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Abstract

We investigate the feasibility of permissionless consensus (aka Byzantine agreement) under
standard assumptions. A number of protocols have been proposed to achieve permissionless
consensus, most notably based on the Bitcoin protocol; however, to date no protocol is known
that can be provably instantiated outside of the random oracle model.

In this work, we take the first steps towards achieving permissionless consensus in the stan-
dard model. In particular, we demonstrate that worst-case conjectures in fine-grained complex-
ity, in particular the orthogonal vectors conjecture (implied by the Strong Exponential Time
Hypothesis), imply permissionless consensus in the random beacon model—a setting where a
fresh random value is delivered to all parties at regular intervals. This gives a remarkable
win-win result: either permissionless consensus exists relative to a random beacon, or there are
non-trivial worst-case algorithmic speed-ups for a host of natural algorithmic problems (including
SAT).

Our protocol achieves resilience against adversaries that control an inverse-polynomial frac-
tion of the honest computational power, i.e., adversarial power A = T 1−ε for some constant
ε > 0, where T denotes the honest computational power. This relatively low threshold is a
byproduct of the slack in the fine-grained complexity conjectures.

One technical highlight is the construction of a Seeded Proof of Work : a Proof of Work
where many (correlated) challenges can be derived from a single short public seed, and yet still
no non-trivial amortization is possible.
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1 Introduction

A consensus (aka Byzantine agreement) [50, 44] protocol enables the participants to agree on an
input value, even in the presence of a malicious adversary who has the ability to corrupt a number
of the parties. In a permissioned consensus protocol, as all classical protocols are, it is assumed that
the identities of the parties participating in the protocol are known in advance, and, moreover, that
participants have reliable, authenticated1 channels to one another. In the permissionless setting,
on the other hand, participants only know an upper bound on the number of parties — none of
the other participants’ identities are known. Furthermore, the adversary is capable of injecting
and “spoofing” messages in the network, making the exact number of actual participants hard to
determine.

In the most basic formulation of the permissionless consensus problem, three properties are
sought: (i) Agreement — all honest parties agree on the same output value, (ii) Validity — if all
honest parties start with the same input value, the output is determined from this input, and (iii)
Termination — all honest parties produce an output in a finite number of steps. As we will see (cf.
Section 1.2), the level of adversity present in the permissionless setting makes it infeasible to solve
the Byzantine agreement problem in the permissionless setting even assuming (1) a synchronous
model of communication where the protocol proceeds in well defined message passing rounds, (2)
a public setup or a beacon that regularly emits random values made available to participants at
each round, (3) that the adversary does not control any of the protocol participants (i.e., no party
corruptions are allowed), and (4) an upper bound to the number of participants is known to all
parties.

Given the extent of this impossibility, it is worth asking whether the permissionless setting
is a feasible domain for Byzantine agreement. This question was answered in the affirmative by
Nakamoto with his Bitcoin blockchain proposal [48]. Indeed, the premise of Nakamoto’s workaround
is that it would be possible to reach agreement in the permissionless setting by utilizing “proofs of
work” (PoWs), i.e., requiring from the participants to solve a moderately hard problem in order
to transmit valid messages to each other. The potential of this approach can be seen immediately
in the context of the impossibility outlined below (Section 1.2), since the main argument relies on
the adversary’s ability to simulate parties “in his head” and a PoW would impose a computational
burden to do so. It thus follows that there is a potential for a Byzantine agreement protocol to
work in the permissionless setting by imposing a computational assumption on the adversary.

Discovering such an assumption has proven to be a remarkably elusive proposition. Based on
the beautiful observation suggested by Nakamoto’s work, a number of works, starting with [31],
have built on it and presented permissionless Byzantine agreement protocols. Despite the progress,
we still do not know how to achieve agreement outside the Random Oracle (RO) model [6]. Indeed,
in most cases, the protocols are directly analyzed in the RO model [31], or they are based on crypto-
graphic primitives that they themselves have no known instantiation outside the RO model [33, 34].
A main obstacle is the “moderate hardness” of the PoW concept that is much easier to argue in
an idealized model such as the RO’s, but much more difficult to capture in a standard model of
computation.

Motivated by this, we make a decisive step towards realizing permissionless Byzantine agreement
in the standard model. Our primary contributions are threefold:
1. A simple notion of a PoW scheme that suffices to construct permissionless consensus in the

random beacon model. This, for the first time, shows what flavor of PoWs suffices in the stan-
dard model of computation to achieve permissionless agreement assuming public random coins

1And in some cases private, such as randomized protocols in the information-theoretic setting.
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are available to all participants and a suitable computational assumption. Our methodology
first uses our PoW notion to yield a weak agreement variant where agreement holds uncondi-
tionally, while validity is allowed to sometimes fail. We then use this weak variant as a building
block to obtain graded consensus by a suitable amplification technique, which easily yields full
consensus in the random beacon model.2

2. (Worst-case) Conjectures in fine-grained complexity, such as SETH [40, 11] or the Orthogonal
Vectors conjecture [30, 3], suffice to realize this notion of PoW, thus yielding permissionless
consensus in the random beacon model from simple worst-case conjectures in complexity.

3. The consensus protocol mentioned above requires beacon outputs of length proportional to the
number of parties. We show that if, in addition to the fine-grained conjectures, one assumes
the Decisional Diffie Hellman assumption (DDH) is sub-exponentially secure (cf. [41] ), there
is a permissionless consensus protocol that uses beacon outputs of length independent of the
number of parties. Critical to achieving this are (1) a novel notion of a Seeded PoW, where a
short public seed can be expanded into many PoW challenges (this transformation does not
require DDH), and (2) a fine-grained approach to zero-knowledge (building on an approach
by Ball et al. [4]). Both of these contributions may be of independent interest. A byproduct
of this transformation are the first PoWs with arbitrary polynomial gap that do not require a
random oracle (assuming the k-Orthogonal Vectors Conjecture and sub-exponential DDH).

PoWs inherently require a source of fresh randomness to be used safely and avoid precomputation
attacks. Famously, Bitcoin relies explicitly on a heuristic source of fresh randomness obtained from
the headline of The Times newspaper on a date near the deployment of the protocol [8], and
implicitly on the ability of the underlying hash function to form chains that are unpredictable:
indeed, guessing the hash value of any future chain allows a precomputation attack. Previous
works (e.g., [31, 2]) have non-trivially relied on the RO model to argue these properties. Our
result drops the RO modeling requirement for permissionless BA showing that, under suitable
computational assumptions, a randomness beacon is sufficient. Note that a randomness beacon is
no stronger assumption than the RO, as it is possible to realize the former from the latter (cf. [2]).
Furthermore, and perhaps more interestingly, it is also a setup assumption that, contrary to the
RO, can be realized directly on its own right3: for example, via the invocation of a suitable sunspot
setup [17] that allows for deterministic extraction.

1.1 Our Results

Model and Assumptions. Before summarizing our results, we begin by describing the model in
which we construct permissionless consensus and the assumptions from fine-grained complexity we
utilize.

The permissionless setting. While message passing is reliable in the permissionless setting, the
sources of messages and the number of parties participating in the protocol critically is not. The
adversary can inject messages to be delivered in any order, and the actual number of parties is chosen
adversarially only subject to a known upper bound on the number of parties. Time is divided into
rounds, with each active honest participant allowed a fixed number of computational steps per

2The reader may wonder why the PoW scheme presented in [4] doesn’t directly give a permissionless consensus
protocol. The reason is that in Nakamoto’s protocol the PoW proving time must follow a geometric distribution, and
it is not clear how to get this property from the scheme in [4] without an RO while retaining hardness. On the other
hand, our (classical) approach to consensus directly benefits from deterministic-time PoW provers, as all parties are
expected to produce a PoW by the end of the round deadline.

3In contrast to a RO, a beacon has a feasibly short description.
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round. For convenience, we will use rounds of different length as suited for the underlying protocol
and its computational requirements. To ensure that the adversary cannot just flood the honest
parties’ incoming communication tape, an upper bound on the number of messages the adversary
may inject is also imposed. Furthermore, in each round the adversary is allowed to determine the
order with which messages are delivered to each honest party.

Random beacon model. All parties have access to a random value that is sampled from a uniform
distribution in each round. The adversary is allowed to access it first at the onset of the round —
and even influence the way messages are scheduled to be received by each honest party after seeing
it.

Conjectures in fine-grained complexity. The Orthogonal Vectors Problem, or OV, is the following
simple combinatorial problem:

Input: n vectors v1, . . . ,vn ∈ {0, 1}d

Decide: Does there exist i, j such that 〈vi,vj〉 = 0?

Problem Orthogonal Vectors (OV)

One can equivalently think of this problem as the following: Given n subsets from a universe of size
d, determine if there exists a pair of disjoint sets.

For c ≥ 1, the fastest existing algorithms for OV with dimension d = c log n run in time
n2−1/O(log c) [1, 18]. In particular, as d grows beyond log n, the time complexity approaches that of
the trivial O(n2d)-time algorithm. The failure to effectively bypass this n2 barrier has led to the
conjecture that OV requires n2−o(1) time for d = ω(log n):

Conjecture 1 (Orthogonal Vectors Conjecture (OVC) [54, 56]). For all ε > 0, there exists c ≥ 1
such that OV requires n2−ε time on instances with d = c log n.

We note this is a worst-case conjecture. In this work, we rely on slightly stronger variants of
this conjecture, that OV does not admit any non-uniform (and alternatively, probabilistic two-
sided constant-error) algorithm that runs in time n2−ε, for ε > 0. Violating this conjecture would
immediately yield a host of algorithmic improvements to many important problems, perhaps most
notably Satisfiability. In particular, the orthogonal vectors conjecture is in fact implied by the Strong
Exponential Time Hypothesis or SETH (similarly, its strengthenings are implied by corresponding
strengthenings of SETH [40, 11, 54]). The converse is not known to be true.

Conjecture 2 (Strong Exponential Time Hypothesis (SETH) [40, 11, 12]). For all ε > 0, there
exists k ≥ 1 such that k-SAT requires 2(1−ε)n time.

The Orthogonal Vectors problem can in fact be generalized to the k-Orthogonal Vectors Problem,
which effectively asks: Given n subsets from a universe of size d, is there a way to choose k sets
such that their intersection is empty?

Input: n vectors v1, . . . ,vn ∈ {0, 1}d

Decide: Does there exist i1, . . . , ik such that
∑d
j=1 v

i1
j · · ·v

ik
j = 0?

Problem k-Orthogonal Vectors (kOV)

Note that 2OV = OV. This problem is conjectured to require nk−o(1) for d = ω(log n):
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Conjecture 3 (k-Orthogonal Vectors Conjecture (kOVC) [54, 56]). For all ε > 0, there exists c ≥ 1
such that kOV requires nk−ε time.

This conjecture is also implied by the Strong Exponential Time Hypothesis (similarly, kOVC’s
variants are implied by SETH’s variants).

Proofs of Work from Fine-Grained Complexity. A Proof of Work (PoW), introduced by
Dwork and Naor [25], enables a Prover party to convince, relative to a random challenge, a Verifier
party that a certain amount of computation was performed. In particular, no adversary that uses
significantly fewer steps than those used by the “honest” Prover algorithm can convince the Verifier
to accept. In addition, the Verifier must be much more efficient than the Prover.

It is also useful for PoWs to not be amortizable — that is, given many proofs, a malicious Prover
should not be able to convince the Verifier in time less than what it takes to separately prove each
instance.

Unlike many other cryptographic primitives, PoW schemes necessitate very fine-grained assump-
tions because the honest Prover running time should be as close to the bound on adversarial running
time as possible.

Protocol-friendly PoWs. Ball et al. [3, 4] showed how to construct PoW schemes, satisfying Dwork
and Naor’s definition, from worst-case assumptions about natural problems in fine-grained complex-
ity (such as OVC mentioned above), yielding an exciting win-win.4 These schemes had the following
non-amortization guarantee: Given m challenges that require t time individually, it is impossible
to produce proofs for all m challenges in time significantly less than m · t. Or, in other words, the
naïve strategy of solving each instance one-by-one is effectively optimal.

While this result is exciting, it unfortunately falls short of what one would ultimately desire from
a PoW scheme (and what we require in the present work to achieve consensus). Loosely speaking,
one should require non-amortization to hold even over partial solutions where the adversary can
decide what subset of the challenges to focus on. In particular, we introduce a new “protocol-
friendly” PoW promise: Given m challenges that require t time individually, producing ` < m
accepting proofs requires time ` · t, for any (large enough) `. In other words, the naïve strategy of
honestly producing proofs for any ` instances one-by-one is effectively optimal.

In this work we give a novel analysis to show that the PoW schemes of Ball et al. [3, 4], in fact
already achieve this notion.

(Protocol-Friendly) PoW Theorem (Informal). Assuming OVC (Conjecture 1 above), there
exists a Proof of Work scheme where the honest prover runs in time O(n2), the verifier runs in time
Õ(n), and for any m = poly(n) and ` = m1−o(1) and any ε > 0, no adversary running in time
` · n2−ε that is given m random challenges can produce ` accepting proofs with probability 1/no(1).

Assuming Conjecture 3, this can be extended to yield interactive proofs with provers running in
time O(nk) and verifiers running in time Õ(n), and guarantees against adversaries running in time
` · nk−ε. Additionally, assuming an efficient Correlation-Intractable Hash [15, 13, 16] for Round-by-
Round Soundness [14] protocols yields a non-interactive PoW with the same characteristics as the
Fiat-Shamir transform.

Ball et al. constructed their schemes by (a) providing a worst-case to average-case reduction
from kOV to the problem of evaluating a particular family of polynomials: FOVk.5 They then
demonstrated that (b) FOVk admits a direct sum theorem (which says solving m instances requires

4Dwork and Naor themselves gave some candidates, for example assuming that existing attacks on the Ong-
Schnorr-Shamir signature scheme could not be improved.

5They additionally observed that this technique applies to a variety of problems in fine-grained complexity. Later,
others [36, 9, 35] extended this method to show that the problem of counting k-cliques is itself hard on average.
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m times as much computation as a single instance), and (c) the problem admits a doubly efficient
proof system. Then, to produce a proof of work, the Prover simply evaluates FOVk on a random
challenge, and uses in proof system to convince the verifier that the evaluation is correct.

To strengthen their result, it suffices to simply improve upon (b): prove what we term a robust
direct sum theorem for the problem of evaluating FOVk: correctly evaluating any ` out ofm random
instances requires ` times as much work as evaluating a single instance.

Robust Direct Sum Theorem (Informal). Assuming the kOV conjecture (Conjecture 3 above),
for any m = poly(n) and ` = m1−o(1) and any ε > 0, no algorithm running in time ` · n2−ε that
is given m random independent inputs to FOVk can correctly evaluate ` of them with probability
1/no(1).

We remark that this theorem holds not simply with respect tom random, independent instances,
but additionally with respect to a specific joint pseudorandom distribution that only has Õ(m1/kn)
bits of entropy. (This “derandomized” robust direct sum theorem is the technical core of our next
result.)

Seeded proofs of work. It is often desirable to be able to generate a large number of PoW challenges
with very little communication. For example, in the context of this paper, we will use a random
beacon to generate many PoW challenges in each epoch. Intuitively, in a model without ROs,
instantiating such a beacon with long output is likely to incur significant efficiency overhead.

With this in mind, we introduce the notion of a Seeded PoW scheme, where a short public seed
can be expanded to any of m PoW challenges with the same (strengthened) promise as above, even
when the adversary is holding the seed. It is not clear how to generically compile a PoW scheme
into a Seeded PoW scheme, even using cryptographic assumptions, because of the public nature
of the seed (the distribution over challenges it specifies cannot be pseudorandom in a traditional
cryptographic sense).

Nonetheless, we show that Ball et al.’s PoW scheme can be adapted into a Seeded PoW scheme,
by demonstrating that the robust direct sum theorem holds relative to a particular “pseudorandom”
joint distribution over batches of m instances (as opposed to simply i.i.d. uniform batches) that
admits an invertible sampler.

(Protocol-Friendly) Seeded PoW Theorem (Informal). Assuming the kOV conjecture (Con-
jecture 3 above), there exists a Seeded PoW scheme where the honest prover runs in time O(n2), the
verifier runs in time Õ(n), and for any m = poly(n) a seed of length Õ(m1/kn) can be efficiently
expanded to m instances of size Õ(n) such that for any ` = m1−o(1) and any ε > 0, no adversary
running in time ` · n2−ε that is given the seed can produce ` accepting proofs with probability better
than 1/no(1).

Zero-knowledge PoWs. A zero-knowledge PoW (zkPoW) [4] satisfies the properties of a PoW as well
as a zero-knowledge property. Classical zero-knowledge is trivial in this setting because Proofs of
Work can be generated in polynomial time. Instead, we use a more precise notion of zero-knowledge:
the simulator should run with time complexity proportional to that of the verifier — in our case
Õ(n1+δ), for arbitrarily small constant δ > 0.

This is an important property in the context of protocol-friendly PoWs as it allows simulation
of PoWs in the context of a reduction to an underlying hard computational problem provided the
complexity of the simulator is low. More concretely, this gives a generic way to get security for
our Seeded PoW scheme against an adversary who not only can try to amortize work across ` out
of m challenges, but additionally sees a number of (correlated) honest proofs as well. (In the case
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of vanilla protocol-friendly PoWs where challenges are independent, this stronger security follows
simply from encoding the honest proofs as non-uniform advice.)

Assuming subexponential DDH, we present and realize a concretely efficient zkPoW construction
based on our seeded PoW primitive in a way that also satisfies a Proof of Knowledge property, i.e.,
it is possible to extract a witness from any convincing prover. The core of this protocol is a simple
Schnorr-based Fiat-Shamir-friendly compiler for making sumcheck-based proofs zero-knowledge. A
by-product of this theorem is the first non-interactive PoW with a superquadratic prover/verifier
gap without a random oracle, from natural assumptions.

(Protocol-Friendly) Seeded ZK-PoW Theorem (Informal). Assuming the kOV conjecture
(Conjecture 3) and subexponentially-secure DDH, for any δ > 0 there exists an (extractable) Zero-
Knowledge Seeded PoW scheme (in the public uniformly random string [URS] model) where the
honest prover runs in time O(nk+δ), the verifier runs in time O(n1+δ), and for any m = poly(n),
a seed of length Õ(m1/kn) can be efficiently expanded to m instances of size Õ(n) such that for any
` = m1−o(1) and any ε > 0, no adversary running in time ` · nk−ε that is given the seed can produce
` accepting proofs with probability 1/no(1).

Honest proofs can be simulated in time O(n1+δ), the knowledge extractor runs in time O(n1+δ),
and the length of the URS is O(n1+δ).

Permissionless Consensus. Next, armed with our protocol-friendly PoWs, we put them to use
in the context of consensus. Our construction follows the versatile weak-to-graded-to-full consensus
approach (cf. [43, 26]), and non-trivially adapts it to a setting where the adversary may temporarily
control a majority of the messages sent in the protocol. As the name implies, we first design
a protocol that achieves weak consensus, a Byzantine agreement variant where the Agreement
property is relaxed to allow some of the honest parties to fail returning ⊥.

Our first modification to avoid sybil attacks, is that every time a subprotocol is executed,
participants parse the random beacon output as a sequence of PoW instances, associate each instance
with an input message (multiple instances are associated with the same message), and then solve
a random instance corresponding to the message of their choice and share the related witness with
other participants to convey their support for this message.

A complication that arises at this stage is that the adversary can enforce a high level of disparity
in the views of honest parties by revealing different PoW witnesses it produced to different parties.
For this reason, an additional (short) round of communication is added to ensure that most of the
PoW instances exchanged become common in the views of all honest parties. This approach nearly
unifies the views, to a degree sufficient to enable (weak) agreement.

A second issue is that the security of the PoW schemes we construct fails with non-negligible
probability, while we strive to achieve consensus with only negligible error. The problem is that when
the PoW security fails, the adversary is overrepresented by computing more PoWs than expected,
and may control the majority of the messages created, thus making it impossible to achieve validity.
To circumvent this problem we (i) run the weak consensus subprotocol repeatedly to amplify security
and ensure that in the majority of the runs PoW security holds with overwhelming probability,
and then (ii) apply an adequate error-correcting technique to correct any errors introduced by the
temporary loss of honest majority. As we prove, weak consensus can be indeed “error-corrected”
and validity be ensured with overwhelming probability, an interesting result by itself; in the initial
conception of weak consensus temporary loss of honest majority was not a concern!

Next, we use the above protocol as a subprotocol to achieve graded consensus [26], a variant
where the output of each honest party is associated with a grade in {0, 1} that signals to an honest
party whether all honest parties have reached the same output or not. We show that weak consensus
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implies graded consensus by a similar amplification and error-correcting technique. Finally, utilizing
the random beacon, we then turn graded consensus into a full-fledged consensus protocol. This
brings us to our main result stated informally as follows:

Permissionless Consensus Theorem (Informal). Assuming the kOV conjecture for k ≥ 2
(Conjecture 3 above), permissionless consensus with negligible error is feasible in the random beacon
model provided that the ratio of the total number of computational steps performed by the honest
parties (as a function of n) over that of the adversary is nε for some ε > 0, where n is the security
parameter.

While it is necessary to assume that the total number of computational steps of the honest par-
ties is greater than that of the adversary, as otherwise consensus is impossible, we note that under
stronger assumptions, e.g., the RO model, permissionless consensus can be achieved by only assum-
ing that the total honest computational power slightly exceeds that of the adversary. Interestingly,
the same assumption suffices in our case if the adversarial gap ε in the worst-case conjecture we
employ tends to zero.

Further, note that, as described, the consensus protocol requires random beacon outputs of
length proportional to the number of honest parties (or their cumulative computational power),
something that may be prohibitively long in practice. We overcome this problem by incorporating
our Seeded NIZK-PoW: for the resulting consensus protocol, it suffices to have aO(n2)-long reference
string that will be interpreted as a ZK-PoW seed. The key difference in the reduction is that we
have to use the ZK simulator to ensure its complexity remains within bounds.

1.2 Technical Overview

First, we outline the impossibility result for Byzantine agreement in the permissionless setting with
a random beacon and also given an upper bound U on the number of parties, demonstrating that
computational assumptions are necessary (even in the random beacon model). For the sake of
contradiction, consider a protocol Π capable of solving agreement. Suppose there are two sets of
parties S0, S1, numbering n > 0 participants each with U ≥ 2n, and each holding initial input
0, 1, respectively. Define first an execution E where the adversary is not active and the parties in
S0 ∪ S1 run protocol Π. Given that Π satisfies Agreement and Termination, all parties are capable
of producing the same output b ∈ {0, 1}. Next, consider two other executions Ea, a ∈ {0, 1}, where
Sa consists of honest parties and the adversary spoofs and injects all messages that would have been
produced by the parties in S1−a if they were actual participants in the protocol — the adversary
is capable of simulating them “in his head” and communicating on their behalf since the network
model allows him to inject messages and spoof their source. By Validity it must be the case that
the honest parties in Sa in execution Ea terminate with output a, for both cases a ∈ {0, 1}. This
results in a contradiction, since all three executions we defined, E,E0, and E1, are identical.

Observe that the argument would still hold if a public setup was available to the parties in the
form of a randomness beacon that is available in each round (but it would not hold in the case
of private setup: in this case the parties could acquire access to a public-key directory and hence
resolve any uncertainty of “permissionless” participation essentially transforming the setting into
the classical permissioned one where parties have authenticated channels to each other). Moreover,
it is also easy to verify that the impossibility result holds even if the adversary is computationally
bounded with a computation quota on par with n participants. We remark that the above reasoning
adapts a classic impossibility argument for honest-majority consensus (cf. [29]) to the permissionless
setting. Note that a related impossibility result in the permissionless setting was explored for the
problem of state machine replication in [49] arguing that access to a “PoW oracle” is necessary for
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that problem.
Given the impossibility above, the open question is thus whether permissionless consensus is

feasible once the computational power of the honest parties exceeds that of the adversary.

