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ABSTRACT
Fully Homomorphic Encryption (FHE) is a transformative tech-
nology that enables computations on encrypted data without re-
quiring decryption, promising enhanced data privacy. However,
its adoption has been limited due to significant performance over-
heads. Recent advances include the proposal of domain-specific,
highly-parallel hardware accelerators designed to overcome these
limitations.

This paper introduces PICA, a comprehensive compiler framework
designed to simplify the programming of these specialized FHE
accelerators and integration with existing FHE libraries. PICA lever-
ages a novel polynomial Instruction Set Architecture (p-ISA), which
abstracts polynomial rings and their arithmetic operations, serving
as a fundamental data type for the creation of compact, efficient
code embracing high-level operations on polynomial rings, referred
to as 𝑘𝑒𝑟𝑛𝑒𝑙𝑠 , e.g., encompassing FHE primitives like arithmetic and
ciphertext management. We detail a kernel generation framework
that translates high-level FHE operations into pseudo-code using
p-ISA, and a subsequent tracing framework that incorporates p-ISA
functionalities and kernels into established FHE libraries. Addition-
ally, we introduce a mapper to coordinate multiple FHE kernels for
optimal application performance on targeted hardware accelerators.
Our evaluations demonstrate PICA’s efficacy in creation of compact
and efficient code, when compared with an x64 architecture. Partic-
ularly in managing complex FHE operations such as relinearization,
where we observe a 25.24x instruction count reduction even when
a large batch size (8192) is taken into account.

1 INTRODUCTION
Data breaches on cloud servers pose a huge threat to users espe-
cially when their private data is outsourced. To ensure data privacy
throughout the whole computation, i.e., while data is in storage, in
transit, and in computation, we can deploy the Fully Homomorphic
Encryption (FHE).

FHE is an increasingly popular technology [29] because it allows
arbitrary computation of arbitrary complexity on encrypted data
without decryption and returns results in encrypted format. The
first FHE scheme was proposed in 2009 by Gentry [19]. Following
Gentry’s blueprint, most of the modern FHE schemes [8, 9, 11, 17]
are constructed over an algebraic lattice and support homomorphic
addition and multiplication over encrypted data as foundational
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operations. Typically, an FHE ciphertext is represented as the en-
cryption of a vector of multiple word-size cleartexts, and the homo-
morphic operations are done component-wise. We call these FHE
schemes word-wise FHE. A word-wise FHE ciphertext is composed
of two large-degree polynomials (e.g., 16K∼64K degree) that embed
the message vector and a certain amount of noise to ensure seman-
tic security. The ciphertext noise grows as homomorphic operations
are processed, but there exists an upper bound of the noise that
guarantees the correct decryption. An expensive operation called
bootstrapping is required to manage the noise not to exceed the
upper bound, and hence it allows homomorphic computation of
arbitrary functions. The large ciphertext size and the noise manage-
ment procedure are responsible for the renowned computational
overhead of FHE, which has been, and still is regarded as the main
obstacle for the real-world adoption of FHE.

Admittedly, there also exists another approach to construct an
efficient FHE scheme [13, 16] that supports bit-wise operations
(e.g., NAND, XOR, etc.) and digital lookup table as basic operations
and proceeds the bootstrapping procedure for every basic operation.
These FHE schemes exploit relatively small-degree polynomials and
include a much cheaper bootstrapping procedure than word-wise
FHE, which results in much lower latency. However, a ciphertext of
these FHE schemes is usually an encryption of a single bit or only
a few bits. As a result, word-wise FHE still outperforms bit-wise
FHE in terms of plaintext-ciphertext expansion ratio and amortized
computational cost.

FHE Accelerators and Compilers. In order to reduce the la-
tency of FHE schemes, research efforts from both academia and
industry have been proposed, spanning different platforms such as
CPU [3, 4], GPU [23, 33], and FPGA [5, 32]. More recently, driven
by the DARPA Data Protection in Virtual Environments (DPRIVE)
program [1], designing highly data and memory parallel ASICs for
FHE has become a popular trend which is believed to be able to
close the performance gap with cleartext programs.

Since the proposal of the first programmable FHE accelerator named
F1 [30] in 2021, there has been a solid line of work (ARK [26],
Medha [27], BASALISC [18], CraterLake [31], SHARP [25] ) aim-
ing to keep improving the performance and capabilities of the
FHE accelerators. More recently, a 2.5D chiplet-based architecture
REED [6] was proposed which demonstrates state-of-the-art per-
formance for FHE acceleration.



Figure 1: Flow of the PICA, the general compiler framework for FHE accelerators

With the availability of such FHE accelerators, a new research chal-
lenge emerges [28]: How can we easily and efficiently run FHE ap-
plications on these novel FHE accelerators? In most previous work
on FHE accelerators [6, 18, 25–27, 30, 31], Domain-Specific Lan-
guage (DSL) based approaches are proposed to develop customized
compilers targeting the specific FHE accelerator. One representative
example is CraterLake [31], the first FHE accelerator that runs FHE
applications of unbounded multiplicative depth. In [31], a Python-
embedded DSL is used to describe FHE applications. Relying on DSL
certainly helps ease the development of FHE applications. However,
this approach becomes challenging when being scaled to complex
FHE applications since these DSLs are not compatible with state-of-
the-art FHE libraries. This renders the validation of the DSL-based
FHE applications difficult. Another constraint of the compilers pro-
posed in previous work [6, 18, 25–27, 30, 31] is their customization
for their targeted accelerator. To the best of our knowledge, none of
the existing work presents extensive descriptions nor open-sourced
code for readers to understand the details of their compilers.

These FHE accelerators (a sample diagram is shown on the right end
of Figure 1) commonly share the following key elements: a compute
engine (CE) containing highly parallel processing elements tailored
for FHE arithmetic; a memory system with several hierarchies such
as high-bandwidth main memory (HBM), Cache, and on-chip regis-
ter files (RF); controllers managing instruction decoding, operations
scheduling, memory transfers etc; as well as high-speed interface
for communicating with the host. Observing these similarities in
the architecture inspires us to design a general compiler framework
that can be used for different FHE accelerators.

In this work, we propose PICA, a general polynomial instruction
based compiler framework for FHE accelerators. Our compiler is
built directly on mainstream FHE libraries such as SEAL [3] and
OpenFHE [4]. PICA intends to serve as a solid basis for designing
customized compiler targeting different hardware, including but
not limited to the upcoming FHE accelerators. We will open-source
the code of PICA soon. We summarize the contributions of our
general compiler framework as follows:

• We propose a new polynomial Instruction Set Architecture (p-
ISA) for FHE arithmetic, which defines a novel abstract interface
to highly parallel FHE hardware accelerators.

• We present a kernel framework which can map each and every
abstract high-level FHE operation into instruction sequences
(a.k.a., pseudocode) written in p-ISA.

• We present a tracing framework built on top of modern open
source FHE software libraries. Our tracing framework can vali-
date the correctness of the kernel implementation.

• We present a p-ISA mapper which can construct FHE applica-
tions into a p-ISA program using the tracing framework, the
kernel generator output, and a linking procedure.

