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Abstract

Nonlinear complexity is an important measure for assessing the randomness of
sequences. In this paper we investigate how circular shifts affect the nonlinear com-
plexities of finite-length binary sequences and then reveal a more explicit relation
between nonlinear complexities of finite-length binary sequences and their corre-
sponding periodic sequences. Based on the relation, we propose two algorithms that
can generate all periodic binary sequences with any prescribed nonlinear complexity.

Index Terms: Periodic sequence, nonlinear complexity, randomness

1 Introduction

Pseudorandom sequences have applications in various digital systems and commu-
nication technologies, such as radio communications, distance ranging, simulation, game
theory, and cryptography [1]. The quality of randomness is a crucial factor for pseudoran-
dom sequences in many of these applications, particularly for cryptographic applications.
For assessing the randomness of pseudorandom sequences, different complexity measures
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were proposed in the literature [2–5] and the most well-understood one is probably the
linear complexity. The linear complexity of a sequence is defined as the length of the
shortest linear feedback shift registers (LFSRs) that can generate the sequence [6, 7].
Suppose a sequence s of length n has linear complexity l ≤ n/2. Given any of its 2l-
length subsequences, namely, (si, si+1, . . . , si+2l−1) for any i ≥ 0, the Berlekamp-Massey
algorithm [8] can efficiently produce the linear recurrence of length l and thereby the
whole sequence s. Hence pseudorandom sequences for cryptographic applications must
not have low linear complexity. Rueppel [9] conjectured that n-periodic binary sequences
have expected linear complexity close to n. Meidl and Niederreiter [10] confirmed this
conjecture for arbitrary finite fields; in particular, they showed that n-periodic binary
sequences have expected linear complexity at least 3n−1

4
. Research has been done on the

linear complexity of special sequences, for instance, Lempel-Cohn-Eastman sequences [11],
Legendre sequences [12]. Meanwhile, variants and extensions of linear complexity, e.g.,
linear complexity profile [7], k-error linear complexity [7,10], quadratic span [13] and non-
linear complexity [14] have been studied. Interested readers may refer to [15,16] for more
discussions on these complexity measures.

As an additional figure of merit to judge the randomness of a sequence, nonlinear
complexity (also referred to as maximum-order complexity) was introduced by Jansen
and Boekee in 1989 [14,17], where they defined it as the length of the shortest FSRs that
generate a given sequence. Their work showed that the expected nonlinear complexity
of random n-length q-ary sequences is approximately 2 logq(n). Significant progress has
been made on the derivation of the shortest feedback functions for a given sequence and
the construction of sequences with high nonlinear complexity. Jansen and Boekee [14]
initially related nonlinear complexity to the maximum depth of a directed acyclic word
graph, which can be employed to determine the nonlinear complexity (profile) of a given
sequence. Rizomiliotis and Kalouptsidis [18] in 2005 proposed an efficient algorithm,
which exploited the special structure of associated linear equations, for finding the shortest
feedback functions for a given sequence. Later Limniotis et al. [19] studied the relation
between nonlinear complexity and Lempel-Ziv complexity, thereby presenting a recursive
algorithm which has a similar procedure to the Berlekamp-Massey algorithm. As for the
construction of sequences with high nonlinear complexity, researchers mainly exploited
some algebraic tools and explored the structure of those constructed sequences [20–28].
Niederreiter et al. [20], Luo et al. [21] and Castellanos et al. [22] constructed sequences
with high nonlinear complexity from function fields with many rational places. Based on
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detailed investigations of internal structures of sequences, all q-ary sequences of length
n and high nonlinear complexities n − i, i = 1, 2, 3, 4, were completely characterized
in [23,24]. Very recently Liang et al. [25] completely determined n-length binary sequences
with nonlinear complexity ≥ n

2
.

Let s∞n be an n-periodic sequence over certain alphabet A. Its nonlinear complexity is
closely related to nonlinear complexities of its n-length subsequences, namely, nlc(s∞n ) =

