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Abstract. Lattice sieves are algorithms for finding short vectors in lat-7
tices. We present an implementation of two such sieves – known as8
“BGJ1” and “BDGL” in the literature – that scales across multiple9
servers (with varying success). This class of algorithms requires expo-10
nential memory which had put into question their ability to scale across11
sieving nodes. We discuss our architecture and optimisations and report12
experimental evidence of the efficiency of our approach.13

1 Introduction14

A central hard problem in post-quantum cryptography is the Shortest15

Vector Problem (SVP) on lattices: given a basis B of a lattice L find a16

shortest nonzero vector in L. SVP is known to be NP-hard under ran-17

domised reductions [Ajt98], with hardness results extending up to sub-18

polynomial approximation factors [Mic01, Kho05, HR12, Mic12]. It is19

generally assumed that the difficulty of SVP degrades gracefully as the20

approximation factor increases. Moreover, it is generally assumed that21

there is no probabilistic polynomial-time or even bounded-error quan-22

tum polynomial-time algorithm that solves SVP to within polynomial23

approximation factors. This hardness (coupled with compact and easy-24

to-implement constructions) has led to many cryptographic primitives25

basing their security on the hardness of variants of SVP, and as a result26

many algorithms have been considered and proposed for solving (approxi-27

mate) SVP [Kan83, FP83, AKS01, NV08, GNR10, MV10a, MW15, Laa15,28

BDGL16, Duc18a, ADH+19, ABF+20, ABLR21], with the fastest known29

family of algorithms being lattice sieves.30

Lattice sieves come in both provable [AKS01, NV08, MV10b, ADRS15]31

and heuristic variants [NV08, MV10b, BGJ15, BDGL16, HK17]. These32

variants exhibit time and memory complexity of 2Θ(n) and implementa-33

tions of heuristic sieves currently dominate the Darmstadt SVP Hall of34
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Fig. 1: Parallel performance for BGJ1 sieving in dimensions 116 to 122.

Fame [LR24].3 Briefly, lattice sieves operate by first sampling an expo-35

nentially large list of vectors L and then iteratively reducing this list36

by computing the pairwise sums and differences of vectors from this list,37

keeping those that have smaller norms. For heuristic sieving algorithms –38

which we focus on in this work – this list typically has 20.210n+o(n) many39

vectors.40

While sieving outperforms alternative approaches to finding short vec-41

tors in lattices both in practice and asymptotically, it is an open question42

of how it scales on realistic hardware. The central challenges here are43

the aforementioned exponentially-large lists. That is, while the benefits of44

sieving in a single machine context are well-understood [ADH+19, DSv21],45

these benefits may be somewhat limited to when access to the list is fast46

– say, when the entire list is in system memory. Indeed, some have ar-47

gued [Ber16, BBC+20] that the significantly lower memory requirements48

of enumeration would appear to indicate that enumeration might scale49

better than sieving in a networked setting, where bandwidth between50

nodes may become a significant bottleneck. More generally, the require-51

ment for exponential memory in lattice sieves and its implication for52

realistic cost estimates of these algorithms has received significant atten-53

tion around the NIST PQC standardisation process [AS17, NIS23, Jaq24,54

Sch24].55

1.1 Contributions56

Our contributions are (a) an efficient and scalable proof-of-concept imple-57

mentation of sieving algorithms using MPI and (b) an investigation into58

3 In contrast, enumeration-based algorithms [Kan83, FP83, GNR10, MW15, ABF+20,
ABLR21] run in time nΘ(n) and poly(n) memory.



the scalability of sieving algorithms over, possibly heterogeneous, larger59

nodes connected over Ethernet.60

In more detail, we study and implement distributed variants of the61

BGJ1 [BGJ15, ADH+19] and the BDGL sieve variant [BDGL16, DSv21]62

used in G6K. This is motivated by their shared good performance but63

rather diverging designs, allowing us to explore the problem space.64

After some preliminaries, we discuss how distributed sieving algo-65

rithms should scale increasingly well as the lattice dimension increases66

in Section 3. This discussion informs our architecture. We stress that67

our design is exclusively concerned with distributing so-called “buckets”68

across different nodes. In particular, we do not consider distributing a69

single such bucket across multiple nodes. This restricts our results to70

a setting of somewhat powerful nodes as the memory requirements per71

bucket grow as 20.104n+o(n) in our implementation.472

Then, using the open-source G6K implementation [ADH+19] as a73

starting point, we present and describe an open-source implementation of74

distributed sieving in Section 4. It might appear straight-forward to par-75

allelise both BGJ1 and BDGL by simply processing multiple buckets of76

vectors in parallel, which is indeed the strategy applied in G6K in a single-77

server setting. However, adopting this approach in a distributed context78

is not efficient. The main challenge is that G6K reduces the amount of79

memory needed to represent a bucket as a series of smaller indices into80

a much larger table to maintain consistency. We are unable to use this81

approach in our setting: indexing into the database in this way assumes82

that each node has access to a full copy of the database, which is not83

the case in the multiple server setting. Instead, we require that each node84

gathers buckets in their entirety that need to be sieved, requiring addi-85

tional storage. The challenge is then to keep the additional memory usage86

small whilst also maintaining a small wall time.87

Moreover, and critically, we found that preventing the insertion of88

duplicate entries into the database in a distributed setting is highly non-89

trivial, requiring some consensus across all nodes in the cluster. Interest-90

ingly, we find that bespoke consensus techniques should be applied to91

each sieve, depending on the underlying properties of each algorithm. We92

discuss the techniques applied for this in more detail in Section 4.93

Finally, in Section 5 we show that our distributed BGJ1 lattice siev-94

ing implementation achieves the desired reduction in wall time when95

4 Asymptotically, bucket sizes of 2o(n) are achieved, but known implementations, in-
cluding ours, do not use parameters justifying such an asymptotic formula.



using a standard 10Gbps network, see Figure 1 and Table 2.5 To the96

best of our knowledge, this is the first time that the efficiency of any97

distributed lattice sieving algorithm for general lattices has been experi-98

mentally demonstrated to be performant over such a network, and that99

distributed variants of G6K have been studied, which was given as an100

open problem in [BBC+20].6 Our results for BDGL are less favourable,101

see Tables 4 and 5, we discuss this below. Our implementation is available102

at https://github.com/joerowell/G6K-Dist-Sieve.103

1.2 Related work104

Both enumeration and sieving have previously been considered in paral-105

lel contexts. Enumeration has been studied widely in both locally par-106

allel [HSB+10, DHPS10, KSD+11, DS10, CMP+16, BBK19, PSZ21] and107

distributed [TKH18, TSN+20] settings. It is now commonly accepted that108

enumeration scales well across multiple cores in a single machine set-109

ting, and the widely used fplll library supports multi-core enumeration110

by default [dt23]. On the other hand, the largest scale distributed results111

are due to [TKH18] and [TSN+20]. We note that both of these works112

present results from large, well-connected clusters and globally shared113

memory [TKH18, §6.2].7 Moreover, modern sieving implementations out-114

perform enumeration [ADH+19] and the Darmstadt SVP Hall of Fame is115

dominated by sieving. Thus, we ignore enumeration for the rest of this116

work.117

Existing works on scaling sieving can be divided into three broad118

categories. First, there are several works that explore shared-memory119

parallelism for lattice sieving [MS11, IKMT14, MBL15], and the most120

performant open-source library for lattice sieving, G6K [ADH+19], uses121

multi-core parallelism.122

5 We note that the “dimension” given is the sieving dimension rather than the dimen-
sion of the (approx-)SVP problem that is targeted in e.g. the Darmstadt SVP Chal-
lenges. The former is smaller than the latter due to “dimensions for free” [Duc18a].
For example, [ADH+19] solved a 155 dimensional SVP HoF instance, but sieved in
dimension up-to 127.

6 The TU Darmstadt SVP Hall of Fame [LR24] includes entries that hint at distributed
lattice sieving, but these results do not appear in the literature and appear to use
bandwidth-rich clusters.

7 The authors do not mention exactly how much global space was used: however, they
do report that around 60GB [TKH18, 6.2] of lattice vectors remained at the end
of the 150-dimensional SVP challenge, and that “several hundred gigabytes” would
have been used in total.

https://github.com/joerowell/G6K-Dist-Sieve


Second, a line of work has considered extending G6K to operate in non-123

shared memory environments; for example, Andrzejczak and Gaj [AG20]124

implemented the inner product computations on FPGAs, and a G6K125

variant utilising GPUs was presented in [DSv21]. In both cases, the main126

idea is to store the sieving database L in system memory and to delegate127

all sieving operations (such as bucketing and searching for reductions) to128

an external device. Despite that access to the external device is typically129

far slower than accessing system memory, these works show a significant130

speed-up over CPU-only lattice sieving: intuitively, these speedups are131

possible because the quadratic portion of the sieve – considering all pairs132

of vectors – can be constrained to use only the fast, local memory of the133

external devices. This masks the delay of loading vectors directly from134

memory.135

We note that, despite the apparent similarities between these works and136

ours, there is still a significant difference between delegating computations137

to an external device and sieving across different servers. The foremost138

reason for this is that a network bus – typically Ethernet – is signifi-139

cantly slower than the buses considered in both [AG20, DSv21]. As a140

result, mitigating the loading latency is a significantly harder task than141

in a single-machine context. Moreover, internal buses are typically quite142

fault reliant. In contrast, packet loss is a common concern in networked143

applications, and mitigating for this loss of data naturally leads to per-144

formance penalties. Finally, the designs of [AG20, DSv21] assume that145

the entire database can fit into a single system’s RAM, whereas our work146

assumes that no single entity is able to store the entire database in local147

memory.148

Third, there has been some experimental investigations to how siev-149

ing scales across multiple-machine clusters [BNvdP14, TSY+21]. In the150

first of these works, the authors presented results over ideal lattices in the151

ring Z[x]/(xn + 1), where n is a power of two, allowing for the required152

bandwidth to be reduced by a factor of n. Interestingly, this reduction of153

a factor n does not affect our scalability model by much, see Section 3.1.154

On the other hand, [TSY+21] uses a hybrid Gauss Sieve-enumeration al-155

gorithm to solve a dimension 134 SVP instance in around 100 hours on a156

super computer with 103,680 cores and with around 50Gbps of network157

bandwidth per CPU. Our results, in contrast, were gathered using sig-158

nificantly fewer resources. This is partially explained by that the Gauss159

Sieve [MV10b] is exponentially slower than both BGJ1 and BDGL, and160

thus our implementation benefits from a substantial algorithmic advan-161



tage, which we leverage to obtain good parallel speedups over slower in-162

terconnects.163

In [Duc18b, Kir16, KMPM19] architectures for massively parallel siev-164

ing were sketched: a ring of devices computing inner-products. These ar-165

chitectures illustrate the viability of sieving in an area-times-time (AT)166

model and promise that sieving does indeed scale reasonably well. How-167

ever, since the focus of these architecture sketches are bespoke, massive168

circuits, their focus is still quite different from ours and closer to the FP-169