• Finally, we present case studies and testing results on vari-
ous parameter configurations and demonstrate the flexibility
and efficiency of our compiler through the instruction count
comparisons against the x64 architecture.

2 BACKGROUND
2.1 FHE Basics
A number of FHE schemes [8, 9, 11, 12, 15–17, 20] have been sug-
gested following Gentry’s blueprint [19], and the followings are
regarded as the state-of-the-art FHE schemes with the best perfor-
mance: BGV [9], BFV [8, 17], CKKS [11] and DM/CGGI [12, 16].
The word-wise FHE schemes BGV, BFV and CKKS commonly al-
low the batch encryption of multiple word-size plaintexts (e.g., Z𝑛𝑡
for 𝑡, 𝑛 > 1) into a single ciphertext and support homomorphic
addition and multiplication as basic operations. To be precise, the
homomorphism property can be described as follows:

Dec(ADD(Enc(𝑥1, ..., 𝑥𝑛), Enc(𝑦1, ..., 𝑦𝑛))) = (𝑥1 + 𝑦1, ..., 𝑥𝑛 + 𝑦𝑛),
Dec(MULT(Enc(𝑥1, ..., 𝑥𝑛), Enc(𝑦1, ..., 𝑦𝑛))) = (𝑥1 · 𝑦1, ..., 𝑥𝑛 · 𝑦𝑛) .

Enc and Dec denote encryption and decryption algorithms, respec-
tively. ADD and MULT indicate the homomorphic addition and mul-
tiplication algorithms of ciphertexts, respectively, which will be
explained in detail later. Note that the equality in the homomor-
phism property needs to be replaced by the approximate equality
in CKKS, since CKKS supports approximate computation over re-
al/complex numbers, not exact computation.

The word-wise FHE schemes support parallel addition and multipli-
cation homomorphically in a single instruction, multiple data (SIMD)
manner. The SIMD property makes word-wise FHE schemes much
more efficient in terms of amortized computational cost, when com-
pared with bit-wise FHE schemes; and this enables a wider adoption
of these schemes for real-world applications. For this reason, we
mainly focus on word-wise FHE in the rest of the paper.
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2.2 FHE Algorithms
Let 𝑅 := Z[𝑋 ]/(𝑋𝑁 + 1) be the ring of integer polynomials modulo
(𝑋𝑁 +1) for power-of-two𝑁 , and let𝑅𝑞 := 𝑅/𝑞𝑅 = Z𝑞 [𝑋 ]/(𝑋𝑁 +1)
for any integer𝑞 > 1. Fresh ciphertexts in BGV, BFV and CKKS com-
monly consist of two polynomials over 𝑅𝑄 for some large modulus
𝑄 , i.e., (𝑐0, 𝑐1) ∈ 𝑅2

𝑄
, and it holds that

𝑐0 + 𝑐1 · 𝑠 = 𝑀 + 𝐸 (mod 𝑄)
for the secret key 𝑠 ∈ 𝑅 with small coefficients, a message 𝑀 and
a small-coefficient noise polynomial 𝐸. Note that the message and
noise are encoded properly for each scheme, e.g., 𝐸 = 𝑡 · 𝑒 for
small-coefficient polynomial 𝑒 for the plaintext modulus 𝑡 in BGV,
𝑀 = ⌊𝑄/𝑡⌉ ·𝑚 for𝑚 ∈ 𝑅𝑡 in BFV, etc.

Addition and Multiplication. The algorithms for homomorphic
addition and multiplication are defined as follows:

ADD(ct, ct′). For ct = (𝑐0, 𝑐1), ct′ = (𝑐′0, 𝑐
′
1) ∈ 𝑅2

𝑄
, compute and

output (𝑐0 + 𝑐′0, 𝑐1 + 𝑐
′
1) (mod 𝑄) ∈ 𝑅2

𝑄
.

MULT(ct, ct′). For ct = (𝑐0, 𝑐1), ct′ = (𝑐′0, 𝑐
′
1) ∈ 𝑅2

𝑄
, compute and

output (𝑐0 · 𝑐′0, 𝑐0 · 𝑐
′
1 + 𝑐1 · 𝑐

′
0, 𝑐1 · 𝑐

′
1) (mod 𝑄) ∈ 𝑅3

𝑄
.

The homomorphic multiplication induces two main problems: The
first is the noise increase, and the second is the increase of the
ciphertext order (i.e., the number of polynomials). Each ciphertext
internally contains a noise, and the decryption does not give a
correct result if the noise becomes larger than a certain level. When
two ciphertexts with the noise size 𝐵 > 0 are homomorphically
multiplied, then the noise of the resulting ciphertext is increased
to 𝑂 (𝐵2). Therefore, the noise grows exponentially in terms of the
multiplicative depth of the target computation.

Modulus-Switching (Rescaling). To control the noise growth
from homomorphic multiplication, BGV and BFV schemes support
an algorithm called modulus-switching. By switching the modulus
from 𝑄 to a smaller modulus 𝑄 ′ ≈ 𝑄/𝐵 via the operation

ct (mod 𝑄) ↦→
⌊
𝑄 ′

𝑄
· ct

⌉
(mod 𝑄 ′),

the noise size 𝑂 (𝐵2) after homomorphic multiplication is reduced
to 𝑂 (𝑄 ′/𝑄 · 𝐵2) = 𝑂 (𝐵), and hence the noise growth becomes
linear. The modulus-switching algorithm is described as follow:

MODSWITCH(ct;𝑄 ′). For ct = (𝑐0, 𝑐1) ∈ 𝑅2
𝑄
, compute and output( ⌊

𝑄 ′

𝑄
· 𝑐0

⌉
,

⌊
𝑄 ′

𝑄
· 𝑐1

⌉)
(mod 𝑄 ′) ∈ 𝑅2

𝑄 ′ .

Here, the entry-wise rounding operation ⌊·⌉ is defined differently
for each scheme. For BFV and CKKS, it is the same as the ordinary
rounding operation that outputs the nearest integer of the input
real number. For BGV, the mapping 𝑎 ↦→ ⌊𝑄

′

𝑄
· 𝑎⌉ output an integer

polynomial 𝑎′ satisfying 𝑎′ ≡ 𝑄 ′ ·𝑄−1 ·𝑎 (mod 𝑡) for the plaintext
modulus 𝑡 and is entry-wise close to 𝑄 ′

𝑄
·𝑎. Such 𝑎′ can be obtained

as 𝑎′ := (𝑄 ′ · 𝑎 + 𝛿)/𝑄 where 𝛿 := 𝑡 · (−𝑡−1 ·𝑄 ′ · 𝑎 (mod 𝑄)).

Note that the modulus-switching algorithm is called rescaling in
CKKS (denoted by RESCALE(·)), while the main purpose in CKKS is
to control the plaintext size growth contrary to the other schemes.

