–336. Springer (2023).
https://doi.org/10.1007/978-981-99-8730-6_10, https://doi.org/10.1007/
978-981-99-8730-6_10

27. Feldtkeller, J., Richter-Brockmann, J., Sasdrich, P., Güneysu, T.: CINI MINIS:
Domain isolation for fault and combined security. In: Yin, H., Stavrou, A., Cremers,
C., Shi, E. (eds.) ACM CCS 2022. pp. 1023–1036. ACM Press (Nov 2022). https:
//doi.org/10.1145/3548606.3560614

28. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete re-
sults. In: Koç, Çetin Kaya., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 251–261. Springer, Heidelberg (May 2001). https://doi.org/10.
1007/3-540-44709-1_21

29. Goubin, L., Patarin, J.: DES and differential power analysis (the “dupli-
cation” method). In: Koç, Çetin Kaya., Paar, C. (eds.) CHES’99. LNCS,
vol. 1717, pp. 158–172. Springer, Heidelberg (Aug 1999). https://doi.org/10.
1007/3-540-48059-5_15

30. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (May / Jun 2006). https://doi.org/
10.1007/11761679_19

31. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 463–481. Springer, Heidelberg (Aug 2003). https://doi.org/10.1007/

978-3-540-45146-4_27

32. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109,
pp. 104–113. Springer, Heidelberg (Aug 1996). https://doi.org/10.1007/

3-540-68697-5_9

33. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO’99. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (Aug 1999).
https://doi.org/10.1007/3-540-48405-1_25

34. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) Topics in Cryptology - CT-RSA 2005, The Cryptog-
raphers’ Track at the RSA Conference 2005, San Francisco, CA, USA, February
14-18, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3376, pp. 351–
365. Springer (2005). https://doi.org/10.1007/978-3-540-30574-3_24, https:
//doi.org/10.1007/978-3-540-30574-3_24

https://doi.org/10.1145/3576915.3623129
https://doi.org/10.1145/3576915.3623129
https://doi.org/10.1145/3576915.3623129
https://doi.org/10.1145/3576915.3623129
https://doi.org/10.1007/978-981-99-8730-6_10
https://doi.org/10.1007/978-981-99-8730-6_10
https://doi.org/10.1007/978-981-99-8730-6_10
https://doi.org/10.1007/978-981-99-8730-6_10
https://doi.org/10.1145/3548606.3560614
https://doi.org/10.1145/3548606.3560614
https://doi.org/10.1145/3548606.3560614
https://doi.org/10.1145/3548606.3560614
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/978-3-540-30574-3_24

Combined Random Fault and Random Probing Security 43

35. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal secu-
rity proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 142–159. Springer, Heidelberg (May 2013). https://doi.org/10.
1007/978-3-642-38348-9_9

36. Renauld, M., Standaert, F., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A for-
mal study of power variability issues and side-channel attacks for nanoscale devices.
In: Paterson, K.G. (ed.) Advances in Cryptology - EUROCRYPT 2011 - 30th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings. Lecture Notes in Com-
puter Science, vol. 6632, pp. 109–128. Springer (2011). https://doi.org/10.1007/
978-3-642-20465-4_8, https://doi.org/10.1007/978-3-642-20465-4_8

37. Richter-Brockmann, J., Feldtkeller, J., Sasdrich, P., Güneysu, T.: VERICA - ver-
ification of combined attacks automated formal verification of security against si-
multaneous information leakage and tampering. IACR TCHES 2022(4), 255–284
(2022). https://doi.org/10.46586/tches.v2022.i4.255-284

38. Richter-Brockmann, J., Rezaei Shahmirzadi, A., Sasdrich, P., Moradi, A., Güneysu,
T.: FIVER – Robust Verification of Countermeasures against Fault Injections.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 447–473 (Aug 2021)

39. Richter-Brockmann, J., Sasdrich, P., Güneysu, T.: Revisiting Fault Adversary
Models - Hardware Faults in Theory and Practice. IEEE Trans. Computers pp. 1
– 14 (2022)