Protocol-Friendly PoWs. Recall from above that the PoW recipe due to Ball et al. [3, 4] works
by first defining a specific family of polynomials, FOVk. This family of polynomials corresponds
to an efficient arithmetization of the k-orthogonal vectors problem. Evaluating FOVk faster in the
worst-case immediately implies faster algorithms for kOV. Ball et al. then showed that FOVk

admits (a) a (tight) doubly efficient proof system and (b) a direct sum theorem.
Part (a) says that there exists a k-round interactive proof system (Prover,Verifier) for the relation

(X,Y = FOVk(X)) where Prover runs in time Õ(nk) and Verifier runs in time Õ(n). In the case of
k = 2, this proof system is non-interactive (although the verifier is randomized).6

Part (b), the direct sum theorem for FOVk, says that evaluating FOVk correctly onm = poly(n)
uniformly random instances requires m · nk−ε time, assuming kOVC.

The PoW scheme then amounts to simply treating the challenge, X, as a random input to FOVk,
evaluating the polynomial to get FOVk(X) = y, and generating a doubly efficient proof that the
polynomial was evaluated correctly. Thus, the security and efficiency of the PoW is an immediate
consequence of the soundness and efficiency (resp.) of the proof system. In particular for security,
any cheating Prover that can generate m proofs in time m ·nk−ε that convince the Verifier to accept
can be immediately used (by the soundness of the proof system) to violate the consequence of the
direct sum theorem, and hence kOVC. Hence, to build a protocol-friendly PoW (with the guarantee
that solving `-out-of-m instances requires ` · nk−ε), it suffices to improve the direct sum theorem of
Ball et al.7

To build a seeded (protocol-friendly) PoW, we will show that the robust direct sum theorem holds,
not simply with respect to random independent instances, but to a particular joint pseudorandom
distribution. Because there is an efficient, invertible function that samples this distribution using
just Õ(m1/kn) random bits, we can use the sampler to expand the random seed. Because the
sampler can be efficiently inverted, including the seed does not help the adversary.

Recall that the robust direct sum theorem for FOVk says that for any m = poly(n) and ` =
m1−o(1) and any ε > 0, any adversary solving ` instances in time ` · nk−ε succeeds with probability
at most n−o(1). The proof of this theorem relies on two key properties of FOVk:
1. FOVk is a low-degree (degree kd = Õ(1)) multivariate polynomial. This means that the “truth

table” of this function corresponds to a Reed-Muller codeword, a locally list-decodable code;

2. FOVk is (worst-case) downward self-reducible: an instance X of size Õ(N) for N = m1/kn can
be reduced to solving a batch of m instances of size Õ(n). Thus, solving this batch in time
m · nk−ε for ε > 0 immediately yields an algorithm for the single instance that runs in time
Nk−ε′ for some ε′ > 0.

Put together, this means that FOVk admits a downward random self-reduction with a list-decoding
guarantee.

The hard pseudorandom distribution, Dpr, is obtained by simply evaluating the downward self-
reduction on a random instance of the appropriate size.

We now are ready to sketch the high-level proof of this theorem. We will sketch (and ultimately
prove) the case of hardness relative to the pseudorandom distribution Dpr. To obtain the robust

6More generally, a non-interactive proof system where the Prover runs in time Õ(nk) and Verifier runs in time
Õ(nk/2) is possible.

7We note that other methods are possible, however we believe our robust direct sum theorem to be interesting in
its own right.
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direct sum theorem relative to uniform and independent instances, it suffices to run the downward
random self-reductions below with independent randomness (as opposed to correlated randomness).

At a very high level, our reduction works by (a) “derandomizing” the list-decoding-based reduc-
tion of [4] (based in turn on a reduction from [10] and its fine-grained adaptation in [3]) and (b)
taking various steps to make it robust to “partial solvers” while preserving pseudorandomness. Still
at a high level, our reduction works as follows:
1. Starting with a large (worst-case hard) instance X, split it into m smaller instances using the

problem’s downward self-reducibility. Note that these smaller instances will necessarily be in
the support of Dpr.

2. Then use another downward random self-reduction with a list-decoding guarantee to sample
random T instances for each smaller instance. (Each such reduction will make a few queries
to instances half the size of the instances generated in step 1.)

The reductions in this step have the guarantee that, provided a sufficient fraction of their
calls are answered correctly, they will generate a short list of advice strings: one of which
encodes the correct answer to the small instance. Determining the correct advice string is a
matter of correctly evaluating f on some point in the query space (which is half the size of the
starting instance).

Additionally, we will feed these downward-self-reductions correlated randomness, to ensure
that the joint distribution of their ith queries is distributed according to Dpr. Furthermore, we
will ensure that the joint distributions of queries will be q-wise independent for some appro-
priately chosen q (so we can apply concentration bounds).

3. Next, locally randomly permute each batch of the ith queries from the downward random
self-reductions, in a manner that does not alter the residual distribution (of the ith queries,
jointly). Then, feed the permuted queries to the partial-batch solver A.

Intuitively, if the queries were not permuted, A might ignore the first instance and the
corresponding downward random self-reduction would have no correctness guarantee.

4. After this step, we simply need to determine the correct advice string in each list. Once it is
found, we can correctly solve all m smaller instances and combine their solutions to solve the
large instance X.

Determining the correct advice string in any given list can be done by evaluating f cor-
rectly on any point in the query space (instances half the size of the smaller instances) that
disambiguates all the advice in the list. The reduction then randomly generates a sample from
something in the support of Dpr that has this property and recursively runs reduction from
step 2, until instances are sufficiently small to be solved via brute force.

(Simple) Zero-Knowledge Proofs for “Easy” Problems. The notion of zero-knowledge PoW
(ZK-PoW), introduced by Ball et al. [3], is a Proof of Work with a zero-knowledge property: tran-
scripts between an honest prover and verifier can be simulated in time proportional to the verifier’s.
Note that because the PoW prover runs in polynomial time, any PoW trivially satisfies the tradi-
tional notion of zero-knowledge.

More importantly, the ability to efficiently simulate honest proofs proves to be especially helpful
when using Seeded PoWs in protocols: because the challenges are correlated one cannot use non-
uniform advice to simulate honest proofs and while still guaranteeing security on the remaining
challenges. However, to use zero-knowledge PoWs in a protocol it is helpful to have stronger
properties: we require hardness/soundness to hold even when an adversary has access to simulated
proofs (and ideally a short, reusable CRS). To this end, we strengthen the notion of a zero-knowledge
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PoW (ZK-PoW) to have the properties of robust zero-knowledge [23], with tight simulation and
extraction.8

We show how to tightly compile the PoW protocols above into ZK-PoWs. At the core of
these, we give a DDH-based compiler for rendering recursive sumcheck protocols zero-knowledge
by committing to the prover’s polynomials (with homomorphic statistically-binding commitments)
and performing a few consistency checks in each round. This technique, reminiscent of Schnorr’s
ID scheme, may be of independent interest due to its simplicity. To make the protocol extractable
(so the prover’s commitments can be opened), we simply enforce that polynomials are committed
to in binary with additional zero-knowledge proofs.

The results are robust (honest verifier) zero-knowledge proof systems, albeit interactive ones.
Next we turn to making these interactive ZK-PoWs non-interactive using the Fiat-Shamir trans-

formation. To avoid using random oracles or heuristic assumptions, we employ the techniques of
a recent line of works on collision-intractable hashing (CIH) [13, 41, 45, 20]. CIH have been con-
structed from a variety of assumptions and have been shown to provably instantiate Fiat-Shamir
variety of proof systems. Our ZK protocols remain “Fiat-Shamir friendly,” we can apply CIH to
collapse our protocols to non-interactive ones. Because we are already using DDH, we will use a CIH
which only relies on the sub-exponential hardness of the DDH assumption against polynomial-time
adversaries [41].

However, this construction requires a few properties of the underlying proof. The resulting
construction is only a CIH for the complexity class TC0, and so we will need to ensure that any bad
challenges can be found in TC0. To do this, [41] relied on a lossy encryption scheme with low-depth
decryption, as well as a trapdoor protocol which can identify the bad challenges in low depth, as
well. They require that the underlying proof is witness hiding. Finally, they encrypt the statement
in the proof using the decryption scheme and use the trapdoor to hide the secret key to decrypt
this. Zero-knowledge comes from the lossy-ness of the encryption scheme, and soundness comes
from the witness hiding of the protocol and the trapdoor protocol.

We use this CIH, but due to the “easiness” of our problem, we use slightly different techniques
to employ it. Our trapdoor protocol will be a proof of knowledge for 2k − 3 DDH tuples. This will
ensure that the total round complexity of this is 4k−5, the same as the underlying zk-PoW protocol
we construct described above. With these having the same round complexity, then, collapsing them
into a single OR-proof can then be done using techniques from [21]. Witness hiding will be inherited
from this, assuming that the underlying zk-PoW satisfies special soundness. Then, by showing that
our Extractor (and by extension, Verifier) runs in TC0, and the trapdoor protocol can recognize
bad challenges in TC0, we can correctly employ the CIH to collapse these 2k − 3 rounds to just a
single Prover-Verifier message. In order to get both of these in low depth, we will give powers of
exponents of our trapdoor, as in [41]. By encoding these properly, we can achieve all of this using
a common random string.

The end result is a robust (multitheorem) NIZK variant of the PoW schemes above.

Permissionless Consensus from PoWs + Beacon. Given protocol-friendly PoWs, a number
of challenges have still to be overcome in order to design a secure consensus protocol.

Message-encoding PoWs. First off, in order to use PoWs effectively in a permissionless setting,
parties must be able to encode information with it; a PoW that does not uniquely encode a message
is useless as the adversary can replay it and claim that it conveys a different message. This problem
is easily solved in the RO setting, since message-encoding PoWs (aka Signatures of Work [34])

8Looking ahead, the simulator will be used in the reduction from an attacker against the consensus protocol to
an attacker against PoW hardness in order to simulate the work of honest parties. Thus, an efficient simulator is
important to prove our protocol secure.
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of arbitrary message size can be constructed, by solving a PoW instance created by hashing the
target message together with a random nonce. However, this technique does not generalize in a
straightforward way to the standard model of computation.

Here we deal with the problem in a different way. First, we design a consensus protocol that
only requires parties to send messages from a constant-size space, namely, 0, 1, and ⊥. Second, we
assume that the PoW instances provided by the beacon correspond to some pre-defined message, i.e.,
instances are split into a constant number of equally sized subsets, X0, X1, and X⊥, corresponding
to messages 0, 1, and ⊥, respectively. Now, if a party wants to send message b at some round of the
protocol, it parses the output of the beacon at this round as a sequence of instances X0, X1, X⊥,
picks at random a PoW instance from Xb, solves it, and communicates the computed witness to
all other participants of the protocol. Given a large enough number of instances, honest parties
mostly pick different instances to solve, and thus the total number of messages generated by them
is proportional to their computational power.

Consensus without a PKI. The next big obstacle we have to overcome, given our limited message-
encoding capability, is designing a consensus protocol where parties only send messages from a
constant-size space. Previous works in the permissionless setting follow one of the following two
approaches: (1) The blockchain approach [31], where chains of PoWs are used to reach consensus,
and a sufficiently strong moderate hardness guarantee (from the chain) is required in order to prove
security, as shown in [33], or (2) use the PoW primitive to first establish some form of a PKI, and
then run a “classical” permissioned consensus protocol [2]. In the latter case, parties must be able
to encode public keys in their PoWs, i.e., messages of security-parameter length, to obtain any
meaningful level of security.9 Consequently, neither of the two approaches is a good fit given the
PoWs we can construct.

Our approach, instead, is based on the observation that the classical/permissioned technique
of gradually building stronger forms of consensus — i.e., weak, graded and finally full consensus
(cf. [26] and follow-ups) — does not require the existence of authenticated channels or a PKI. We
can thus adapt the relevant protocols to work in the permissionless setting.

In more detail, weak and graded consensus protocols are basically 2-round protocols, where in
the first round parties send their message, 0, 1 (or ⊥ in the case of graded consensus), while in the
second round the sent messages are gathered and tallied to determine what the protocol output
should be. Using these protocols in our setting in the form they have appeared in the literature,
however, only allows for tolerating up to 1/3 of the sent messages being created by the adversary.
This is due to the fact that in our setting only an upper bound on the number of parties is known,
and the algorithm has to conservatively estimate the total number of parties in order to produce
outputs that satisfy the required agreement and validity properties.

To achieve the optimal threshold between honest and corrupted parties, we adapt both protocols
to have an extra third round, where messages/PoWs received in the second round are re-broadcast
for one more round, but no new PoWs are produced in the second round by the honest parties.
This allows parties to build a more consistent view on the total number of messages sent in the
first round, and thus tolerate the optimal corruption threshold. Now, given graded consensus,
achieving full consensus is relatively straightforward in the presence of an unpredictable common
coin (cf. [51, 26, 42]), whose functionality in our setting can be emulated by the randomness beacon.

Non-negligible PoW security. The final obstacle we face is that while the PoWs we use are moderately
hard with high probability, we want to achieve consensus with overwhelming probability.

9Furthermore, in this approach digital signatures are also used, and thus the existence of one-way functions must
be assumed, an assumption that as we show is not necessary.
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First, note that the consensus protocol outlined above is secure at best with high probability,
since in case moderate hardness fails the adversary can break security by sending more messages than
the honest parties. To deal with this issue we showcase another (previously unnoticed) property of
the weak-graded-full consensus methodology, namely, that the outputs of the weak/graded consensus
sub-protocols can be error-corrected. That is, if we run the weak (resp., graded) consensus protocol
multiple times, and correctness holds in more than 2/3 of the runs, then a single output that satisfies
weak (resp., graded) consensus guarantees can be recovered.

It still remains to argue why we expect 2/3 of the runs to be correct with overwhelming prob-
ability. Our proof is based on sequential amplification: different invocations of the base protocols
are run sequentially one after the other, with independently sampled sets of PoW instances used in
each run. Thus, a sequential amplification argument can be made, ensuring that if PoW security
holds with probability greater than 2/3, a constant fraction of the protocol instances run will be
correct. However, unlike previous results (e.g., [22]), the runtime of the reduction involved in the
amplification theorem must be concretely efficient, as our target is breaking the fine-grained security
of the PoW primitive. We ensure that this is the case by simulating honestly produced PoWs using
PoW instances and the related witnesses provided to the reduction as advice.

PoWs from a beacon with short outputs. To reduce the probability that two honest parties choose
the same PoW to solve in the approach above, the number of PoW instances output by the beacon
should be proportional to the number of parties. Using NIZK-PoWs (refer to the “zero-knowledge
proofs for easy problems” subsection above) we manage to weaken our reliance on the randomness
beacon. Namely, we parse its output (O(n2) bits) as a NIZK-PoW seed. As before, parties again
have a number of PoW instances available proportional to their number, due to the expanding
nature of the seed. The protocol is built in exactly the same way as before, from weak, to graded,
to full consensus. A technical challenge arises here due to the fact that the PoW instances in a
given round are correlated, as they are generated from the same seed, and thus honest parties’ work
cannot be simulated by instances coming from the advice string. Luckily, the NIZK simulator can
be used to simulate honest work and avoid the problem.

After all these transformations, the consensus protocol we design is quite tight in terms of
security: it suffices that the total number of adversarial messages produced when PoW security holds
is less than the number of messages produced by honest parties. For the specific PoW construction
we employ in this paper, this condition is implied by assuming that the computational power of the
adversary is suitably restricted compared to that of honest parties.

2 Proofs of Work without Random Oracles

In this section, we outline our results concerning Proofs of Work. We propose subtle (yet impor-
tant) changes to prior definitions as well as novel functionalities. In particular, we outline the key
technical contribution: an improved non-amortizability result for a problem in fine-grained com-
plexity. This section focuses exclusively on definitions and theorem statements. A reader looking
for full details can skip this section entirely and read the stand-alone sections in Appendix A and
Appendix B.

We begin with a new definition of a Proof of Work (PoW) that we believe to be closer to the
“correct” definition than that of [24, 4]. Nonetheless, our starting point is the definition from [24, 4],
albeit with a slightly more stringent hardness condition. Ball et al. (following Dwork and Naor [24])
simply required that any prover attempting to solve m random challenges must work approximately
m times as hard relative to the work required for a single random challenge.
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On the other hand, we will require that solving even ` < m random challenges requires approx-
imately ` times as much work (provided ` is larger than some threshold). Informally, this means
that allowing an adversary to choose a (large enough) subset of instances to concentrate on doesn’t
allow the adversary to correctly solve instances faster in amortization than an honest Prover.

This definition has a number of parameters:
1. t – the amount of computational work required to solve a single instance. That is, t should be

a function, and in this work, we consider t(n) = nk for some constant k.

2. γ – a tightness parameter: if the honest party requires ` · t(n) work to solve ` instances, then
no adversary can solve ` instances with less than ` · γ(t(n)) work.

In this work we consider γ = t1−Ω(1), i.e., there does not exists a constant ε > 0 such that
the adversary can solve ` instances in time `n1−ε. We will abuse notation and allow γ to be a
class of functions (where the above guarantee should hold for any function in the class).

3. τ – a threshold for when non-amortization holds: solving any ` out of m instances, where
m/` > τ , requires roughly ` times as much work.

In this work, we will consider τ = no(1). In particular, it should be the case that m/` > nε

for any constant ε > 0.

4. δ – a bound on the adversary’s success probability.
In this work, we will consider 1/δ = no(1). In particular, it should be the case that δ(n) >

n−ε for any constant ε.

Definition 1 (Proof of Work). A (t, γ, τ, δ)-PoW consists of two algorithms (Solve,Verify). These
algorithms must satisfy the following properties:

Efficiency:
• For any c ∈ {0, 1}n, Solve(c) runs in time Õ(t(n)).
• For any c ∈ {0, 1}n and any π, Verify(c,π) runs in time Õ(n).

Completeness: For any c and any π ← Solve(c),

Pr [Verify(c,π) = accept] = 1,

where the probability is taken over Verify’s randomness.
Hardness: For any function `(n) such that m(n)/`(n) ≤ τ(n), and any algorithm Solve∗ that
runs in time `(n) · γ(t(n)) when given m(n) challenges of size n as input, it holds that:

Pr

[
∃I ⊆ [m], |I| ≥ `(n) & ∀i ∈ I :

Verify(ci,πi) = accept

∣∣∣∣∣ (c1, . . . , cm)← Un×m
(π1, . . . ,π`(n))← Solve∗m(c1, . . . , cm(n))

]
< δ(n),

where the probability is taken over random samples as well as Solve∗’s and Verify’s randomness.

Remark 1. This definition can be generalized to (t, γ, τ, δ)-Interactive Proofs of Work (iPoW) in the
usual sense: by allowing Solve,Verify to be interactive RAM machines. All efficiency, completeness,
and hardness properties remain.

We will ultimately prove the following theorems:

Theorem 2. For k ≥ 2, suppose kOV takes nk−o(1) time to decide for all but finitely many inputs
lengths for any d = ω(log n). Then for any polynomial m(n), there is a (n2, no(1), t1−Ω(1), n−o(1))-
PoW.

This theorem will be an immediate corollary of the second item of Lemma 9 and Theorem 27.
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Theorem 3. For k ≥ 2, suppose kOV takes nk−o(1) time to decide for all but finitely many inputs
lengths for any d = ω(log n). Then for any polynomial m(n), there is an (nk, no(1), t1−Ω(1), n−o(1))-
iPoW.

This theorem will be an immediate corollary of the second item of Lemma 9 and Theorem 28.

2.1 Deriving Many Challenges from a Short Public Seed

We additionally augment the above definition with an additional functionality: a short public seed
can be expanded into many challenges that collectively remain hard to solve (even in amortization),
despite the fact that the expanded challenges are inherently correlated with one another.

Definition 4 (Seeded Proof of Work). A (s,m)-Seeded (t, γ, τ, δ)-PoW consists of four algorithms
(Expand,Solve,Verify). These algorithms must satisfy the Efficiency and Completeness properties
of a Proof of Work (Definition 24), and additionally:

Efficiency: For any σ ∈ {0, 1}s(n) and i ∈ [m(n)], Expand(σ, i) runs in deterministic time
Õ(s(n)).
Hardness: For any function `(n) such that m(n)/`(n) ≤ τ(n) any algorithm Solve∗ that runs
in time `(n) · γ(t(n)) when given m(n) challenges of size n as input,

Pr

 ∃I ⊆ [m], |I| ≥ `(n) & ∀i ∈ I :

Verify(ci,πi) = accept

∣∣∣∣∣∣∣∣
σ ← Us
(ci ← Expand(σ, i))i∈[m(n)]

(π1, . . . ,π`(n))← Solve∗` (σ)

 < δ(n),

where the probability is taken over Us, Solve∗’s, and Verify’s randomness.

We provide constructions and analysis that yield the following theorems:

Theorem 5. For k ≥ 2, suppose kOV takes nk−o(1) time to decide for all but finitely many input
lengths for any d = ω(log n). Then for any polynomial m(n), there is a ( k

√
m(n)n,m(n)n)-Seeded

(n2, no(1), t1−Ω(1), n−o(1))-PoW.

This theorem is an immediate corollary of the first item of Lemma 9 and Theorem 27.

Theorem 6. For k ≥ 2, suppose kOV takes nk−o(1) time to decide for all but finitely many inputs
lengths for any d = ω(log n). Then for any polynomial m(n), there is a ( k

√
m(n)n,m(n)n)-Seeded

(nk, no(1), t1−Ω(1), n−o(1))-Interactive PoW (iPoW).

This theorem is an immediate corollary of the first item of Lemma 9 and Theorem 28.

2.2 Key Technique: A Robust Direct Sum Theorem for fOVk

In this subsection, we present a key technical lemma. For details on the simple DDH-based compiler
for sumcheck please see Appendix B. Before describing the key lemma— a robust direct sum theorem
— we begin by recalling its context in our PoW schemes.

The starting point of our work is the framework of Ball et al. [3, 4], who demonstrated that a
PoW can be constructed from worst-case assumptions in a few steps:
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1. Prove a fine-grained worst-case to average-case reduction. In particular, Ball et al.
showed that (solving) kOV reduces to solving an arithmetization (low-degree extension) of kOV
on average (with respect to the uniform distribution). The latter arithmetic problem amounts
to simply evaluating a family of specific polynomials, FOVk = {fOVk : Fkndp → Fp}n10 over a
finite field, Fp, (p > nk):

fOVk(U1, . . . , Uk) =
∑

i1,...,ik∈[n]

∏
j∈[d]

1−
∏
`∈[k]

U `i`,j

 .

Assuming kOV requires time nk−o(1) in the worst case (kOVC), then fOVk requires time
nk−o(1) on average (with respect to the uniform distribution).

2. Prove a Direct Sum Theorem for the average-case hard problem. This says (roughly)
that an algorithm that can correctly solve a batch of m instances of fOVk requires time
m · nk−o(1), assuming kOVC.

3. Construct a (tight) doubly efficient proof system for the average-case hard prob-
lem. Ball et al. showed that fOVk admits very efficient proof systems that enable a prover
running in time Õ(nk) to convince a verifier that fOVk(x) = y: adapting ideas from [55] they
gave a non-interactive protocol where the verifier runs in time Õ(nk/2), adapting the sumcheck
protocol [46] they gave a k-round interactive protocol where the verifier runs in time Õ(n).

Thus, the resulting PoWs are formed by simply asking the Prover to compute fOVk(x) = y
for a random challenge x and then prove the statement that “fOVk(x) = y” using the doubly
efficient proof system. Thus the security of the proof system follows immediately from the soundness
guarantees of the proof system and the Direct Sum Theorem (non-amortizing hardness).

Thus, in order to “upgrade” PoW security to the definition we use here, i.e., to hold against
dishonest provers that only choose a fraction of challenges, it suffices to strengthen the Direct Sum
Theorem (Item 2 above) to a Robust Direct Sum Theorem: solving a ` out of m uniformly random
independent instances requires time ` · nk−o(1) (for large enough `). To get a Seeded PoW we
show that this Robust Direct Sum Theorem can be derandomized : namely, that it holds relative
to a “pseudorandom” distribution over ` correlated instances that can be efficiently sampled from a
short seed.11 The sampler for the pseudorandom distribution is thus the Expand procedure for the
Seeded Proof of Work.

Although we state this theorem for the specific case of fOVk, we note that our techniques can
be generalized to hold for any low-degree polynomial that is downward-self-reducible.