Relinearization. The second problem is the increase of the cipher-
text order from 2 to 3 after the homomorphic multiplication. To
repeatedly apply homomorphic multiplication, we need a new algo-
rithm that converts the order-3 ciphertext into an order-2 ciphertext,
which is called relinearization [10]. The goal of relinearization is to
convert an order-3 ciphertext (𝑐0, 𝑐1, 𝑐2) ∈ 𝑅3

𝑄
satisfying

𝑐0 + 𝑐1 · 𝑠 + 𝑐2 · 𝑠2 = 𝑀 + 𝐸 (mod 𝑄)
into an order-2 ciphertext (𝑐′0, 𝑐

′
1) ∈ 𝑅2𝑞 such that

𝑐′0 + 𝑐
′
1 · 𝑠 = 𝑀 + 𝐸′ (mod 𝑄),

where both 𝐸 and 𝐸′ are small-coefficient noise polynomials.

Assume that we have (𝑑0, 𝑑1) ∈ 𝑅2
𝑄
satisfying 𝑑0 +𝑑1 · 𝑠 = 𝑠2 + 𝐸𝑟𝑙𝑛

for a small noise 𝐸𝑟𝑙𝑛 , then it holds that

(𝑐0 + 𝑐2 · 𝑑0) + (𝑐1 + 𝑐2 · 𝑑1) · 𝑠 = 𝑀 + (𝐸 + 𝑐2 · 𝐸𝑟𝑙𝑛) (mod 𝑄).
The left-hand side is now relinearized (in terms of 𝑠), but the second
noise term 𝑐2 · 𝐸𝑟𝑙𝑛 in the right-hand side is already of 𝑂 (𝑄) size,
so this cannot be the solution.

To resolve the second-noise-term issue, we consider the decom-
position of 𝑐2 into 𝑑 > 1 small-coefficient polynomials 𝑐 (𝑖 )2 ∈ 𝑅𝑄

satisfying 𝑐2 =
∑𝑑−1
𝑖=0 𝑔𝑖 · 𝑐 (𝑖 )2 (mod 𝑄) for some public values

𝑔𝑖 ∈ Z𝑄 for 0 ≤ 𝑖 < 𝑑 . In addition, we prepare the encryption
(𝑑0,𝑖 , 𝑑1,𝑖 ) ∈ 𝑅2

𝑃𝑄
of 𝑃 · 𝑔𝑖 · 𝑠2 for some special modulus 𝑃 > 0 such

that 𝑑0,𝑖 +𝑑1,𝑖 · 𝑠 = 𝑃 ·𝑔𝑖 · 𝑠2 +𝐸𝑟𝑙𝑛,𝑖 (mod 𝑃𝑄) for some small noise
polynomials 𝐸𝑟𝑙𝑛,𝑖 for 0 ≤ 𝑖 < 𝑑 . Then, we can easily check that(

𝑐0 +
⌊
1
𝑃
·
𝑑−1∑︁
𝑖=0

𝑐
(𝑖 )
2 · 𝑑0,𝑖

⌉)
+

(
𝑐1 +

⌊
1
𝑃
·
𝑑−1∑︁
𝑖=0

𝑐
(𝑖 )
2 · 𝑑1,𝑖

⌉)
· 𝑠

= 𝑀 +
(
𝐸 + 1

𝑃

𝑑−1∑︁
𝑖=0

𝑐
(𝑖 )
2 · 𝐸 (𝑖 )

𝑟𝑙𝑛
+ 𝜏0 + 𝜏1 · 𝑠

)
,

where 𝜏0 :=
⌊
1
𝑃
· ∑𝑑−1

𝑖=0 𝑐
(𝑖 )
2 · 𝑑0,𝑖

⌉
− 1

𝑃
· ∑𝑑−1

𝑖=0 𝑐
(𝑖 )
2 · 𝑑0,𝑖 and 𝜏1 :=⌊

1
𝑃
· ∑𝑑−1

𝑖=0 𝑐
(𝑖 )
2 · 𝑑1,𝑖

⌉
− 1

𝑃
·∑𝑑−1

𝑖=0 𝑐
(𝑖 )
2 ·𝑑1,𝑖 are small-coefficient poly-

nomials. With the decomposition technique, the second noise term
is now replaced by the summation of small noises 𝑐 (𝑖 )2 · 𝐸𝑟𝑙𝑛,𝑖 and
𝜏0 + 𝜏1 · 𝑠 , which can be easily controlled by the decomposition
parameters 𝑑 , 𝑔𝑖 ’s, and the special modulus 𝑃 . As a result, the relin-
earization algorithm is decribed as follow:

RELIN(ct; {rlk𝑖 }0≤𝑖<𝑑 ). For ct = (𝑐0, 𝑐1, 𝑐2) ∈ 𝑅3
𝑄
and relineariza-

tion keys rlk𝑖 = (𝑑0,𝑖 , 𝑑1,𝑖 ) ∈ 𝑅2
𝑃𝑄

for 0 ≤ 𝑖 < 𝑑 , compute

𝑐′0 := 𝑐0 +
⌊
1
𝑃
·
𝑑−1∑︁
𝑖=0

𝑐
(𝑖 )
2 · 𝑑0,𝑖

⌉
and 𝑐′1 := 𝑐1 +

⌊
1
𝑃
·
𝑑−1∑︁
𝑖=0

𝑐
(𝑖 )
2 · 𝑑1,𝑖

⌉
,

and output (𝑐′0, 𝑐
′
1) (mod 𝑄) ∈ 𝑅2

𝑄
.

For BGV, the mapping 𝑎 ↦→ ⌊ 1
𝑃
·𝑎⌉ outputs an integer polynomial 𝑎′

which satisfies 𝑎′ ≡ 𝑃−1 ·𝑎 (mod 𝑡) for the plaintext modulus 𝑡 and
is entry-wise close to 1

𝑃
·𝑎. Such 𝑎′ can be obtained as 𝑎′ := (𝑎+𝛿)/𝑃

where 𝛿 := 𝑡 · (−𝑡−1 · 𝑎 (mod 𝑃)).

RNS-prime Decomposition. In state-of-the-art FHE libraries [2–
4], residue number system (RNS) is generally used to represent

3



each ciphertext with a large modulus 𝑄 for better performance. In
the RNS implementation, each modulus 𝑄 is set to be a product of
distinct primes 𝑄 = 𝑞0𝑞1 · · ·𝑞ℓ . One of the simplest decomposition
technique in relinearization that can be used in RNS representation
is the RNS-prime decomposition, which sets 𝑑 = ℓ + 1, 𝑐 (𝑖 )2 := 𝑐2

(mod 𝑞𝑖 ), 𝑔𝑖 =
∏

𝑗≠𝑖 𝑞 𝑗 ·
(
(∏𝑗≠𝑖 𝑞 𝑗 )−1 (mod 𝑞𝑖 )

)
for 0 ≤ 𝑖 ≤ ℓ ,

and let 𝑃 be a prime of the size similar to each 𝑞𝑖 .