GA/GPU sieves discussed above. We study sieving on commodity CPUs170

connected over commodity networks, enabling cooperative sieving across171

different such nodes. On the other hand, by treating large scale clusters172

in a similar manner to these massive circuits we may expect similar levels173

of scaling.174

At the time of writing a series of new CPU sieving records have re-175

cently been registered in the Darmstadt SVP Hall of Fame by Zhao, Ding176

and Yang [LR24, ZDY24]. These entries were achieved using a low-level177

optimised, multi-core implementation of a BGJ sieve [BGJ15] that places178

particular emphasis on minimising random memory accesses. From a cer-179

tain perspective we may view our implementation as following a similar180

principle. However, here the database is split across multiple machines181

rather than system memory. We also note that the scalability analysis182

in Section 3 is broadly unaffected by the size of the buckets that are used183

and the underlying parameterisation of a particular sieving algorithm.184

Overall, we consider the improvements in [LR24, ZDY24] as orthogonal185

to this work.186

2 Preliminaries187

Notation. We start indexing at 0. Vectors and matrices are denoted by188

bold lower case letters and bold capital letters respectively. Unless stated189

otherwise, all vectors are column vectors and matrices B = (b0, . . .bn−1)190

are comprised of column vectors. We denote the Euclidean norm of a191

vector b as ‖b‖. The size of an object is the length of its binary represen-192

tation. For any two vectors v,u, we denote the inner product of v and u as193

〈v,u〉. We define the sign function sgn(n) : R 7→ {0, 1} =

{
1 if n ≥ 0

0 otherwise
.194

We denote the exclusive-or (xor) operation by the symbol ⊕.195



2.1 Lattices196

Lattices are discrete additive subgroups of Rm. A lattice L in Rm can be197

represented as a set of all integer linear combinations of n ≤ m linearly198

independent vectors B := (b0, . . .bn−1) in Rm. We refer to this set of199

vectors as a basis. When n = m then L is said to be full-rank. In this200

work, we will refer to n (resp. m) as the rank (resp. dimension) of the201

lattice L. As soon as n ≥ 2, any lattice may be spanned by infinitely202

many bases; for some lattice L, any two arbitrary bases B and C may203

be written as B = C · U, where U is some matrix with |det(U)| = 1.204

Such a matrix U is referred to as a unimodular matrix. The determinant205

of L, det(L) =
√

det(BT ·B) is invariant of the basis used, and thus an206

invariant of the lattice. If some group L′ ⊆ L is also a lattice, then we207

refer to L′ as a sublattice of L.208

For a given basis B we define πi as a projection orthogonal to the209

span of (b0, . . .bi−1), and the Gram–Schmidt orthogonalisation of B as210

B∗ = (b∗
0, . . . ,b

∗
n−1) = (π0(b0), . . . , πn−1(bn−1)).

The projected sublattice L[ℓ:r] where 0 ≤ ℓ < r ≤ n − 1 is defined as the211

lattice with basis B[ℓ:r] = (πℓ(bℓ), . . . , πℓ(br−1)). When working in the212

projected sublattice L[ℓ:r] we say we are working in the context [ℓ : r].213

2.2 Sieving algorithms214

At a high level, a sieve operates by producing some list L of lattice vectors215

and then searching for integer linear combinations of list vectors that are216

short. For an appropriately sized list, iterating this procedure a polyno-217

mial number of times leads to a solution for SVP. In this work we focus218

on algorithms that consider pairs of vectors, so called 2-sieves.8 A key219

factor influencing the size of the list (and hence the time complexity of220

the sieve) is the distribution of the lattice vectors. Here, we follow the221

standard heuristic [NV08] that points in the list L are independently and222

identically distributed uniformly across a thin spherical shell. Then, the223

key computation task in a sieving algorithm is a Near(est) Neighbour224

Search (NNS) on this spherical shell: find two vectors that are ‘close’ in225

8 There also exist heuristic sieving variants [BLS16, HK17, HKL18], known as k-sieves
where the linear combination of k > 2 many list vectors are considered. This allows
the memory requirements of the sieve to be reduced: for example, a 3-sieve presented
in [BLS16] requires a database of size 20.1887n+o(n). However, k-sieves can also be
parameterised along a time-memory trade-off curve, i.e. increasing the database size
to 20.210n+o(n) in order to lower the time complexity, cf. the 3-sieve in [ADH+19].



Algorithm 1 An NV-style sieving step with a prefilter [NV08]
Input: Some list of vectors L = {v ∈ Rm}, a predicate function prefilter : Rm×Rm 7→

{0, 1}, a sieving radius R.
Output: A list of vectors L′ = {v : ‖v‖ < R}
1: C = ∅ // C denotes the set of centres
2: for v ∈ L do
3: if ∃w ∈ C : prefilter(v,w) = 1 then
4: if ‖v ±w‖ < R then
5: add v ±w to L′

6: else
7: go to 10
8: end if
9: else

10: add v to C
11: end if
12: end for
13: return L′

the sense that their addition or subtraction produces a shorter vector,226

i.e. the angle between them is either very small < π/3 or large. Based on227

some geometric constants related to sphere packing [CS87], [NV08] show228

that |L| = 20.21n+o(n), leading to a time complexity of 20.42n+o(n), since a229

naive sieve loop is quadratic in the list size.230

In Algorithm 1 we reproduce a simple NV-style sieving algorithm231

where we tweak the default presentation of an NV-style sieve to include232

the use of a prefiltering operation. Whilst not strictly necessary, applying233

a prefilter can lead to substantial speedups in practice for CPU sieving,234

see below.235

Remark 1. At first glance, the searching and reduction steps at Lines 3236

and 4 would appear to be embarrassingly (or proudly) parallel: simply237

process all vectors v in the list L in parallel. Yet, the list of centres238

may change in each iteration; as a result, simply processing all vectors in239

parallel misses reductions that would otherwise produce shorter vectors.240

In addition, it is expensive to maintain two distinct lists L and L′. Instead,241

it is more efficient to modify the list L directly, which in turn produces242

additional concurrency issues.243

Prefilters. For prefiltering, the most performant variant used in prac-244

tice is a popcount filter. This idea, which can be viewed as a variant of245

Charikar’s SimHash filter [Cha02], was originally introduced for lattice246

sieving in [FBB+15] and was later extended in [Duc18a]: Let z denote247



the length of the Simhash in bits. Sample z sparse ternary vectors, and248

denote them as ri for i ∈ 0, . . . z − 1. Let hi(v) : Rm 7→ Rm = 〈ri,v〉249

denote a hash function. Then, the sketch function H : Rm 7→ Zz
2 can be250

defined as follows:251

H(v) = (sgn(h0(v)), . . . , sgn(hz−1(v))).252

Geometrically, each hash function can be thought of as a constraint on253

the elements of v. So, vectors that are similar in direction will have similar254

sketches. Since H produces bit-strings as output, prefiltering two vectors255

v,u for similarity is reduced to computing the Hamming distance between256

their hashes H(v),H(u).257

That is, given two hashes H(v),H(u), we first compute x = H(v)⊕258

H(u) and then compute the Hamming weight of x. A low Hamming-259

weight vector implies that the hashes are similar: as a result, this filter260

can be used to quickly pre-filter vectors that are unlikely to lead to a261

reduction.262

Note that it is typical to align z to the word length of the underlying263

computer. In practice, the value of z is typically set to 256-bits, which264

corresponds to 4 machine words. This leads to a filter that consists of265

around a dozen unvectorised x86 instructions: Ducas [Duc18a, §5.3] re-266

ports that this filter results in a speedup that is approximately half an267

order of magnitude over naively considering inner products between all268

the possible pairs of vectors in some bucket.269

Such a filter will typically have some error rate, i.e. will not only270

filter out vectors that are not close, but also compute inner products271

against vectors that are too long. A simple solution is to scale the size of272

the database linearly to the error rate of the filter; for example, it was273

reported in [ADH+19] that optimal performance occurred when scaling274

the database by a factor of 3.2 in order to overcome the empirical 30%275

error rate of the popcount filter reported in [Duc18a]. Parameter choices276

for popcount were explored in [AGPS20].277

Bucketing. More efficient sieving algorithms exploit the structure of the278

search space by bucketing L. Briefly, bucketing preprocesses the list L into279

smaller sublists L0, . . . , Lδ−1 within which the quadratic search then com-280

mences. Many works [Laa15, BGJ15, BDGL16] have gradually improved281

the time complexity, with the fastest known sieve [BDGL16] terminating282

after 20.292n+o(n) [BDGL16] operations on a classical computer. In Algo-283

rithm 2 we illustrate the idea of bucketing. Within a bucket, Algorithm 1284

can then be run.285



Algorithm 2 A basic bucketing algorithm with one bucket.
Input: Some list of vectors L = {v ∈ Rm}, a predicate function prefilterB : Rm ×

Rm 7→ {0, 1} and a bucketing radius RB .
Output: A bucket B defined by c, containing all vectors u : ‖u± c| < RB .
1: B = ∅ // bucket starts empty
2: Choose c uniformly from L
3: for v ∈ L do
4: if c 6= v then
5: if prefilterB(v, c) = 1 and ‖c± v‖ < RB then
6: add v to B
7: end if
8: end if
9: end for