Before we state the derandomized Robust Direct Sum theorem, we must describe the pseu-
dorandom distribution. In particular, Dr

k,n,d,p
pr denotes the distribution generated by sampling U

uniformly at random and applying the downward-self-reduction. Namely, U is drawn uniformly
from (Frn×dp )k, viewed as k lists of rn d-dimensional vectors with each list partitioned into r blocks,
and the resulting output is simply all combinations formed by concatenating one block from each
list:

10d is a function n such that d = ω(logn) (for hardness) and d = Õ(1) (for efficiency). Typically we fix the choice
of d = log2 n for concreteness.

11Note that this distribution is not pseudorandom in the traditional cryptographic sense: it is easy to distinguish
from uniform (and moveover the adversary is given the seed describing a sample); it is only pseudorandom for the
purposes of proving a Threshold Direct Sum theorem for fOVk.

17



(
U1,j1 , . . . , Uk,jk

)
j∈[r]k

where

 U1,1

...
U1,r

 , · · · ,
 U1,1

...
U1,r

 u← (Frn×dp )k (1)

We can now state our Robust Direct Sum Theorems.

Theorem 7 (Robust Direct Sum Theorem for fOVk). Assuming the kOV conjecture, for any
m = poly(n) and ` = m1−o(1) and any ε > 0, no algorithm running in time ` · n2−ε that is given m
random independent inputs to FOVk can correctly evaluate ` of them with probability 1/no(1).

Theorem 8 (Derandomized Robust Direct Sum Theorem for fOVk). Assuming the kOV conjecture,
for any m = poly(n) and ` = m1−o(1) and any ε > 0, no algorithm running in time ` · n2−ε that
is given m FOVk instances drawn from Dpr inputs can correctly evaluate ` of them with probability
1/no(1).

Both of these Theorems follow from our key technical lemma: an efficient reduction that shows
how to use an algorithm that violates the (derandomized) Threshold Direct Sum Theorem for fOVk

in order to efficiently solve fOVk on any instance.

Lemma 9. Let m(n) be a polynomial and `(n) a function such that `(n) < m(n), and p a prime

such that log(p) = no(1) and p > 6
(

12m(n)
δ`(n)

)2
k2kd log log(n) log(n)m(n). Let dk = Õ(1), and let

{f : Fkndp → Fp} denote FOVk in what follows.
1. Pseudorandom reduction. Let A be a randomized algorithm running in time tA(n) ≤ `(n) ·

nk−ε that on input X1, . . . , Xm drawn from Dpr outputs ŷ1, . . . , ŷm such that with probability at
least δ(n), |{i ∈ [m] : f(Xi) = ŷi}| ≥ `(n).12

Then, there is a randomized algorithm A′ that on input X, of size θd,p(n), computes f(X)

in time Õ
(

mnk−ε

(δ `
m

)Θ(1)

)
, with probability at least 2/3.

2. Uniformly random reduction. Similarly, let A be a randomized algorithm running in time
tA(n) ≤ `(n) · nk−ε that on input X1, . . . , Xm drawn independently and uniformly at random
from Fkndp outputs ŷ1, . . . , ŷm such that with probability at least δ(n), |{i ∈ [m] : f(Xi) = ŷi}| ≥
`(n).

Then, there is a randomized algorithm A′ that on input X, of size θd,p(n), computes f(X)

in time Õ
(

mnk−ε

(δ `
m

)Θ(1)

)
, with probability at least 2/3.

2.3 Simulatable, Non-Interactive PoW (with Large Proving Times)

Finally, we turn to traditional (heavy) cryptographic tools (and a CRS) to simultaneously (a) make
honest proofs efficiently simulatable (i.e., robustly zero-knowledge) and (b) “collapse” Interactive
PoW (iPoW) to non-interactive PoW (i.e., Fiat-Shamir) achieving arbitrarily large polynomial
gaps between proving time and verification time (as opposed to just quadratic).

To this end, we introduce a new robust notion of zero-knowledge PoW. In contrast with the
definition presented by Ball et al. [4], this new definition retains soundness/hardness in the presence
of simulated proofs for correlated challenges (with a short CRS — independent of the number of
challenges).

12If it is not the case that t(n) >> m(n), imagine that A outputs (i, ŷi)i∈S for some S ⊆ [n].
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Our definition is simply robust zero-knowledge [23] (generalized from NP relations to interactive
proofs) with an additional efficiency requirement applied to a (interactive) PoW. In this generaliza-
tion of robust zero-knowledge, the extractor (very efficiently) extracts a successful prover strategy
(not simply a witness for an NP relation). Moreover, we require that the new proof system should
roughly preserve the complexity of the original, and that the simulation should be tightly bounded
to an adversarial verifier. (Without the last requirement, zero-knowledge is trivial to achieve for
PoW systems where the prover itself runs in polynomial time.)

Definition 10. Given an interactive proof Π = (P, V ), Π′ = (q,P′,V′,S′ = (S′1,S
′
2),E′)) is a robust

ZK argument for Π, if P′,V′, S′,E′ ∈ PPT and q(·) is a polynomial such that the following conditions
hold:

Efficiency Preserving. P′ runs in time Õ(TP ) where TP is the runtime of P , and V′,S′,E′ all
run in time Õ(TV ) where TV is the runtime of V .
Completeness. For all x ∈ L of length λ, all w such that Pr[〈P (x,w), V (x)〉 = 1], and all
Ω ∈ {0, 1}q(λ), V′(Ω, x,P′(Ω, w, x))] = 1.
Multi-Theorem Zero-Knowledge. For all PPT adversaries A, we have that Real(λ) ≈
Sim(λ), where

Real(λ) = {Ω← {0, 1}q(λ); out← AP(Ω,·,·)(Ω);Output out},

Sim(λ) = {(Ω, tk)← S′1(1
λ); out← AS′′2 (Ω,·,·,tk)(Ω);Output out},

and S′′2(Ω, x, w, tk)
def
= S′2(Ω, x, tk) if (x,w) such that Pr[〈P (x,w), V (x)〉 = 1] ≥ 2/3 and other-

wise outputs failure.
(We say Π′ is robust honest verifier zero-knowledge if the above condition holds simply for

V′.)
Extractability. For all PPT A,

Pr
[
(Ω, tk)← S1(1

λ); Pr[〈E′A
S2(Ω,(x),tk)(Ω,x)

(Ω, x, tk), V (x)〉 = 1] ≤ 2/3

]
≤ negl(λ),

If Π′ is non-interactive we say that it is a robust non-interactive zero-knowledge argument for Π.

Definition 11. A protocol Π is robust zero-knowledge (t, γ, τ, δ)-(i)PoW (ZK-PoW) if it is a robust
ZK argument for a (t, γ, τ, δ)-iPoW.

We say such a protocol (with an additional Expand algorithm) is a seeded ZK-PoW if it is a
robust ZK argument for a seeded iPoW. Finally, we say such a protocol is a NIZK-PoW if it is
non-interactive.

We show that by additionally assuming subexponentially-secure DDH one can construct robust
seeded NIZK-PoW.

Definition 12. The DDH assumption states that there exists some G = {Gλ}λ∈N a group ensemble
with efficient representation, where each Gλ is a cyclic group of prime order p(λ) such that, for any
PPT A, we have

|Pr[A(1λ, g, ga, gb, gab) = 1 : a, b
$← Zp(λ)]−

Pr[A(1λ, g, ga, gb, gc) = 1 : a, b, c
$← Zp(λ)]| ≤ negl(n),

where g is a generator for Gλ.
The Sub-exponential DDH assumption instead assumes that the above is true for all non-uniform

A that run in time λO((log log λ)3).
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Theorem 13. Let k ∈ N, if DDH is hard for non-uniform λO(log3 log λ) distinguishers and kOV
takes nk−o(1) time to decide for all but finitely many input lengths (when d = log2 n), then there
exists a robust seeded (nk, no(1), t1−Ω(1), n−o(1))-NIZK-PoW.

3 Consensus from PoW and a Beacon

In this section we show how to achieve consensus in the permissionless setting given access to a
random beacon and assuming the existence of a hard PoW scheme. We start with some more
details on the setting in which we analyze security.

3.1 Protocol Execution and Security Model

We will analyze the Consensus protocol in a concrete complexity, synchronous, and permissionless
model, similarly to [33]. In more detail:
Security model. The set of n parties {P1, . . . , Pn} running the protocol is fixed, and both the parties
and the adversary are modeled as Interactive Word RAM machines. Throughout, we consider
algorithms in the Word RAM model of computation with O(log(λ))-bit words, where λ is used to
denote the security parameter. The adversary is active/byzantine and can corrupt up to t parties
(statically) in order to break security.
Communication model. The protocol advances in rounds and communication happens through a
diffusion functionality Fdiff. Messages sent by honest parties through Fdiff arrive to all other
parties within a round. On the other hand, the adversary may send messages to an adaptively
chosen subset of the parties. Communication is not authenticated, and thus parties cannot directly
tell which was the sender of a message.
Setup. Parties have access to a beacon functionality Fbeacon, which when queried at any round
outputs a uniformly random string from {0, 1}poly(λ); all queries of some round get the same response.
Concrete computation model. Each party has a concrete upper bound of c computational steps per
round (including corrupted parties), following the formulation of [33]. The adversary has an upper
bound θ on the number of messages it can send per round (similarly to [2]).13

Next, we recite the classical definition of Byzantine agreement (aka consensus).

Definition 14. A protocol Π implements byzantine agreement among n parties iff the following
two properties are satisfied in the presence of an adversary A who might corrupt some of them:

Validity: If all parties have the same input b ∈ {0, 1}, then they all output b;
Agreement: All parties output the same value b ∈ {0, 1}.

We will arrive at our final protocol through a series a transformations, starting with a protocol
providing weaker security guarantees, namely, Weak Consensus [43].

3.2 Weak Consensus

Next, we show how to achieve Weak Consensus in our setting. First, we provide the relevant security
definition; note the relaxation of the Agreement property with respect to the original definition of
Consensus.

13This choice is made in [2] to avoid deniable-of-service attacks that may deplete the round-bounded computational
power of the honest parties.

20



Definition 15 (Weak Consensus). A protocol Π implements Weak Consensus iff the following two
properties are satisfied:

Weak Agreement: There exists y ∈ {0, 1} such that all honest parties output yi ∈ {y,⊥}.
Validity: If all honest parties have the same input b ∈ {0, 1}, they all output yi = b.

The main idea of our 3-round Weak Consensus protocol is as follows. We are going to interpret
the output of the beacon at the first round of the protocol as a sequence of PoW instances (xi)i. The
parties will then send messages by solving PoW instances. Sending a witness of one the instances
in the first half of the sequence, will correspond to sending 0, while sending a witness of one of the
instances from the other half will correspond to sending 1. To avoid solving the same instances, and
thus being misrepresented, honest parties are going to pick at random and solve a PoW instance
encoding their message, which they will subsequently diffuse together with the respective witness
to all other parties.

Given that in our setting parties are not aware of their total number, and to ensure that their
views about this number is somewhat consistent, parties are going to resend valid PoWs for one
more round, and then estimate their total number based on the PoWs received. Note that while
only messages sent during the first round are counted as votes (0 or 1), the total number of votes
estimation (k) is based on the number of PoWs sent in the first and second rounds. This allows our
protocol to have maximal security (i.e., t < n/2, where t is the number of corrupted parties) even
if the total number of votes is not known. Essentially, late votes do not help the adversary swing
the result in one direction or the other.

Finally, rounds in our protocol have different “duration”14 (parameters rp, rv), in order to allow
parties to execute the relevant required operations: In the first round they are expected to solve a
PoW, while in the second and third rounds they should be able to verify all PoWs received. As we
explain later, these parameters should be carefully picked, as they also determine the available time
the adversary has to solve more PoWs than the parties it controls.

Initialization:
Initialize sets P 0

i , P
1
i , P

late
i to ∅.

Round 1 (round duration := rp):
Let (xi)i∈[m] be the output of Fbeacon at this round, parsed as a sequence of PoW instances. Let
X0 = (xi)i∈[m/2] denote the first half of the instances, and X1 the second half.
Compute wj := PoW.Solve(xj), where xj ← Xbi .
Send (xj , wj) to Fdiff and proceed to the next round.

Round 2 (round duration := rv):
Fetch messages from Fdiff. For every message of the form (x,w), if x ∈ Xb (for some b ∈ {0, 1}) and
PoW.Verify(x,w) = 1, add (x,w) to P bi .
Send P 0

i , P
1
i to Fdiff and proceed to the next round.

Round 3 (round duration := rv):
Fetch messages from Fdiff. For every message of the form (x,w), if x ∈ Xb (for some b ∈ {0, 1}),
(x,w) 6∈ P 0

i ∪ P 1
i , and Pow.Verify(x,w) = 1, add (x,w) to P late

i .
Let ki = |P 0

i |+ |P 1
i |+ |P late

i |.

Protocol WeakConsensusrp,rv (Pi, bi)

14We overload the term “round” here, and assume that in a round of duration x each party can take up to x · c
computational steps.
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Pi outputs yi :=


0 if |P 0

i | > ki/2;

1 if |P 1
i | > ki/2;

⊥ otherwise.

Next, we analyze the protocol presented above. At this stage, we are going to assume a lower
and an upper bound on the number of messages produced by the honest parties and the adversary,
respectively; later on we will show how we can get rid of this assumption. Having these bounds in
place, the analysis of the protocol boils down to: (i) a simple counting argument about the PoWs
generated showing that both validity and the weak consensus property are satisfied, and (ii) that
honest parties have enough time to perform any operations required by the protocol.

Lemma 16. Protocol WeakConsensusrp,rv achieves Weak Agreement unconditionally, and Va-
lidity assuming that the number of distinct PoW witnesses produced by the honest parties exceeds
that produced exclusively by A, for tv ≥ 2θ/σ, tp := t2v , rp := tp/c and rv := rp · σ/2, for some
σ ∈ (0, 1), where tp, tv denote the proving and verification costs of the PoW primitive, respectively.

Proof. We start by arguing that honest parties have enough time to process and forward all valid
messages received in round 2.

Claim 1. Each honest party has enough computational power to process all the PoWs received
during round 2 of the protocol.

Proof of claim. By assumption, each honest party is able to take c computational steps per unit of
time, while the adversary takes t · c. Let θ be an upper bound on the total messages sent in each
round.

We want to show that (i) honest parties have enough time to compute a PoW in round 1, and
(ii) honest parties are able to process all θ messages they receive at the beginning of round 2. These
conditions are described by inequalities tp ≤ rp · c and θtv ≤ rv · c, respectively. It holds that:

rpc ≥ ctp/c = tp,

and

rvc = rpcσ/2 =
t2vσc

2c
= t2vσ/2 >

tv2θσ

2σ
= θtv.

Hence, the claim follows. a

Next, we show that the above claim about the network conditions is sufficient to prove that pro-
tocol WeakConsensus achieves Weak Agreement unconditionally. For the sake of contradiction,
assume that there exists two honest parties Pi, Pj such that Pi outputs 0 while Pj outputs 1. It
follows that:

|P 0
i | > (|P 0

i |+ |P 1
i |+ |P late

i |)/2⇔ |P 0
i | > |P 1

i |+ |P late
i |,

and, symmetrically, that |P 1
j | > |P 0

j |+ |P late
j |. Adding both inequalities, we have that

|P 1
j |+ |P 0

i | > |P 1
i |+ |P latei |+ |P 0

j |+ |P late
j |. (2)

On the other hand, by the guarantees provided by Fdiff, it should hold that

|P 0
i | ≤ |P 0

j |+ |P latej | and |P 1
j | ≤ |P 1

i |+ |P late
i |,
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since by the above claim any valid PoW witness seen by Pi in the first round will be received by Pj
in the second round. Adding the two inequalities, we get that

|P 1
j |+ |P 0

i | ≤ |P 1
i |+ |P late

i |+ |P 0
j |+ |P late

j |,

which contradicts inequality 5. Thus, Weak Agreement holds unconditionally.
Next, we turn our attention to Validity. Let b be the common input of all honest parties. Let

x denote the number of distinct PoW witnesses computed by the honest parties, and y the number
of any other PoW witnesses produced by the adversary. By our assumption, it holds that x > y.
For any party Pi, it should hold that ki ≤ x + y, which implies by our assumption that x > ki/2.
Given that all honest PoWs are received in the second round, it follows that all parties are going to
output b. Thus, Validity follows.

Security amplification. Protocol WeakConsensus achieves Validity as long as honest parties pro-
duce more PoWs than the adversary. Next, we showcase a protocol that ensures that this condition
holds with overwhelming probability given two assumptions: (i) That there exists a secure PoW
scheme (Definition 24), and (ii) that the number of parties the adversary can corrupt is sufficiently
bounded.

Assumption 1 (PoW). There exists a (λ2, γ(·), λo(1), λ−o(1))-PoW.

Assumption 2 (Corruption bound). There exists σ ∈ (0, 1), such that:

t < (n− t) · (1− σ)
γ(λ2)

λ2
− σ.

Note, that Assumption 2 can be stated equivalently as a restriction on the total computational power
controlled by the adversary, i.e, t · c steps per round, compared to that controlled by honest parties,
i.e., (n− t)c steps per round. Moreover, note that if the computational advantage of the adversary
over honest parties on computing PoWs approaches zero, i.e, γ(λ2) ≈ λ2, then Assumption 2 is
equivalent to a necessary condition for consensus: 2t < n.

The main idea behind the security amplification protocol is to run WeakConsensus multiple
times sequentially, and then try to error-correct the outputs. Our assumption about PoW hardness
holding with good probability, together with Weak Agreement holding unconditionally for the base
protocol, are going to be sufficient to ensure that we can error-correct the output in a consistent
manner with overwhelming probability in the security parameter.

Initialization:
Initialize counters t0i , t1i , t⊥i to 0.

Rounds 1 to l:
c := WeakConsensusrp,rv (Pi, bi);

tci := tci + 1.

Round l + 1:

Output yi :=


0 if t0i > 2l/3;

1 if t1i > 2l/3;

⊥ otherwise.

Protocol AmpedWeakConsensusrp,rv (Pi, bi)
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Lemma 17. If Assumptions 1 and 2 hold, Protocol AmpedWeakConsensusrp,rv achieves Weak
Consensus with overwhelming probability in λ, for l = log2(λ), and rp, rv, tp, tv as in Lemma 16.15

Proof. We start by proving some initial claims that are going to help with our analysis. First,
we show that in more than 5/6 of the WeakConsensus invocations, honest parties are going to
produce close to n− t distinct PoW witnesses.

Claim 2. Given any constant σ ∈ (0, 1), for a large enough λ, honest parties are going to pro-
duce more than (1 − σ)(n − t) distinct PoWs in 5/6 of the WeakConsensus invocations with
overwhelming probability in λ.

Proof of claim. We start by analyzing the probability that honest parties produce enough distinct
PoW witnesses in a single instance of WeakConsensus. Let k := n− t, be the number of honest
parties and m := 2r, be the number of different PoW instances considered by parties running
WeakConsensus. In the worst case, all parties will have the same input and will select which
instance to solve among r different ones. As shown earlier, all the honest parties have enough
computational steps available per round to finish computing a PoW witness.

Since each of the honest parties picks a PoW instance at random, some of them may end up
picking the same one. Making r large enough would in general minimize the number of collisions
among honest parties. However, in order to preserve the hardness of PoWs we are restricted in how
many PoW instances should be available to the adversary, compared to how many it solves. Given
that the number of instances solved by the adversary is going to be proportional to that solved by
honest parties, the condition we want to satisfy is that r/k ≤ τ(λ) = λo(1).

We split our analysis into two cases. In the first one, assume that k = O(1) and set r = 7k2. In
the second one, we assume that k = ω(1), and set r = ak, for some large enough a ∈ N. Note that
in both cases it holds that r/k = O(1) = O(λ1/ log(λ)) ∈ λo(1).

In the first case, no collision will happen with probability at most

k(k − 1)

2r
≤ k2

7k2
= 1/7,

as stated by our claim.
In the second case, we will analyze the number of collisions as a balls and bins process. Namely,

we are going to use the Poisson approximation [47], where the event of interest is analyzed in a
setting (the “Poisson" setting) where the load in each bin is assumed to be an independent Poisson
variable with mean k/r. Results obtained in this setting can then be translated back to the “exact"
setting, where the are dependencies between the loads of different bins, with some loss on probability.

The event E we care about upper-bounding is the number of full bins being greater than a target
value. This event depends entirely on the number of balls in each bin. Furthermore, as the number
of balls increases, Pr[E] increases. By [47], if Pr[E] = p in the Poisson setting, Pr[E] ≤ 2p in the
exact setting.

We proceed to bound the probability of E occurring. Assume that we have t i.i.d. discrete
Poisson random variables (Xi)i, each with parameter µ = k/t, denoting the number of balls in the
i-th bin. We have that Pr[Xi > 0] = 1− e−µ. Let random variable Yi be equal to 1 iff Xi > 0, and
let Y =

∑t
i=1 Yi. It then holds that E[Yi] = 1− e−µ and E[Y ] = t(1− e−k/r). For r = ak, for some

constant a > 2, we have by the Chernoff bound that for any δ ∈ (0, 1):

Pr[Y ≤ (1− δ)E[Y ]] = Pr[Y ≤ (1− δ)t(1− e−k/r)] ≤ e−
δ2ck(1−e−1/a)

3 = e−O(k).

15The σ parameter used in the definitions of rp, rv, tp, tv is the one from Assumption 2. This will also be the case
for the rest of the statements proved in this section.
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Firstly, notice that since k ∈ ω(1), for any selection of a there exists a large enough λ such that
the probability of our desired event becomes smaller than any constant, we choose in particular
1/14. By the Poisson approximation this implies that the event in the exact setting happens with
probability at most 1/7.

Secondly, a(1 − e−1/a) tends to 1 as a goes to infinity. Thus, for any constant ε, there exists a
large enough constant a, such that a(1− e−1/a) ≥ 1− ε. This easily implies that for any σ ∈ (0, 1),
there exists a, δ such that (1 − δ)t(1 − e−k/t) ≥ (1 − σ)k. Hence, for any σ ∈ (0, 1), there exists a
a ∈ N, such that with probability at least 6/7 honest parties mine at least (1− σ)k different PoWs.

To finish proving our claim, let Ei the probability of event E happening in the i-th invocation of
protocol WeakConsensus. Note that {Ei}i∈[l] is a sequence of independent events. By a standard
Chernoff bound argument we can show that with overwhelming probability in λ, in less than 1/6 of
the WeakConsensus invocations honest parties will produce less than (1− σ)k PoWs. Thus, the
claim follows. a

Next, we show that in more than 5/6 of the WeakConsensus protocol invocations the adver-
sary is going to produce less than n− t PoWs with overwhelming probability in λ.

Claim 3. The number of PoW witnesses produced by A (different from those produced by the honest
parties) in more than 5/6 of the WeakConsensus invocations is at most t′ := (1 − σ/2)(n − t),
for any σ ∈ (0, 1), with overwhelming probability in λ.

Proof. In contradiction, assume that there exists and adversaryA such that in 1/6 of the WeakConsensus
invocations produces more than t′ PoWs with non-negligible probability. We are going to use A
to construct another adversary that breaks the security of the PoW scheme. First, we argue that
if A produces more than t′ PoWs in a WeakConsensus invocation with probability at most
ε := 1/6 − σ, then it will produce more than t′ PoWs in less than 1/6 of the invocations with
overwhelming probability.

Let T be the protocol’s execution tree when we fix A. The tree has nodes ni,j , where ni,j reflects
the execution state just before A receives the i-th beacon output. Index j runs over all possible coin-
flip histories up to that point. Wlog, assume that between receiving any two consecutive challenges
the adversary and the honest parties perform exactly l coins flips. Thus, for any level i ∈ [m], there
are at most 2il nodes, i.e., j ∈ [2il].

Next, we argue that if for every subtree defined by ni,j (i ∈ [m]), at most ε2l paths are successful
for the adversary, in the sense that the adversary generates more than t′ PoWs, then the fraction
of paths with at least m/6 successes is negligible in λ. W.l.o.g., assume that exactly ε2l paths are
successful in any such subtree. Namely, we will show that in that case there are at most 2ml ·negl(λ)
paths with at least m/6 successes in T .