40. Roche, T., Lomné, V., Khalfallah, K.: Combined Fault and Side-Channel At-
tack on Protected Implementations of AES. In: Smart Card Research and Ad-
vanced Applications - 10th IFIP WG 8.8/11.2 International Conference, CARDIS
2011, Leuven, Belgium, September 14-16, 2011, Revised Selected Papers. pp. 65–
83 (2011). https://doi.org/10.1007/978-3-642-27257-8_5, https://doi.org/
10.1007/978-3-642-27257-8_5

41. Saha, S., Bag, A., Jap, D., Mukhopadhyay, D., Bhasin, S.: Divided we stand,
united we fall: Security analysis of some SCA+SIFA countermeasures against
SCA-enhanced fault template attacks. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021, Part II. LNCS, vol. 13091, pp. 62–94. Springer, Heidelberg (Dec
2021). https://doi.org/10.1007/978-3-030-92075-3_3

42. Saha, S., Jap, D., Breier, J., Bhasin, S., Mukhopadhyay, D., Dasgupta, P.: Break-
ing Redundancy-Based Countermeasures with Random Faults and Power Side
Channel. In: 2018 Workshop on Fault Diagnosis and Tolerance in Cryptogra-
phy, FDTC 2018, Amsterdam, The Netherlands, September 13, 2018. pp. 15–
22. IEEE Computer Society (2018). https://doi.org/10.1109/FDTC.2018.00011,
https://doi.org/10.1109/FDTC.2018.00011

43. Saha, S., Ravi, P., Jap, D., Bhasin, S.: Non-Profiled Side-Channel Assisted Fault
Attack: A Case Study on DOMREP. In: Proceedings of 29th Design, Automation
and Test in Europe (DATE) 2023. pp. 1–6. IEEE, Antwerp, Belgium (April 2023)

44. Schellenberg, F., Gnad, D.R.E., Moradi, A., Tahoori, M.B.: Remote inter-chip
power analysis side-channel attacks at board-level. In: Bahar, I. (ed.) Proceedings
of the International Conference on Computer-Aided Design, ICCAD 2018, San
Diego, CA, USA, November 05-08, 2018. p. 114. ACM (2018). https://doi.org/
10.1145/3240765.3240841, https://doi.org/10.1145/3240765.3240841

45. Shahmirzadi, A.R., Rasoolzadeh, S., Moradi, A.: Impeccable Circuits II. In: DAC
2020. pp. 1–6. IEEE (2020)

46. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr.,
B.S., Koç, Çetin Kaya., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12.
Springer, Heidelberg (Aug 2003). https://doi.org/10.1007/3-540-36400-5_2

https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-20465-4_8
https://doi.org/10.1007/978-3-642-20465-4_8
https://doi.org/10.1007/978-3-642-20465-4_8
https://doi.org/10.1007/978-3-642-20465-4_8
https://doi.org/10.1007/978-3-642-20465-4_8
https://doi.org/10.46586/tches.v2022.i4.255-284
https://doi.org/10.46586/tches.v2022.i4.255-284
https://doi.org/10.1007/978-3-642-27257-8_5
https://doi.org/10.1007/978-3-642-27257-8_5
https://doi.org/10.1007/978-3-642-27257-8_5
https://doi.org/10.1007/978-3-642-27257-8_5
https://doi.org/10.1007/978-3-030-92075-3_3
https://doi.org/10.1007/978-3-030-92075-3_3
https://doi.org/10.1109/FDTC.2018.00011
https://doi.org/10.1109/FDTC.2018.00011
https://doi.org/10.1109/FDTC.2018.00011
https://doi.org/10.1145/3240765.3240841
https://doi.org/10.1145/3240765.3240841
https://doi.org/10.1145/3240765.3240841
https://doi.org/10.1145/3240765.3240841
https://doi.org/10.1145/3240765.3240841
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/3-540-36400-5_2

44 Beläıd et al.

47. Zussa, L., Dutertre, J., Clédière, J., Tria, A.: Power supply glitch induced faults
on FPGA: An in-depth analysis of the injection mechanism. In: IOLTS 2013. pp.
110–115. IEEE (2013)

Appendix A Algorithms for Compositional Notions

The computation of the simulation failure probability for the composition of
gadgets in the general random probing model is described in Algorithm 1 (cf.
Definition 5). Similarly, Algorithm 2 specifies how to generate the correction fail-
ure probability for the composition in the general random fault model based on
Definition 7. Finally, Algorithm 3 details the computation of the correction and
the simulation failure probabilities for the composition in the combined random
model as well as the advantage of the combined adversary (cf. Definition 9).