10: return B

To define a bucket, we may choose a list entry as a centre (this is286

what we illustrate in Algorithm 2) or specifically construct buckets where287

sorting into buckets is relatively cheap [BDGL16].288

Structured bucketing. Bucketing can be improved by switching to289

a structured bucketing scheme, such as [BDGL16]. In such a scheme,290

we first split the lattice dimension n into t smaller blocks of dimen-291

sions n0, n1, . . . nt−1 that sum up to n. In practice, t is typically cho-292

sen to be small, say at most 4. After applying a suitable orthonormal293

transformation to introduce some randomness, we then sample a set of294

random vectors Ci ⊂ Rni and produce the global set of bucket centres295

C = C0 ×±C1 × . . . ± Ct−1. Importantly, for some vector v we can find296

the closest global bucket centre by finding the closest local bucket vector,297

implicitly evaluating 2t−1 ·
∑

i |Ci| bucket centres for a cost of around298 ∑
i |Ci| inner products per vector. This algorithm is referred to as list299

decoding. In practice, list decoding can be made very efficient with some300

minor tweaks: for example, Ducas, Stevens and Van Woerden [DSv21]301

report that a single inner product can be computed in under 1.7 cycles302

on a single CPU core using AVX2 instructions.303

2.3 The General Sieve Kernel304

The General Sieve Kernel(G6K) [ADH+19] is a lattice reduction frame-305

work that treats sieving algorithms as “stateful” entities, rather than306

black-box SVP oracles. That is, G6K utilises the fact that sieving in di-307

mension d produces a database L of 20.210 d+o(d) vectors, containing many308

short vectors. This approach, coupled with various low-level optimisations,309



has allowed the open-source implementation of G6K to break several TU310

Darmstadt SVP challenges [LR24].311

As our implementation is based on the (CPU) version of G6K, we312

briefly discuss some details of G6K’s operation in this section.313

Operation. G6K can be viewed as an abstract machine that solves SVP by314

applying a series of transformations to some internal state. Conceptually,315

this internal state can be divided into two distinct portions. In the first316

case, G6K maintains a lattice basis B ∈ Zd×d and its associated Gram–317

Schmidt orthogonalisation basis B∗ and a series of positions 0 ≤ κ ≤ ℓ ≤318

r ≤ d. These positions define the current sieving context [ℓ : r] and the319

current lifting context [κ : r]. Additionally, G6K also maintains a database320

L of lattice vectors that live in the sieving context, and series of insertion321

candidates cκ ∈ [κ : r] , . . . , cr ∈ [r : r]. In practice, each vector v ∈ L is322

represented as an Entry that contains (amongst other data) the coefficient323

representation w i.e. v = B[ℓ:r] ·w.324

G6K manipulates its internal state using a series of abstract instruc-325

tions. Notably, most of these instructions are independent of sieving, and326

solely relate to database management. On the one hand, G6K provides327

a series of instructions (Extend Left, Extend Right and Shrink Left) that328

change the sieving context of the database. Each of these operations are329

cheap to carry out in practice: the Extend Left operation can be achieved330

by applying Babai’s Nearest Plane [Bab85] algorithm to each vector in the331

database, whereas the other instructions simply require truncating the co-332

ordinate representation of each vector. G6K also provides instructions for333

growing (Grow) and shrinking (Shrink) the database. In both cases, these334

instructions attempt to preserve the quality of the database by either at-335

tempting to sample (relatively short) vectors or by discarding the longest336

vectors in the database. Finally, G6K also provides a Sieve instruction337

that applies a sieving algorithm to the database, producing short vectors338

until some stopping condition is reached.339

During the execution of the Sieve instruction, certain vectors are lifted340

(by repeatedly applying Extend Left) from [ℓ : r] to [κ : r]. If the lifted vec-341

tor is shorter than a particular insertion candidate ci, then the lifted342

vector replaces ci as an insertion candidate. If a particular insertion can-343

didate cj improves the basis substantially, then it may be inserted into344

B using the Insert instruction.345

Strategies. We note that the aforementioned instructions can be com-346

bined to create strategies that dictate lattice reduction from an abstract347

perspective. One such strategy used in G6K is the progressive sieving348



strategy known as the pump. In this strategy, G6K starts with a small349

context and alternates the Extend Left, Grow and Sieve instructions until350

a particular target context is reached. Note that this strategy recycles351

the sieving database between contexts, allowing the sieve to start with352

relatively many short vectors. Once this target context has been reached,353

G6K applies a sequence of Insert and Shrink instructions to improve the354

quality of the lattice basis. Combining several of these pumps together355

is referred to as a workout, which gradually improves the quality of the356

basis. We note that the increase in norm added by applying Extend Left to357

a particular vector depends strongly on the quality of the basis.9 Thus, it-358

eratively improving the basis simultaneously reduces the amount of time359

needed for a particular pump and increases the possibility of finding a360

short lattice vector in L.361

2.4 Message Passing Interface (MPI)362

We give a short summary of the Message Passing Interface (MPI) stan-363

dard used in our implementation and experiments. The interested reader364

may refer to the MPI standard [For12] for more details.365

Messaging passing. MPI can be viewed as an instantiation of the mes-366

sage passing model of concurrency. At a high-level, MPI programs are367

comprised of groups of processes. Each process has exclusive access to its368

own local memory and computational resources and may be further subdi-369

vided into a set of threads. In order to share data, processes communicate370

over shared, stateful communicators that act as channels.371

We briefly describe how MPI handles messages. Namely, suppose that372

A wishes to send a message M to B in a point-to-point fashion. To achieve373

this, A supplies M to an MPI procedure as a message buffer. At this stage,374

the MPI library inspects M and decides on how M should be sent. We375

remark that the scope for decision here is rather vast; for example, if M376

is short then the MPI library may simply send M to B without any prior377

notice. On the other hand, sending a large M in this way may overwhelm378

B, and thus the implementation may choose to inform B in advance.379

In order to reduce the complexity of sending messages, the MPI stan-380

dard provides several modes that specify how procedures handle messages.381

A procedure is said to be completed if A can re-use the message buffer382

without affecting the transmission of the message. Moreover, a procedure383

is said to be blocking if it does not return until after it has completed.384

9 This follows from the usage of Babai’s Nearest Plane algorithm.



On the other hand, a non-blocking procedure may return immediately385

without completing i.e. A may not be able to re-use the message buffer386

when the procedure returns. In order to determine when the buffer can387

be re-used, MPI allows the progress of a non-blocking procedure to be388

tracked via a request object. We note that MPI provides the ability for389

the programmer to explicitly choose if a particular message is sent using390

either a blocking or non-blocking procedure. This choice permits optimisa-391

tions to be made explicitly; for example, non-blocking procedures enable392

several concurrent requests to be in progress at once, or for processing393

to be offloaded asynchronously on to a network card. On the other hand,394

blocking procedures may reduce memory usage in some settings as buffers395

can more easily be re-used by the programmer. In practice, we found that396

using non-blocking routines was more efficient in our use-case, and thus397

our implementation uses them extensively.398

Collective operations. In addition to point-to-point communications, MPI399

also allows for multiple processes to exchange messages at once in a col-400

lective fashion. Whilst collective communications also come in blocking401

and non-blocking variants, collective communications can also take ad-402

vantage of algorithmic improvements that are not available for point-to-403

point messages. For example, a broadcast from process p0 across a group404

P can be efficiently implemented by organising processes in a tree rooted405

at p0, allowing multiple communication links to be used at once. These406

savings are often substantial; for example, pairwise message exchange407

(also known as AlltoAll) of n messages between p nodes can be optimally408

realised in O(log p) rounds [BHK+97], compared to O(p2) rounds using409

point-to-point messages. We note, however, that the “best” algorithm410

to use typically depends on the properties of the messages that are be-411

ing transmitted and the characteristics of the underlying interconnect412

i.e. if multicast is supported. To handle this, MPI implementations typ-413

ically select the appropriate algorithm on a case-by-case basis. However,414

this choice comes with an additional restriction; collective communica-415

tions over a particular communicator must be called in the same order416

across all processes to prevent confusion. In practice, this restriction can417

cause programs to lose some flexibility, and care needs to be taken to use418

these operations safely in a fully asynchronous environment. However, in419

practice the performance benefits of using these operations is typically420

substantial, far outweighing any lost flexibility. We note that whilst MPI421

is rather high-level, substantial performance benefits can be realised by422

performing additional low-level optimisations: we describe our efforts in423



this regard in Section 4. Still, almost all network programming tasks such424

as e.g. heartbeating are handled by the MPI library and, thus, are hid-425

den from the programmer. This simplicity allows the creation of highly426

complex distributed applications.427

The logP scalability model. We analyse the scalability of distributed lat-428

tice sieving using the well-known logP [CKP+93] model of parallel sys-429

tems. In contrast to other, simpler models, the logP model can be used430

to succinctly predict the cost of network activity in a topology-agnostic431

fashion. For brevity, we only give an introduction to this model here, and432

we refer the interested reader to [CKP+93] for further details.433

At a high-level, the goal of the logP model is to express the costs434

of network activity in terms of machine cycles. In order to achieve this435

comparison, the logP model treats network activity as a function of four436

distinct parameters: the maximum latency of sending a single byte mes-437

sage (λ), the overhead of sending or receiving a single byte message (ϕ),438

the “gap” in time between two successive messages (g) and the number439

of nodes in the network (P ). The logP model can also be augmented to440

model loosely connected networks by adding two additional parameters:441

the maximum number of intermediate hops H, and the forwarding time442

at each hop r.10 As each single byte message requires both some sending443

and receiving overhead, the time taken to send a single byte message in444

this model is 2 · ϕ + λ + H · r cycles. We note that the logP model as-445

sumes that at most dλ/gc bytes may be in transit at any given time, and446

therefore care must be taken when handling potentially large messages.447

In order to handle larger messages generically, we assume that each mes-448

sage of M bytes can be decomposed into at most σ smaller chunks (i.e. σ449

is the smallest integer satisfying M ≤ σ · dλ/ge), leading to a total cost450

of σ · (2 ·ϕ+M/k · (λ+ g)+H · r) cycles per message. Put differently, all451

cost calculations in this work incorporate network congestion.452

3 Architecture453

We are now ready to discuss our high-level architecture.454

10 Whilst H could theoretically be as large as P it is far more typical to see H being
at most≈ logP , as nodes can always be re-arranged into a (potentially unbalanced)
binary tree.