Let ai,c denote the number of paths ending at some node at level i + 1 that have exactly c
successes. By our assumptions it holds that a1,0 = 2l(1− ε), a1,1 = 2lε for the first level, and

an,c = an−1,c−12lε+ an−1,c2
l(1− ε)

for any subsequent level, where an,−1 = an,n+1 = 0. The equalities follow by the fact that, at every
node, 2lε of the paths are going to increase their successes by one, and the rest are going to retain
the same value of successes. It is easy to see that the solution of this recursion is

an,c = 2nl
(
n

c

)
εc(1− ε)n−c.

We are interested in bounding the sum
∑m

i=m/6 am,i. Note that for any i, ri = am,i/2
m·l is equal

to the probability of i successes in m independent Bernoulli trials, where each trial succeeds with
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probability ε. Thus, we can use the Chernoff bound to upper-bound the probability that
∑m

i=m/6 ri
is less than m/6 by

e−((1−6ε)/(6ε))2εm/3 ≤ e−σ2m/108ε ≤ λ−Ω(log(λ)) ≤ negl(λ),

where we have used the fact that m = log2(λ). Hence,
∑m

i=m/2 am,i ≤ 2mlnegl(λ), as we have
claimed.

Therefore, since we have assumed that A produces more than t′ PoWs in at least 1/6 of the
WeakConsensus invocations with non-negligible probability, by the analysis above it must be the
case that there exists an ni,j where the adversary computes more than t′ PoWs with probability
greater than ε. We are going to use the state of node ni,j to construct an adversary A′ that
contradicts our assumption about the PoW scheme being secure.

Let 2r be the size of the output of Fbeacon. A′ works as follows: It takes as input a sequence
of 2r PoW instances (xi)i and some non-uniform advice. We choose the advice to contain n − t
randomly sampled PoW instances (x′i, w

′
i)i together with their respective witnesses. A′ is going to

construct a “fake” beacon output for A. Given the input bits of honest parties at node ni,j , it is
going to replace randomly selected PoW instances from (x′i)i with instances from (x′i)i. Specifically,
if an honest party has input 0 (resp. 1), then a randomly selected instance from the first half (resp.
second half) of (xi)i is replaced. Note, that this process preserves the possibility that two honest
parties choose to solve the same PoW instance, thus perfectly mimicking the real world. We denote
by Z = (zi)i the resulting sequence of instances.

Next, A′ is going to initialize A to the state described by ni,j , and provide Z as the output of
the beacon. At the end of the first round, it is going to send A the witnesses (w′i)i that it got as
advice, simulating the behavior of the honest parties. Then, it is going to verify the messages A
sent in the first round, and forward any valid PoWs it produces. Finally, it is going to verify the
messages A sent in the second round. Finally, A′ outputs any PoW witnesses produced by A that
do not correspond to the pre-solved instances it has planted in Z.

We will first analyze the running time of A′. As before, let tv ≥ 2θ/σ, tp = t2v , rp := tp/c and
rv := rp · σ/2. A takes a total of (rv + rp)tc steps. In addition, A′ takes an additional 2tvθ steps in
order to verify messages sent by A in the first and second rounds. Hence, StepsA′ ≤ (rv+rp)tc+2tvθ.
Now, for A′ to be breaking PoW’s security it must be that StepsA′ < γ(tp)t

′ = γ(tp)(1−σ/2)(n− t).
It holds that:

StepsA′ ≤ (rv + rp)tc+ 2tvθ ≤
tp(1 + σ/2)tc

c
+ 2tvθ

≤ tp(1 + σ/2)t+ t2vσ

≤ tp((1 + σ/2)t+ σ).

On the other hand, by our assumption about the number of corruptions, we have that:

(1− σ)(n− t)γ(λ2)/λ2 − σ > t⇒ (1− σ/2)

(1 + σ/2)
(n− t)γ(λ2)/λ2 − σ > t

⇔ (1 + σ/2)(t+ σ)tp < γ(λ2)(1− σ/2)(n− t)
⇒ tp((1 + σ/2)t+ σ) < γ(λ2)(1− σ/2)(n− t).

Combing the two inequalities we get our desired relation about the running time of A′.
Next, we analyze the success probability of A′. First, notice that the execution in the eyes of

A is indistinguishable in the reduction and in the actual protocol, as honest parties are perfectly
simulated. Thus, by our assumption, A is going to produce t′ PoWs different from the ones produced
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by the honest parties with probability at least ε. This further implies that probability ε, A′ is going
to solve t′ instances from (xi)i in a total of t′ · γ(tp) steps. Since ε ∈ Ω(1) > λ−o(1), this is a
contradiction to our initial assumption about the hardness of PoW, and thus, in more than 5/6
of the WeakConsensus invocations, the adversary is going to produce at most t′ PoWs with
overwhelming probability in λ. a

Combining the above two claims we easily get that in more than 2/3 of the WeakConsensus
invocations honest parties will produce more PoWs than the adversary with overwhelming proba-
bility. This fact will be sufficient to prove our lemma.

First, we argue that Validity holds. For the sake of contradiction, assume that all parties have the
same input b and there exists an honest party that outputs yi 6= b. Due to Validity being satisfied by
Protocol WeakConsensus when honest parties produce more PoWs than the adversary, it follows
that tbi must be greater than 2l/3. Thus, Validity follows.

Regarding Weak Agreement, for the sake of contradiction, assume that there exist honest parties
Pi, Pj that output yi = 0, yj = 1, respectively. Since yi = 0, it should hold that t0i > 2l/3. By Weak
Agreement of protocol WeakConsensus and the fact that in less than 1/3 of the WeakConsensus
invocations A may produce as many PoWs as the honest parties, it follows that t1j < 2l/3. This is
a contradiction and the lemma follows.

We have shown that we can amplify the security of Weak Consensus to be overwhelming in the
security parameter. Next, we turn our attention to realizing a primitive known as Graded Consensus
from Weak Consensus.

3.3 Graded Consensus

We start by providing the relevant security definition (cf. [26]).

Definition 18 (Graded Consensus). A protocol Π implements Graded Consensus iff the following
two properties are satisfied:

Graded Agreement: If some honest party output yi ∈ {0, 1} and gi = 1, then all honest
parties output yj = yi and gj ∈ {0, 1};
Validity: If all honest parties have the same input x, they all output (yi, gi) = (x, 1).

In our analysis, we will also make use of an additional weaker agreement property, that will hold
for our protocol when the security of the PoW collapses.

Weak Graded Agreement: If some honest party output yi ∈ {0, 1} and gi = 1, then all
honest parties output yj ∈ {yi,⊥} and gj ∈ {0, 1}.

We are going to follow a similar strategy as above for Graded Consensus, by first designing
a protocol which, given that inputs satisfy the Weak Consensus definition and assuming honestly
produced PoW witnesses exceed those produced by the adversary, achieves both Graded Agreement
and Validity, and then designing a second protocol that amplifies the security of the first one by
repeated execution.

Protocol GradedConsensus takes 3 rounds. In the first round, each party sends a message
based on its input by solving a PoW instance, similarly to protocol WeakConsensus. Here,
unlike the Weak Consensus protocol, the message may be 0,1, or ⊥. Fortunately, we can extend the
idea for encoding messages from that protocol, by splitting the output of the beacon into 3 parts:
the first one corresponding to the 0 message, the second one to 1, and the third one to ⊥. The
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protocol then proceeds as protocol WeakConsensus, and establishes Graded Consensus by proper
counting of the received PoW witnesses. We also argue that in case the PoW security collapses,
the protocol satisfies the Weak Graded Agreement property–essentially the equivalent of the Weak
Agreement property for Graded Consensus. This property will be useful to guarantee the security
of the amplification protocol.

Initialization:
Initialize sets P 0

i , P
1
i , P

⊥
i , P

late
i to ∅.

Round 1 (round duration := rp):
Let (xi)i∈[m] be the output of Fbeacon in this round, parsed as a sequence of PoW instances. Let
X0 = (xi)i∈[m/3], X1 = (xi)i∈{m/3+1,...,2m/3} and X⊥ = (xi)i∈{2m/3+1,...,m}, denote the PoW
instances corresponding to messages 0, 1 and ⊥, respectively.
Compute wj := PoW.Solve(xj), where xj ← Xzi .
Send (xj , wj) to Fdiff and proceed to the next round.

Round 2 (round duration := rv):
Fetch messages from Fdiff. For every message of the form (x,w), if x ∈ Xb (for some b ∈ {0, 1,⊥}),
and Pow.Verify(x,w) = 1, add (x,w) to P bi .
Send P 0

i , P
1
i , P

⊥
i to Fdiff and proceed to the next round.

Round 3 (round duration := rp):
Fetch messages from Fdiff. For every message of the form (x,w), if x ∈ Xb (for some b ∈ {0, 1}),
(x,w) 6∈ P 0

i ∪ P 1
i ∪ P⊥i , and Pow.Verify(x,w) = 1, add (x,w) to P late

i .
Let ki := |P 0

i |+ |P 1
i |+ |P⊥i |+ |P late

i |.

Output yi :=


0, if |P 0

i |+ |P⊥i | > ki/2;

1, if |P 1
i |+ |P⊥i | > ki/2;

⊥, otherwise.
and gi :=

{
1, if |P yii | > ki/2;

0, otherwise.

Protocol GradedConsensusrp,rv (Pi, zi)

Lemma 19. Assume that the inputs of honest parties (zi)i satisfy the Weak Consensus properties
(cf. Definition 15). Then, protocol GradedConsensusrp,rv achieves Weak Graded Agreement
(unconditionally) and Graded Agreement and Validity (Definition 18), provided that the number of
distinct PoW witnesses produced by the honest parties exceeds that produced exclusively by A, for
rp, rv, tp, tv as in Lemma 16.

Proof. As in the case of protocol WeakConsensus, it also holds here that honest parties have
sufficient time to process any valid messages they receive. This is sufficient to show that protocol
GradedConsensus achieves Weak Graded Agreement unconditionally. For the sake of contradic-
tion, assume that there exists two honest parties Pi, Pj such that Pi outputs (wlog) (0, 1) while Pj
outputs (1, 0). It follows that:

|P 0
i | > (|P 0

i |+ |P 1
i |+ |P⊥i |+ |P late

i |)/2⇔ |P 0
i | > |P 1

i |+ |P⊥i |+ |P late
i |.

Similarly, we have that |P 1
j |+ |P⊥j | > |P 0

j |+ |P late
j |. Adding both inequalities:

|P 1
j |+ |P⊥j |+ |P 0

i | > |P 1
i |+ |P⊥i |+ |P late

i |+ |P 0
j |+ |P late

j |. (3)

On the other hand, by the guarantees provided by Fdiff, it should hold that

|P 0
i | ≤ |P 0

j |+ |P late
j | and |P 1

j |+ |P⊥j | ≤ |P 1
i |+ |P⊥i |+ |P late

i |,
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since any valid PoW witness seen by Pi in the first round, will be received by Pj in the second
round. Adding the two inequalities, we obviously get a contradiction to Inequality 6. Thus, Weak
Graded Agreement holds unconditionally.

Next, we focus on Graded Agreement. Let x denote the number of distinct PoW witnesses
computed by the honest parties, and y the number of any other PoW witnesses produced by the
adversary. By our assumption, it should hold that x > y. For any party Pi, it should hold that
ki = x + y, which implies by our assumption that x > ki/2. For the sake of contradiction, assume
that there exists two honest parties Pi, Pj such that Pi outputs (wlog) (0, 1) while Pj outputs yj 6= 0.
As before, we have that |P 0

i | > |P 1
i |+ |P⊥i |+ |P late

i |. By the weak agreement of the inputs of honest
parties, and the fact that honest parties solve in total more PoWs that the adversary, it easily follows
that there exists an honest party with input 0, and thus no honest party has input 1. Otherwise,

|P 0
i | ≤ y < x ≤ |P 1

i |+ |P⊥i |,

which is a contradiction. It thus follows that

|P 0
j |+ |P⊥j | ≥ x > kj/2,

and yj must be 0, which is a contradiction to our initial hypothesis.
Finally, we turn our attention to Validity. Let b be the common input of all honest parties.

Given that all honest PoWs are received in the round 2 of the protocol and that x > ki/2, for any
party Pi, it follows that all parties will output b. Thus, Validity follows.

Security amplification. We can use a similar strategy as in Weak Consensus in order to “error
correct" the output of the Graded Consensus protocol we constructed above. Before running Pro-
tocol GradedConsensus, we have to run protocol AmpedWeakConsensus to ensure that the
inputs of honest parties to the Graded Consensus protocol satisfy the Weak Consensus properties.
Next, we provide a detailed analysis of the security of the protocol.

Initialization:
Initialize counters t0,1i , t0,0i , t1,1i , t1,0i , t⊥,0i , t⊥,0i , t⊥,1i to 0.

Round 1:
zi := AmpedWeakConsensusrp,rv (Pi, bi).

Rounds 2 to l + 1:
(ci, fi) := GradedConsensusrp,rv (Pi, zi).
Increment tci,fii .

Round l + 2:

Output yi :=


0 if t0,1i + t0,0i + t⊥,1i + t⊥,0i > 2l/3;

1 if t1,1i + t1,0i + t⊥,1i + t⊥,0i > 2l/3;

⊥ otherwise.
and gi :=

{
1 if tyi,1i > 2l/3;

0 otherwise.

Protocol AmpedGradedConsensusrp,rv (Pi, bi)

Lemma 20. If Assumptions 1 and 2 hold, protocol AmpedGradedConsensusrp,rv achieves Graded
Consensus with overwhelming probability in λ, for l = log2(λ) and rp, rv, tp, tv as in Lemma 16.

Proof. First, by Lemma 17, protocol AmpedWeakConsensus achieves Weak Consensus with
overwhelming probability. This implies that the precondition about the input of protocol Grad-
edConsensus will be satisfied. Second, in the same way as in Lemma 17, we can show that in
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more than 2/3 of the GradedConsensus invocations the honest parties will produce more PoWs
than the adversary with overwhelming probability. Hence, by Lemma 19, in more than 2/3 of these
invocations, protocol GradedConsensus achieves Graded Consensus. This fact suffices to prove
the lemma.

We first argue that Validity holds. For the sake of contradiction, assume that all parties have the
same input b and there exists an honest party Pi that outputs yi 6= b. By the previous observation
about protocol GradedConsensus, it follows that tb,1i must be greater than 2l/3, which is a
contradiction. Thus, Validity follows.

Next, we argue why Graded Agreement holds. For the sake of contradiction, assume that there
exist honest parties Pi, Pj that output (yi = 0, gi = 1), and yj = 1 or yj = ⊥. Since yi = 0, gi = 1,
it should hold that t0,1i > 2l/3. By Weak Graded Agreement holding unconditionally, it follows that
t0,1j + t0,0j + t⊥,1j + t⊥,0j > 2l/3. On the other hand, since Graded Agreement holds in more than
2l/3 of the GradedConsensus invocations, it follows that t1,1j + t1,0j < l/3. Thus, Pj is going to
output either (0, 0) or (0, 1). This is a contradiction and the lemma follows.

Having achieved Graded Consensus with overwhelming probability, we can now focus achieving
full-fledged Consensus.

3.4 Consensus

Full-fledged Consensus can be obtained from Graded Consensus using a (oblivious) common coin
(cf. [26]), which can be emulated by our beacon. In more detail, the protocol consists of running
log2(λ) times the following sub-protocol: Parties first run protocol AmpedGradedConsensus. If
the output has grade 1, then they choose this to be their input for the next iteration; otherwise,
they choose the output of the common coin to be their input for the next iteration.

Rounds 1 to l:
(bi, gi) := AmpedGradedConsensusrp,rv (Pi, bi).
Let b′R be the first bit of the output of Fbeacon in this round.

Output yi :=

{
bi if (gi = 1);

b′R otherwise.
Round l + 1:

Output yi.

Protocol Consensusrp,rv (Pi, bi)

The correctness of the protocol above is based on the following observations: (i) If all honest
parties have the same input at the beginning of an iteration, then due to Graded Validity they will
all have the same output; (ii) if no honest party gets an output with grade 1, then all honest parties
are going to agree on the value of the common coin; and (iii) if an honest party gets an output with
grade 1 at some iteration, then all parties are going to get the same output (possibly with grade 0),
and if the common coin has the same value they will reach Agreement. Since the output of the coin
is unpredictable before the Graded Consensus protocol ends, this event happens with probability at
least 1/2. Thus, after log2(λ) rounds all parties will reach Agreement with overwhelming probability
in λ.

Theorem 21. If Assumptions 1 (PoW) and 2 (corruption bound) hold, then protocol Consen-
sus achieves Consensus with overwhelming probability in λ, for l = log2(λ) and rp, rv, tp, tv as in
Lemma 16.
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Proof. We start by analyzing a single iteration of the protocol. First, note that if all honest parties
have the same input b, due to Lemma 20 and Graded Validity, they are all going to output (b, 1)
with overwhelming probability. Thus, at the end of this iteration they are all going to set yi := b.
Further, the protocol preserves Validity across iterations: once parties agree, this state persists.
Thus, Validity follows.

Next, we focus on Agreement. First, we show that the probability that all parties agree at the
end of an iteration is at least 1/2. We split the analysis into two cases based on the grades that
are output by AmpedGradedConsensus: (1) no party outputs gi = 1, and (2) at least one party
outputs gi = 1. In case (1), all parties set yi = b′R, and thus they reach Agreement in this iteration.
In case (2), since at least one party has output bi ∈ {0, 1},gi = 1, by Graded Agreement it follows
that no party Pj has output bj 6= bi and gj = 1. Thus, all parties with a different bj than bi are going
to output b′R. Given that the adversary learns b′R after the AmpedGradedConsensus invocation
finishes, its actions are independent from b′R. Since with probability at least 1/2, b′R = bi, it follows
that with probability at least 1/2 all parties reach agreement in this iteration.

Next, we analyze Agreement in the full protocol. Since in each iteration there is probability at
least 1/2 of all parties agreeing, and the events of interest are independent, the probability that
parties have not agreed in at least one round is at most (1− 1/2)l = 2− log2(λ) = negl(λ). Moreover,
in case they agree in one iteration, as argued earlier, Agreement persists. Thus, Agreement is
achieved with overwhelming probability.

Combining the above theorem with the results of Section 2, we get the following corollary. We
remark that our result does not depend on the existence of one-way functions. As long as the
adversarial power is less than an inverse polynomial fraction of the total power, we can achieve
consensus in the permissionless setting.

Corollary 22. For k ≥ 2, suppose kOV takes λk−o(1) time to decide for all but finitely many inputs
lengths for any d = ω(log λ). Then, assuming that for some ε > 0,

total honest power
total adversarial power

≡ (n− t) · c
t · c

> λε

and the existence of a randomness beacon, there exists a protocol that achieves Consensus in the
permissionless setting with overwhelming probability in λ.

4 Consensus from NIZK-PoW and a Beacon with O(λ2) Output

We have shown how to achieve consensus in the presence of a beacon whose output length is
proportional to the number of parties in Section 3. In this subsection, we show how to use the Seeded
NIZK-PoW construction developed in the previous sections, to relax the assumption regarding the
size of the output of the beacon. Namely, we show how to achieve Consensus with a beacon that
has an output whose size is independent of the number of parties, i.e., it produces O(λ2) bits each
time. Note, that such a beacon is strictly weaker than a beacon that produces O(poly(λ)) outputs
each round, as by the time poly(λ) bits will be generated by the “short” output beacon some of
the generated randomness will be fairly old, essentially allowing the adversary to learn part of the
output a lot earlier than honest parties.

Our construction is quite similar to the one extensively presented earlier in Sections 3.2, 3.3,
and 3.4, hence here we only describe the necessary modifications to these protocols. Firstly, we are
going to interpret beacon outputs as consisting of a NIZK-PoW seed (implying the same number of
compressed instances as in the original protocols). Instead of parties selecting a random PoW from
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the instance sequence to solve, in the modified protocols they are going to generate and solve the
related PoW instance implied by the seed. Finally, instead of PoW witnesses, parties are going to
generate NIZK-PoW proofs (and later verify them in the respective steps of the protocols).

The protocol described above is thus sufficient to prove Theorem ?? in Section 3. We only
provide a sketch of the proof as it mostly follows that presented in the previous sections.

Theorem 23. For k ≥ 2, suppose kOV takes λk−o(1) time to decide for all but finitely many inputs
lengths for any d = ω(log λ), and that DDH is sub-exponentially hard. Then, assuming that for
some ε > 0,

total honest power
total adversarial power

≡ (n− t) · c
t · c

> λε

and the existence of a randomness beacon with output size O(λ2), there exists a protocol that achieves
Consensus in the permissionless setting with overwhelming probability in λ.

Sketch. The security analysis of the respective protocols is exactly the same, except of the reduction
presented in Lemma 17. Note, that we cannot simulate honest PoWs by witnesses coming from the
advice string, as PoW instances are all generated from the same seed and are thus correlated.
Instead, we have to resort to the Zero-Knowledge property of the NIZK-PoW and simulate honest
proofs. This does not change our main argument, as (i) the simulated proofs are indistinguishable
from honestly produced ones, and (ii) extractability still holds in the presence of simulated proofs.
The running time of the reduction is slightly increased, due to the need to run the NIZK-PoW
simulator and extractor. Note, that the running time of these algorithms is extremely efficient
compared to the computing NIZK-PoW, thus our result is essentially unaffected.

5 Conclusions and Directions for Future Work

We have shown how to achieve permissionless consensus in the standard model assuming a compu-
tationally bounded adversary, the orthogonal vectors conjecture, and the existence of a randomness
beacon. A number of interesting questions are left open by our work.

The main question is whether we can further weaken or entirely eliminate our reliance on the
randomness beacon for permissionless consensus. Currently we need at least Ω(log2(n)) queries
for amplifying security and the beacon samples a uniform distribution in each round. Interesting
directions for relaxation include allowing for biased distributions such as for example the “sunspot”
model [17], or allowing all common randomness to be determined ahead of time as in the uniform
string model. Eliminating the need for randomness may also be a possibility via some form of
permissionless coin flipping (currently known to exist in the RO model (cf. [2, 32]).

Outside of consensus numerous other questions remain. Can one construct a PoW scheme with
a super-quadratic prover/verifier gap from natural assumptions that don’t imply one-way functions?
Is there generic way to transform any PoW into a Seeded PoW? Note that our Seeded PoW gives
a means of expanding s bits into poly(s) bits which have some form of pseudoentropy without
using Nisan-Wigderson designs. Does this construction (tailored to hard problems with a particular
structure) have applications in derandomization?

As remarked above, our robust direct sum theorem can be extended to a wide class of problems.
Do problems outside of this class admit robust direct sum theorems? Perhaps more importantly, can
we show non-amortizability results for problems conjectured to be hard for sequential algorithms,
such as repeated squaring (outside of the generic group model and its cousins)?

Finally, we give a simple zero-knowledge compiler for a particular sumcheck-based doubly effi-
cient proof system that preserves the prover and verifier complexity and admits simulation propor-
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tional to verifier complexity. Is it possible to construct such a generic tight zero-knowledge compiler
for any doubly-efficient interactive proof system?
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A Proofs of Work without Random Oracles

We begin with a new definition of a Proof of Work (PoW) that we believe to be closer to the
“correct” definition than that of [24, 4]. Nonetheless, our starting point is the definition from [24, 4],
albeit with a slightly more stringent hardness condition. Ball et al. (following Dwork and Naor [24])
simply required that any prover attempting to solve m random challenges must work approximately
m times as hard relative to the work required for a single random challenge.

On the other hand, we will require that solving even ` < m random challenges requires approx-
imately ` times as much work (provided ` is larger than some threshold). Informally, this means
that allowing an adversary to choose a (large enough) subset of instances to concentrate on doesn’t
allow the adversary to correctly solve instances faster in amortization than an honest prover.

This definition has a number of parameters:
1. t – the amount of computational work required to solve a single instance.

t should be a function, and in this work, we consider t(n) = nk for some constant k.

2. γ – a tightness parameter: if the honest party requires ` · t(n) work to solve ` instances, then
no adversary can solve ` instances with less than ` · γ(t(n)) work.

In this work we consider γ = t1−Ω(1), i.e., there does not exists a constant ε > 0 such that
the adversary can solve ` instances in time `n1−ε. We will abuse notation and allow γ to be a
class of functions (where the above guarantee should hold for any function in the class).

3. τ – a threshold for when non-amortization holds: solving any ` out of m instances, where
m/` > τ , requires roughly ` times as much work.