Rotation. The word-wise FHE schemes also commonly support
the homomorphic rotation of the plaintext vector for any rotation
index 𝑘 , i.e., ROTATE(Enc(𝑧1, ..., 𝑧𝑛);𝑘) = Enc(𝑧𝑘+1, 𝑧𝑘+2, ...., 𝑧𝑘 ). To
be precise, the plaintext vector ®𝑧 is encoded into a polynomial𝑀 =

𝑀 (𝑋 ) via ring isomorphism, and the entry rotation of ®𝑧 corresponds
to the Galois automorphism𝑋 ↦→ 𝑋𝑘 on𝑀 (𝑋 ) for proper integer 𝑘 .
From the ciphertext (𝑐0, 𝑐1) ∈ 𝑅2

𝑄
satisfying 𝑐0 (𝑋 ) + 𝑐1 (𝑋 ) · 𝑠 (𝑋 ) =

𝑀 (𝑋 ) + 𝐸 (𝑋 ) (mod 𝑄), we can directly obtain

𝑐0 (𝑋𝑘 ) + 𝑐1 (𝑋𝑘 ) · 𝑠 (𝑋𝑘 ) = 𝑀 (𝑋𝑘 ) + 𝐸 (𝑋𝑘 ) (mod 𝑄).

Similarly to relinearization, we bring the modified key 𝑠 (𝑋𝑘 ) back
to the original key 𝑠 (𝑋 ) with the decomposition technique. As a
result, the rotation algorithm is described as following:

ROTATE(ct;𝑘, {rotk𝑖 }0≤𝑖<𝑑 ). For ct = (𝑐0, 𝑐1) ∈ 𝑅2
𝑄
and rotation

keys rotk𝑖 = (𝑑0,𝑖 , 𝑑1,𝑖 ) ∈ 𝑅2
𝑃𝑄

for 0 ≤ 𝑖 < 𝑑 , compute

𝑐′0 := 𝑐0 (𝑋𝑘 ) +
⌊
1
𝑃
·
𝑑−1∑︁
𝑖=0

𝑐1 (𝑋𝑘 ) (𝑖 ) · 𝑑0,𝑖

⌉
, and

𝑐′1 :=

⌊
1
𝑃
·
𝑑−1∑︁
𝑖=0

𝑐1 (𝑋𝑘 ) (𝑖 ) · 𝑑1,𝑖

⌉
,

and output (𝑐′0, 𝑐
′
1) (mod 𝑄) ∈ 𝑅2

𝑄
.

Bootstrapping. By definition, bootstrapping is a homomorphic
evaluation of the decryption circuit [19], which refreshes the inter-
nal noise and themodulus of a ciphertext. Technically, the bootstrap-
ping algorithm is a composition of basic FHE operations described
above including homomorphic addition, multiplication, modulus-
switching, relinearization and rotation. Hence, the acceleration of
these basic operations directly implies the acceleration of bootstrap-
ping, which is the main computational bottleneck of FHE.

2.3 FHE Implementation in Double-CRT
Format

As noted in the previous subsection, the state-of-the-art FHE li-
braries [2–4] exploit the RNS representation of each ciphertext to
enhance the performance by avoiding the multi-precision arith-
metic modulo 𝑄 , which is generally hundreds of bits. Moreover,
since every ciphertext consists of several polynomials, we utilize
a ring isomorphism called Number Theoretical Tranform (NTT)
for more efficient polynomial arithmetic. For any prime 𝑞 ≡ 1
(mod 2𝑁 ), NTT modulo 𝑞, denoted by NTT𝑞 (·), maps a polynomial
𝑎 ∈ 𝑅𝑞 to an 𝑁 -dimensional vector NTT𝑞 (𝑎) ∈ Z𝑁𝑞 , while preserv-
ing addition and multiplication. Namely, it holds that NTT𝑞 (𝑎 +𝑏) =
NTT𝑞 (𝑎) + NTT𝑞 (𝑏) (mod 𝑞) and NTT𝑞 (𝑎 · 𝑏) = NTT𝑞 (𝑎) ⊙ NTT𝑞 (𝑏)
(mod 𝑞) where ⊙ is the entry-wise multiplication of vectors.

To apply both RNS and NTT, the ciphertext modulus 𝑄 is chosen
as a product of distinct primes 𝑄 = 𝑞0𝑞1 · · ·𝑞ℓ such that 𝑞𝑖 ≡ 1
(mod 2𝑁 ). Here, we call each prime 𝑞𝑖 an RNS prime and ℓ the
ciphertext level. Then, each polynomial 𝑎 in 𝑅𝑄 corresponds to
(ℓ + 1) small polynomials 𝑎 (𝑖 ) := 𝑎 (mod 𝑞𝑖 ) ∈ 𝑅𝑞𝑖 for 0 ≤ 𝑖 ≤ ℓ .
Each small polynomial 𝑎 (𝑖 ) ∈ 𝑅𝑞𝑖 has one-to-one correspondence
with an 𝑁 -dimensional vector NTT𝑞𝑖 (𝑎 (𝑖 ) ) ∈ Z𝑁𝑞𝑖 . Therefore, the
large-coefficient polynomial 𝑎 ∈ 𝑅𝑄 can be represented as an (ℓ+1)-
tuple of 𝑁 -dimensional vectors NTT𝑞𝑖 (𝑎 (𝑖 ) ) ∈ Z𝑁𝑞𝑖 for 0 ≤ 𝑖 ≤ ℓ ,
which is called the double-CRT format [22].

In the rest of the paper, we use the double-CRT format as the default
format of a ciphertext.We say that a polynomial is in normal domain
if the polynomial is in RNS representation but NTT is not applied.
Otherwise, if a polynomial is in the double-CRT format, then we
say that the polynomial is in NTT domain.

3 COMPILER FRAMEWORK FOR FHE
ACCELERATORS

Our primary object is to design a general compiler frameworkwhich
automatically maps an FHE application to the FHE accelerators.
Note that automatic generation of the FHE application is beyond
the scope of this work, interested readers can refer to the state-of-
art FHE compilers work such as HEIR [7] which automates code
generation overmultiple FHE schemes. Another note tomake is that
this work mainly focuses on the compiler support for the word-wise
FHE schemes including BGV and CKKS. Note that the BFV scheme
is equivalent to BGV in proper parameter setting (e.g., 𝑄 ≡ ±1
mod 𝑡 ), and BFV algorithms are identical to those of BGV and/or
CKKS. For the other line of FHE schemes including DM/CGGI and
their compiler support, refer to ArctyrEX [21] for details.

Figure 1 presents the high-level flow of PICA. An FHE application is
fed as input and parsed through the tracing framework to generate
a data trace as well as a program trace. In the offline phase, kernels
for each of the FHE operations are generated. Next, traces together
with kernels are sent to the p-ISA mapper which stitches kernels
together according to the trace information. In the end, our compiler
framework generates a p-ISA programwhich can be easily validated
by a simulator and then run directly on the FHE accelerator.

3.1 p-ISA
As noted in Section 2.1, FHE arithmetic heavily relies on polynomial
operations. Therefore, we first propose new a polynomial Instruc-
tion Set Architecture (p-ISA) to serve as the interface between the
software front-end and the hardware back-end.