Algorithm 3 An simplified bucketing algorithm for p nodes.
Input: A global database of N vectors, divided up into N/p lists spread across p nodes.
Output: A set of q · p buckets.
1: Each Pi chooses Ci = (c0, . . . , cq−1) from its local database.
2: for 0 ≤ j < p− 1 do
3: Pi sends Ci−j mod p to Pi+1 mod p // Pi receives Ci−j−1 mod p.
4: end for
5: for j < p do
6: Pi builds set β(i,j) := bucket(Cj) against their local database.
7: // Pj ’s completed buckets are ∪iβ(i,j).
8: end for
9: for 0 ≤ j < p− 1 do

10: Pi sends β(i,i−j mod p) to Pi−j mod p // Pi receives β(i+j mod p,i)

11: end for
12: Pi sieves each bucket in ∪iβ(i,j).

3.1 Unstructured bucketing455

First, we present a high-level scalability analysis of distributed sieving,456

focusing on sieving algorithms that use random database entries to de-457

fine buckets. This analysis applies to sieving algorithms that either sieve458

quadratically over the entire database or use an unstructured form of459

bucketing (cf. Algorithms 1 and 2 respectively).11 The goal of this analy-460

sis is to evaluate the ratio between the time spent communicating buckets461

Tcomm, and the time spent processing them Tcomp; a large ratio would im-462

ply that sieving is unsuitable for parallelisation, whereas a small ratio463

would imply that the computationally expensive parts of sieving can be464

parallelised efficiently.465

For the purposes of exposition, we present a simplified sieving algo-466

rithm in Algorithm 3 on a network of nodes P0, . . . , Pp−1 and use this467

for our analysis. At a high-level Algorithm 3 works by building a total of468

q · p buckets per iteration i.e. q per node before sieving them. In order469

to build these buckets, each node first chooses q random vectors from470

their local database to act as bucket centres, which are then forwarded471

to every other node in the network. Upon receiving all centres Ci, each472

node builds a series of q · p local buckets against their database, which473

are then re-distributed in a pairwise fashion across the network.474

We assume that all p nodes are identically capable and all have equal475

access to the network. Given that all p nodes are equally powerful, we476

split our database of size N equally across all p nodes, and thus each node477

11 The analysis can cover k-sieves by replacing B2 terms in the denominator below by
Bk.



holds approximately N/p vectors. This assumption is valid since we may478

redistribute the database as we see fit. We also assume that each lattice479

vector in dimension n is comprised of n entries of c bytes each, with c480

being some constant that does not vary with n. Moreover, we assume that481

c corresponds to a machine-friendly data-type (e.g. a single precision float)482

and thus assign a unit cost for both multiplication and addition of two c483

byte numbers. We extend this and assign a cost of 2·n−1 operations to the484

task of computing the inner product of two lattices vectors in dimension485

n. Finally, for the sake of simplicity we assume that each built bucket486

contains exactly B vectors; as the database is distributed evenly across487

all p nodes, this implies that each bucket requires B · (p− 1)/p vectors to488

be sent.489

We now analyse Algorithm 3 by considering each stage in turn. To490

begin, notice that the first and second communication loops (i.e. the loops491

at Line 2 and Line 9, respectively) are almost identical, with both loops492

executing p−1 iterations. In fact, the only difference is the amount of data493

sent per iteration, with each node sending q ·c ·n bytes per iteration in the494

first loop and B ·q ·n ·c in the second. By letting σ1 and σ2 be the smallest495

integers satisfying σ1·dλ/ge ≥ q·c·n and σ2·dλ/ge ≥ B/p·q·n, we conclude496

that the first loop requires (p− 1) · σ1 · (2 · ϕ+ q · c · n/σ1 · (λ+ g) +H · r)497

cycles to terminate, with the second loop requiring (p−1) ·σ2 ·(2 ·ϕ+B/p ·498

q ·n · (λ+g)+H ·r) cycles. Thus, the communication time in Algorithm 3499

is approximately500

Tcomm = (p− 1) ·
(
(σ1 + σ2) · (2ϕ+H · r) + (λ+ g) · (B/p+1) · (n · c · q)

)
cycles. We now consider the ratio between Tcomm and the time taken to501
produce and sieve all q · p buckets. On the one hand, building a single502
bucket requires a total of N inner products, and thus around N ·q·(2·n−1)503

cycles in total. Since sieving a bucket requires B2 inner products, we get504

a total cost of B2 · p · q · (2 · n− 1) cycles. Therefore505

Tcomm

Tcomp
=

(p− 1) ·
(
(σ1 + σ2) · (2ϕ+H · r) + (λ+ g) · (B/p+ 1) · (n · c · q)

)
N · q · (2 · n− 1) +B2 · (2 · n− 1) · q · p

=
p− 1

p
·

(
(σ1 + σ2) · (2 · ϕ+H · r)
(N/p+B2) · (2 · n− 1) · q +

n · c · (B/p+ 1) · (λ+ g)

(N/p+B2) · (2 · n− 1)

)
.

On the one hand, note that the leading (p−1)/p term is bounded from506

above by 1 for any choice of p, and thus increasing p with n does not affect507

the scalability of sieving. Intuitively, this observation is consistent with508

the fact that B is dictated solely by n, and thus increasing p should not509

affect the amount of communication. On the other hand, the inner terms510



of the equation are both dominated by B2 and N ; even though σ2 grows511

with B (and hence exponentially in n) this increase is cancelled out by the512

B2 term in the denominator. Moreover, as the second term only changes513

in terms of B,n and N , we note that the same conclusion holds for that514

term, too.515

Remark 2. Our analysis also shows that the factor n saving in bandwidth516

for ideal lattices [BNvdP14] does not largely affect how sieving scales in517

an asymptotic sense. However, the factor n reduction in bandwidth will518

still permit substantial improvements in practice.519

Remark 3. At first glance it may appear appealing to add further paral-520

lelism to the aforementioned algorithm by also sub-dividing each bucket521

across p nodes e.g. we may simply divide B into p blocks and pass these522

blocks around all p nodes. However, as the size of the buckets grows slowly523

compared to the size of the overall database, this approach is unlikely to524

be useful in practice. Indeed, while the scalability analysis is broadly sim-525

ilar to the analysis given above, anecdotal evidence [ADH+19, Appendix526

B] suggests that processing a single bucket across multiple cores leads to527

substantially poorer parallelism in practice.528

Saturation in practice. We now estimate, concretely, what throughput we529

require of our interconnect to saturate our computational units.530

As a starting point of this analysis, we recall that the main com-531

putational task associated with processing a bucket of B vectors is the532

computation of B2 inner products. Given that high-performing sieving im-533

plementations [ADH+19, DSv21] typically represent each n-dimensional534

lattice vector as an array of n 32-bit floating point values, we can naively535

lower bound how fast a particular sieve will execute on a particular com-536

puter by studying the number of inner products that can be executed per537

second. For the sake of simplicity, we assume that our goal is to take a538

single second to process a bucket of size B. Then, if we have a processor539

that executes F 32-bit inner products per second, then we would take a540

second to process a bucket of size B when B =
√
F/(2n). From the per-541

spective of distributed lattice sieving, this model implies that maximum542

parallelism can be achieved by supplying exactly
√
F/(2n) vectors per543

processor per second; put differently, we would require the transmission544

of approximately P ·
√
F/(2n) lattice vectors per second in order to fully545

saturate P processors.546

Next, we use the throughput figures provided by [DSv21] for an Intel547

Xeon Gold 6248 CPU, which can execute up to F = 3.2 · 1012 ≈ 241.5 32-548

bit floating-point operations per second when using hardware accelerated549



instructions. Thus, in order to saturate such a processor a distributed550

system would need to provide approximately
√
F/(2n) vectors [ADH+19,551

§5.1] per second over the network, each costing 2n bytes.552

Using popcount filters changes this calculus slightly. For simplicity, pes-553

simistically assume only the cost popcount counts. Considering again a In-554

tel Xeon 6248 Gold with 20 cores at 2500Mhz and a popcount cost of555

six cycles, we obtain M = 8.3 · 109 ≈ 233 popcount calls per second. To556

exhaust this capacity, we need to send at least
√
M vectors, which again557

cost 2n bytes per vector.558

Concretely, picking n = 128 and a 1Gbps LAN, we can send 230/(16 ·559

128) = 219 vectors per second, requiring 2 · 128 · 22·19 > F floating point560

operations or 22·19 > M popcount applications to process. Even if we561

consider the same GPU as [DSv21] and 16-bit floating point arithmetic,562

we still only require around 1.47 · 107 ≈ 224 bytes per second over the563

network. In summary, for sufficiently large instances the cost of computing564

B2 inner products outweighs the cost of sending B vectors over a network.565

3.2 Structured bucketing566

We now adapt our previous analysis to consider sieves that utilise struc-567

tured bucketing, such as BDGL [BDGL16]. To begin, let t be an inte-568

ger and suppose, as before, that each node holds approximately N/p569

vectors in their local databases. Moreover, we assume that the random570

codes ±C0 × ±C1 × · · · × ±Ct−1 are evenly shared amongst all p nodes571

i.e. each node is responsible for m/p = 2t−1 ·
∑

i |Ci|/p buckets, and572

that each bucket contains N1/t+1 vectors. Note that as the centres are573

randomly (but deterministically, i.e. from a seed) generated, we can dis-574

tribute these centres by allowing one node to distribute a random seed575

across the network. As the size of the seed is asymptotically negligible,576

we simply assume that it has a fixed size of d ≤ dλ/ge bytes and thus577

requires (p − 1) · (2 · ϕ + d · (λ + g) + H · r) cycles to transmit across578

the network. By assuming that each node contributes exactly N1/t+1/p579

vectors to each bucket spread over σ3 messages and by re-using the sec-580

ond communication loop from Algorithm 3 we conclude that structured581

bucketing would spend around582

Tcomm = (p− 1) ·
(
(1 + σ3) · (H · r+2 · ϕ) + (λ+ g)(N1/t+1 · n · c/p+ d)

)
cycles on communication. On the other hand, recall that bucketing a583

single vector v can be done efficiently by considering around m1/t inner584
products, and hence bucketing the entire database requires approximately585



N ·m1/t · (2 ·n− 1) cycles. Given that processing a single bucket requires586

N2/t+1 · (2 · n− 1) cycles, the ratio of communication to computation is587

Tcomm

Tcomp
= (p− 1) ·

(
(1 + σ3) · (H · r + 2 · ϕ) + (λ+ g) · (N1/t+1 · n · c/p+ d)

(2 · n− 1) · (N ·m1/t +N2/t+1 ·m)

)

=
(p− 1)

(N t/t+1 ·m1/t +N1/t+1 ·m) · (2 · n− 1)

·

(
(1 + σ3) · (H · r + 2 · ϕ)

N1/t+1
+ (λ+ g) ·

(n · c
p

+
d

N1/t+1

))
.