Algorithm 1: General Random Probing Composability Verification

1: Inputs: gadget G with the associated set of all wire combinations W∞ and wire
probabilities pw,w∈W , masking order d

2: Output: simulation failure probability ϵ
3: E ← [] {** List of simulation failure probabilities}
4: {** Loop over all possible O **}
5: for each O = (O1, . . . ,Om), with ∀i : Oi ⊆ [s] and |Oi| ≤ d do
6: ϵ← 0
7: for each W̃ in W∞ do
8: I = (I1, . . . , Ih)← ShareSelect(W̃,O) {** Get input shares}
9: if there exists j ∈ [1, h] such that |Ij | > d then
10: ϵ← ϵ +

∏
w∈W̃ pw ·

∏
w′∈W\W̃(1− pw′) {** Equation 4}

11: end if
12: end for
13: Append ϵ to E
14: end for
15: return maximum(E)

Combined Random Fault and Random Probing Security 45

Algorithm 2: General Random Fault Composability Verification

1: Inputs: gadget G with the associated set of fault combinations F∞ and fault
probabilities qf,f∈F , replication order k

2: Output: correction failure probability µ
3: M ← [] {** List of correction failure probabilities}
4: {** Loop over all possible I′ **}
5: for each I′ = (I′1, . . . , I′h) with ∀i : I′i ⊆ [n] and |I′i| ≤ k do
6: µ← 0
7: for each F̃ in F∞ do
8: O′ = (O′

1, . . . ,O′
m)← ReplicationSelect(GF̃ , I′) {** Get output faulty

replications for the faulted gadget}
9: if there exists j ∈ [1,m] such that |O′

j | > k then
10: µ← µ +

∏
f∈F̃ qf ·

∏
f ′∈F\F̃ (1− qf ′) {** Equation 5}

11: end if
12: end for
13: Append µ to M
14: end for
15: return maximum(M)

Algorithm 3: Combined Random Composability Verification

1: Inputs: gadget G with F∞ and fault probabilities qf,f∈F , and with W∞ and
wire probabilities pw,w∈W , masking order d, replication order k

2: Outputs: probabilities µ, ϵkf and γkc
3: G← [] {** List to store advantage combined adversary}
4: {** Loop over all possible I′ **}
5: for each I′ = (I′1, . . . , I′h) with ∀i : I′i ⊆ [n] and |I′i| ≤ k do
6: µ← 0, ϵkf ← 0
7: for each F̃ in F∞ do
8: O′ = (O′

1, . . . ,O′
m)← ReplicationSelect(GF̃ , I′) {** Get output faulty

replications for the faulted gadget}
9: if there exists j ∈ [1,m] such that |O′

j | > k then
10: µ← µ +

∏
f∈F̃ qf ·

∏
f ′∈F\F̃ (1− qf ′) {** Equation 5}

11: else
12: Return ϵF̃kc from Algorithm 1 with inputs W∞, pw,w∈W and d

13: ϵkf ← ϵkf + ϵF̃kc ·
∏

f∈F̃ qf ·
∏

f ′∈F\F̃ (1− qf ′) {** Equation 6}
14: end if
15: end for
16: γkc ← µ+ ϵkf · (1− µ) {** Equation 7}
17: Append (γkc, µ, ϵkf) to G
18: end for
19: return maximum value γkc in G and its corresponding µ and ϵkf

46 Beläıd et al.

Appendix B Extension of VERICA in the (General)
Random Probing Model

B.1 Binomial Tree Definition

B0 B1 B2 B3

depth 1

depth 2

depth 3

depth 0

Fig. 5. Recursive definition of binomial trees, from B0 to B3.