We define p-ISA following a new native polynomial data type. Each
operand in the instruction represents a fixed-size polynomial which
contains 𝑏 coefficients, for the batch size 𝑏 determined by the paral-
lelism offered by the FHE accelerator. Each coefficient is computed
modulo a given RNS prime 𝑞. Each instruction then carries out com-
putations on these polynomial operands following the descriptions
in Table 1. It is easy to observe that p-ISA only contains a reduced
set of polynomial instructions that are required as basic operations
in implementing complex high-level FHE operations.
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Table 1: List of instructions contained in the Polynomial Instruction Set Architecture (p-ISA)

Instruction Operands Details

padd 𝑑, 𝑐, 𝑐′, 𝑞 Add two input polynomials 𝑐, 𝑐′ modulo 𝑞 and store the result 𝑑 at a new address
psub 𝑑, 𝑐, 𝑐′, 𝑞 Subtract two input polynomials 𝑐, 𝑐′ modulo 𝑞 and store the result 𝑑 at a new address
pmul 𝑑, 𝑐, 𝑐′, 𝑞 Multiply two input polynomials 𝑐, 𝑐′ in NTT domain entry-wise modulo 𝑞 and store the result 𝑑 at a new address
pmuli 𝑑, 𝑐, 𝑖𝑚𝑚,𝑞 Scale an input polynomial 𝑐 by an immediate 𝑖𝑚𝑚 modulo 𝑞 and store the result 𝑑 at a new address
pmac 𝑑, 𝑐, 𝑐′, 𝑞 Multiply two polynomials 𝑐, 𝑐′ in NTT domain entry-wise modulo 𝑞 and add the result into an accumulator polynomial 𝑑
pmaci 𝑑, 𝑐, 𝑖𝑚𝑚,𝑞 Scale an input polynomial 𝑐 by an immediate 𝑖𝑚𝑚 modulo 𝑞 and add the result into an accumulator polynomial 𝑑
pntt 𝑑, 𝑐, 𝑞 Perform forward NTT on an input polynomial 𝑐 in normal domain modulo 𝑞 and store the result 𝑑 at a new address
pintt 𝑑, 𝑐, 𝑞 Perform inverse NTT on an input polynomial 𝑐 in NTT domain modulo 𝑞 and store the result 𝑑 at a new address

For multiply-related instructions (i.e., pmul, pmuli, pmac, pmaci),
as explained in Section 2.3, we use the double-CRT format of the
polynomial as the default format. This representation simplifies the
definition of these instructions. For example, the polynomial multi-
plication (pmul) is naturally defined as the entry-wisemultiplication
of two input polynomials. We also define instructions pntt and
pintt for forward and inverse NTT transformations. On the other
hand, addition/subtraction of polynomials is domain independent.

Note that the p-ISA presented in Table 1 only intends to serve as a
basis for development of FHE accelerators and compilers. Users can
easily expand the p-ISA to exploit the functionalities provided by
the hardware accelerator. It is equally important to note that the p-
ISA only contains compute instructions. Depending on the specific
design of the memory system in the accelerator, memory instruc-
tions need to be defined accordingly. An accelerator-specific assem-
bler (the dotted box in Figure 1) will insert these memory instruc-
tions between compute instructions to make sure that operands are
moved to the right places before and after computation.

3.2 Kernels
Kernels consist of a pre-compiled library where each of the FHE
operations is converted into a separate p-ISA program. Our kernel
generation framework supports a wide range of configurations.
The user can first pick an FHE scheme, for example CKKS or BGV.
Next, users choose the target security level and the multiplica-
tive depth, which automatically determines the FHE parameters
including the ring dimension 𝑁 and maximum ciphertext modulus
𝑄𝑚𝑎𝑥 = 𝑞0𝑞1 · · ·𝑞ℓ𝑚𝑎𝑥

. Moreover, the kernel framework can take
into account the parallelism offered by the FHE accelerator, namely
the batch size 𝑏. For example, a polynomial 𝑐 (𝑖 )𝑟 of the large ring
dimension𝑁 can be partitioned into 𝑁

𝑏
smaller ones, namely 𝑐 (𝑖 ) ( 𝑗 )𝑟

for 0 ≤ 𝑗 < 𝑁
𝑏
, each of size 𝑏 in order to fit on the accelerator. Then,

the entry-wise addition and multiplication on each small-degree
polynomial 𝑐 (𝑖 ) ( 𝑗 )𝑟 naturally correspond to those on 𝑐 (𝑖 )𝑟 , regardless
of how the partition of 𝑐 (𝑖 )𝑟 into 𝑐 (𝑖 ) ( 𝑗 )𝑟 s has been done.

There are various ways to compute 𝑁 -dimensional NTT through 𝑏-
dimensional NTT operations that would be supportable in the FHE
accelerator with the batch size 𝑏. For example, when we partition
𝑐
(𝑖 )
𝑟 :=

∑𝑁−1
𝑘=0 𝑓𝑘 ·𝑋𝑘 for 𝑓𝑘 ∈ Z𝑞𝑖 into 𝑐

(𝑖 ) ( 𝑗 )
𝑟 :=

∑𝑏−1
𝑘=0 𝑓𝑁

𝑏
𝑘+𝑗 ·𝑋

𝑁
𝑏
𝑘

so that 𝑐 (𝑖 )𝑟 =
∑𝑁

𝑏
−1

𝑗=0 𝑋 𝑗 · 𝑐 (𝑖 ) ( 𝑗 )𝑟 , then it holds that NTT𝑞𝑖 (𝑐
(𝑖 )
𝑟 ) =

∑𝑁
𝑏
−1

𝑗=0 NTT𝑞𝑖 (𝑋 𝑗 ) ⊙NTT𝑞𝑖 (𝑐
(𝑖 ) ( 𝑗 )
𝑟 ),where ⊙ denotes the entry-wise

multiplication. Note that NTT𝑞𝑖 (𝑐
(𝑖 ) ( 𝑗 )
𝑟 ) can actually be obtained

through 𝑏-dimensional NTT since 𝑐
(𝑖 ) ( 𝑗 )
𝑟 is contained in the 𝑏-

dimensional polynomial ring Z𝑞𝑖 [𝑌 ]/(𝑌𝑏 + 1) for 𝑌 := 𝑋
𝑁
𝑏 . More-

over, NTT𝑞𝑖 (𝑋 𝑗 ) is pre-computable for all 𝑖 and 𝑗 . Hence, NTT𝑞𝑖 (𝑐
(𝑖 )
𝑟 )

can be obtained with only use of 𝑏-dimensional NTT.