In this work, we will consider τ = no(1). In particular, it should be the case that m/` > nε

for any constant ε > 0.

4. δ – a bound on the adversary’s success probability.
In this work, we will consider 1/δ = no(1). In particular, it should be the case that δ(n) >

n−ε for any constant ε.

Definition 24 (Proof of Work). A (t, γ, τ, δ)-PoW consists of two algorithms (Solve,Verify). These
algorithms must satisfy the following properties:

Efficiency:
• For any c ∈ {0, 1}n, Solve(c) runs in time Õ(t(n)).
• For any c ∈ {0, 1}n and any π, Verify(c,π) runs in time Õ(n).

Completeness: For any c and any π ← Solve(c),

Pr [Verify(c,π) = accept] = 1,

where the probability is taken over Verify’s randomness.
Hardness: For any function `(n) such that m(n)/`(n) ≤ τ(n), and any algorithm Solve∗ that
runs in time `(n) · γ(t(n)) when given m(n) challenges of size n as input, it holds that:

Pr

[
∃I ⊆ [m], |I| ≥ `(n) & ∀i ∈ I :

Verify(ci,πi) = accept

∣∣∣∣∣ (c1, . . . , cm)← Un×m
(π1, . . . ,π`(n))← Solve∗m(c1, . . . , cm(n))

]
< δ(n),

where the probability is taken over random samples as well as Solve∗’s and Verify’s randomness.

Remark 2. This definition can be generalized to (t, γ, τ, δ)-Interactive Proofs of Work (iPoW) in the
usual sense: by allowing Solve,Verify to be interactive RAM machines. All efficiency, completeness,
and hardness properties remain.
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We will ultimately prove the following theorems:

Theorem 2. For k ≥ 2, suppose kOV takes nk−o(1) time to decide for all but finitely many inputs
lengths for any d = ω(log n). Then for any polynomial m(n), there is a (n2, no(1), t1−Ω(1), n−o(1))-
PoW.

This theorem will be an immediate corollary of the second item of Lemma 9 and Theorem 27.

Theorem 3. For k ≥ 2, suppose kOV takes nk−o(1) time to decide for all but finitely many inputs
lengths for any d = ω(log n). Then for any polynomial m(n), there is an (nk, no(1), t1−Ω(1), n−o(1))-
iPoW. This theorem will be an immediate corollary of the second item of Lemma 9 and Theorem 28.

A.1 Proof of Work Schemes, the Orthogonal Vectors Problem and Its Arith-
metization

In this section, we will show that the PoW constructions by Ball et al. [4] achieve our stronger
definition. However, before we can describe their schemes, recall the kOV problem which we will
rephrase as follows (this version is at least as hard as the version defined previously)16:

Definition 25 (k-Orthogonal Vectors). The kOV problem on vectors of dimension d (denoted
kOVd) is to determine, given k sets U1, . . . , Uk of n vectors from {0, 1}d(n) each, whether there
exist u1 ∈ U1, . . . , uk ∈ Uk such that

∑
`∈[d(n)] u

1
` · · ·uk` = 0, where the arithmetic is over Z. If left

unspecified, d is taken to be dlog2 ne.

This problem is conjectured to take effectively nk time, and thus the variants of the OVC can be
generalized to non-uniform (resp., constant-error probabilistic) variants of the kOVC: For any d =
ω(log n), any non-uniform (resp., constant-error probabilistic) algorithm for kOVd requires nk−o(1)

time. This conjecture is in turn implied by the non-uniform (resp., constant-error probabilistic)
variants of the Strong Exponential Time Hypothesis, nuSETH (and BPSETH, resp.) [3].

We are now ready to recall the arithmetized variants of these problems: low-degree extensions
of kOV that can still be computed in Õ(nk) time (for any k). For any n, let p(n) be the smallest
prime number larger than n2, and d(n) = dlog2 ne (for brevity, we shall write just p and d). We
define polynomials fOVkn : Fkndp → Fp over knd variables.

We will think of our knd-ary input space as comprised of k matrices, U1, . . . , Uk, of dimension
n× d. We take U `i,j to denote the (i, j)th entry of the `th such matrix, and, moreover, we allow U `i,:
and U `:,j to denote the ith row and jth column (respectively) of the `th matrix. The polynomial
fOVkn is then defined as follows:

fOVn(U1, . . . , Uk) =
∑

i1,...,ik∈[n]

∏
j∈[d]

1−
∏
`∈[k]

U `i`,j


Define the family of polynomials FOVk = {fOVn}. It is not difficult to observe that FOVk

agrees with kOV on binary valued inputs. Thus, evaluating FOVk it is just as hard as kOV in the
worst-case. However, as it was shown in [3], uniformly random inputs (from Fkndp ) are just as hard:

Theorem 26 ([3]). For any k, if FOVk can be computed in O(n1+α) time on average for some
α > 0, then kOV can be decided in Õ(n1+α) time in the worst case. Thus, assuming kOVC, FOVk

requires Θ(nk−o(1)) time.
16To reduce a single list of n vectors to k lists of n vectors, simply set each of the k lists to be the same as the

original.
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Moreover, in a followup work [4] it was shown that the problem admits an even more stringent
hardness property: it is no easier to solve batches of instances (in amortization) than single instances.
In other words, the FOVk problem admits an (average-case) direct sum theorem: given m instances,
solving them all requires m times as much computation as a single instance. Or in other words, the
naive approach of solving each instance one-by-one is effectively optimal.

This prior result is an all-or-nothing direct sum theorem: the guarantee only holds with respect
to adversaries attempting to solve all instances given. In this work, we strengthen this to show
that the naive approach of solving each instance one-by-one is effectively optimal for FOVk, even if
you only wish to solve a fraction of the instances. In particular, given m instances, solving solving
any (large enough, i.e. ` = m1−o(1)) ` instances requires ` times as much computation as a single
instance.

We remark that our reduction only utilizes two aspects of FOVk, and thus our robust direct sum
theorem will generalize to other problems with these properties: (1) it is an efficiently computable
low degree polynomial, (2) it is tightly downward self-reducible. For the sake of clarity however, we
constrain our discussion in this section to FOVk.

A.2 A Proof of Work

We are now almost ready to describe the proof of work protocol from [3]. First, we introduce
yet another polynomial from [3]. Suppose, for convenience, that k is even. Then for any fixed
Uk/2+1, . . . , Uk, we can define

fOVk
Uk/2+1,...,Uk

(x1, . . . , xd)
def
=

∑
ik/2+1,...,ik∈[n]

∏
`∈[d]

(1− x`
∏

j∈[k/2]

U
k/2+j
i`,`

).

Note that we can write fOVk as follows:

fOVk(U1, . . . , Uk) =
∑

i1,...,ik/2∈[n]

fOVk
Uk/2+1,...,Uk

(
∏

j∈[k/2]

U jij ,1, . . . ,
∏

j∈[k/2]

U jij ,d).

Next, fix some enumeration of [n]k/2, ψ : [nk/2] → [n]k/2 (where if ψ : i 7→ (i1, . . . , ik/2) then
ψj : i 7→ ij). Let φ1, . . . , φd : Fp → Fp denote the unique degree nk/2 − 1 degree univariate
polynomials such that for i ∈ [nk/2], φ`(i) =

∏
j∈[k/2] U

j
ψj(i),`

. Now we define:

RU1,...,Uk(x)
def
= fOVk

Uk/2+1,...,Uk
(φ1(x), . . . , φd(x)).

Note that RU1,...,Uk is a univariate polynomial of degree at most d(nk/2 − 1). Additionally, it holds
that

fOVkn(U1, . . . , Uk) =
∑

i∈[nk/2]

RU1,...,Uk(i).

So given the coefficients of RU1,...,Uk one can evaluate it on [nk/2] in time Õ(nk/2d) (via [28]),
then one can compute fOVkn(U1, . . . , Uk) in time nk/2. Thus, RU1,...,Uk comprises the (honest) proof
of [3]’s scheme. (Producing such a proof in time nk−o(1) would thus yield a fast method of evaluating
fOVk and violate the kOV conjecture.)

We now recall how to check that such a tentative proof, R∗, is genuine, i.e., R∗ ≡ RU1,...,Uk .
By the Schwartz-Zippel lemma, if R∗ 6≡ RU1,...,Uk , then with high probability R∗(α) 6= RU1,...,Uk(α)
for a random α ∈ Fp. So it suffices to evaluate these polynomials efficiently on a random point.
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Note that R∗(α) can be evaluated in time Õ(nk/2d). Next, to evaluate RU1,...,Uk(α) we will use its
structure. First note that the coefficients of φ1, . . . , φd can be recovered in time Õ(dnk/2) [38]. So,
for any α ∈ Fp, φ1(α), . . . , φ`(α) can be computed in time Õ(dnk/2). Then, fOVk

Uk/2+1,...,Uk
can

be evaluated on these values in time Õ(nk/2d). Thus, we can check R∗(α) = RU1,...,Uk(α) in time
Õ(nk/2d) for any α ∈ Fp.

Solve((U1, . . . , Uk)) compute and output the coefficients of RU1,...,Uk .
Verify((U1, . . . , Uk), R∗) check that R∗(x) = RU1,...,Uk(x) for a random x ∈ Fp.

Protocol A Proof of Work via FOVk [3]

Theorem 27 ([3]). The protocol above is a single-round doubly efficient interactive proof for proving
that y = FOVk(x). This protocol has perfect completeness and soundness error at most

(
2nd
p

)
. The

prover runs in time Õ(n2d log p), and the verifier in time Õ(nd log p).

Ball et al. later showed how to use the sumcheck protocol to construct interactive PoWs where
producing a proof requires order nk work, but the verifier still runs in time n.

Theorem 28 ([4]). There is a k-round doubly efficient interactive proof for proving that y =

FOVk(x). This protocol has perfect completeness and soundness error at most
(

2nd
p

)
. The prover

runs in time Õ(nkd log p), and the verifier in time Õ(nd log p).

A.3 Seeded Proofs of Work from Fine-Grained Complexity

We begin by introducing the new notion of a Seeded Proof of Work, a PoW scheme such that a
short public seed can be expanded into many challenges that collectively remain hard in the sense
defined in the prior section, despite the fact that challenges are correlated with one another (in a
known manner).

Definition 29 (Seeded Proof of Work). A (s,m)-Seeded (t, γ, τ, δ)-PoW consists of four algorithms
(Expand, Solve,Verify). These algorithms must satisfy the efficiency and completeness properties of
a Proof of Work (Definition 24), and additionally:

Efficiency: For any σ ∈ {0, 1}s(n) and i ∈ [m(n)], Expand(σ, i) runs in deterministic time
Õ(s(n)).
Hardness: For any function `(n) such that m(n)/`(n) ≤ τ(n) any algorithm Solve∗ that runs
in time `(n) · γ(t(n)) when given m(n) challenges of size n as input,

Pr

 ∃I ⊆ [m], |I| ≥ `(n) & ∀i ∈ I :

Verify(ci,πi) = accept

∣∣∣∣∣∣∣∣
σ ← Us
(ci ← Expand(σ, i))i∈[m(n)]

(π1, . . . ,π`(n))← Solve∗` (σ)

 < δ(n),

where the probability is taken over Us, Solve∗’s, and Verify’s randomness.

Ball et al. [4] proved their PoW hardness condition by in turn proving a direct sum theorem for
fOV: if solving 1 random instance of size n is n2−o(1)-hard, then solving m random, independent
instances is m times as hard. Note that to specify the distribution of m random instances requires
mn random bits. In this language, we can think of our analysis as corresponding to proving a
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derandomized direct sum theorem; we want to show that there is a “pseudorandom” distribution
over m instances that still requires m times as much work as a single random instance, and yet
specifying these m instances can be done with far fewer than mn random bits. Note that the
difficulty here is that the distribution is clearly distinguishable from random as the adversary is
given a concise description of it.

Ultimately, we will utilize the downward self-reducible structure of fOV. This is also what [4]
used to prove their direct sum theorem. Our analysis can be viewed as further exploiting the
structure of fOV to remove some slack from the reduction to independent uniform instances.17 Any
small polynomial improvement on our derandomization will in fact yield a fine-grained hard problem
with a bigger gap between hardness and verification time than what is currently known from just
worst-case assumptions (and without interaction).

Remark 3. More generally, derandomized direct sum theorems present an intriguing possibility
for escalating or magnifying computational intractability that, to our knowledge, has not been
extensively explored. General derandomized direct product theorems are known [39]. Note that
while general direct product theorems hold for arbitrary problems, direct sum theorems to do not
hold in general [53].

The basic idea in our construction stems from a simple divide and conquer approach. Consider,
for the moment, the problem of counting the number of k-orthogonal vectors in U1, . . . , Uk ∈
{0, 1}n×d, i.e., |{u1 ∈ U1, . . . , uk ∈ Uk :

∑
`∈[d] u

1
` · · ·uk` = 0}|. Note that if we partition each list

of n vectors, U i, into r lists of size n/r, to compute the number of k-orthogonal vectors in the big
lists, U1, . . . , Uk, it suffices to count all k-orthogonal vectors in each subproblem formed by taking
exactly one partial list from each big list. Any sequence, u1, . . . , uk, of k-orthogonal vectors occurs
in exactly one subproblem. The case of the arithmetized version works similarly. For convenience,
we will assume that m = rk for some r ∈ Z and that r divides N .

Splitm : Fk×N×dp →
(
Fk×N/

k√m×d
p

)m
. On input U1, . . . , Uk, partition the rows of each array U i

into k
√
m subarrays, U i,1, . . . , U i, k

√
m, of height N/ k

√
m such that

U i =


U i,1

U i,2

...
U i,

k√m


Then output all combinations of exactly one subarray, U i,j , from each array, U i:

(U1,j1 , . . . , Uk,jk)j∈[ k
√
m]k .

Mergem : Fmp → Fp. On input y1, . . . , ym, simply output the sum:

m∑
i=1

yi.

Notice that because each term of fOVk(U1, . . . , Uk),
∏
j∈[d]

(
1−

∏
`∈[k] U

`
i`,j

)
occurs in exactly

one polynomial of the form fOVk(U1,j1 , . . . , Uk,jk) (where U i,j correspond to the subarrays defined
17One can view [4] as reducing an N2-hard problem on inputs of length N to an N2-hard problem on inputs of

length `N (solving `2 random instances of size N/`), for some `. We, on the other hand, reduce to a problem that does
not incur this `-factor loss (we reduce to a pseudorandom distribution over `2 instances of size N/`; this distribution
has support size 2N as opposed to 2`N ).
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above), we have that

fOVk(U1, . . . , Uk) =
∑

j∈[ k
√
m]k

fOVk(U1,j1 , . . . , Uk,jk)

= Mergem(fOVk(Splitm1 (U1, . . . , Uk)), . . . , fOVk(Splitmm(U1, . . . , Uk))).

Let m be the number of PoW instances desired and n a security parameter such that proofs
(conditionally) require Õ(n2) time to compute and Õ(n) time to verify. Let p be a prime number of
order nlogn and d = dlog2 ne.

Seed σ is sampled uniformly at random from Fk×
k√
n2m×d

p .

Expand(σ, i) outputs Splitmi (S), the ith (in Fk×n2/k×d
p ) output of Splitm(S).

Solve : On input U1, . . . , Uk ∈ Fk×n2/k×d
p , output the coefficients of RU1,...,Uk

Verify : On input U1, . . . , Uk ∈ Fk×n2/k×d
p and R∗, a degree k(n− 1)d univariate polynomial over Fp,

check that R∗(x) = RU1,...,Uk(x) for a random x ∈ Fp.

Protocol A Seeded Proof of Work via FOVk

Theorem 5: For k ≥ 2, suppose kOV takes nk−o(1) time to decide for all but finitely many
input lengths for any d = ω(log n). Then for any polynomial m(n), the protocol above is a
( k
√
m(n)n,m(n)n)-Seeded (n2, no(1), t1−Ω(1), n−o(1))-PoW.

This theorem is an immediate corollary of the first item of Lemma 9 and Theorem 27.

Theorem 6: For k ≥ 2, suppose kOV takes nk−o(1) time to decide for all but finitely many inputs
lengths for any d = ω(log n). Then for any polynomial m(n), there is a ( k

√
m(n)n,m(n)n)-Seeded

(nk, no(1), t1−Ω(1), n−o(1))-Interactive PoW (iPoW). This theorem is an immediate corollary of the

first item of Lemma 9 and Theorem 28.

A.4 A (Derandomized) Robust Direct Sum Theorem for Arithmetized k-OV

We now present our main technical contribution for the section: the arithmetized variant of k-
OV, fOVk, described above admits a robust direct sum theorem. In particular, given m random
instances, it requires roughly `nk work to correctly evaluate any ` of the m instances. Moreover, we
show that this result can also be derandomized—i.e., the robust direct sum guarantee applies even
when the instances are drawn from a pseudorandom joint distribution that requires polynomially
fewer random bits to sample. Because the sampler for this distribution is efficiently invertible, the
guarantee holds even when the seed is given in conjunction with the pseudorandom distribution.

A hard pseudorandom distribution. Before we state Lemma 9 that describes our reduction, we
describe the hard pseudorandom distribution over instances. This distribution is simply the output
of Split on a uniformly random instance. Concretely, for the case of FOVk, this is as follows:

LetDr
k,n,d,p

pr denote the distribution generated by samplingU uniformly at random from (Frn×dp )k,
k lists of rn d-dimensional vectors with each list partitioned into r blocks, and outputting Splitr

k
(U).

(
U1,j1 , . . . , Uk,jk

)
j∈[r]k

where

 U1,1

...
U1,r

 , · · · ,
 U1,1

...
U1,r

 u← (Frn×dp )k (4)
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Direct sum reduction. We are now prepared to state this sections main technical lemma.

Lemma 9. Let m(n) be a polynomial and `(n) a function such that `(n) < m(n), and p a prime

such that log(p) = no(1) and p > 6
(

12m(n)
δ`(n)

)2
k2kd log log(n) log(n)m(n). Let dk = Õ(1), and let

{f : Fkndp → Fp} denote FOVk in what follows.
1. Pseudorandom reduction. Let A be a randomized algorithm running in time tA(n) ≤ `(n) ·

nk−ε that on input X1, . . . , Xm drawn from Dpr outputs ŷ1, . . . , ŷm such that with probability at
least δ(n), |{i ∈ [m] : f(Xi) = ŷi}| ≥ `(n).18

Then, there is a randomized algorithm A′ that on input X, of size θd,p(n), computes f(X)

in time Õ
(

mnk−ε

(δ `
m

)Θ(1)

)
, with probability at least 2/3.

2. Uniformly random reduction. Similarly, let A be a randomized algorithm running in time
tA(n) ≤ `(n) · nk−ε that on input X1, . . . , Xm drawn independently and uniformly at random
from Fkndp outputs ŷ1, . . . , ŷm such that with probability at least δ(n), |{i ∈ [m] : f(Xi) = ŷi}| ≥
`(n).

Then, there is a randomized algorithm A′ that on input X, of size θd,p(n), computes f(X)

in time Õ
(

mnk−ε

(δ `
m

)Θ(1)

)
, with probability at least 2/3.

Remark 4. In the above lemma (and its proof), for simplicity we assume `(n) is known to the
reduction precisely (similarly δ(n)). Because the reduction requires just log(n) such values (each of
length O(log(n))), this can be efficiently encoded as advice.

However, if f can be evaluated on a single instance in time nk, and m
` ≤ τ(n) for some `nk−ε

time computable τ = no(1), then, alternatively, `(n) can be efficiently approximated up to a constant
factor in time Õ(`nk−ε) given δ(n) (such that 1/δ(n) = no(1)). This follows by repeated empirically
testing the output of A at no(1) random points. By a Chernoff bound, it follows that with over-
whelming probability each test will yield a candidate value ˆ̀ that is precise up to a constant factor
(if the algorithm solved at least τ instances correctly). Then simply output the smallest estimate
that is greater than a δ fraction of all estimates. By another Chernoff bound, this estimate will be
a constant factor approximation of `(n).

The proof of Lemma 9 can be adapted to work with constant factor approximations of ` by
simply adjusting constants.

Remark 5. The lemma can be extended to apply to any low-degree polynomial that is downward-
self-reducible (in the sense that it admits some efficient, correct Split,Merge pair).

Technical tools. To complete the proof of Lemma 9 we first need to introduce a number of technical
tools. First, we require an efficient list-decoding algorithm, related to Sudan’s, from Roth and
Ruckenstein [52].

Lemma 30 ([52]). List decoding for [n, k] Reed-Solomon (RS) codes over Fp given a code word with
almost n−

√
2kn errors (for k > 5), can be performed in

O
(
n3/2k−1/2 log2 n+ (n− k)2

√
n/k + (

√
nk + log p)n log2(n/k)

)
operations over Fp.

By restricting the choice of parameters, the following is obtained:
18If it is not the case that t(n) >> m(n), imagine that A outputs (i, ŷi)i∈S for some S ⊆ [n].

43



Corollary 31. For T = Ω(D),Ω(log2/3(p)), list decoding [T,D] Reed-Solomon codes of Fp can be
performed in Õ(T 2.5) operations.

We also need a bound on list size.

Lemma 32 ([10]). Let q be a polynomial over Fp, and define Graph(q) := {(i, q(i)) | i ∈ [p]}. Let
c > 2, δ/2 ∈ (0, 1), and m ≤ p such that m > c2(d−1)

δ2(c−2)
for some d. Finally, let I ⊆ [p] such that

|I| = m. Then, for any set S = {(i, yi) | i ∈ I}, there are less than dc/δe polynomials q of degree at
most d that satisfy |Graph(q) ∩ S| ≥ mδ/2.

Corollary 33. Let S be as in Lemma 32 with I = {K + 1, . . . ,K + T}, for any K,T such that
K + T < p. Then for T > 9D/δ2, there are at most 3/δ polynomials, q, of degree at most D such
that |Graph(q) ∩ S| ≥ Tδ/2.

We additionally require high-moment bounds on random variables with bounded independence.

Lemma 34 (Concentration for sum of q-wise independent random variables [7]). Let q be an even
integer and X the sum of n q-wise independent random variables taking values in [0, 1]. Let µ = E[X]
and a > 0. Then

Pr[|X − µ| > a] < 1.1
(nq
a2

)q/2
.

Proof of Lemma 9. Let r = m1/k assume this value is integral for simplicity. Similarly, assume n
is a power of 2 for simplicity. Let X ∈ Fk×r·n×dp , q = log log n, T = (m logn)2/qq+9k2d2q222k

( δ`
m

)2
, and

D = kdq2k.
We begin by presenting the reduction that computes f(X) for any X using A. Let X1, . . . , Xm =

Splitm(X), where each Xi ∈ Fk×r·n×dp . Note that (X1, . . . , Xm) ∈ Supp(Dpr). Now invoke the
following procedure, B, that takes X1, . . . , Xm as input:

1. If Xi ∈ Fk×n′×dp for n′ ≤ N for a fixed constant N , simply evaluate f(X1), . . . , f(Xm).

2. For each i ∈ [m], parse Xi as follows:

Xi = (

[
X1,0
i

X1,1
i

]
, · · · ,

[
Xk,0
i

Xk,1
i

]
) ∈ (Fn×dp )k

3. SampleR0, . . . , Rq independently and uniformly at random from Fk×r·n/2×dp . Compute (Rj,1, . . . , Rj,m) :=
Splitm(Ri) for j ∈ {0, . . . , q}.

4. For each i ∈ [m], define the univariate polynomial

Pi(t) =
∑

v∈{0,1}k
δv(t) · (X1,v1

i , . . . , Xk,vk
i ) +

2k−1∏
u=0

(t− u)

 ·
 q∑
j=0

tj ·Rj,i

 ,

where δv(t) denotes the unique degree 2k−1 such that for t ∈ {0, . . . , 2k−1}, if t is represented
as a binary vector in {0, 1}k: δv(t) = 1 if t = v and δv(t) = 0 otherwise.

Note that f(Pi(t)) is a univariate polynomial of degree at most D = kdq2k.

5. For t = 2k, . . . , T + 2k:
Choose k random permutations πt,j : [r]

S→ [r].
Interpreting each j ∈ [m] as a vector in [r]k, consistent with the ordering of Split, define
π : [m]

S→ [m] such that πt : (j1, . . . , jk) 7→ (πt1(j1), . . . , πt,k(jk)).
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Call A(Pπ−1
t (1)(t), . . . , Pπ−1

t (m)(t)) = (ŷt
π−1
t (1)

, . . . , ŷt
π−1
t (m)

).