B.2 Lower Bound in the Random Probing Model

If the verification set fails at depth lfail ∈ [1, α] (i.e., the failing wire combination
contains lfail wires), VERICA

+ determines the depth of the subtree of the current
node lsub ∈ [0, |W| − lfail]. It then updates the computation of the simulation
failure probability by adding the following:

plfail · (1− p)|W|−lfail−lsub ·

subtree cut (binomial CDF)=1︷ ︸︸ ︷
lsub∑
k=0

(
lsub
k

)
pk(1− p)lsub−k (12)

⇔ plfail · (1− p)|W|−lfail−lsub .

Thus, the subtree of the current node is included entirely in the computation
of the simulation failure probability. This is explicitly reflected in Equation 12
with the binomial CDF for a sample of size lsub (all combinations of wires in the
subtree are considered) and probability p. We evaluate it for lsub, thus it equals
one.

Additionally, about Figure 2, the above equation would be calculated with
lfail = lsub = 2 and |W| = 4, which is equal to p2.

B.3 An Upper Bound in the (General) Random Probing Model

VERICA+ computes an upper bound for the simulation failure probability, by
considering that if combinations of α wires did not lead to a simulation failure,
then combinations of α+ 1 wires will (cf. Section 5.1).

In short, VERICA+ performs the binomial tree traversal and the computa-
tion of the lower bound of the simulation failure as explained in Section 5.2 and

Combined Random Fault and Random Probing Security 47

Appendix B.2. However, in addition, if it visits a node at depth α and the veri-
fication set does not lead to a simulation failure, it considers that the remaining
nodes in the un-visited subtree of depth lsubα

∈ [0, |W| − α] will lead to a sim-
ulation failure with the parent nodes. The exact computation depends on the
security model.

In the Random Probing Model. If lsubα
> 0, VERICA+ additionally updates

the computation of ϵpmax with:

pα ·
lsubα∑
k=1

(
lsubα

k

)
pk(1− p)|W|−α−k (13)

⇔ pα · (1− p)|W|−α−lsubα ·
(
1− (1− p)

lsubα

)
.

Note that the sum from the first equation starts at k = 1 since we consider
that the combinations of the α wires from the root to the current node do not
fail simulation, but their combinations with any wire represented in the children
nodes will.

In the General Random Probing Model. Similarly, VERICA+ adds to the
computation of ϵmax:

∏
w∈W̃α

pw ·
∏

w′∈W
w′ /∈W̃α

w′ /∈Wsubα

(1− pw′) ·
lsubα∑
k=1

∑
W̃∈W∞

#k

W̃⊆Wsubα

∏
w∈W̃

pw
∏

w′∈Wsubα

w′ /∈W̃

(1− pw′) (14)

⇔
∏

w∈W̃α

pw
∏

w′∈W
w′ /∈W̃α

w′ /∈Wsubα

(1− pw′) ·

1−
∏

w′′∈Wsubα

(1− pw′′)

 ,

where W̃α are the α wires from the root to the current node that do not lead to
a simulation failure, and Wsubα

is the set of the wires that are represented by
the children nodes of the current node at depth α. Note that the first expression
mirrors Equation 8, but the first sum starts at k = 1 for the same reason stated in
the random probing model. Therefore, with the double summation, we construct
all wire combinations of size k > 1 from the wires in Wsubα

that are assumed to
fail the simulation. Its probability simplifies to one minus the probability to not
take any wire in Wsubα .

B.4 Binomial Tree Traversal

VERICA+ considers only the intermediate wiresW of a given circuit C , which are
labeled in topological order. As explained in Section 5.2, to evaluate Equation 4

48 Beläıd et al.

for up to α wires, VERICA+ uses the binomial tree structure, where each node
symbolizes a unique wire (except the root). The tree represents all the possible
wire combinations from the set of wires W. VERICA+ then creates the leaking
wire combinations W̃ by traversing the tree in a preorder fashion up to depth α.
We take advantage of the node labeling to traverse the binomial tree B|W| using
a recursive function in Algorithm 4.