In the end, the user can choose the FHE operation from awide range
of choices, as listed in Table 2. Given the configuration, our kernel
generation framework can then automatically generate a kernel
which describes the algorithmic realization of the FHE operation
step by step, using p-ISA defined in Section 3.1. In Table 2, the ker-
nels are classified into two types: Arithmetic and Adjustment. The
“Arithmetic” type includes the FHE operations supporting homo-
morphic arithmetic on encrypted plaintext vectors, including entry-
wise addition (ADD, ADD_PLAIN, ADD_CONST), entry-wise mul-
tiplication (MUL,MUL_PLAIN,MUL_CONST, SQUARE) and the
vector rotation (ROTATE). The other operationsMOD_SWITCH,
RESCALE, andRELIN in the “Adjustment” type do not change the in-
ternal plaintext of the ciphertext but control the noise growth (Refer
to Section 2.2 for details). Note that the kernels listed in Table 2 are
commonly shared by both BGV and CKKS, except MOD_SWITCH
which is used for the level adjustment in BGV and the equivalent op-
eration RESCALE used in CKKS. Since bootstrapping is a sequence

Table 2: List of kernels for CKKS and BGV schemes

FHE Ops Type Details

ADD Arithmetic Addition of two ctxts
ADD_PLAIN Arithmetic Addition of a ctxt with a ptxt
ADD_CONST Arithmetic Addition with a constant

SUB Arithmetic Subtraction of two ctxts
SUB_PLAIN Arithmetic Subtraction of a ctxt with a ptxt
SUB_CONST Arithmetic Subtraction with a constant

MUL Arithmetic Multiplication of two ctxts
MUL_PLAIN Arithmetic Multiplication of a ctxt with a ptxt
MUL_CONST Arithmetic Multiplication of a ctxt with a const

SQUARE Arithmetic Squaring a ctxt
ROTATE Arithmetic Ctxt rotation

MOD_SWITCH* Adjustment Ctxt modulus-switching from 𝑞 to 𝑞′
RESCALE* Adjustment Ctxt rescaling from 𝑞 to 𝑞′
RELIN Adjustment Ctxt relinearization from order 3 to 2
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Algorithm 1 Kernel for Homomorphic Multiplication

Require: Input ciphertexts (𝑐0, 𝑐1 ) ∈ 𝑅2
𝑄

and (𝑐′0, 𝑐′1 ) ∈ 𝑅2
𝑄

at level ℓ for𝑄 =
∏ℓ

𝑖=0 𝑞𝑖 .
Ensure: Output ciphertext (𝑑0, 𝑑1, 𝑑2 ) = (𝑐0 · 𝑐′0, 𝑐0 · 𝑐′1 + 𝑐1 · 𝑐′0, 𝑐1 · 𝑐′1 ) ∈ 𝑅3

𝑄

1: for 𝑖 in range (ℓ + 1) do
2: pmul, 𝑑 (𝑖 )

0 , 𝑐
(𝑖 )
0 , 𝑐

′(𝑖 )
0 , 𝑞𝑖 ⊲ 𝑑0 = 𝑐0 · 𝑐′0 (mod 𝑄 )

3: pmul, 𝑑 (𝑖 )
1 , 𝑐

(𝑖 )
0 , 𝑐

′(𝑖 )
1 , 𝑞𝑖

4: pmac, 𝑑 (𝑖 )
1 , 𝑐

(𝑖 )
1 , 𝑐

′(𝑖 )
0 , 𝑞𝑖 ⊲ 𝑑1 = 𝑐0 · 𝑐′1 + 𝑐1 · 𝑐′0 (mod 𝑄 )

5: pmul, 𝑑 (𝑖 )
2 , 𝑐

(𝑖 )
1 , 𝑐

′(𝑖 )
1 , 𝑞𝑖 ⊲ 𝑑2 = 𝑐1 · 𝑐′1 (mod 𝑄 )

6: end for

Algorithm 2 Kernel for BGV Relinearization (with RNS-prime decomposition)

Require: Input ciphertext (𝑐0, 𝑐1, 𝑐2 ) ∈ 𝑅3
𝑄

at level ℓ (≤ ℓ𝑚𝑎𝑥 ) for 𝑄 =
∏ℓ

𝑖=0 𝑞𝑖 , relinearization keys (𝑑0,𝑖 , 𝑑1,𝑖 ) ∈ 𝑅2
𝑃𝑄𝑚𝑎𝑥

for 0 ≤ 𝑖 ≤ ℓ for 𝑄𝑚𝑎𝑥 =∏ℓ𝑚𝑎𝑥
𝑖=0 𝑞𝑖 and a special prime 𝑃 = 𝑞ℓ𝑚𝑎𝑥 +1, and metadata 𝑡 , [−𝑡−1 ]𝑃 and [𝑃−1 ]𝑞𝑖 for 0 ≤ 𝑖 ≤ ℓ .

Ensure: Output ciphertext (𝑐′0, 𝑐′1 ) ∈ 𝑅2
𝑄

1: for 𝑖 in range (ℓ + 1) do
2: pintt, 𝑐𝑡 (𝑖 ) , 𝑐 (𝑖 )2 , 𝑞𝑖 ⊲ Input ciphertext is in dual-CRT format
3: for 𝑗 in range (ℓ + 2) do
4: 𝑖𝑑𝑥 = ℓ𝑚𝑎𝑥 + 1 if 𝑗 == (ℓ + 1) else 𝑗

5: pntt, 𝑐𝑡 ′( 𝑗 ) , 𝑐𝑡 (𝑖 ) , 𝑞𝑖𝑑𝑥 ⊲ Basis extension from𝑄 = 𝑞0𝑞1 · · ·𝑞ℓ to 𝑃𝑄
6: for 𝑟 in range 2 do
7: inst = pmul if 𝑖 == 0 else pmac
8: inst, 𝑐𝑡 ′′( 𝑗 )𝑟 , 𝑐𝑡 ′( 𝑗 ) , 𝑑 (𝑖𝑑𝑥 )

𝑟,𝑖
, 𝑞𝑖𝑑𝑥 ⊲ Inner product 𝑐𝑡 ′′𝑟 =

∑ℓ
𝑖=0 𝑐

(𝑖 )
2 · 𝑑𝑟,𝑖 (mod 𝑃𝑄 )

9: end for
10: end for
11: end for
12: for 𝑟 in range 2 do
13: pintt, 𝛿𝑟 , 𝑐𝑡

′′(ℓ+1)
𝑟 , 𝑞ℓ𝑚𝑎𝑥 +1

14: pmuli, 𝛿𝑟 , 𝛿𝑟 , [−𝑡−1 ]𝑃 , 𝑞ℓ𝑚𝑎𝑥 +1 ⊲ Compute 𝛿 = −𝑡−1 · 𝑐𝑡 ′′𝑟 (mod 𝑃 )
15: for 𝑗 in range (ℓ + 1) do
16: pntt, 𝑐′( 𝑗 )𝑟 , 𝛿𝑟 , 𝑞 𝑗

17: pmuli, 𝑐′( 𝑗 )𝑟 , 𝑐
′( 𝑗 )
𝑟 , 𝑡, 𝑞 𝑗 ⊲ Finish computing 𝛿 = 𝑡 · (−𝑡−1 · 𝑐𝑡 ′′𝑟 (mod 𝑃 ) )

18: padd, 𝑐′( 𝑗 )𝑟 , 𝑐
′( 𝑗 )
𝑟 , 𝑐𝑡

′′( 𝑗 )
𝑟 , 𝑞 𝑗 ⊲ Add 𝛿 to 𝑐𝑡 ′′𝑟 to make it divisible by 𝑃

19: pmuli, 𝑐′( 𝑗 )𝑟 , 𝑐
′( 𝑗 )
𝑟 , [𝑃−1 ]𝑞 𝑗

, 𝑞 𝑗 ⊲ Divide by 𝑃

20: padd, 𝑐′( 𝑗 )𝑟 , 𝑐
′( 𝑗 )
𝑟 , 𝑐

( 𝑗 )
𝑟 , 𝑞 𝑗 ⊲ Compute the final result

21: end for
22: end for

of the basic FHE operations including homomorphic addition, mul-
tiplication, modulus-switching, and rotation, bootstrapping can be
fully simulated with the kernels listed in Table 2.