First, note that for any choice of t the leading p − 1 term tends to588

zero even if p = N . Moreover, as σ3 is strictly less than N1/(t+1)/p the589

inner terms also grow at most linearly in n. As a result, the entire expres-590

sion is dominated by N , and thus the ratio Tcomm/Tcomp decreases as N591

increases.592

3.3 Buckets and nodes593

As mentioned above, our design is concerned with a setting where several594

larger or “beefier” nodes jointly sieve over a distributed database. In par-595

ticular, we do not consider distributing individual buckets over multiple596

nodes. Here, we argue that this is compatible with existing cluster setups.597

First, recall that the optimal number of buckets is dictated by the sieve598

we consider. Considering both BGJ1 and BDGL with one level, i.e. the599

sieves considered in practice so far [ADH+19, DSv21], the database of600

size N = 20.2075n+o(n) is stored in O(
√
N) ≈ 20.1038n buckets each hold-601

ing O(
√
N) ≈ 20.1038n vectors. In [DSv21], the maximum sieving dimen-602

sion considered was n = 150 and used 1.5TB of RAM. Thus, we expect603

≈ 215.6 ≈ 50, 000 buckets. To put that into perspective, the Frontier super-604

computer has 9472 nodes, each with 128GB of RAM.12 Thus, given that605

we have more buckets than nodes already in this dimension, our design606

choice is compatible with current supercomputer architectures. Moreover,607

it is compatible with standard academic computing infrastructures where608

many, possibly heterogeneous, powerful nodes are connected via Ether-609

net.610

4 Design & implementation611

We adapted G6K [ADH+19] to support distributed variants of both BGJ1612

and the relaxed BDGL sieve presented in [DSv21]. We chose to implement613

12 https://en.wikipedia.org/w/index.php?title=Frontier_(supercomputer)
&oldid=1218026460

https://en.wikipedia.org/w/index.php?title=Frontier_(supercomputer)&oldid=1218026460
https://en.wikipedia.org/w/index.php?title=Frontier_(supercomputer)&oldid=1218026460


these algorithms as they naturally permit different implementation trade-614

offs and design choices that may be interesting in different contexts. For615

example, our BGJ1 implementation handles buckets by storing them in616

temporary storage, whereas our BDGL implementation writes received617

buckets directly into each node’s local sieving database.618

In order to separate our changes from the existing high-level code in619

G6K, we implemented all networking code in G6K’s C++ layer by adding620

a stateful MPI object to G6K’s Siever class. This separation of networking621

code and sieving code yields several benefits. On the one hand, separating622

network code from sieving code allows us to conditionally enable and dis-623

able MPI at compile-time, removing any runtime overhead of maintaining624

an unused object. On the other hand, as all networking code is hidden625

behind a well-defined interface, we allow the possibility of substituting626

MPI with other networking libraries in future. We assume no particular627

topology and instead allow MPI to organise nodes.628

4.1 High-level design decisions629

We briefly describe the operation of our networking code. For simplicity,630

our implementation assumes that the high-level Python layer associated631

with G6K executes on a single node, ρ, with all other nodes running a632

simple C++ program that interfaces with G6K. As ρ is the node that re-633

ceives high-level instructions from the Python layer, we ordain ρ as the634

root node of the network, making ρ responsible for issuing instructions635

to all other nodes. Thus, ρ simply broadcasts all high-level instructions636

from the Python layer to the rest of the nodes, with each action handled637

opaquely from the Python layer. In practice, we represent these instruc-638

tions as two 64-bit integers, allowing the transmission of an additional639

parameter where appropriate.640

Instructions issued by ρ typically trigger some additional distributed641

computation. On the one hand, ρ may instruct all other nodes to engage642

in some sieving operation, which requires a large amount of bandwidth to643

execute successfully. On the other hand, certain context change operations644

also require additional work compared to the single node variant of G6K.645

For example, consider the task of shrinking the global database to contain646

the best N vectors. In a single node setting, finding the best N vectors647

can be achieved in O(N) by using G6K’s internally sorted list of vectors:648

however, in a multiple node setting we are required to discover the best N649

vectors globally across many lists. We note, however, that these operations650

are still cheap compared to sieving itself, with even the most expensive651

operation requiring time linear in the global database size. As shown in652
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Fig. 2: Percentage of time spent executing context changes with dimension
varying. The overhead time taken to execute context changes is small
compared to the cost of sieving. Timings were gathered across nodes S,
H, and A.

Figure 2, these costs are practically rather small compared to the cost of653

sieving, requiring at most 4% of execution time.654

Database division. We divide the global sieving database amongst nodes,655

with more powerful nodes receiving a larger share of the global database.656

At a high-level, this approach ensures that the workload is divided fairly657

amongst the nodes in the cluster. We also note that operations such as658

e.g. lifting lattice vectors can be trivially parallelised across multiple ma-659

chines.660

Serialisation of lattice vectors. Recall that G6K represents each n-dimen-661

sional lattice vector v = B·x ∈ Zn as an entry in a sieve database, storing662

both the (16-bit) integer coefficients x and the (32-bit) vector v in each663

entry. Moreover, G6K also stores additional information about v, such664

as its squared length and a unique identifier, leading to a cost of around665

1 KiB of storage per lattice vector for n = 128. Given the constrained666

network bandwidth, we serialise v using its x representation, leading to a667

bandwidth cost of 2 ·n bytes per lattice vector. Whilst this representation668

incurs an additional cost of Θ(n2) operations per lattice vector, we remark669

that this cost is rather small compared to sieving, especially for sufficiently670

large buckets. We empirically verify this claim below.671

4.2 Database management672

One particularly difficult aspect of distributed sieving is ensuring that673

the database stays free of duplicates. In more detail, the problem is that674

during sieving multiple nodes may produce the same lattice vector v and675

insert into their local database. We refer to this occurrence as a collision.676
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Fig. 3: Collision rate inside both distributed sieves with and without coun-
termeasures (abbreviated as c/m). The number of duplicate entries in-
creases steadily with the number of sieving iterations, necessitating our
countermeasures. For BGJ1 the data was recorded inside a pump with
n ∈ {55, . . . , 60}, whereas for BDGL the data was recorded for n = 68 as
the effect is more pronounced in higher dimensions. Each drop for BGJ1
corresponds to a change in sieving dimension.