6. For i ∈ [m], run the efficient local list decoding for Reed-Solomon Codes from Lemma 30 on
(y2k
i , . . . , y

T+2k

i ) to get a list Li of candidate univariate polynomials of degree at most D.

7. Choose uniformly random and independent t∗ ∈ Fp.

8. Recursively call B on (P1(t∗), . . . , Pm(t∗)) to get (ŷ′1, . . . , ŷ
′
m).

9. For each i ∈ [m], let ĥi be the first polynomial in Li such that ĥi(Pi(t∗)) = ŷi.

10. For i ∈ [m], set ŷi =
∑2k−1

j=0 ĥi(j).

11. Output (ŷ1, . . . , ŷm).

Given B(X1, . . . , Xm) = (ŷ1, . . . , ŷm), return Merge(ŷ1, . . . , ŷm) =
∑m

i=1 ŷi.

Correctness. Now let us analyze the correctness of the reduction. First, we will observe that the
reduction maintains the invariant that the input to each recursive call to B is in the support of Dpr
(i.e., the output of Split(X ′) for some X ′).

Claim 4. (P1(t), . . . , Pm(t)) ∈ Supp(Dpr) for all t ∈ Fp.

The claim follows from inspection.
Next, we observe that the calls made to A in each recursive step are q-wise independent draws

from Dpr, enabling us to extract strong empirical guarantees on A’s responses.

Claim 5. (Pπ−1
t (1)(t), . . . , Pπ−1

t (m)(t))
T+2k

t=2k
is q-wise independent with residual distribution Dpr.

Again, assuming the input to B is in the support of Dpr, this is clear from the definition of Pi’s and
πt’s. The claim then follows by induction.

We are now prepared to demonstrate that the list-decoding subroutines almost always recover
“good” lists.

Claim 6. With probability at most 1/6, there exist a level of recursion and index i such that the Li
list recovered in step 6 of B (in that recursive call) either:
1. It does not contain the polynomial Q∗i (t) := f(Pi(t)), or

2. it consists of more than 6/δ′ polynomials, for δ′ = δ`
2m .

Proof. Consider any fixed i ∈ [m] and level of recursion. Because each recursive call cuts the number
of rows in each array in half, there are most log n levels of recursion. Thus, by the promise on the
list-decoding algorithm (Lemma 30 and Corollary 33), it suffices to show that with probability
≤ 1

6m logn , less than a δ′-fraction of (ŷ2k
i , . . . , y

T+2k

i ) returned by A (in larger batch calls) agree with
f(Pi(2

k)), . . . , f(Pi(T + 2k)). Then, the claim follows by a union bound over i ∈ [m] and all log n

levels of recursion. This is because T > 9k2d2q222k

( δ`
m

)2
, so δ′T >

√
2TD (and thus it satisfies the error

threshold for efficient list decoding).
To analyze this, let Et be the indicator random variable for the event that ŷti = f(Pi(t)). We

can lower-bound the probability that Et = 1 by the probability that A correctly solves ` out of m
instances in the tth batch, which happens with probability at least δ, and the probability that πt
mapped Pi(t) to one of the of the ` instances solved correctly. Because (P1(t), . . . , Pm(t)), for fixed
t, is simply a random sample of Dpr, these two events are independent. Thus,

p := E[Et] ≥ δ ·
`

m
.
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Now, by the claim above we have that E2k , . . . , ET+2k are q-wise independent. Applying the
tail bound of Lemma 34, and the choice of T ≥ (m log n)2/q q

( δ`
m

)2
, we have:

Pr[
∑

Et ≤ δ′ · T ] ≤ Pr

[∣∣∣∣∑Et −
δ`

m
T

∣∣∣∣ ≥ (δ`m − δ′
)
T

]
≤ 1.1

(
Tq(

δ`
m − δ′

)2
T 2

)q/2

≤ qq/2(
δ`
m − δ′

)q
T q/2

≤ 1

6m log n
.

Next, to complete the proof of correctness, we simply need to demonstrate that, with sufficiently
high probability, recursing on a random point works.

Claim 7. Given L1, . . . , Lm, each a list of L = 12m
δ` polynomials of degree at most D, for a uniformly

random choice of t∗ u← Fp, the probability that there exists some Li such that there are p 6= q ∈ Li
where p(t∗) = q(t∗) is at most mL2D

p .

Proof. For any Li there are at most
(
L
2

)
≤ L2 pairs of polynomials p 6= q ∈ Li. Because p 6= q and

the degree is at most D, they can agree on at most D points. The claim follows from a union bound
over all such pairs in all such lists.

The probability that the event described in Claim 7 happens in any recursive call is at most
mL2D
p . By our choice of p, this is less than 1

6 . Thus, because the reduction only fails if (a) any list-
decoding call fails to recover the correct polynomial, or (b) a recursive call is made on some t∗ which
fails to uniquely identify the correct polynomial in all lists, we can conclude that the probability
that the reduction fails to compute f(X) with probability at most 1

6 + 1
6 = 1

3 . This completes the
proof of correctness.

Efficiency. Finally, let us analyze efficiency of the reduction. Note that in each recursive call, the
number of rows in each array is cut in half. Therefore, the reduction will make at most log n
recursive calls before the base case in the first step is triggered (which takes O(mkd) time).

In step 5, computing Pi(2k), . . . , Pi(T ) can be performed in time Õ(TD) via batch univariate
polynomial evaluation [28], taking time Õ(mTD) overall. The calls to A collectively take T · tA ≤
T` · nk−ε time, per level of recursion.

In step 6, list decoding takes time Õ(mT 2.5) overall, by Corollary 31. In step 9, finding the first
such polynomial in each list takes time at most Õ(mD/(δ`/m)). All other steps clearly have cost
at most linear in input size.

So, all in all, the total complexity (plugging in T = (m logn)2/qq

(δ
`
m )2

) becomes:

Õ(T 2.5m+ T` · nk−ε)) = Õ

(
m6

δ5`5
+
m2nk−ε

δ`

)
= Õ

(
mnk−ε

(δ `m)Θ(1)

)

This completes the proof of Lemma 9.
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B Zero-Knowledge Proofs of Work

B.1 Definitions

We give the definitons needed to extend proofs of work both to be zero-knowledge and, soon,
noninteractive. First, we give the definition of a robust non-interactive zero-knowledge proof system,
as introduced in [23], which will be the eventual goal of this section.

Definition 35. Given an NP relation R, let L = {x : ∃w s.t. R(x,w) = 1}. Π = (q,P,V,S =
(S1, S2),E)) is a robust NIZK argument for L, if P,V, S,E ∈ PPT and q(·) is a polynomial such that
the following conditions hold:

Completeness. For all x ∈ L of length λ, all w such that R(x,w) = 1, and all Ω ∈ {0, 1}q(λ),
V(Ω, x,P(Ω, w, x))] = 1.
Multi-Theorem Zero-Knowledge. For all PPT adversaries A, we have that Real(λ) ≈
Sim(λ), where

Real(λ) = {Ω← {0, 1}q(λ); out← AP(Ω,·,·)(Ω);Output out},

Sim(λ) = {(Ω, tk)← S1(1
λ); out← AS′2(Ω,·,·,tk)(Ω);Output out},

and S′2(Ω, x, w, tk)
def
= S2(Ω, x, tk) if (x,w) ∈ R and otherwise outputs failure if (x,w) 6∈ R.

Extractability. There exists a PPT algorithm E such that, for all PPT A,

Pr

[
(Ω, tk)← S1(1

λ); (x, π)← AS2(Ω,·,tk)(Ω);w ← E(Ω, (x, π), tk) :

R(x,w) 6= 1 ∧ (x, π) 6∈ Q ∧ V(Ω, x, π) = 1

]
≤ negl(λ),

where Q contains the successful pairs (xi, πi) that A has queried to S2.

Theorem 36 ([23]). Assuming trapdoor permutations and a dense cryptosystem exist, robust NIZK
arguments exist for all languages in NP.

We now introduce all the tools that will help us reach this goal, starting with the definition of
a zero-knowledge proof of work.

Definition 37. An interactive zero-knowledge proof of work (zk-PoW) is an (interactive) (t(n), ε(n), δ(n))-
PoW (Gencrs,Π = 〈P, V 〉) if there exists a simulator S which runs in time Õ(n) and, for any
x← Gen(1n), we have

ViewP,V,Gencrs(x) ≈ S(x),

where ViewP,V,Gencrs(x) denotes the distribution of the crs output by Gencrs in addition to the
transcript generated by the (honest) prover P interacting with the (honest) verifier V when given
that crs.

We will also prove extractability, necessary for a (zero-knowledge) proof of knowledge. Extrac-
tion is a stronger property than soundness. Essentially, extraction requires the existence of an
extractor, which knows the trapdoor and uses this alongside an arbitrary prover P ∗ to extract out
the secret that P ∗ is trying to prove.

Definition 38. An interactive proof system between Prover P and Verifier V is an (interactive)
proof of knowledge for relation R with knowledge error ε(n) if there exists an extractor E which
runs in time Õ(n) and, for any w and arbitrary Prover P ∗, we have:∣∣∣Pr

[
(x,w) ∈ R : x← EP ∗(w)

]
− Pr [〈P ∗, V 〉(w) = 1]

∣∣∣ ≤ ε(n).

If ε(n) = negl(n), then we say 〈P, V 〉 is a proof of knowledge for R.
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In order to make our resulting proof of knowledge noninteractive, we will employ the Fiat-Shamir
transform using collision intractable hash functions. In particular, to use these hash functions with
our 2k-round protocol, we will need a stronger property than the above soundness property, which
is known as round-by-round soundness. We give its definition below.

Definition 39. Let Π = (P, V ) be a 2r-message public coin interactive proof system for a language
L. For any x ∈ {0, 1}∗, and any prefix τ of a protocol transcript, let V (x, τ) denote the distribution
of the next message (or output) of V when the transcript so far is τ and V was executed on input
x.

We say that Π has round-by-round soundness error ε(·) if there exists a deterministic (not
necessarily efficiently computable) function State that takes as input an instance x and a transcript
prefix τ and outputs either accept or reject such that the following properties hold:
1. If x 6∈ L, then State(x, ∅) = reject, where ∅ denotes the empty transcript.

2. If State(x, τ) = reject for a transcript prefix τ , then for every potential prover message α, it
holds that

Pr [State(x, τ |α|β) = accept] ≤ ε(n).

3. For any full transcript τ , if State(x, τ) = reject, then V (x, τ) = 0.
We say that Π is round-by-round sound if it has round-by-round soundness error ε for some ε(n) =
negl(n).

Luckily, for our protocol specifically, this property is very closely related to extractability. Fi-
nally, we present definitions related to collision intractable hashing.

Definition 40. For a given relation ensemble R = {Rλ ⊆ ({0, 1}ν(λ))t(λ) × ({0, 1}µ(λ))t(λ)}, a hash
family H = {hλ : {0, 1}κ(λ)×{0, 1}ν(λ)→{0,1}µ(λ)} is said to be R-correlation intractable with security
(s, δ) if for every s-size adversary A = {Aλ},

Pr [(x,y = (h(x1), . . . , h(xt))) ∈ R] = O(δ(λ)).

We say H is R-correlation intractable with security δ if it is (λc, δ)-correlation intractable for all
c > 1. Finally, we say that H is R-correlation intractable if it is (λc, 1/λc)-correlation intractable
for all c > 1.

For most existing schemes, this requires an additional property on the underlying relation known
as sparsity. Informally, sparsity requires there to be negligibly many witnesses for any given state-
ment in the language.

Definition 41 ([45]). A relation R = {Rλ ⊆ ({0, 1}ν(λ))t(λ) × ({0, 1}µ(λ))t(λ)} is sparse if for every
x ∈ ({0, 1}ν(λ))t(λ),

Pr[(x,y) ∈ R] ≤ negl(λ).

Finally, for our constructions, we will use the Decisional Diffie-Hellman (DDH) assumption,
which we state here.

Definition 42. The DDH assumption states that there exists some G = {Gλ}λ∈N a group ensemble
with efficient representation, where each Gλ is a cyclic group of prime order p(λ) such that, for any
PPT A, we have

|Pr[A(1λ, g, ga, gb, gab) = 1 : a, b
$← Zp(λ)]−

Pr[A(1λ, g, ga, gb, gc) = 1 : a, b, c
$← Zp(λ)]| ≤ negl(n),
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where g is a generator for Gλ.
The Sub-exponential DDH assumption instead assumes that the above is true for all non-uniform

A that run in time λO((log log λ)3).

In Section B.3, we present a sub-protocol we will use for knowledge extraction. In Section B.4,
we give our full zero-knowledge proof of work protocol for the k-orthogonal vectors problem and
compose it with this sub-protocol to make a zero-knowledge proof of knowledge. We also refer to
Section B.2 for a warm-up protocol, which more elegantly shows the techniques used by our main
proof of knowledge at the cost of only having a quadratic Prover-Verifier gap. In Section B.5, we
add a trapdoor to the proof of knowledge so that we can make our proof non-interactive using
techniques from Jain and Jin [41] in Section B.6.

B.2 Warm-Up

As a warm-up, we first present a variant of the zero-knowledge proof of work (zk-PoW) from [4]
based on the hardness of the k-orthogonal vectors problem kOVd(n) (d(n) = polylog(n)) and DDH
for q-order Schnorr group G (with q > n2).

For x = (x1, . . . , xt), h = (h1, . . . , ht), g and y, let gx = (gx1 , . . . , gxt), hx = (hx1
1 , . . . , h

xt
t ) and

hy = (hy1, . . . , h
y
t ).

CRS: GenCRS(1n)→ (g, h), where g generates G and h = gy for a uniformly random y
u← Zq.

Challenge: Gen(1n)→ (U1, . . . , Uk), where each Ui is i.d.d. uniform from G.

Protocol:
Prover P computes the coefficients of RU1,...,Uk α, samples r u← Zdnk/2 log q

q , and t u← Zq.
Let bits(α) = β = (β1,0, . . . , β1,log q, . . . , βdnk/2,0, βdnk/2,log q) denote the binary representation of

α, such that
∑log q
i=0 2i(β1,i, . . . , βdnk/2,i) = α.

Prover then sends (a, b, c,d) = (gt, ht, gr, gbits(α)hr) to Verifier V .
Verifier samples x u← Zq and s u← Zq and sends (x, s) to Prover.

Let x denote (1, x, x2, . . . , xdn
k/2−1).

Prover computes r′ =
∑log q
i=0 2i(r1,i, . . . , rdnk/2,i) and sends w = t+ s〈r′,x〉 to Verifier.

Verifier computes z = RU1,...,Uk(x) as well as c′ = (
∏log q
i=0 (c1,i)

2i , . . . ,
∏
i=0(cdnk/2,i)

2i) and
d′ = (

∏log q
i=0 (d1,i)

2i , . . . ,
∏
i=0(ddnk/2,i)

2i). It accepts if and only if

gw = a · (c′)s·x
∧

hw = b · (d′)s·x/gsz

Protocol A Zero-Knowledge Proof of Work via FOVk [3]

Theorem 43. Suppose kOV takes nk−o(1) time to decide for all but finitely many input lengths
and d = ω(log n). Then, the protocol above is a (N2, ε(n), δ(n))-zk-PoW for any ε(n) > 0 and any
δ(n) > 1/no(1).

It remains to show that the extractor from Section B.3 does succeed. As this protocol will be
used for the full, 2k-round protocol, it is most useful to isolate it as a tool first to better understand
it.

Proof. We prove efficiency, completeness, hardness, and zero-knowledge separately. Note that our
efficiency goals are in terms of N = nk/2.
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Efficiency: Efficiency of Gen is clear. The verifier must only generate two random values in the first
step, then generate knd random points for (U1, . . . , Uk).

For the Prover, we see that it takes O(dnk) to compute the coefficients of R [5]. Breaking up
each bit of this polynomial takes O(dnk/2) time. Computing the bit encryptions only takes O(dnk/2)
time as well. Finally, the prover must calculate w, which it can do in O(dnk/2) time.

Finally, for the Verifier, aside from generating and sending O(dnk/2) random challenges, the
only computation performed is recomputing c and d, and computing z = RU1,...,Uk(x). All of these
take O(dnk/2) time as well, in particular the computation of the polynomial RU1,...,Uk on a single
value takes this much time, as shown by [5].

Completeness: We have RU1,...,Uk(x) = fOVk
Uk/2+1,...,Uk

(φ1(x) . . . , φd(x)) on all inputs x ∈ Zq when
the Prover is honest. Additionally, in the case of honest Prover and Verifier, we have r′ = r, c′ = c,
and d′ = d, and so we see the Verifier accepts when given the following by the honest Prover:

gw = gt+x〈r
′,x〉 = a · (c′)x·x

= [t]g ·

(
log q∏
i=0

(cj,i)
2i

j∈[dnk/2]

)x·x
= [t+ r · xx]g

= [t+ x〈r,x〉]g

and

hw = ht+x〈r
′,x〉 = b · (d′)x·x/gxz

= ht · (
log q∏
i=0

(d2i

j,i)j∈[dnk/2])
x·x/gxz

= [t]h ·

(
log q∏
i=0

(dj,i)
2i

j∈[dnk/2]

)x·x
/ [xz]g

= [yt]g · [bits(α) + y · r]x·xg / [xz]g

= [yt+ x ·α · x+ yx(r · x)− x ·RU1,...,Uk(x)]g

= [yt+ yx(r · x)]g

= [t+ x(r · x)]h .

The correctness of the last checks relies on the correctness of the underlying bit protocol, assuming
that each βi,j is in fact a single bit.

Zero-knowledge: Our simulator is given (U1, . . . , Uk), where each Ui is drawn uniformly at random
from G. We will design S as follows:

1. Let crs be (g, gy), where g generates G and y u← Zq.

2. Sample x u← Zq. Sample r u← Zdnk/2q and set c = gr.

3. Let β = (β1,0, . . . , β1,log q, 0, . . . , 0) be a dnk/2-long binary vector, where (β1,0, . . . , β1,log q) is the
binary representation of RU1,...,Uk(x) and all other bits are 0. Define d = (gβ+yr).
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4. Sample M
u← Zdn

k/2 log q
q . Perform the proofs of bit encryption normally using h = gy, d as

above, and M, receiving E = {ei,j}, F = {fi,j}, U1 = {u1
i,j}, U2 = {u2

i,j}, V1 = {v1
i,j}, and

V2 = {v2
i,j}.

5. Sample w u← Zq and set a = gw/gx〈r,x〉 and b = gyw/gyx〈r,x〉, where x is defined similarly as
in the protocol.

6. Output the following:

((g, gy), (a, b, c,d,E,F), (x,M), (w,U1,U2,V1,V2)).

Efficiency of the simulator is clear for most steps as running in time O(nk/2). Note that
RU1,...,Uk(x) may be computed in time O(nk/2) [5]. All other steps are sampling O(nk/2) random
values and exponentiating, so the overall simulator’s time is O(nk/2).

To see that the transcript is computationally indistinguishable from that of a real Prover and
Verifier, we first note that many of the elements are distributed exactly as in the real interaction.
Since x, s, r, and w are all sampled uniformly at random, a and b are also distributed identically
to the real protocol. The only remaining elements to check are d. For this, we reduce to the DDH
problem. Suppose there were an algorithm A which could distinguish between the output of S and
the view of the real transcript. We construct an algorithm which distinguishes the tuple (g1, g2, g3)
as either (ga, gb, gc) or (ga, gb, gab) as follows: Given (g1, g2, g3), set gy = g1 and sample a random
index (i, j)

u← Zdn
k/2(log q+1)

q such that i ≥ 2 and sent element (i, j) of c to be gb. Perform the rest
of the simulation as normal.

We did not prove soundness above because, as mentioned, extraction is a strictly stronger
property than basic soundness. In order to extract, we use a proof of knowledge for bit encryption.
First, we show that, assuming there exists an extractor for the bit encryptions, we may extract the
entire secret.

Extractability: Let P ∗ be an arbitrary prover who makes V accept with probability 1. Given a CRS
(g, h) where E knows the exponent t such that gt = h, we design EP ∗ as follows:

1. E runs P ∗ until receiving (a, b, c,d) from P ∗.

2. Running the extractor from Section B.3 twice for each index of (c,d), E recovers the bits
β′ = (β′i,j)i∈[dnk/2],j∈[log q].

3. DefineR′ to be the polynomial of degree at most dnk/2 defined by coefficientsR′i =
∑

j∈[0,log q] 2jβ′i,j .

Then, let A =
∑nk/2

i=1 R′(i). Output A.

First, note that the extractor strategy is well-formed—indeed, A is exactly fOVk if P ∗ = P .
Then, from the extractability of the bit proofs, we have that each β′i,j must be a bit. So, for
any prover behavior, we may extract a polynomial of degree at most dnk/2. To confirm A is in
particular a polynomial satisfying the orthogonal vectors relation, we may continue running the
prover on different challenges and confirming it is giving back the polynomial R evaluated on those
challenges, but in either case, we output A.

B.3 Proofs of Knowledge of Bit Encryption

In order to construct a proof of knowledge for kOV, we will first construct a zero-knowledge proof
of work where the Prover sends the proof bit by bit to the Verifier. By composing this with a
zero-knowledge proof of knowledge for bit encryption, we can then transform our proof into a proof
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of knowledge for kOV. To this end, we present Protocol B.3, adapted from [21] and relying on the
discrete logarithm problem.

CRS: GenCRS(1n)→ (g, h), where g generates G and h = gy for a uniformly random y
u← Zq.

Challenge: Gen(1n)→ gβhr, where r u← Zq and β ∈ {0, 1}.

Protocol:
Prover P samples and computes the following:

• If β = 0, Prover samples w, u1, v1 u← Zq and computes e := hw and f := hu
1

(d/g)−v
1

.

• If β = 1, Prover samples w, u2, v2 u← Zq and computes e := hu
2

(d)−v
2

and f := hw.

In either case, Prover sends e, f to Verifier V .
Verifier samples m u← Zq and sends m to Prover.
Prover computes the following:

• If β = 0, set v2 := m− v1 and u2 := w + rv2.

• If β = 1, set v1 := m− v2 and u1 := w + rv1.

In either case, Prover sends u1, u2, v1, v2 to Verifier.
Verifier accepts if and only if

m = v1 + v2
∧

hu
1

= f(d/g)v
1 ∧

hu
2

= edv
2

.

Protocol Proof of Bit Encryption

Consider the game between a dishonest prover and honest verifier as the prover sending (e∗, f∗),
the verifier sendingm generated uniformly at random, and the prover sending u1∗(m), v1∗(m), u2∗(m),
v2∗(m). Suppose the prover can convince the verifier to accept on two different transcripts with
the same first message (e∗, f∗). That is, let (m1,m2) be two challenges to the prover generated
uniformly at random, and let (u1∗

1 , v
1∗
1 , u

2∗
1 , v

2∗
1 ) and (u1∗

2 , v
1∗
2 , u

2∗
2 , v

2∗
2 ) be the responses from the

prover to challenges m1 and m2, respectively. For the verifier to accept, the following must be true:

(1) m1 = v1∗
1 + v2∗

1 , (2) hu
1∗
1 = f∗(d/g)v

1∗
1 , (3) hu

2∗
1 = e∗dv

2∗
1 ,

(4) m2 = v1∗
2 + v2∗

2 , (5) hu
1∗
2 = f∗(d/g)v

1∗
2 , (6) hu

2∗
2 = e∗dv

2∗
2 .

Let ∆ = m1 −m2. We derive the following from (1), (3), and (4):

hu
2∗
1 = e∗dm1−v1∗

1

= e∗d∆+m2−v1∗
1

= hu
2∗
2 dv

1∗
2 +∆−v1∗

1 , and

hu
2∗
1 −u2∗

2 = d∆+v1∗
2 −v1∗

1

hu
2∗
1 −u2∗

2 g−v
1∗
2 = d∆−v1∗

1 (d/g)v
1∗
2

= d∆−v1∗
1 hu

1∗
2 (f∗)−1.