We present pseudocodes for generating two kernels as examples:
Homomorphic multiplication (Algorithm 1), and BGV relineariza-
tion (Algorithm 2). For simplicity, we assume that 𝑏 = 𝑁 . Refer to
Section 2.2 for more details on the underlying math formulas.

3.3 Tracing Framework
We developed a tracing framework for the purpose of validating
the correctness of kernel implementations by utilizing open source
FHE libraries. The tracing framework is designed to be embedded
directly into FHE libraries, such that inputs, outputs, and any addi-
tional context parameters for FHE computation can be intercepted.

The main functionality of the tracing framework is collecting the
FHE Data Trace and FHE Program Trace, as shown in Figure 1.

The FHE Program Trace module logs all the processed FHE opera-
tions, while executing an FHE application, such as operation names,
symbols of inputs and outputs. A trace example of performing an
FHE multiply with relinearization, 𝑐𝑡𝑧 = RELIN(MULT(𝑐𝑡𝑥 , 𝑐𝑡𝑦)),
is shown in Figure 2. Alongside the symbol names of inputs and
outputs, and kernel name, the tracing framework collects a list of
parameters such as the number of RNS primes, the ciphertext order
and level, as well as the multiplicative depth of every traced object.

All inputs and outputs as well as context parameters are collected
by the FHE Data Trace module. The data is composed of two base
fields, the metadata and data polynomials. Metadata contains all
the pre-computable constant parameters and polynomials required
for handling the p-ISA instructions, while data polynomials are the
collection of coefficient vectors for all inputs and outputs, corre-
sponding with the FHE program trace.

Another feature of the tracing framework is to emulate the inter-
mediate representation of the polynomial objects, by maintaining
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0:CKKS,16384,MULT,ct01f9,8,3,2,2,ct018d,8,2,1,2,ct01ba,8,2,1,2,
1:CKKS,16384,RELIN,ct0298,8,2,2,2,ct01f9,8,3,2,2,

Figure 2: Trace of Homomorphic Multiplication with Relin-
earization. Input ciphertexts (at address ct018d and ct01ba)
with ring dimension 16384, 8 RNS primes, order 2, depth 1,
and level 2, of MULT generate a ciphertext (at address ct01f9)
with order 3, depth 2, level 2, and it is relinearized into a
ciphertext (at address ct0298) with order 2 through RELIN.

static single-assignment (SSA) representations [14] of the polyno-
mial objects. The SSA manager applies the renaming scheme to
replace the symbol of output objects whenever it is a duplicate of
one or more input objects while the tracer framework logs each
FHE computation activity. This feature works jointly with an SSA
graph generator in the p-ISA mapper (in the next section), in order
to optimally compile an FHE application into a p-ISA program.

3.4 p-ISA mapper
The p-ISAmapper generates the p-ISA program using tracing frame-
work output and the kernel generator. One required pre-processing
step is flattening the context keys and data into kernel compatible
format, which is handled in the tracing framework. As shown in a
sample homomorphic multiplication kernel in Algorithm 1, cipher-
text objects need to be flattened in the form of multiple coefficient
vectors such as 𝑐𝑡_𝑟_𝑖_𝑘 for 𝑟 ∈ [0, 𝑅), 𝑖 ∈ [0, ℓ] and 𝑘 ∈ [0, 𝑁 /𝑏)
where 𝑅, ℓ and 𝑏 denote the ciphertext order, level and the batch
size of the FHE accelerator, respectively. The mapping process
matches the kernel generator outputs with flattened symbol names,
and allocates temporary outputs with intermediate symbols. For
example, from the BGV relinearization kernel as shown in Algo-
rithm 2, operands 𝑐𝑡, 𝑐𝑡 ′, 𝑐𝑡 ′′ and 𝛿 are automatically recognized
and treated as temporary outputs, which will later be replaced with
intermediate symbols.

During the mapping process, the SSA graph generator builds an
abstract representation of procedures to build a dependency graph
and identify duplicate instructions. The execution order is adjusted
accordingly to achieve overall optimal performance.

4 VALIDATION AND PERFORMANCE
We use the OpenFHE library [4] to validate the correctness of the
kernels and estimate the performance compared to CPU architec-
tures. In OpenFHE-CKKS, ciphertext bookkeeping operations such
as level/depth matching for input ciphertexts/plaintexts are handled
beneath the context evaluator layer. Hence the calls to log the traces
and polynomials are inserted directly into the OpenFHE source code.
For instance, in order to correctly trace the polynomial coefficients
in homomorphic addition, instead of tracing the application-level
function EvalAdd(·), the tracing command is directly added inside
of the function (See Figure 3).

We set the p-ISA batch size 𝑏 = 8192 and tested three different ring
dimensions 𝑁 : 16384, 32768 and 65536. The ciphertext order is al-
ways set to 2 for both inputs and outputs, except for multiply opera-
tions (MUL, MUL_PLAIN, MUL_CONST and SQUARE) and relinearization.

/ / openfhe −deve lopment / s r c / pke / l i b / schemebase / base −
l e v e l e d s h e . cpp # L613

t emp l a t e < c l a s s Element >
vo id LeveledSHEBase <Element > : : Eva lAddCore InP lace (

C i phe r t e x t <Element >& c i p h e r t e x t 1 ,
Cons tC iphe r t ex t <Element > c i p h e r t e x t 2 ) c on s t {
/ / T r a c e r : temporary i npu t to s t o r e c i p h e r t e x t 1
auto tmp_c tx t 1 = c i p h e r t e x t 1 −>Clone ( ) ;

s t d : : v e c to r <Element >& cv1 = c i p h e r t e x t 1 −>GetE lements
( ) ;

c on s t s t d : : v e c to r <Element >& cv2 = c i p h e r t e x t 2 −>
GetE lements ( ) ;

s i z e _ t c 1 S i z e = cv1 . s i z e ( ) ;
s i z e _ t c 2 S i z e = cv2 . s i z e ( ) ;
s i z e _ t c Sma l l S i z e = s t d : : min ( c 1S i z e , c 2 S i z e ) ;

/ / p r o f i l e po lynomia l a d d i t i o n po r t i o n
CALLGRIND_TOGGLE_COLLECT ;
f o r ( s i z e _ t i = 0 ; i < c Sma l l S i z e ; i ++) {

cv1 [ i ] += cv2 [ i ] ;
}
CALLGRIND_TOGGLE_COLLECT ;

i f ( c 1 S i z e < c 2 S i z e ) {
cv1 . r e s e r v e ( c 2 S i z e ) ;
f o r ( s i z e _ t i = c 1 S i z e ; i < c 2 S i z e ; i ++) {

cv1 . emplace_back ( cv2 [ i ] ) ;
}

}
/ / c a l l t r a c i n g framework
/ / op name , output , i n pu t s . . .
PISA_TRACER ( "ADD" , c i p h e r t e x t 1 , tmp_ctx t1 ,

c i p h e r t e x t 2 ) ;
}

Figure 3: OpenFHE EvalAdd(·) with Tracing Command

We set the maximal ciphertext level ℓ𝑚𝑎𝑥 = 9 and the current ci-
phertext level ℓ = 7. Due to the randomness of the RNS polynomial
coefficients, the test has been iterated 50 times. The tracer plugins
are inserted into 13 FHE operations (except MODSWITCH) in Table 2.