As shown in Figure 3, we measured an increase in duplication of around677

1% per sieving iteration. Given that lattice sieving algorithms typically678

require many iterations to terminate, the number of unique vectors in the679

database can thus quickly shrink.680

Simply accepting this behaviour is not a viable strategy as this leads to681

a dramatic increase in the number of required buckets compared to single-682

machine sieving. This effect is to be expected: as each bucket contains a683

small number of unique vectors, most reductions are unlikely to yield684

short vectors. Moreover, these buckets likely contain multiple duplicate685

vectors, requiring expensive filtering to remove.686

We address this issue by modifying G6K’s internal hash table. Briefly,687

G6K maintains a hash table containing the 64-bit hash H(v) of all vectors688

v in the sieving database. Each hash H(v) is computed as the inner689

product of v with a global random vector in the ring Z/264Z. Notably,690

this hash scheme permits the computation of H(v ± u) = H(v)±H(u),691

allowing duplicates to be rejected without requiring the computation of692

v ± u.693

For concurrency reasons, this internal hash table is actually subdi-694

vided into several individual hash tables T0, . . . Th−1 that are individu-695

ally synchronised across all active cores. In order to support this subdi-696

vision, G6K maps each H(v) to the hash table indexed by H(v) mod h.697

Taking inspiration from this technique, we distribute the Ti amongst all698



nodes in the cluster, with each node Nj receiving some proper subset699

Mj = Ti1 , Ti2 , . . . of the set of hash tables. We then ensure consistency700

by requiring that each node maintains exclusive ownership over the vec-701

tors that belong to their hash tables: any insertion to a table Ti must702

involve the owning node Nj in some way. In practice, we implement Nj ’s703

involvement in two separate ways.704

BGJ1. As a first approach, we choose to tightly couple Nj ’s internal705

database to Mj i.e. we restrict Ni’s internal database to only containing706

vectors that live in one of the sub tables in Mj . In this approach, deal-707

ing with inserting v into the global database simply requires computing708

the hash of v before streaming v to the appropriate node Nj . From an709

implementation perspective, this approach comes with several trade-offs.710

First, this approach naturally maps to settings where produced buckets711

are only kept in memory for a short period of time: our implementation712

of the BGJ1 sieve, for example, discards of a received bucket as soon as713

it has been processed in order to save memory. In this setting, it is rather714

convenient to eagerly compute and store v = x ± y without needing to715

worry about retaining x and y. However, we note that this approach han-716

dles the situation where v is produced twice during the lifetime of the717

sieve rather lazily, relying on Ni to handle the duplicate.718

Moreover, we note that implementing this approach in a performant719

manner is rather challenging. On the one hand, streaming vectors one720

at a time requires little memory, but the latency costs for such small721

messages is likely to be prohibitive. Yet, naively batching vectors for in-722

sertions requires substantial extra storage: a slow node is likely to deal723

with insertions slowly, leading to many outstanding insertions on other724

nodes. In some instances, this cost is as large as the sieving database it-725

self; our prototype implementation of this scheme, for example, required726

around 40GB of extra storage when sieving in dimension 113, whilst the727

sieving database required 34GB of storage. Whilst the relative cost of728

this extra storage decreases as the sieving dimension grows, the overhead729

of this approach is still noticeable even in large dimensions. We resolve730

these issues by handling insertions whenever a particular batch is finished,731

which prevents the lists of pending vectors from growing too large. We732

demonstrate the efficiency of our approach in Figure 3.733

BDGL. As a second approach, we choose to decouple Nj ’s internal database734

from Mj i.e we allow Nj to insert vectors that do not belong to Mj into735

its local database. In this setting, we only require that Nj tracks which736

insertions and removals have been made to Mj during the lifetime of the737



sieve, without requiring that Nj holds these insertions locally. Put dif-738

ferently, this approach allows Nj to act as a membership oracle for Mj ,739

rather than as a storage node for Mi. In contrast to the previous approach,740

this approach allows us to handle duplicated insertions globally: we may741

simply stream the hash H(v±u) to Nj , allowing Nj to reject any vectors742

that are already present. In practice, we found this approach preferable743

in situations where buckets are retained for longer than in the BGJ1 case,744

as we no longer need to serialise new vectors across the network. We thus745

used this approach for our BDGL implementation. We demonstrate the746

efficiency of our approach in Figure 3, too.747

4.3 BGJ1748

At a high-level, our implementation of the BGJ1 sieve is almost identical749

to the approach described in Section 3.1, albeit with a few differences.750

For example, we do not insist that the sieving database is evenly divided751

across all nodes on the network, as mentioned above.752

From an operation perspective, our implementation of the BGJ1 sieve753

runs in an iterative fashion (similarly to [DSv21]). For simplicity we de-754

scribe this stage from the perspective of a single node, but note that this755

process is repeated in parallel across the entire cluster. Namely, suppose756

that some node s wishes to produce a bucket defined as all lattice vectors757

in the database close to c. To build this bucket, s broadcasts c to all758

other nodes on the network, receiving in response the number of vectors ℓ759

that are close to c in the global database. In practice, we simply run the760

BGJ1 bucketing routine against c on each node and sum the count. At761

this stage, s allocates enough storage to hold the ℓ vectors and reads the762

vectors that are close to c from the global database (over the network).763

Here, we store each received bucket in temporary storage that is separate764

from the main database: we discuss this in more detail in Section 4.3.765

With the bucket B produced, s sieves over the bucket and inserts766

newly produced vectors in the global database. It turns out that database767

insertions require some additional care, see Section 4.2. Finally, s simply768

repeats this process until the global database contains enough short vec-769

tors for the sieve to terminate.770

This scheme can be easily parallelised via a series of modifications.771

The simplest of these modifications is to allow every node in the cluster772

to request buckets simultaneously, rather than sequentially. This transfor-773

mation is trivial, as each bucketing iteration is independent. In practice,774

realising this functionality requires the use of additional synchronisation775

and multiple MPI communicators, which comes with negligible additional776



overhead. Moreover, this approach also allows us to utilise optimised777

AlltoAll implementations reducing the communication complexity for dis-778

tributing k buckets in parallel from O(k2) to around O(log k) [BHK+97].779

We then further increase the throughput of bucketing by allowing780

each node to instead request batches of multiple buckets and for multiple781

such batches to be processed simultaneously. Intuitively, the presence of782

multiple batches establishes a pipeline of work for each node, reducing783

the amount of time that each node spends in an idle state. Moreover, as784

each batch and bucket can be processed independently, each node can use785

multiple threads for better local parallelism.786

We note, however, that increasing both the number and size of each787

batch introduces a trade-off between local CPU utilisation and sieving it-788

erations. This trade-off appears because the sieving algorithms used inside789

of G6K gradually improve the database quality as buckets are produced.790

Thus, if too many buckets are processed on, say, the first iteration, then791

the database is likely to only be slightly improved. In this vein, we al-792

low nodes to vary the number of centres they issue depending on the793

size of their database. In practice, this choice reduces the number of siev-794

ing iterations compared to using the same number of centres per node.795

We remark that handling many buckets in parallel increases the mem-796

ory requirements of each node, as many extra vectors needs to be stored797

for each bucket. However, in practice this extra overhead appears to be798

small compared to the size of the sieving database (see Figure 5), and we799

found that utilising multiple batches substantially improved CPU utili-800

sation from around 40% to around 100% in dimensions as low as 75. In801

order to improve flexibility, we allow the size and number of batches to802

be controlled via a user-supplied parameter.803

Memory usage. Our implementation uses additional memory compared to804

G6K, which might seem counterproductive given that distributed sieving805

is meant to go beyond the memory limits on a single server. We thus806

discuss these additional small overheads.807

The extra memory use in our implementation can broadly be split808

into two categories. On the one hand, each node is required to store some809

additional state related to networking and job management compared to810

G6K. We find, however, that this cost is very small, requiring a maximum811

of around 5MB in our tests. We thus ignore these overheads and focus on812

the memory requirements introduced by sieving.813

There are two potential memory inefficiencies that arise from how our814

implementation handles buckets. Recall that each node stores their re-815



ceived buckets in temporary storage, rather than in their local database.816

At first glance, this decision may seem surprising, as storing these buck-817

ets separately requires extra storage. In order to explain this decision, we818

recall that each database vector v may belong to several buckets that819

are in flight at once, rather than just one. Given that this is the case,820

storing v directly in each node’s sieving database would either introduce821

duplicates globally, or require an intricate system for managing poten-822

tially overwritten vectors. In both cases, we found that the appropriate823

countermeasures were simply too slow to be performant, leading to an824

appreciable slowdown. Put differently, in practice we found it to be faster825

to simply store incoming buckets outside of the main database, at the826

cost of using slightly more memory.827

We now turn our attention to minimising the overheads associated828

with this style of bucketing. Recall that, when a batch is processed, each829

node first learns the number of vectors that they will receive, followed830

by the vectors themselves. To restrict the memory usage of processing831

buckets, we represent each produced bucket as a series of database indices832

i.e. if v = db [i] belongs to a particular bucket, we simply store i. This833

reduces the cost of storing partially built buckets to around 4 bytes per834

vector. We note that this cost is rather low: for example, a bucket built835

with G6K’s default BGJ1 parameterisation of approximately 3.2·20.10375n836

vectors per bucket would require around 128KB of additional storage in837

dimension n = 128 in this representation. Of course, this optimisation838

only applies for the initial bucketing procedure and some conversion is839

needed before actual sieving occurs. We discuss a low-level optimisation840

to this process below.841

Serialising the (vectors for the) buckets themselves is substantially842

more expensive. At a high-level, we serialise each bucket β by copying843

the x coefficient representation of each vector in β into a single C++844

std::vector, which we then send across the network. Then, whenever a845

thread comes to process the bucket, we unpack the temporary vector into846

a thread-local set of entries. Given that entries are much larger than the847

coefficient representation, this leads to a large saving over naively storing848

the vectors as entries. In practice, this always saves storage over storing849

buckets in their Entry representation, as we never have fewer than one850

bucket per thread in a batch. Note that as a vector v belongs to a bucket851

with exponentially low probability we do not expect there to be much re-852

dundant traffic when serialising multiple buckets in this way compared to,853

say, a more clever system. This claim is empirically verified in Figure 4.854
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Fig. 4: Ratio of unique vectors and total vectors sent inside a BGJ1 dis-
tributed sieve. This chart shows that even when sending multiple buckets
the number of unique vectors dominates the number of vectors that are
sent.

Even with this rather naive scheme, we can see that the added memory855

requirements are minor compared to the size of the sieving database as856

the sieving dimension increases. Indeed, suppose that there are at most857

b batches in flight at once, each containing m buckets (each of size at858

most B). Then, as each n-dimensional vector v is represented in both its859

coefficient representation (requiring 2 · n bytes) and its Entry representa-860

tion (requiring around 1KB of storage for n = 128) we conclude that a861

node with t threads will require approximately B · (b ·m · n · 2 + t · 1000)862

bytes of additional storage. Finally, note that other than B and n, all863

factors in this expression are runtime-choices that may be adjusted to864

suit the memory capacity of the target cluster. This, combined with that865

B is roughly 20.105n, means that this cost quickly becomes rather small866

compared to the storage needed to store the 20.210n entries that make up867

the global sieving database.868

We further reduce this by allowing all b batches to share q ≤ b buffers869

of temporary storage for serialisation, with buffers being re-used once a870

particular batch has been processed. We prevent deadlocks by enforcing871

that each node processes batches in sequential order: each node first pro-872

cesses batch 0, then batch 1, and so on. As this ordering is consistent873

globally, we require no expensive global synchronisation to enforce this874

ordering across nodes. In practice, this approach allows us to use relatively875

little extra memory compared to G6K, especially in the relevant dimen-876

sions. We show this effect in Figure 5. Additionally, we aggressively free877

memory as soon as it is no longer in use, re-allocating as needed.878
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Fig. 5: Overhead memory rate: ratio of extra memory used and memory
used for the sieving database inside a BGJ1 distributed sieve. The data
here was recorded across a pump with n ∈ {50, . . . , 93}.

Low-level optimisation. Our implementation makes use of several low-879

level optimisations to improve performance, of which we highlight a few880

here. Firstly, we store all received buckets contiguously in memory, i.e. in881

one memory region, substantially improving memory access patterns. In-882

tuitively, this optimisation comes “for free” with distributed sieving: as883

each bucket needs to be received from multiple nodes, we may arrange884

them in memory in an optimal order for sieving. We stress that this op-885

timisation is not free compared to the original version of G6K, as this886

choice requires extra memory compared to e.g. storing the vectors di-887

rectly in the database. However, this optimisation enables several further888

optimisations: for example, as the location of these vectors in memory is889

no longer entirely random, we are able to reduce the amount of storage890

needed for G6K’s compressed lists by around 50%. The combined effect891

of these optimisations means that our implementation performs nearly892

identically to the original version of G6K on a single machine, see Ap-893

pendix C. For larger dimensions and multiple machines see Table 3.894

4.4 BDGL895

We describe our BDGL implementation in Appendix B.896

5 Experimental results897

All of our experiments use MPICH 4.1.1 with full optimisations enabled.898

In the case of our BGJ1 experiments we begin distributed sieving in di-899

mension 90 with 8 bucketing batches and 4 auxiliary buffers. Each batch900

contains one bucket per thread per node e.g node K received 14 or 28901



buckets per batch depending on the experiment we ran. We give exper-902

imental results in Tables 2 to 4 and 6b in Appendix A. We report our903

experimental results for BDGL in Appendix B. The nodes referred to in904

these tables are listed in Table 1. Each experiment was executed exactly905

once i.e. the timings given here were the result of exactly one experiment.906

Table 1: Details of the machines used for experiments.
N CPUs F C RAM N CPUs F C RAM