Rearranging terms, we have
f∗hu

2∗
1 −u2∗

2 g−v
1∗
2 = d∆−v1∗

1 hu
1∗
2 .
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By multiplying both sides by (d/g)v
1∗
1 and using (2), we get

hu
1∗
1 +u2∗

1 −u2∗
2 g−v

1∗
2 = d∆hu

1∗
2 g−v

1∗
1

hu
2∗
1 −u2∗

2 gv
1∗
1 −v1∗

2 = d∆hu
1∗
2 −u1∗

1 .

Substituting v1∗
1 − v1∗

2 = m1 − v2∗
1 −m2 + v2∗

2 = ∆ + v2∗
2 − v2∗

1 , we have

hu
2∗
1 −u2∗

2 g∆+v2∗
2 −v2∗

1 = d∆hu
1∗
2 −u1∗

1

hu
2∗
1 −u2∗

2 gv
2∗
2 −v2∗

1 = (d/g)∆hu
1∗
2 −u1∗

1

hu
1∗
1 +u2∗

1 gv
2∗
2 −v2∗

1 = (d/g)∆hu
1∗
2 +u2∗

2

f∗(d/g)v
1∗
1 e∗dv

2∗
1 = (d/g)∆f∗(d/g)v

1∗
2 e∗dv

2∗
2

(d/g)v
1∗
1 dv

2∗
1 = (d/g)∆(d/g)v

1∗
2 dv

2∗
2 .

From this, we can derive d∆ as

d∆ =
dv

1∗
1 +v2∗

1 gv
2∗
1 −v1∗

2 −v2∗
2

dv
2∗
2

=
dv

1∗
1 +v2∗

1 −v2∗
2

gv
1∗
2 +v2∗

2 −v2∗
1

=
dm1

gm2
· g

v2∗
1

dv
2∗
2

.

Substituting back m1 −m2 = ∆, we may then simplify

d−m2 = gv
2∗
1 −m2d−v

2∗
2 .

This implies dv1∗
2 +v2∗

2 = dv
2∗
2 gm2−v2∗

1 , which in turn implies

dv
1∗
2 = gm2−v2∗

1 .

Because d = gβ
∗
hr
∗ for some (β∗, r∗), and in particular we are given c = gr, the extractor (which

knows t such that gt = h) may find d/ct = gβ
∗ . So, we have that

gβ
∗

= dv
1∗
2 /ctv

1∗
2 = gm2−v2∗

1 /ctv
1∗
2 .

Thus, the extractor may find β∗ by calculating gβ∗ and determining whether it equals 1 or g.

B.4 The Full zkPoW Protocol

In this section, for simplicity we will use the notation [a]g to refer to ga for a generator g and field
element a. When g is obvious from context, we will just drop it and simply use [a].

The full protocol achieves a gap of Õ(nk) prover time and Õ(n) verifier time (where coefficients
logarithmic in the security parameter p are absorbed into the big-O constant). The protocol is as
follows:
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CRS: GenCRS(1n)→ (g, [x]), where g generates G and [x] = [x]g for a uniformly random x
u← Zq.

Challenge: Gen(1n)→ (U1, . . . , Uk), where each Ui is i.d.d. uniform from G.

Protocol:
Prover P computes the coefficients of RU1,...,Uk(q) and samples r1 u←

(
Z∗p
)D and t1, t′1

u← Z∗p. Prover
then sends the following to Verifier V :

[r1],m[q] + r1[x], [t1], [t′1], (t′1 − t1)[x].

For each of s = 2, . . . , k − 1:

• Verifier samples αs−1
u← Zp and sends αs−1 to Prover.

• Prover samples rs u←
(
Z∗p
)D and ts, t′s

u← Z∗p. Prover then sends the following to Verifier V :

[rs],m[qs,α1,...,αs−1 ] + rs[x], [ts], [t
′
s], (t

′
s − ts)[x].

• Verifier samples cs−1
u← Z∗p and sends cs−1 to Prover.

• Prover computes us−1 := t′s−1 + cs−1
∑q
i=0 r

s(i) and vs−1 := ts−1 + cs−1r
s−1(αs−1) and sends

(us−1, vs−1) to Verifier.

• Verifier continues if and only if:

[us−1] = [t′s−1] + cs−1
∑

[rs(i)]
∧

[vs−1] = [ts−1] + cs−1[rs−1(αs−1)]

and

(us−1 − vs−1)[x] = c2s−1

(∑
[mqs,α1,..,αs−1 + xrs(x)]

)
/[mqs−1,α1,..,αs−2(αs−1)

+ xrs−1(αs−1)] + [(t′s−1 − ts)x].

Verifier samples αk−1
u← Zp and ck−1

u← Z∗p and sends (αk−1, ck−1) to Prover.
Prover computes w := tk−1 + ck−1r

k−1(αk−1) and sends w to Verifier.
Verifier accepts if and only if:

[w] = [tk−1] + ck−1[rk−1(αk−1)]

and
w[x] = [xtk−1] + ck−1[mqk−1,α1,..,αk−2(αk−1) + xrk−1(αk−1)]− [qk−1,α1,..,αk−2(αk−1)].

Protocol zkPoW

Essentially, this protocol may be thought of as the prover first committing to the polyno-
mial q, followed by a series of sum-checks using the fact that, for any sequence of α1, . . . , αs−1,∑
qs,α1,...,αs−1(i) = qs−1,α1,...,αs−2(αs−1). This allows the verifier’s time to be reduced by offloading

much of the work of checking consistency of polynomials to the prover. We now present our main
theorem for this section.

Theorem 44. Suppose FOV takes nk−o(1) time to decide for all but finitely many input lengths
and d = ω(log n). Then, Protocol zkPoW is a (Nk, ε(n), δ(n))-zk-PoW for any ε(n) > 0 and any
δ(n) > 1/no(1). Additionally, when composed with Protocol B.3, the resultant protocol is additionally
a proof of knowledge and round-by-round sound.

The exact composition of Protocol B.3 with Protocol B.4 is described in the proof of Theorem 44.
Essentially, we will be giving the bits for the coefficients of each of the q-polynomials in Protocol B.4.
We do not provide this full protocol as explained above for clarity. We also prove completeness and
zero-knowledge, and use the extractor to straightforwardly prove round-by-round soundness.

54



Completeness: If the prover is honest, then we want the verifier to accept every intermediate check
as well as the final acceptance condition.

For the intermediate condition, the verifier checks:

[us−1] = [t′s−1 + cs−1

∑
i

rs(i)]

= [t′s−1][cs−1

∑
i

rs(i)]

= [t′s−1]
∏
i

[rs]i·cs−1

and

[vs−1] = [ts−1 + cs−1r
s−1(αs−1)]

= [ts−1][cs−1r
s−1(αs−1)]

= [ts−1][rs−1(αs−1)]cs−1

and, letting bs = m[q̃s] + rs[x] for all s,

(us−1 − vs−1)[x] =
((
t′s−1 + cs−1

∑
rs(i)

)
−
(
ts−1 + cs−1r

s−1(αs−1)
))

[x]

= (t′s−1 − ts−1)[x] + cs−1[x]
(∑

rs(i)− rs−1(αs−1)
)

= (t′s−1 − ts−1)[x] + cs−1

(∑
bs(i)−m[q̃s](i)− bs−1(αs−1) +m[q̃s−1](αs−1)

)
= (t′s−1 − ts−1)[x] + cs−1

(∑
bs(i)−m[q̃s(i)]− bs−1(αs−1) +m[q̃s−1](αs−1)

)
= (t′s−1 − ts−1)[x] + cs−1

(∑
bs(i)−m[q̃s−1(αs−1)]− bs−1(αs−1) +m[q̃s−1](αs−1)

)
= (t′s−1 − ts−1)[x] + cs−1

(∑
bs(i)− bs−1(αs−1)

)
= cs−1

(∑
(m[q̃s] + rs[x]) (i)

)
− cs−1

(
m[q̃s−1] + rs−1[x]

)
(αs−1) + (t′s−1 − ts−1)[x].

The final check proceeds similarly.

Zero Knowledge: Our simulator is given (U1, . . . , Uk), where each Ui is drawn uniformly at random
from G. We will design Sim as follows:

1. Let crs be g, where g generates G, and [x] for x u← Zq.

2. Sample α0, . . . , αk−1 ← Zp, c0, . . . , ck−1 ← Z∗p.

3. Sample r0, r1, . . . , rk−1, ũ1, . . . , ũk−2
u← Zq, and ṽ1, . . . , ṽk−2

u← Zq. For each i = 1, . . . , k − 2,
set

t̃i = ṽi − ciri(αi)
t̃′i = ũi − ci(

∑
ri(j))

4. Finally, sample w̃ u← Zq and set t̃k−1 = w̃− ck−1r
k−1(αk−1). Set q̃ to be the polynomial whose

constant term is qk,α1,...,αk−1(x) and all other bits are zero. Output

[r1],m[q̃] + r1[x], [t̃1], [t̃′1], (t̃1 − t̃′1)[x],
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the following for s = 2, . . . , k − 1:

((αs−1), ([rs],m[q̃] + rs[x], [t̃s], [t̃
′
s], (t̃s − t̃′s)[x]), (cs−1), (ũs−1, ṽs−1))

and, in addition,
((αk−1, ck−1), (w̃)).

Efficiency of the simulator is straightforward. Zero-knowledge follows straightforwardly from the
analysis presented in the warm-up. The actual verifier is public-coin, so the simulator samples its
values exactly as in the real proof. For the prover, notice that the rs terms, αs and cs are all
distributed exactly as in the real proof. Because rs is a random polynomial,

∑
j r

s(j) is distributed
as a random value, and because the cs are drawn only from group generators, we have that csrs(α)
and cs(

∑
j r

s(j) are distributed uniformly at random. So t̃s and t̃′s are the difference of uniformly
random values, which is also uniform. By the same reasoning, each ũs, ṽs, and w̃ are also distributed
uniformly in the actual proof, so all of the prover’s outputs are distributed as in the actual proof
with the potential exception of the m[q̃] + rs[x] terms. As in the warm-up, we again reduce to the
DDH problem. We refer to that analysis in Section B.2.

Extractability with proofs of bit encryption: In a similar way to the warm-up, we want to introduce
bit proofs in order to bootstrap extractibility to the protocol. In this case, we will encode the bits
of each bit of each qs,α1,...,αs−1 .

Extractability implies soundness. We will further use this extractor to prove round-by-round
soundness (Definition 39).

Let βs = {βs,i,j}i∈[D],j∈[log q] be the binary representation of qs,α1,...,αs−1 for each s, such that
the sum

∑log q
j=0 2j(βs,1,j , . . . , βs,D,j) equals the vector of coefficients of qs,α1,...,αs−1 . The new proof of

work will be the same as before with the following additions:

1. At the beginning, P generates r0 ←
(
Z∗p
)D×log q, calculates β1 = bits(q′) and, instead of sending

[r1],m[q′] + r1[x], sends [r1],m[β1] + r1[x].

2. For each of s = 2, . . . , k− 1, P now generates rs ←
(
Z∗p
)D×log q, finds βs = bits(qs−1,α1,...,αs−1),

and sends [rs],m[βs] + rs[x], [ts], [t
′
s], (t

′
s − ts)[x]. Additionally, for each bit βs,i,j :

If βs,i,j = 0, P samples ws,i,j , u1
s,i,j , v

1
s,i,j

u← Zq and sets es,i,j = ws,i,j [x] and fs,i,j =

u1
s,i,j [x]−mv1

s,i,j [βs,i,j + rsi,jx− 1].

If βs,i,j = 1, P samples ws,i,j , u2
s,i,j , v

2
s,i,j

u← Zq and sets es,i,j = u2
s,i,j [x]−mv2

s,i,j [βs,i,j+r
s
i,jx]

and fs,i,j = ws,i,j [x].
In either case, P sends es,i,j , fs,i,j to V .

3. For each of s = 2, . . . , k − 1, V instead of sending just cs−1 now additionally samples chs =
(chs,i,j)i∈[D],j∈[log q] and sends these challenges alongside cs−1 to P .

4. For each of s = 2, . . . , k − 1, P additionally computes the following:
If βs,i,j = 0, P sets v2

s,i,j = chs,i,j − v1
s,i,j and u

2
s,i,j = ws,i,j + rsi,jv

2
s,i,j .

If βs,i,j = 1, P sets v1
s,i,j = chs,i,j − v2

s,i,j and u
1
s,i,j = ws,i,j + rsi,jv

1
s,i,j .

In either case, P additionally sends (u1
s,i,j , v

1
s,i,j , u

2
s,i,j , v

2
s,i,j) for each i, j to P .

5. In each intermediate check, V in addition only continues if, for each i, j:

chs,i,j = v1
s,i,j + v2

s,i,j ∧ u1
s,i,j [x] = fs,i,j

(
as2,i,j/g

)v1
s,i,j ∧ u2

s,i,j [x] = es,i,j
(
as2,i,j

)v2
s,i,j .
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As before, we may now use the bit proofs to extract out each bit βs,i,j , assuming we know the
secret exponent x. So, the extractor runs as follows:

1. The extractor may generate its set of challenges from the start uniformly at random. We
assume it generates α1, . . . , αk−1 and c1, . . . , ck−1 uniformly at random at the start of running.
It also may generate the challenge vectors chs for each s, as well.

2. Begin running P ∗, receiving [r1],m[β1] + r1[x], [t1], [t′1], (t′1 − t1)[x]. The extractor will run
as the verifier, responding with the values it generated for each s = 2, . . . , k − 1 as in the
protocol. In addition, the extractor, who is given as input the secret exponent x, will also

compute (
(
as2,i,j

)1/x
− as1,i,j) · x and compare this to g. If it is equal, then the extractor will

set β′s,i,j = 1. Else, it will set it to 0.

3. For each s = 2, . . . , k−1, let qs,∗ be the reconstructed polynomial whose coefficients are defined
by R′s,i

∑log q
j=0 2j(β′s,i,j .

Next, we prove the following claim.

Claim 8. For any s = 2, . . . , k − 1, if the extractor cannot extract qs,α1,...,αs−1, then with all but
negligible probability, the verifier check for the same setting of s will fail.

Proof. We will prove this by induction on s. First, let s = 2. Then, the extractor has received the
following from P ∗:

[r1],m[q∗] + r1[x], [t1], [t′1], (t′1 − t1)[x],

[r2],m[q2∗] + r2[x], [t2], [t′2], (t′2 − t2)[x],

and
u1, v1,

as well as having access to the values α1, c1. Let q̃2 be the extractor’s guess (from the bit proof
extraction) for q2∗. Suppose toward a contradiction that q̃2 6= q2,α1 , but V will continue with its
checks. Then, we see that necessarily

(u1 − v1)[x] = c1[
∑

mq2∗(i) + xr2(i)]− c1[mq1∗ + xr1(α1)] + (t′1 − t2)[x]

= [
∑

mq2∗(i)−mq1∗][x] + c2
1[
∑

xr2(i)− xr1(α1)] + (t′1 − t2)[x]

(u1 − v1)− (t′1 − t1))[x] = c1[
∑

mq2∗(i)−mq1∗][x] + c2
1[
∑

xr2(i)− xr1(α1)]

[u1 − v1 − t′1 + t1] = [
∑

mq2∗(i)−mq1∗] + c2
1[
∑

r2(i)− r1(α1)].

The first two checks require that [u1 − t′1] = c1
∑

[r2(i)] and [v1 − t1] = c1[r1(α1)]. Substituting
these in the above, we see that it must be that [(u1 − t′1)− (v1 − t1)] = [

∑
mq2∗(i)−mq1∗] · [(u1 −

t′1)− (v1 − t1)].
Dividing both sides by [(u1 − t′1) − (v1 − t1)], we see that [0] = [

∑
mq2∗(i) −mq1∗]. However,

because q2∗ 6= q2,α1 , with overwhelming probability these polynomials are not equal, and so their
difference will not equal 0. This completes the base case.

The inductive case is similar, but this time we leverage the fact that, for some setting of 2 ≤
j < k − 1, we have that with high probability qj∗ = qj,α1,...,αj−1 but q(j+1)∗ 6= qj+1,α1,...,αj . Notice
that the only terms in the verifier’s checks not dependent soleley on values for s − 1 = j are the
coefficients of qj+1,α1,...,αj . By the same reasoning as above, then, we will eventually get

[uj − vj − t′j + tj ] = [
∑

mq(j+1)∗(i)−mqj∗] + c2
1[
∑

rj+1(i)− rj(α1)].
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The above claim leads naturally to the proof of round-by-round soundness. This is to be ex-
pected, as our protocol essentially puts in the round-by-round verifications into the verifier.

Corollary 45. Protocol zkPoW is round-by-round sound.

Proof. We show our extractor has a good round-by-round soundness State (Definition 39). Because
the extractor runs as the verifier (including in particular its checks), taking k−2 union bounds over
the claims above gives us the extractor satisfies the second property. The extractor will reject if
the cheating prover does not send any information, giving us the first property. The third property
comes for free.

B.5 Adding a Trapdoor

In order to make our proof non-interactive and multi-theorem, we want to add a trapdoor for the
DDH triple we use in the CRS. We first present our trapdoor protocol, which is based on the
digital signature scheme by Craum and Pedersen [19]. We will inherit much of their analysis for the
properties of the proof.

CRS: GenCRS(1n)→ g, where g generates G.

Challenge: Gen(1n)→ {ai, bi, ci}2k−3i=1 ), where each ai = gy1,i , bi = gy2,i for uniformly random
y1,i, y2,i

u← Zq, and each ci = gy3,i for either y3,i = y1,iy2,i or uniformly random y3,i
u← Zq with even

probability.

Protocol:
Prover P samples z1

u← Zq and computes A1 := az11 and B1 := bz11 . Prover then sends (A1, B1) to
the Verifier V .
Verifier samples r1

u← Zq and sends r1 to Prover.
For each of s = 2, . . . , 2k − 3:

• Prover computes xs−1 := zs−1 + rs−1y3,s−1. In addition, Prover samples zs
u← Zq and computes

As := azss and Bs := bzss . Prover then sends (xs−1, As, Bs) to Verifier.

• Verifier continues if and only if

a
xs−1

s−1 = As−1c
rs−1

s−1

∧
b
rs−1

s−1 = Bs−1c
rs−1

s−1 .

Then, Verifier samples rs
u← Zq and sends rs to Prover.

Verifier accepts if and only if

a
x2k−3

2k−3 = A2k−3c
r2k−3

2k−3

∧
b
r2k−3

2k−3 = B2k−3c
r2k−3

2k−3 .

Protocol (2k − 3)-Proof of Knowledge of DDH Triple

Essentially, we are performing 2k− 3 proofs of knowledge of DDH triple exponents in sequence.
The underlying proof of knowledge (take the 3-round protocol for any fixed s above) is a standard
and well-known result. As we are just chaining independent instances of this a constant number of
times, efficiency, completeness, zero-knowledge, and extractability should be immediate. Addition-
ally, extractability here implies special soundness of the protocol. Additionally, by structuring the
protocol in this way, the total round complexity of Protocol B.5 is 2(2k− 3) + 1 = 4k− 5, the same
as Protocol B.4. This is crucial for us, as we will now combine Protocols B.5 and B.4 as in [21]. We
state our main corollary (of Theorem 8 from [21]):
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Corollary 46. Let R1 be the relation consisting of instances of the FOV problem and its witnesses,
and let R2 be the relation consisting of instances of sequences of 2k − 3 DDH tuples and their
witnesses. Suppose that Protocol B.5 is a 4k− 5-round zero-knowledge proof of knowledge satisfying
the special soundness property, and Protocol B.4 (with the extractability augmentation) is a 4k− 5-
round zero-knowledge proof of knowledge satisfying the special soundness property. Then, there is a
4k − 5-round public coin, witness indistinguishable proof of knowledge for the relation R1 ∨R2.

Proof. Note that both Protocol B.5 and Protocol zkPoW are public coin. Then, the proof of
knowledge follows directly from Theorem 8 from [21] when instantiating the secret-sharing scheme
with a 1-out-of-2 secret sharing.

B.6 Making The Proof Non-interactive

In order to make our protocol noninteractive, we will use the standard Fiat-Shamir transform [27].
Recall that, at a high level, if the verifier of a proof is public-coin, then the proof can be turned into
a noninteractive argument for the same language by using a random oracle on the transcript in place
of the verifier’s responses. With high likelihood, then, the prover cannot cheat on its messages, as
their challenge will be out of its control.

As our work aims to avoid random oracles, though, we clearly cannot use them in doing
Fiat-Shamir. Thankfully, a line of recent works—e.g. [13, 45, 41, 20]—have constructed collision-
intractable hashes, which allow one to instantiate the Fiat-Shamir transform under various assump-
tions. We will use in particular the collision-intractable hash construction given by Jain and Jin [41],
which relies on the subexponential-DDH assumption and a common random string.

Specifically, Jain and Jin [41] showed that, assuming sub-exponential hardness of DDH, there is
a CIH for TC0. They then used this to construct a (statistical) multi-theorem NIZK with two main
ingredients:
1. A lossy encryption scheme with low-depth decryption, specifically where decryption can be

done in TC0, and

2. A trapdoor Σ-protocol which can identify “bad” challenges in TC0 and allows for knowledge
extaction from a single transcript.

At a high level, the encryption scheme allows them to hide the statement using the trapdoor Σ-
protocol (where the trapdoor is the scheme’s secret key). The CIH then allows this trapdoor protocol
to be collapsed into a single message. The lossy property allows for witness indistinguishability, and
the knowledge extraction allows for extraction of the decryption key. This will get one as far as a
NIWI. To then turn this into a multi-theorem NIZK, they then hide a discrete logarithm instance
in the CRS in order to prove either the NIWI instance or knowledge-of-exponent. This additionally
requires that the underlying protocol in the NIWI is an argument of knowledge. We refer to [41]
for more details.

For our purposes, we have already proven that our underlying scheme is an argument of knowl-
edge (as the underlying scheme is a proof of knowledge). Zero-knowledge allows us to forgo the
lossy encryption scheme, but we will need a way to run our extractor (in particular, we will need a
way to get the DDH exponent). Thankfully, Section B.5 supplies us a trapdoor protocol, so using
x = y3,1 suffices (where, for clarity, x is the secret exponent in Protocol B.4 and y3,1 is the exponent
of the first DDH triple in Protocol B.5). Finally, by using the CRS switching as described in [41],
we are able to get a multi-theorem (and therefore robust) NIZK in the CRS model without random
oracles.
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Theorem 47. Let R1 and R2 be as in Corollary 46, and let R = R1 ∨ R2. Suppose that DDH is
sub-exponentially hard for polynomial-time adversaries. Then, there exists a robust NIZK argument
for LR, where LR = {x : ∃w s.t. R(x,w) = 1}.

Proof. We have already proven witness indistinguishability and extractability of our protocol by
Corollary 46. So we only have left to prove that the bad challenges of the underlying Protocol B.4
belong to a sparse set, and then, further, that our extractor (and therefore the verifier as well) is in
TC0.

For the bit protocol (Section B.3) alone, this is clear. In fact, there is no bad challenge in the
sense that the adversary may never commit to β 6∈ {0, 1}, as for every input ga∗ , a∗ ∈ Zq, there is
some r∗ ∈ Zq, β∗ ∈ {0, 1} such that ga∗ = gβ

∗
hr
∗ (specifically, r∗ = (a∗−β∗)/y). So, there is always

some bit that the prover is committing to, though it remains to be seen if this ties into the general
protocol.

For the main protocol, let us for a moment consider the warm-up, Protocol B.2. That is, c,d
sent in the first message are now dnk/2-long vectors, rather than (dnk/2× log q) matrices across bits.
The changes this implies to the rest of the protocol should be clear. Now, the adversarial prover
wins if α∗ = logg(d − cy) does not equal the coefficients of RU1,...,Uk , but the adversary is able to
choose w(x) such that the verifier accepts (for now, only the first two conditions).

Let a = [t∗]g, b = [t′∗]h, c = [r∗]g, and d = [α∗ + r∗y]g, and let x be the challenge given to the
prover by the verifier. Finally, let w∗ be the response from the prover, and let c =

∏
c and d =

∏
d.