4.1 Simulator
We implemented a simulator which models the functional behavior
of the instructions defined in Table 1. Our simulator easily validates
the functional correctness of a p-ISA program by using the data
trace collected from the tracing framework. First, the corresponding
polynomial inputs and metadata are fed as inputs. Next, the simu-
lator runs a sequence of instructions following the p-ISA program
which produces polynomial outputs. These outputs are compared
with the reference outputs extracted from the tracing step, and this
completes the functional validation for a given p-ISA program.

4.2 Comparison of Instruction Counts
In this section, the efficacy of PICA in generation of compact and ef-
ficient code is demonstrated through the comparison of instruction
counts against CPU, including the essential I/O instructions. As FHE
computation suffers from runtime overhead of up to 30,000x [24]
on CPU, a great reduction in instruction counts achieved with PICA
can bring benefits such as performance speedup, increased through-
put and lower power consumption compared to CPU. Note that
our evaluation is done with no parallelization enabled on the CPU
side. For CPU instruction analysis, the benchmark was performed
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Table 3: Average instruction count of HE kernels on CPU and
PICA

HE Kernel 𝑁 CPU PICA

ADD
16k 3,149,183 141
32k 6,294,911 269
64k 12,586,367 525

ADD_PLAIN
16k 1,574,576 125
32k 3,147,440 237
64k 6,293,168 461

ADD_CONST
16k 2,251,479 125
32k 4,481,215 237
64k 8,935,900 461

MUL
16k 16,747,977 189
32k 33,463,311 365
64k 66,886,536 717

MUL_PLAIN
16k 7,082,123 125
32k 14,160,011 237
64k 28,315,787 461

MUL_CONST
16k 6,328,948 125
32k 12,624,926 237
64k 25,207,831 461

SUB
16k 3,018,156.5 141
32k 6,032,880.3 269
64k 12,062,104.1 525

SUB_PLAIN
16k 1,509,001.7 125
32k 3,016,432.3 237
64k 6,030,981.4 461

SUB_CONST
16k 3,030,957.4 125
32k 6,052,661.7 237
64k 12,081,265.6 461

SQUARE
16k 13,537,590 205
32k 27,037,459 397
64k 54,037,662 781

RESCALE
16k 138,324,270.5 855
32k 290,160,708.7 1,757
64k 606,322,450.9 3,621

RELIN
16k 333,250,917 1,629
32k 687,863,031 3,341
64k 1,418,840,126.7 6,861

ROTATE
16k 318,364,826.5 2,157
32k 657,951,529.8 4,461
64k 1,359,094,767.4 9,229

on Intel Xeon®Platinum 8360Y 2.4GHz processor with 1024GB of
RAM and 72 cores, running Ubuntu 22.04. We used 𝑣𝑎𝑙𝑔𝑟𝑖𝑛𝑑 to
collect instructions generated for every traced FHE operation, and
OpenFHEwas compiled with gcc-11.4 using the−𝑂3 flag. The collec-
tion toggle macro, 𝐶𝐴𝐿𝐿𝐺𝑅𝐼𝑁𝐷_𝑇𝑂𝐺𝐺𝐿𝐸_𝐶𝑂𝐿𝐿𝐸𝐶𝑇 , was added
to where the actual polynomial computation occurs, as shown in
the code example in Figure 3.

Formemorymapping, we defined two additional instructions, dload
and dstore. Insertion of these memory instructions will be handled
by an accelerator-specific assembler. The context parameters such
as NTT twiddle factors and roots of unity of each RNS modulus
for keyswitching operations, are loaded in the memory with dload.
For polynomials, the inputs and outputs are loaded and stored with
the keyword poly, using dload and dstore, respectively. Tem-
porary inputs and outputs computed within kernels are directly

Table 4: Average instruction count on CPU divided by p-ISA
batch size alongside PICA for 𝑁 = 64𝑘

HE op CPU PICA
ADD 1,536.4 (2.93x) 525

ADD_PLAIN 768.2 (1.67x) 461
ADD_CONST 1,090.8 (2.37x) 461

MUL 8,164.9 (11.39x) 717
MUL_PLAIN 3,456.5 (7.50x) 461
MUL_CONST 3,077.1 (6.67x) 461

SUB 1,472.4 (2.80x) 525
SUB_PLAIN 736.2 (1.60x) 461
SUB_CONST 1,474.8 (3.20x) 461
SQUARE 6,596.4 (8.45x) 781
RESCALE 74,014.0 (20.44x) 3,621
RELIN 173,198.3 (25.24x) 6,861
ROTATE 165,905.1 (17.98x) 9,229

BOOTSTRAP 91,602,252.9 (6.28x) 14,577,494

linked to intermediate registers, thus explicit I/O instructions are
not required.

From Table 3, we can observe that PICA demonstrates a huge re-
duction in instruction count. The main reason is that the FHE op-
erations in x64 compute each coefficient individually, while PICA
compute a vector of coefficients parallelly in SIMD manner. The
results show that the number of instructions for both CPU archi-
tectures is larger than that from p-ISA, by at minimum, 11, 545.46
times. For a fair comparison, we divided the instruction counts from
CPU execution by the batch size 𝑏 = 8192 to estimate the number
of instructions required per batch, as shown in Table 4. We observe
that 1) “Arithmetic” type kernels are relatively cheaper, and 2) PICA
substantially outperforms CPU, in terms of instruction efficiency,
for “Adjustment” type kernels (up to 25.24x gap), which require
many NTTs and INTTs. Even with a hypothetical CISC/RISC high-
end processor capable of handling a vector of width 8192 in parallel,
our framework still outperforms by over 25x in terms of efficiency
in compact code generation.

For validation of bootstrapping capabilities, the performance of a
single iteration of OpenFHE-CKKS bootstrapping has been mea-
sured on both CPU platform and PICA. We set 𝑁 = 65536, ℓ𝑚𝑎𝑥 =

38, and use the same batch size (𝑏 = 8192) for testing. On aver-
age, the total instruction count for CPU was 750.4 billion, while
PICA generated 14.58 million instructions. With 1/𝑏 applied to CPU
instruction count, PICA results in the instruction efficiency of 6.28x.

5 CONCLUSION
We propose PICA, a general polynomial instruction based compiler
framework for FHE accelerators. Combining a novel p-ISA, a kernel
generation framework, a tracing framework, as well as a p-ISA map-
per, PICA can automatically convert and run an FHE program on
the back end hardware accelerators. PICA demonstrates its usability
and efficiency through comparison with batched instruction counts
on CPU platforms. PICA will be immediately accessible to the gen-
eral public through open source code release. Our work will serve
as great groundwork especially for those interested in designing
an efficient compiler for their customized FHE accelerators.
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