H 2x Xeon Gold 6252 2.1GHz 96 768GiB A 2x Xeon E5-2690v4 2.6GHz 28 256GiB
S 2x Xeon Gold 6138 2.0GHz 40 384GiB K 2x Xeon Gold 6142 2.6GHz 32 192GiB
D 1x Xeon Gold 6138 2.0GHz 20 32GiB

Column “N” gives the node label, “F” gives the base frequency, “C” the number of
physical cores. Experiments had hyper-threading disabled and “Turbo” frequency en-
abled.
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A Additional Benchmarks1144

In Table 2 we give our main benchmarks on a homogeneous set of up to1145

five servers. This data is also plotted in Figure 1. In Table 6b we compare1146

our implementation with the original version G6K to establish that it1147

has comparable performance in a single machine multi-CPU setting. In1148

Table 6a we compare our implementation with the original version of G6K1149

in a single-CPU setting to measure the overhead of using MPI in such1150

an environment. In Table 3 we give benchmarks using a heterogeneous1151

network of three servers connected via 1Gbps Ethernet only.1152

Remark 4. We compare against CPU G6K [ADH+19] rather than the1153

GPU variant [DSv21]. This is to measure the impact of distributed com-1154

puting rather than racing against a more performant GPU implementa-1155

tion. A natural open problem is to utilise our distributed implementation1156

to collaboratively sieve on many GPU-augmented servers.1157

Given that comparing heterogeneous experiments as in Table 3 is1158

rather delicate, we explicate our methodology here. First, using the most1159

recent version of G6K13, we ran our BGJ1 experiments on node H to1160

establish the expected wall-time on a single machine. Then, we repeated1161

the BGJ1 experiments using nodes H, S and A, recording the wall-time.1162

Note that all experiments used 35 of the 40 cores available on node S due1163

to system instability. We then normalised the single node and distributed1164

wall times by the number of cores used multiplied by the clock speed.1165

That is, we compute “parallel efficiency” as:1166

“parallel efficiency” :=
clock speedH · #coresH · wall timesingle∑

c∈{H,S,A} clock speedc · #coresc · wall timedist
.