nlc(a2n) ≥ nlc(an), where nlc denotes the nonlinear complexity of a given sequence, an is
any n-length subsequence of s∞n and a2n = anan denotes the concatenation of two identical
an. As an can be chosen as any n-length subsequence of s∞n , this inequality is relatively
vague and does not reveal further insights into the relation between nlc(s∞n ) and nlc(an).
Only a few results have been reported on nonlinear complexity of periodic sequences so
far. Rizomiliotis [26] exploited the power series representation of binary sequences and
proposed two constructions of binary sequences of period 2m−1 with maximum nonlinear
complexity for given linear complexity. In 2017 Sun et al. completely characterized the
structure of periodic sequences s∞n of maximum nonlinear complexity n−1 and proposed a
recursive algorithm to generate all such sequences [27]. Later Xiao et al. [28] determined
all binary sequences of period n having nonlinear complexity n − 2 in a similar way.
Motivated by recent work on nonlinear complexities of binary n-length sequences [25],
this paper aims to reveal more explicit relations between nlc(s∞n ) and nlc(an), where an is
a certain cyclic shift of sn. To this end, we are concerned with a particular set B(n, c) (in
Def. 2) of sequences with a specific structure. We start with investigating how circular
shift operators affect the nonlinear complexity of binary sequences sn in B(n, c). Then we
study the relation between the companion pairs of sn and the companion pairs of s∞n , which
enables us to establish a one-to-one correspondence between periodic sequences s∞n with
given nonlinear complexities and certain sequences sn in B(n, c) (see Thm. 1 and Thm.
2). Based on the correspondence, all periodic binary sequences s∞n with any prescribed
nonlinear complexity ω can be completely generated (in Thm. 3). The generation process
is summarized in two algorithms (Alg.1 and Alg.3), depending on the relation between
ω = nlc(s∞n ) and n

2
. To the best of our knowledge, this is the first report of theoretical

results on the subject that can be used to efficiently generate all periodic binary sequences
with any prescribed nonlinear complexity.

The remainder of this paper is organized as follows. In Section 2, we introduce some
basics of nonlinear complexity. Section 3 presents notations, definitions, and auxiliary
results for the nonlinear complexity of n-length binary sequences. Section 4 is dedicated
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to revealing more explicit relations between nlc(s∞n ) and nlc(an), where an is a certain
cyclic shift of sn. In Section 5, we propose two algorithms to generate periodic binary
sequences with any prescribed nonlinear complexity. Finally, Section 6 concludes the work
of this paper.

2 Preliminaries

In Section 2 and Section 3, we will introduce basic notations, definitions and auxiliary
lemmas. For readers’ convenience we summarise important notations in Table 1 at the
end of Section 3.

For a positive integer m, an m-stage feedback shift register (FSR) is a clock-controlled
circuit consisting of m consecutive storage units and a feedback function f as displayed
in Figure 1. Starting with an initial state s0 = (s0, s1, . . . , sm−1), the states in the FSR
will be updated by a clock-controlled transformation as follows:

F : si = (si, si+1, . . . , si+m−1) 7−→ si+1 = (si+1, . . . , si+m−1, si+m), i ≥ 0,

where si+m = f(si, si+1, . . . , si+m−1), and the leftmost symbol for each state si will be
output. In this way an FSR produces a sequence s = (s0, s1, s2, . . . ) based on each initial
state s0 and its feedback function f . The shift register sequence can be equivalently
expressed as a sequence of states, (s0, s1, s2, . . . ), with the relation si = F(si−1) = · · · =

F i(s0) for i ≥ 0. When sp = Fp(s0) = s0 for the least integer p ≥ 1, we obtain a cycle of
states s0, . . . sp−1, or equivalently a sequence (s0, . . . , sp−1, . . . ) of period p.

si si+1 si+m−2 si+m−1· · ·

feedback function f

Figure 1: An m-stage FSR with feedback function f

In his influential book [1], Golomb intensively studied the relation between the feed-
back function of an FSR and its output sequences/cycles. He showed that an FSR gen-
erates disjoint cycles if and only if it uses nonsingular feedback functions of the form

4



f(x0, x1, . . . , xm−1) = x0 + g(x1, . . . , xm−1). Nonsingular FSRs are of practical interest
as their output sequences have simpler structure and often exhibit desirable randomness
properties [1]. For an m-stage nonsingular binary FSR, when its feedback function f is
linear, the output sequence can have the longest period 2m− 1, which contains all nonze-
ro m-tuples exactly once and is known as a maximum-length sequence (m-sequence for
short); when f is nonlinear, its output sequence can have the longest period 2m, con-
taining all binary m-tuples exactly once, and is known as a binary de Bruijn sequence
of order m [29]. Both m-sequences and de Bruijn sequences exhibit the span proper-
ty [30, 31]. They are of significant interest in research and applications [32, 33]. While
the theory of m-sequences is well explored, many problems about de Bruijn sequences
remain unsolved, for instance, the necessary or sufficient properties of feedback functions
for generating de Bruijn sequences, more explicit combinatorial structure of de Bruijn
sequences and efficient generations of all de Bruijn sequences of modest lengths, etc.