From the verifier checks, we see that

[w∗y]g =
[
yt′∗ + x〈x, α∗〉+ yx〈x, r∗〉 − xz

]
g

and
[w∗]g = [t∗ + x 〈x, r∗〉]g ,

where z = RU1,...,Uk(x) is honestly calculated independently of the adversary. This naturally yields

[yt∗ + yx〈x, r∗〉]g =
[
yt′∗ + x〈x, α∗〉+ yx〈x, r∗〉 − xz

]
g
,

which is true if and only if [yt∗]g = [yt′∗ + x〈x, α∗〉 − xz]g. Solving for α∗, we see that [x〈x, α∗〉]g =
[xz + y(t∗ − t′∗)]g. In order for this equality to hold, the prover must have α∗ − z be a set of
coefficients for an equation of which x is a root. As the degree of this equation is at most dnk/2, we
see that there are at most dnk/2 − 1 bad challenges.

This reasoning can be extended to the first stage of the overall Protocol B.4. Compiling these
two analyses together, we see there are at most dnk/2 − 1 bad challenges for any initial prover
message, which is negligible in the size of the group. This proves sparsity.

Next, we must show that our extractor runs in TC0. Note that TC0 contains n-bit multiplication
and integer division [37]. The main concern then is that we will have to be doing many sums in
the exponent of groups. To get around this, we will introduce one final augmentation to our proof
system. After generating the CRS, Prover and Verifier will additionally pre-compute (by whatever
means) exponents of the form [x], [2x], [4x], . . .. These increasing powers of the secret exponent will
allow our extractor to more efficiently perform the verifier checks and other computations.

Concretely, we get that an individual proof of bit encryption may be extracted in O(1) exponen-
tiations and O(1) multiplications (exact numbers may be computed by following Section B.3). In
Protocol B.4, we see that each intermediate verifier check also takes a constant number of exponen-
tiations and multiplications, as well. The final check also takes a constant number of multiplications
and exponentiations. While we must also compute the D log q bit extractions, note that these may
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all be run in parallel in the same depth. In total, because each exponentiation may be completed
in O(log q) multiplications given the pre-computation, we have (k − 1)O(log q) multiplications to
account for. As k is a constant, we now must simply choose q such that O(log q) = O(1) (in the
length of the input). This can be done by selecting q small enough, say, q = o(2n

2
).

Finally, we must also show that the trapdoor function extractor is in TC0, however this follows
from its similarity to the bit encryptions.

C Other Proofs Omitted from the Main Body

C.1 Proof of Lemma 16

Proof. We start by arguing that honest parties have enough time to process and forward all valid
messages received in round 2.

Claim 9. Each honest party has enough computational power to process all the PoWs received
during round 2 of the protocol.

Proof of claim. By assumption, each honest party is able to take c computational steps per unit of
time, while the adversary takes t · c. Let θ be an upper bound on the total messages sent in each
round.

We want to show that (i) honest parties have enough time to compute a PoW in round 1, and
(ii) honest parties are able to process all θ messages they receive at the beginning of round 2. These
conditions are described by inequalities tp ≤ rp · c and θtv ≤ rv · c, respectively. It holds that:

rpc ≥ ctp/c = tp,

and

rvc = rpcσ/2 =
t2vσc

2c
= t2vσ/2 >

tv2θσ

2σ
= θtv.

Hence, the claim follows. a

Next, we show that the above claim about the network conditions is sufficient to prove that pro-
tocol WeakConsensus achieves Weak Agreement unconditionally. For the sake of contradiction,
assume that there exists two honest parties Pi, Pj such that Pi outputs 0 while Pj outputs 1. It
follows that:

|P 0
i | > (|P 0

i |+ |P 1
i |+ |P late

i |)/2⇔ |P 0
i | > |P 1

i |+ |P late
i |,

and, symmetrically, that |P 1
j | > |P 0

j |+ |P late
j |. Adding both inequalities, we have that

|P 1
j |+ |P 0

i | > |P 1
i |+ |P latei |+ |P 0

j |+ |P late
j |. (5)

On the other hand, by the guarantees provided by Fdiff, it should hold that

|P 0
i | ≤ |P 0

j |+ |P latej | and |P 1
j | ≤ |P 1

i |+ |P late
i |,

since by the above claim any valid PoW witness seen by Pi in the first round will be received by Pj
in the second round. Adding the two inequalities, we get that

|P 1
j |+ |P 0

i | ≤ |P 1
i |+ |P late

i |+ |P 0
j |+ |P late

j |,

which contradicts inequality 5. Thus, Weak Agreement holds unconditionally.
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Next, we turn our attention to Validity. Let b be the common input of all honest parties. Let
x denote the number of distinct PoW witnesses computed by the honest parties, and y the number
of any other PoW witnesses produced by the adversary. By our assumption, it holds that x > y.
For any party Pi, it should hold that ki ≤ x + y, which implies by our assumption that x > ki/2.
Given that all honest PoWs are received in the second round, it follows that all parties are going to
output b. Thus, Validity follows.

C.2 Proof of Lemma 17

Proof. We start by proving some initial claims that are going to help with our analysis. First,
we show that in more than 5/6 of the WeakConsensus invocations, honest parties are going to
produce close to n− t distinct PoW witnesses.

Claim 10. Given any constant σ ∈ (0, 1), for a large enough λ, honest parties are going to pro-
duce more than (1 − σ)(n − t) distinct PoWs in 5/6 of the WeakConsensus invocations with
overwhelming probability in λ.

Proof of claim. We start by analyzing the probability that honest parties produce enough distinct
PoW witnesses in a single instance of WeakConsensus. Let k := n− t, be the number of honest
parties and m := 2r, be the number of different PoW instances considered by parties running
WeakConsensus. In the worst case, all parties will have the same input and will select which
instance to solve among r different ones. As shown earlier, all the honest parties have enough
computational steps available per round to finish computing a PoW witness.

Since each of the honest parties picks a PoW instance at random, some of them may end up
picking the same one. Making r large enough would in general minimize the number of collisions
among honest parties. However, in order to preserve the hardness of PoWs we are restricted in how
many PoW instances should be available to the adversary, compared to how many it solves. Given
that the number of instances solved by the adversary is going to be proportional to that solved by
honest parties, the condition we want to satisfy is that r/k ≤ τ(λ) = λo(1).

We split our analysis into two cases. In the first one, assume that k = O(1) and set r = 7k2. In
the second one, we assume that k = ω(1), and set r = ak, for some large enough a ∈ N. Note that
in both cases it holds that r/k = O(1) = O(λ1/ log(λ)) ∈ λo(1).

In the first case, no collision will happen with probability at most

k(k − 1)

2r
≤ k2

7k2
= 1/7,

as stated by our claim.
In the second case, we will analyze the number of collisions as a balls and bins process. Namely,

we are going to use the Poisson approximation [47], where the event of interest is analyzed in a
setting (the “Poisson" setting) where the load in each bin is assumed to be an independent Poisson
variable with mean k/r. Results obtained in this setting can then be translated back to the “exact"
setting, where the are dependencies between the loads of different bins, with some loss on probability.

The event E we care about upper-bounding is the number of full bins being greater than a target
value. This event depends entirely on the number of balls in each bin. Furthermore, as the number
of balls increases, Pr[E] increases. By [47], if Pr[E] = p in the Poisson setting, Pr[E] ≤ 2p in the
exact setting.

We proceed to bound the probability of E occurring. Assume that we have t i.i.d. discrete
Poisson random variables (Xi)i, each with parameter µ = k/t, denoting the number of balls in the
i-th bin. We have that Pr[Xi > 0] = 1− e−µ. Let random variable Yi be equal to 1 iff Xi > 0, and

62



let Y =
∑t

i=1 Yi. It then holds that E[Yi] = 1− e−µ and E[Y ] = t(1− e−k/r). For r = ak, for some
constant a > 2, we have by the Chernoff bound that for any δ ∈ (0, 1):

Pr[Y ≤ (1− δ)E[Y ]] = Pr[Y ≤ (1− δ)t(1− e−k/r)] ≤ e−
δ2ck(1−e−1/a)

3 = e−O(k).

Firstly, notice that since k ∈ ω(1), for any selection of a there exists a large enough λ such that
the probability of our desired event becomes smaller than any constant, we choose in particular
1/14. By the Poisson approximation this implies that the event in the exact setting happens with
probability at most 1/7.

Secondly, a(1 − e−1/a) tends to 1 as a goes to infinity. Thus, for any constant ε, there exists a
large enough constant a, such that a(1− e−1/a) ≥ 1− ε. This easily implies that for any σ ∈ (0, 1),
there exists a, δ such that (1 − δ)t(1 − e−k/t) ≥ (1 − σ)k. Hence, for any σ ∈ (0, 1), there exists a
a ∈ N, such that with probability at least 6/7 honest parties mine at least (1− σ)k different PoWs.

To finish proving our claim, let Ei the probability of event E happening in the i-th invocation of
protocol WeakConsensus. Note that {Ei}i∈[l] is a sequence of independent events. By a standard
Chernoff bound argument we can show that with overwhelming probability in λ, in less than 1/6 of
the WeakConsensus invocations honest parties will produce less than (1− σ)k PoWs. Thus, the
claim follows. a

Next, we show that in more than 5/6 of the WeakConsensus protocol invocations the adver-
sary is going to produce less than n− t PoWs with overwhelming probability in λ.

Claim 11. The number of PoW witnesses produced by A (different from those produced by the honest
parties) in more than 5/6 of the WeakConsensus invocations is at most t′ := (1 − σ/2)(n − t),
for any σ ∈ (0, 1), with overwhelming probability in λ.

Proof. In contradiction, assume that there exists and adversaryA such that in 1/6 of the WeakConsensus
invocations produces more than t′ PoWs with non-negligible probability. We are going to use A
to construct another adversary that breaks the security of the PoW scheme. First, we argue that
if A produces more than t′ PoWs in a WeakConsensus invocation with probability at most
ε := 1/6 − σ, then it will produce more than t′ PoWs in less than 1/6 of the invocations with
overwhelming probability.

Let T be the protocol’s execution tree when we fix A. The tree has nodes ni,j , where ni,j reflects
the execution state just before A receives the i-th beacon output. Index j runs over all possible coin-
flip histories up to that point. Wlog, assume that between receiving any two consecutive challenges
the adversary and the honest parties perform exactly l coins flips. Thus, for any level i ∈ [m], there
are at most 2il nodes, i.e., j ∈ [2il].

Next, we argue that if for every subtree defined by ni,j (i ∈ [m]), at most ε2l paths are successful
for the adversary, in the sense that the adversary generates more than t′ PoWs, then the fraction
of paths with at least m/6 successes is negligible in λ. W.l.o.g., assume that exactly ε2l paths are
successful in any such subtree. Namely, we will show that in that case there are at most 2ml ·negl(λ)
paths with at least m/6 successes in T .

Let ai,c denote the number of paths ending at some node at level i + 1 that have exactly c
successes. By our assumptions it holds that a1,0 = 2l(1− ε), a1,1 = 2lε for the first level, and

an,c = an−1,c−12lε+ an−1,c2
l(1− ε)

for any subsequent level, where an,−1 = an,n+1 = 0. The equalities follow by the fact that, at every
node, 2lε of the paths are going to increase their successes by one, and the rest are going to retain
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the same value of successes. It is easy to see that the solution of this recursion is

an,c = 2nl
(
n

c

)
εc(1− ε)n−c.

We are interested in bounding the sum
∑m

i=m/6 am,i. Note that for any i, ri = am,i/2
m·l is equal

to the probability of i successes in m independent Bernoulli trials, where each trial succeeds with
probability ε. Thus, we can use the Chernoff bound to upper-bound the probability that

∑m
i=m/6 ri

is less than m/6 by

e−((1−6ε)/(6ε))2εm/3 ≤ e−σ2m/108ε ≤ λ−Ω(log(λ)) ≤ negl(λ),

where we have used the fact that m = log2(λ). Hence,
∑m

i=m/2 am,i ≤ 2mlnegl(λ), as we have
claimed.

Therefore, since we have assumed that A produces more than t′ PoWs in at least 1/6 of the
WeakConsensus invocations with non-negligible probability, by the analysis above it must be the
case that there exists an ni,j where the adversary computes more than t′ PoWs with probability
greater than ε. We are going to use the state of node ni,j to construct an adversary A′ that
contradicts our assumption about the PoW scheme being secure.

Let 2r be the size of the output of Fbeacon. A′ works as follows: It takes as input a sequence
of 2r PoW instances (xi)i and some non-uniform advice. We choose the advice to contain n − t
randomly sampled PoW instances (x′i, w

′
i)i together with their respective witnesses. A′ is going to

construct a “fake” beacon output for A. Given the input bits of honest parties at node ni,j , it is
going to replace randomly selected PoW instances from (x′i)i with instances from (x′i)i. Specifically,
if an honest party has input 0 (resp. 1), then a randomly selected instance from the first half (resp.
second half) of (xi)i is replaced. Note, that this process preserves the possibility that two honest
parties choose to solve the same PoW instance, thus perfectly mimicking the real world. We denote
by Z = (zi)i the resulting sequence of instances.

Next, A′ is going to initialize A to the state described by ni,j , and provide Z as the output of
the beacon. At the end of the first round, it is going to send A the witnesses (w′i)i that it got as
advice, simulating the behavior of the honest parties. Then, it is going to verify the messages A
sent in the first round, and forward any valid PoWs it produces. Finally, it is going to verify the
messages A sent in the second round. Finally, A′ outputs any PoW witnesses produced by A that
do not correspond to the pre-solved instances it has planted in Z.

We will first analyze the running time of A′. As before, let tv ≥ 2θ/σ, tp = t2v , rp := tp/c and
rv := rp · σ/2. A takes a total of (rv + rp)tc steps. In addition, A′ takes an additional 2tvθ steps in
order to verify messages sent by A in the first and second rounds. Hence, StepsA′ ≤ (rv+rp)tc+2tvθ.
Now, for A′ to be breaking PoW’s security it must be that StepsA′ < γ(tp)t

′ = γ(tp)(1−σ/2)(n− t).
It holds that:

StepsA′ ≤ (rv + rp)tc+ 2tvθ ≤
tp(1 + σ/2)tc

c
+ 2tvθ

≤ tp(1 + σ/2)t+ t2vσ

≤ tp((1 + σ/2)t+ σ).

On the other hand, by our assumption about the number of corruptions, we have that:

(1− σ)(n− t)γ(λ2)/λ2 − σ > t⇒ (1− σ/2)

(1 + σ/2)
(n− t)γ(λ2)/λ2 − σ > t

⇔ (1 + σ/2)(t+ σ)tp < γ(λ2)(1− σ/2)(n− t)
⇒ tp((1 + σ/2)t+ σ) < γ(λ2)(1− σ/2)(n− t).
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Combing the two inequalities we get our desired relation about the running time of A′.
Next, we analyze the success probability of A′. First, notice that the execution in the eyes of

A is indistinguishable in the reduction and in the actual protocol, as honest parties are perfectly
simulated. Thus, by our assumption, A is going to produce t′ PoWs different from the ones produced
by the honest parties with probability at least ε. This further implies that probability ε, A′ is going
to solve t′ instances from (xi)i in a total of t′ · γ(tp) steps. Since ε ∈ Ω(1) > λ−o(1), this is a
contradiction to our initial assumption about the hardness of PoW, and thus, in more than 5/6
of the WeakConsensus invocations, the adversary is going to produce at most t′ PoWs with
overwhelming probability in λ. a

Combining the above two claims we easily get that in more than 2/3 of the WeakConsensus
invocations honest parties will produce more PoWs than the adversary with overwhelming proba-
bility. This fact will be sufficient to prove our lemma.

First, we argue that Validity holds. For the sake of contradiction, assume that all parties have the
same input b and there exists an honest party that outputs yi 6= b. Due to Validity being satisfied by
Protocol WeakConsensus when honest parties produce more PoWs than the adversary, it follows
that tbi must be greater than 2l/3. Thus, Validity follows.

Regarding Weak Agreement, for the sake of contradiction, assume that there exist honest parties
Pi, Pj that output yi = 0, yj = 1, respectively. Since yi = 0, it should hold that t0i > 2l/3. By Weak
Agreement of protocol WeakConsensus and the fact that in less than 1/3 of the WeakConsensus
invocations A may produce as many PoWs as the honest parties, it follows that t1j < 2l/3. This is
a contradiction and the lemma follows.

C.3 Proof of Lemma 19

Proof. As in the case of protocol WeakConsensus, it also holds here that honest parties have
sufficient time to process any valid messages they receive. This is sufficient to show that protocol
GradedConsensus achieves Weak Graded Agreement unconditionally. For the sake of contradic-
tion, assume that there exists two honest parties Pi, Pj such that Pi outputs (wlog) (0, 1) while Pj
outputs (1, 0). It follows that:

|P 0
i | > (|P 0

i |+ |P 1
i |+ |P⊥i |+ |P late

i |)/2⇔ |P 0
i | > |P 1

i |+ |P⊥i |+ |P late
i |.

Similarly, we have that |P 1
j |+ |P⊥j | > |P 0

j |+ |P late
j |. Adding both inequalities:

|P 1
j |+ |P⊥j |+ |P 0

i | > |P 1
i |+ |P⊥i |+ |P late

i |+ |P 0
j |+ |P late

j |. (6)

On the other hand, by the guarantees provided by Fdiff, it should hold that

|P 0
i | ≤ |P 0

j |+ |P late
j | and |P 1

j |+ |P⊥j | ≤ |P 1
i |+ |P⊥i |+ |P late

i |,

since any valid PoW witness seen by Pi in the first round, will be received by Pj in the second
round. Adding the two inequalities, we obviously get a contradiction to Inequality 6. Thus, Weak
Graded Agreement holds unconditionally.

Next, we focus on Graded Agreement. Let x denote the number of distinct PoW witnesses
computed by the honest parties, and y the number of any other PoW witnesses produced by the
adversary. By our assumption, it should hold that x > y. For any party Pi, it should hold that
ki = x + y, which implies by our assumption that x > ki/2. For the sake of contradiction, assume
that there exists two honest parties Pi, Pj such that Pi outputs (wlog) (0, 1) while Pj outputs yj 6= 0.
As before, we have that |P 0

i | > |P 1
i |+ |P⊥i |+ |P late

i |. By the weak agreement of the inputs of honest
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parties, and the fact that honest parties solve in total more PoWs that the adversary, it easily follows
that there exists an honest party with input 0, and thus no honest party has input 1. Otherwise,

|P 0
i | ≤ y < x ≤ |P 1

i |+ |P⊥i |,

which is a contradiction. It thus follows that

|P 0
j |+ |P⊥j | ≥ x > kj/2,

and yj must be 0, which is a contradiction to our initial hypothesis.
Finally, we turn our attention to Validity. Let b be the common input of all honest parties.

Given that all honest PoWs are received in the round 2 of the protocol and that x > ki/2, for any
party Pi, it follows that all parties will output b. Thus, Validity follows.

C.4 Proof of Lemma 20

Proof. First, by Lemma 17, protocol AmpedWeakConsensus achieves Weak Consensus with
overwhelming probability. This implies that the precondition about the input of protocol Grad-
edConsensus will be satisfied. Second, in the same way as in Lemma 17, we can show that in
more than 2/3 of the GradedConsensus invocations the honest parties will produce more PoWs
than the adversary with overwhelming probability. Hence, by Lemma 19, in more than 2/3 of these
invocations, protocol GradedConsensus achieves Graded Consensus. This fact suffices to prove
the lemma.

We first argue that Validity holds. For the sake of contradiction, assume that all parties have the
same input b and there exists an honest party Pi that outputs yi 6= b. By the previous observation
about protocol GradedConsensus, it follows that tb,1i must be greater than 2l/3, which is a
contradiction. Thus, Validity follows.

Next, we argue why Graded Agreement holds. For the sake of contradiction, assume that there
exist honest parties Pi, Pj that output (yi = 0, gi = 1), and yj = 1 or yj = ⊥. Since yi = 0, gi = 1,
it should hold that t0,1i > 2l/3. By Weak Graded Agreement holding unconditionally, it follows that
t0,1j + t0,0j + t⊥,1j + t⊥,0j > 2l/3. On the other hand, since Graded Agreement holds in more than
2l/3 of the GradedConsensus invocations, it follows that t1,1j + t1,0j < l/3. Thus, Pj is going to
output either (0, 0) or (0, 1). This is a contradiction and the lemma follows.

C.5 Proof of Theorem 21

Proof. We start by analyzing a single iteration of the protocol. First, note that if all honest parties
have the same input b, due to Lemma 20 and Graded Validity, they are all going to output (b, 1)
with overwhelming probability. Thus, at the end of this iteration they are all going to set yi := b.
Further, the protocol preserves Validity across iterations: once parties agree, this state persists.
Thus, Validity follows.

Next, we focus on Agreement. First, we show that the probability that all parties agree at the
end of an iteration is at least 1/2. We split the analysis into two cases based on the grades that
are output by AmpedGradedConsensus: (1) no party outputs gi = 1, and (2) at least one party
outputs gi = 1. In case (1), all parties set yi = b′R, and thus they reach Agreement in this iteration.
In case (2), since at least one party has output bi ∈ {0, 1},gi = 1, by Graded Agreement it follows
that no party Pj has output bj 6= bi and gj = 1. Thus, all parties with a different bj than bi are going
to output b′R. Given that the adversary learns b′R after the AmpedGradedConsensus invocation
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finishes, its actions are independent from b′R. Since with probability at least 1/2, b′R = bi, it follows
that with probability at least 1/2 all parties reach agreement in this iteration.

Next, we analyze Agreement in the full protocol. Since in each iteration there is probability at
least 1/2 of all parties agreeing, and the events of interest are independent, the probability that
parties have not agreed in at least one round is at most (1− 1/2)l = 2− log2(λ) = negl(λ). Moreover,
in case they agree in one iteration, as argued earlier, Agreement persists. Thus, Agreement is
achieved with overwhelming probability.

D Consensus from NIZK-PoW and a Beacon with O(λ2) Output

We have shown how to achieve consensus in the presence of a beacon whose output length is
proportional to the number of parties in Section 3. In this subsection, we show how to use the Seeded
NIZK-PoW construction developed in the previous sections, to relax the assumption regarding the
size of the output of the beacon. Namely, we show how to achieve Consensus with a beacon that
has an output whose size is independent of the number of parties, i.e., it produces O(λ2) bits each
time. Note, that such a beacon is strictly weaker than a beacon that produces O(poly(λ)) outputs
each round, as by the time poly(λ) bits will be generated by the “short” output beacon some of
the generated randomness will be fairly old, essentially allowing the adversary to learn part of the
output a lot earlier than honest parties.

Our construction is quite similar to the one extensively presented earlier in Sections 3.2, 3.3,
and 3.4, hence here we only describe the necessary modifications to these protocols. Firstly, we are
going to interpret beacon outputs as consisting of a NIZK-PoW seed (implying the same number of
compressed instances as in the original protocols). Instead of parties selecting a random PoW from
the instance sequence to solve, in the modified protocols they are going to generate and solve the
related PoW instance implied by the seed. Finally, instead of PoW witnesses, parties are going to
generate NIZK-PoW proofs (and later verify them in the respective steps of the protocols).

The protocol described above is thus sufficient to prove Theorem ?? in Section 3. We only
provide a sketch of the proof as it mostly follows that presented in the previous sections.

Theorem 48. For k ≥ 2, suppose kOV takes λk−o(1) time to decide for all but finitely many inputs
lengths for any d = ω(log λ), and that DDH is sub-exponentially hard. Then, assuming that for
some ε > 0,

total honest power
total adversarial power

≡ (n− t) · c
t · c

> λε

and the existence of a randomness beacon with output size O(λ2), there exists a protocol that achieves
Consensus in the permissionless setting with overwhelming probability in λ.

Sketch. The security analysis of the respective protocols is exactly the same, except of the reduction
presented in Lemma 17. Note, that we cannot simulate honest PoWs by witnesses coming from the
advice string, as PoW instances are all generated from the same seed and are thus correlated.
Instead, we have to resort to the Zero-Knowledge property of the NIZK-PoW and simulate honest
proofs. This does not change our main argument, as (i) the simulated proofs are indistinguishable
from honestly produced ones, and (ii) extractability still holds in the presence of simulated proofs.
The running time of the reduction is slightly increased, due to the need to run the NIZK-PoW
simulator and extractor. Note, that the running time of these algorithms is extremely efficient
compared to the computing NIZK-PoW, thus our result is essentially unaffected.
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