13 Commit 959fd8f

https://eprint.iacr.org/2024/739


Under this metric, a performance score of 1.0 is ideal, anything above1167

should be considered a measurement error and values ≤ 1.0 signify less1168

than ideal scaling. Put differently, under this loose metric, our BGJ1 im-1169

plementation achieves the desired linear speed-up also in a heterogeneous1170

distributed setting we considered. We stress, though, that this approach1171

can at best give a rough indication of what performance to expect as1172

it ignores factors such as available instruction sets, RAM speeds, “turbo1173

boost” etc. We consider our homogeneous benchmarks in Table 2 a more1174

reliable indicator. Yet, given that many academic teams may have a het-1175

erogeneous “cluster” of servers we also report these heterogeneous timings1176

here.1177

In the homogeneous case, this comparison straight-forwardly simplifies1178

to wall time divided by the number of cores.1179

B BDGL1180

Our BDGL implementation is again rather similar to the theoretical1181

model from Section 3.2. As before, we assume no particular topology and1182

place no restrictions of communications between nodes. We leave it to1183

future work to determine if more intricate topologies can achieve greater1184

parallelism.1185

From a practical perspective, our implementation of BDGL works as1186

follows. Similarly to the BDGL implementation found in G6K, our BDGL1187

sieve follows a round-based strategy, with sieving broken up into distinct1188

iterations. At the beginning of a sieving iteration, a single node chooses1189

a set of codes to act as bucket centres, which are then distributed across1190

the rest of the network. Notably, this distributes buckets according to the1191

power of each node, with more powerful nodes receiving more buckets to1192

sieve. Each node then locally carries out list-decoding over their database,1193

producing a series of local buckets. Once all nodes have completed this1194

step, all nodes iteratively request buckets to process in a similar manner1195

to our BGJ1 implementation. Upon receiving their buckets, each node be-1196

gins to sieve, producing new vectors for insertion. Given that these new1197

vectors are unlikely to be unique across the network, we follow a strategy1198

similar to the one followed by the BDGL implementation already present1199

in G6K. In particular, each node Ni starts sieving with an empty list1200

Ri that is used to store potential reductions: any time a new candidate1201

vector v = x ± y is found by Ni, an entry is added to Ri containing v1202

and its unique identifier. This choice introduces a trade-off between siev-1203

ing iterations and memory, as storing more potential insertions increases1204



memory usage. For the sake of our prototype implementation, we do not1205

restrict how many entries are added to Ri, but we do ensure that Ri is1206

always free of duplicates. Once all nodes have finished sieving, each Ni1207

executes a membership query on each rk ∈ Ri by first mapping rk to the1208

correct hash table slot Mj and then querying Nj . If Nj indicates that rk1209

is already in the global database (or if Nj has already been queried with1210

rk in this round), then Ni removes rk from Ri. With this completed, all1211

surviving entries in Ri are processed and inserted into Ni’s local database.1212

Given that inserting some vector v into Ni’s local database requires re-1213

moving some other vector u, we again map u’s hash to its hash table1214

slot Mj and forward this hash Nj for removal from the hash table. Once1215

these insertions have finished, all nodes check whether the database is suf-1216

ficiently reduced to terminate and continue if not. In practice, this leads1217

to our BDGL implementation performing less efficiently than our BGJ11218

implementation, similarly to the results presented in [DSv21].1219

Low-level optimisation. As a side contribution, we realise the BDGL-1220

style bucketing using a modified version of the AVX2 bucketer provided1221

in [DSv21]. In contrast to relying directly on AVX2 intrinsics, our imple-1222

mentation instead uses GCC’s vector extensions, allowing us to run the1223

bucketer on any machine supported by GCC. At the time of writing, this1224

bucketer has already been merged into G6K; however, as it may be of1225

standalone interest we also provide this bucketer as a separate program.1226

Experimental results. We give experimental results for our BDGL imple-1227

mentation in both Table 4 and Table 5. In the language of Section 2.2, our1228

experiments were conducted with the default G6K parameters of t = 21229

i.e. for a database of N lattice vectors we expect each bucket to contain1230

approximately N1/3 vectors. We took this choice to highlight the effects of1231

asymptotically smaller bucket sizes on the performance of our distributed1232

implementation. With that said, we observe that our BDGL implementa-1233

tion performs slightly worse than our BGJ1 implementation in terms of1234

wall time, as illustrated in both Table 4 and Table 5. On the other hand,1235

the amount of used CPU time is actually slightly better for BDGL than1236

BGJ1, indicating that the small bucket sizes in low dimensions prevent1237

the masking of network latency. This is to be expected: a similar conclu-1238

sion was reached in [DSv21], where an estimated crossover for BDGL and1239

a triple sieve variant on GPUs was stated to be around dimension 130.1240

Given that the serialisation costs between nodes is higher than the cost of1241

serialising vectors to a GPU, we expect that the crossover in our setting1242

would be substantially higher than dimension 130. However, in such low1243



dimensions our BGJ1 implementation also uses more memory than our1244

BDGL implementation.1245

C Comparison with the original version of G6K1246

As mentioned in Section 1.2, the original version of G6K contains sev-1247

eral multi-threaded implementations of lattice sieves. In more detail, the1248

parallel sieves in G6K utilise task parallelism, using T threads to pro-1249

cess T independent tasks at once. For instance, in the case of the BGJ11250

sieve, G6K uses T threads to build and sieve T buckets in parallel, with1251

each thread working broadly independently. Moreover, the sieving im-1252

plementations in G6K are carefully crafted to avoid common pitfalls in1253

multi-threaded programming, such as lock contention and false sharing.1254

However, we remark that the original version of G6K is not designed1255

to handle certain parallelism-based performance bottlenecks. Indeed, the1256

task-based parallelism in G6K allows each thread to access the entirety of1257

the system memory without restriction i.e. it assumes a uniform memory1258

space. In a single CPU setting, this assumption holds; each thread runs on1259

the same physical CPU, and thus access to system memory has broadly1260

the same cost across all threads. However, modern multi-processor ma-1261

chines are typically designed with a non-uniform memory architecture1262

(NUMA) i.e. each physical CPU has access to its own local system mem-1263

ory. In this setting, a thread ti running on, say, CPU 0 can access CPU1264

0’s local memory fairly cheaply. However, if ti needs to access memory1265

that is attached to, say, CPU 1, then it must do so using a dedicated bus.1266

This access can be substantially more expensive than accessing local mem-1267

ory, with some works reporting that cross-CPU memory accesses can be1268

nearly twice as expensive as local memory accesses in terms of the number1269

of required cycles [MG13]. Yet, we stress that the exact increase in cost1270

depends on the access pattern of the underlying program; for instance, a1271

program that primarily makes sequential memory accesses can typically1272

take advantage of hardware prefetching to mitigate these issues. In our1273

context, although the bulk of the memory accesses in G6K are sequential1274

in nature (cf. [ADH+19, §5.3]), we note that accessing the underlying1275

sieving database is done in an unordered fashion, and thus we would ex-1276

pect some NUMA-related effects to appear when G6K is deployed on a1277

multi-processor system.1278

We now consider our own implementation. On the one hand, our im-1279

plementation focuses on a multi-processor setting by default. Indeed, we1280

note that the can avoid all NUMA-related performance issues by simply1281



binding each process to a single physical CPU and disallowing explicit1282

cross-CPU memory access. Yet, this manual separation of memory comes1283

at a cost, as our implementation requires each process to explicitly engage1284

in the exchange of data between CPUs. Moreover, our implementation se-1285

rialises transfers lattice vectors by representing them in terms of their1286

coefficient representation (see Section 4.1) and thus our implementation1287

requires that some computation is carried out for each lattice vector. In1288

other words, it is not clear a priori whether our implementation would1289

outperform the original version of G6K in a single machine setting.1290

In order to quantify these overheads, we conducted two sets of exper-1291

iments that compare our code to the original version of G6K. For both1292

sets of experiments, we repeat each experiment three times and report the1293

average. The results for each set of experiments can be found in Table 6b1294

and Table 6a respectively. For both sets of experiments, we use 8 bucket1295

batches with 4 auxiliary buffers for our distributed code.1296

– The first of these experiments is intended to capture the differences1297

(if any) in wall-time between the original version of G6K and our1298

code when controlling for NUMA effects. In these experiments we take1299

d ∈ {116, 118, 120, 122} and use node H (cf. Table 1) with 96 cores. We1300

note that these cores are spread across two physical CPUs, and thus1301

NUMA effects are likely to be visible in these experiments. For each1302

d, we download the SVP challenge lattice in dimension d (with seed1303

= 0). Then, we use the BGJ1 implementation in the original version1304

of G6K and our code respectively, recording the wall time for each1305

experiment. In the case of the original version of G6K, we instantiate1306

a single process with 96 cores. On the other hand, for our code we1307

start two processes and bind each process to a single physical CPU1308

i.e. each process is instantiated with 48 cores. We begin distributed1309

sieving in dimension 90 and use the original version of G6K for all1310

lower dimensions.1311

– The second of these experiments is intended to capture the over-1312

head associated with using MPI. In these experiments we take d ∈1313

{90, 95, 100, 105} and use node D (cf. Table 1) with 20 cores. Unlike1314

node H, these cores are confined to a single physical CPU, and thus1315

these experiments are not susceptible to any NUMA effects. These1316

experiments follow the same format as described above i.e we execute1317

a full sieve in dimension d for both our code and the original version1318

of G6K and record the results. For our distributed code, we bind two1319

processes to the same physical CPU with 10 cores allocated to each1320



process and begin distributed sieving at dimension 80. By contrast, for1321

the original version of G6K we assign all 20 cores to a single process.1322

We now discuss these results. As can be gleaned from both Table 6b1323

and Table 6a, the wall times for the original version of G6K and our code1324

are broadly the same. On the one hand, we note that the CPU-time of our1325

implementation is consistently lower than that of the original version of1326

G6K when running experiments in a NUMA aware context. These results1327

indicate, at least in our particular setup, that there is a small benefit from1328

running experiments in a NUMA aware context. Additionally, we observe1329

that both the CPU and wall time are broadly similar in the context of1330

a single CPU machine, too. Put differently, it appears that any overhead1331

added by MPI in a single-machine setting is small relative to the other1332

costs associated with sieving.1333

D On the impact of pipelining1334

Our experiments in Section 5 critically depend on the number of batches1335

that are in flight at once. Thus, in this section we provide experimental1336

results that justify our choice of 8 batches and 4 auxiliary buffers. In1337

order to establish a baseline, we use a single node of type K (cf. Table 1)1338

with 14 threads and the original version of G6K to run a full sieve on the1339

dimension 100 SVP Challenge lattice (with seed = 0). Then, we repeat1340

this experiment with our code across 2 nodes of type K and 14 threads,1341

varying the number of batches and auxiliary buffers. In the case of the1342

two node experiments, we begin distributed sieving in dimension 90. We1343

repeat each experiment three times and record the average wall and CPU1344

time and compute the “parallel efficiency” relative to the baseline. The1345

results for each experiment are tabulated in Table 7.1346

Before discussing these experiments, we remark that it would be un-1347

wise to extrapolate based on the data in Table 7. Indeed, we view these1348

data points as indicative of how varying the pipelining parameters affects1349

sieving for our particular configuration of nodes. Moreover, the sieving1350

dimension in these experiments is rather small, and thus we caution the1351

reader that the exact impact of pipelining may change as the dimension1352

varies. However, in the context of these caveats there are several conclu-1353

sions that we can make. First, notice that using no pipelining actually1354

makes our distributed implementation slower than the baseline, despite1355

using twice as many CPU cores. Notably, this decrease in performance is1356

accompanied by an increase in CPU time, which we attribute to the time1357



that each node spends waiting for network activity. Simply put, remov-1358

ing pipelining from our implementation appears to make parallelism so1359

expensive as to remove any benefits that are granted by using more CPU1360

cores. Yet, it is clear that this slowdown vanishes as the number of con-1361

current batches are increased; indeed, we see using any form of pipelining1362

decreases the wall time relative to the baseline. This reduction broadly1363

continues as the number of concurrent batches are increased, but the1364

relative benefit diminishes as the number of batches increases. However,1365

we observe that the CPU time does not actually decrease in the same1366

manner as the wall time. First, we observe that the worst-case scenario1367

for the CPU time is the setting where no pipelining at all is used, and1368

thus we conclude that using some form of pipelining reduces the CPU1369

time in a broad sense. On the other hand, the CPU time does not always1370

decrease with the number of batches, with the minimum occurring with1371

three batches and three buffers. Although we have no theoretical expla-1372

nation for this behaviour, we speculate that the minor variance in CPU1373

time is actually an implementation artefact that relates to consistency1374

required to safely use collective operations in MPI, and thus we do not1375

consider this behaviour to be indicative of a deeper pattern.1376



Table 2: Performance evaluation for BGJ1 in a homogeneous setting.
Dim 1-14 1-28 2-14 2-28 3-14 3-28 4-14 4-28 5-14 5-28

122 133h 67.9h 60.5h 33.1h 40.1h 21.2h 33.9h 17.2h 24.6h 13.2h
1.00 0.97 1.10 1.00 1.10 1.04 0.98 0.96 1.08 1.00

120 72.0h 42.2h 34.4h 18.3h 24.9h 14.4h 19.8h 10.0h 19.7h 9.15h
1.00 0.85 1.05 0.98 0.96 0.83 0.91 0.90 0.73 0.79

118 45.4h 23.7h 24.1h 12.4h 15.9h 7.7h 12.1h 6.1h 9.9h 5.4h
1.00 0.96 0.94 0.91 0.95 0.99 0.94 0.92 0.92 0.83

116 25.2h 14.5h 11.9h 6.6h 8.6h 5.2h 7.0h 3.9h 5.7h 3.2h
1.00 0.97 1.02 0.96 0.98 0.81 0.90 0.81 0.88 0.79

114 17.6h 9.47h 10.9h 4.5h 6.22h 2.79h 4.92h 2.68h 3.78h 1.9h
1.00 0.93 0.81 0.98 0.94 1.05 0.89 0.82 0.93 0.91

BGJ1 sieving using identical machines (node K in Table 1) over a 10Gbps network.
“Dim” gives the sieving dimension, “(N-C)” indicates “N” nodes and “C” cores per
node. The first row for each dimension gives wall times, the second gives the
normalised speed-up relative to the baseline of one machine and 14 core. Here, 1.00 is
ideal.

Table 3: Heterogeneous performance evaluation for BGJ1.
Dimension Wall time CPU time Memory usage (GiB) “Parallel

H S A total efficiency”

128 102 hours 583 days 194 70 56 320 0.973
127 82 hours 380 days 184 67 54 305 0.892
124 34 hours 202 days 117 43 34 194 0.958

BGJ1 sieving using 3 machines (nodes S, H, and A in Table 1) over a 1Gbps network
with a total of 159 cores. “Dimension” gives the sieving dimension. “Parallel
efficiency” roughly compares with running the most recent version of G6K [ADH+19]
on node H. A value of 1.0 is ideal under this metric, see Section 5. Memory on
individual nodes is estimated, total memory was measured.

Table 4: Heterogeneous performance evaluation for BGJ1 and BDGL.
Wall time CPU time Total Memory

Dimension BDGL BGJ1 BDGL BGJ1 BDGL BGJ1

105 2.13h 1.91h 6.91h 21.2h 11GiB 15GiB
100 0.70h 0.68h 2.23h 6.64h 5GiB 8GiB

Results for BDGL/BGJ1 sieving using 3 machines over a 1Gbps network with a total
of 60 cores (20 per machine). “Dimension” gives sieving dimensions, Timing were
gathered on nodes S, H, and A, see Table 1.



Table 5: Performance evaluation for BDGL in a homogeneous setting.
Dim 1-14 1-28 2-14 2-28 3-14 3-28 4-28

114 4.4h 3.2h 4.9h 6.4h 4.5h 6.0h 3.1h

112 2.9h 2.1h 3.4h 3.7h 3.1h 3.4h 2.9h

110 2.0h 1.4h 2.0h 2.3h 1.8h 2.5h 2.0h

BDGL sieving using identical machines (node K in Table 1) over a 10Gbps network.
“Dim” gives the sieving dimension, “(N-C)” indicates “N” nodes and “C” cores per
node. For each dimension we give wall times.

Table 6: Performance evaluation for BGJ1 on a single machine.

(a) Single-CPU setting

Dim. Conf. Wall time CPU time
105 G 1.57 hours 31.3 hours
105 D 1.63 hours 31.3 hours

100 G 23.3 minutes 7.7 hours
100 D 27.1 minutes 8.9 hours

95 G 6.81 minutes 2.25 hours
95 D 7.71 minutes 2.49 hours

90 G 1.6 minutes 0.5 hours
90 D 2.3 minutes 0.72 hours

Using node D (cf. Table 1). All exper-
iments used 20 cores and all timings
are the average of three runs. Configura-
tion “G” refers to timings gathered using
G6K, whereas Configuration “D” refers
to timings gathered using our code.

(b) Multi-CPU setting

Dim. Conf. Wall time CPU time

122 N 31.6 hours 117 days
122 G 31.6 hours 124 days

120 N 18.7 hours 68.2 days
120 G 18.8 hours 73.7 days

118 N 11.4 hours 42.8 days
118 G 11.4 hours 44.6 days

116 N 6.1 hours 22.4 days
116 G 6.5 hours 25.3 days
Using node H (cf. Table 1). All exper-
iments used 96 cores and all timings
are the average of three runs. Configura-
tion “G” refers to timings gathered using
G6K, whereas Configuration “N” refers
to timings gathered using our code.

BGJ1 sieving for our code and G6K on a single machine.



Table 7: Performance evaluation for different numbers of batches in BGJ1.
Conf. Wall time CPU time “Parallel efficiency”

(5, 5) 14.6 minutes 6.1 hours 0.87
(4, 8) 15.0 minutes 6.4 hours 0.84
(4, 4) 15.1 minutes 6.3 hours 0.84
(3, 3) 15.1 minutes 6.0 hours 0.84
(2, 2) 16.7 minutes 6.1 hours 0.76
(1, 1) 28.4 minutes 7.1 hours 0.45
Baseline 25.4 minutes 5.9 hours 1.00

BGJ1 sieving using node K (cf. Table 1) for our code with varying numbers of
batches and auxiliary buffers. For each entry (N,M), N refers to the number of
auxiliary buffers and M refers to the number of batches that are in flight at any given
time. “Baseline” refers to the time taken to run the dimension 100 full sieve using the
original version of G6K.
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