Algorithm 4: Binomial Tree Preorder Traversal to Compute Simula-
tion Failure Probability

1: Inputs: circuit C with the set of wires W and corresponding wire
probabilities pw,w∈W , threshold number of wires α

2: Output: bounds of simulation failure probability ϵmin, ϵmax

3: ϵmin ← 0, ϵmax ← 0 {** Lower and upper bounds}
4: W̃ ← {} {** Leaking wire combination to verify}
5: {** Define recursive function **}
6: procedure Preorder(emin, emax, W̃, k)
7: for i = k to |W| do
8: if |W̃| = α then
9: ϵmax ← ϵmax + update upp bound(W, α, W̃, pw,w∈W)

{** Equation 13, or Equation 14 with W̃ = W̃α}
10: break
11: else
12: Append wi to W̃
13: if VERICA+ returns a simulation failure for W̃ then
14: ϵmin ← ϵmin + update low bound(W, α, W̃, pw,w∈W)

15: ϵmax ← ϵmax + update low bound(W, α, W̃, pw,w∈W)

{** Equation 12, or Equation 8 with W̃ = W̃fail}
16: else
17: ϵmin, ϵmax ← Preorder(ϵmin, ϵmax, W̃, i+ 1)
18: end if
19: Remove wi from W̃
20: end if
21: end for
22: return ϵmin, ϵmax

23: end procedure
24: {** Call recursive function **}
25: ϵmin, ϵmax ← Preorder(ϵmin, ϵmax, W̃, 1)

Appendix C Extension of IronMask in the Random Probing
Model

A pseudo-code of IronMask+ for the verification of a tuple in the random probing
model is given in Algorithm 5, with blue highlights on the added replacements.
The only differences with the original IronMask’s verification lies in the calls
to the new function replace correction outputs, available in Algorithm 6.

Combined Random Fault and Random Probing Security 49

Functions factorize and input shares are not detailed here since they are
explained in [11] and are not useful in this extension’s description.

50 Beläıd et al.

Algorithm 5: IronMask+ Verification of a Tuple

1: Inputs: a tuple of probes w = (w1, . . . , wk)
2: Outputs: inputs shares required for the simulation input shares

3: L = [] {** List of symbolic expressions}
4: R = [] {** List of random masks for each symbolic expression}
5: {** First Step **}
6: for i = 1 to k do
7: for j = 1 to length(L) do
8: if R[j] is in the symbolic expression of wi then
9: wi ← wi + L[j]

10: end if
11: end for
12: Append wi to L
13: if there is any remaining additive random r in the expression of wi then
14: Append r to R
15: else
16: Append 0 to R
17: end if
18: call replace correction outputs(wi, L, R)
19: end for
20: {** Second Step **}
21: L′ = []
22: R′ = []
23: for i = 1 to length(L) do
24: if R[i] = 0 then
25: fact ← factorize(L[i]) {** factorized expressions of L[i]}
26: for each w in fact do
27: for j = 1 to len(L′) do
28: if R′[j] is in the symbolic expression of w then
29: w ← w + L′[j]
30: end if
31: end for
32: Append w to L′

33: if there is any remaining additive random r in the expression of w
then

34: Append r to R′

35: else
36: Append 0 to R′

37: end if
38: call replace correction outputs(w, L′, R′)

39: end for
40: end if
41: end for
42: input shares← get input shares(L′, R′) {** input shares from L′}

Combined Random Fault and Random Probing Security 51

Algorithm 6: Function replace correction outputs

1: Inputs and Outputs: probe w, lists L and R
2: if R[−1] ̸= 0 then
3: return
4: end if
5: for each correction block output si in the expression of w do
6: wi ← si
7: for j = 1 to len(L) do
8: if R[j] is in the expression of wi then
9: wi ← wi + L[j]
10: end if
11: end for
12: Append wi to L
13: if there is any remaining additive random r in the expression of wi then
14: Append r to R
15: else
16: Append 0 to R
17: end if
18: call replace correction outputs(wi, L, R)

19: end for

	Formal Definition and Verification for Combined Random Fault and Random Probing Security