2.1 Nonlinear complexity

Linear complexity profile has been an important measure of randomness of sequences
for cryptography [9]. As an additional figure of merit to judge the randomness of se-
quences, Jansen and Boekee proposed the maximum-order complexity, later known as
nonlinear complexity, of sequences [14, 17].

Definition 1. ( [17]) The nonlinear complexity of a sequence s over an alphabet A,
denoted by nlc(s), is the length of the shortest feedback shift registers that can generate
the sequence s.

For a sequence s = (s0, s1, . . . ) over A, the term si+k is deemed as the successor of the
subsequence s[i:i+k] = (si, . . . , si+k−1) for certain positive integers i and k. Some properties
of the nonlinear complexity of sequences are recalled below.

Lemma 1. ( [17]) The nonlinear complexity of a sequence s equals one plus the length of
its longest identical subsequences that occur at least twice with different successors.

The metric of nonlinear complexity is well defined for both finite-length sequences
and infinite-length periodic sequences, which exhibit apparent difference in spite of the
close connection. Below we recall some basics for finite-length sequences and periodic
sequences, respectively.
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Lemma 2. ( [17]) For a finite-length sequence (s0, s1, . . . , sn−1) over an alphabet A,

(i) its nonlinear complexity takes values ranging from 0 to n− 1;

(ii) if its nonlinear complexity c ≥ n
2
, then the sequence (s0, s1 . . . , sn−1, sn) for any new

symbol sn in A has the same nonlinear complexity c;

(iii) if its nonlinear complexity c ≥ bn
2
c, then it cannot be written as (s0, s1, . . . , sk−1)

e for
any proper divisor k of n.

Throughout what follows, we will use sn to denote a sequence (s0, s1, . . . , sn−1) that
is not a repetition of any shorter subsequence and deem it as an aperiodic finite-length
sequence. Given a sequence sn = (s0, . . . , sn−1), the left circular shift operators Li(sn)

on sn are defined as L0(sn) = sn, L(sn) = (s1, . . . , sn−1, s0) and Li(sn) = L(Li−1(sn)) =

(si, si+1, . . . , sn−1, s0 . . . , si−1) for i ≥ 1. The right circular shift operators are defined
by Ri(sn) = Ln−i(sn). Under circular shift operators, we can derive from sn a shift
equivalence class {sn, L(sn), . . . , Ln−1(sn)}. Notice that the nonlinear complexity of sn is
usually not an invariant under circular shift operators. For instance, while the sequence
sn = (1, 0, . . . , 0) has nonlinear complexity 1, its shift sequence L(sn) = (0, . . . , 0, 1) has
maximum nonlinear complexity n− 1.

Shift operators can be similarly defined for periodic sequences. The shift equivalence
class of a periodic sequence s∞n is given by {s∞n , (L(sn))∞, . . . , (Ln−1(sn))∞}. As recalled
in the following lemma, the nonlinear complexity of a periodic sequence is an invariant
under circular shift operators.

Lemma 3. ( [17]) Let s∞n be a sequence of period n over an alphabet A of size q. Then,

(i) the nonlinear complexity of s∞n satisfies dlogq(n)e ≤ nlc(s∞n ) ≤ n− 1;

(ii) all sequences in {s∞n , (L(sn))∞, . . . , (Ln−1(sn))∞} have the same nonlinear complexity.

For finite-length sequences sn and periodic sequences s∞n , despite their close con-
nection, they can behave differently in some aspects. As indicated in Lemma 2 and
Lemma 3, the nonlinear complexities of sn and s∞n take values from different ranges,
and they behave differently under circular shift operators. For a finite-length sequence
sn, since its corresponding periodic sequence s∞n contains all shift equivalent sequences
sn, L(sn), . . . , Ln−1(sn), it is clear that s∞n has nonlinear complexity nlc(s∞n ) ≥ nlc(Li(sn))

for any 0 ≤ i < n, i.e.,
nlc(s∞n ) ≥ max

0≤i<n
nlc(Li(sn)).
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While for some sequences sn the equality of the above inequality can be achieved, the
equality can not be reached for many other sequences sn, i.e., nlc(s∞n ) > max

0≤i<n
nlc(Li(sn)).

For instance, for the sequence s10 = (0010010010), we have(
nlc(Li(s10)) : i = 0, 1, 2, . . . , 9

)
= ( 2, 2, 7, 6, 5, 4, 6, 5, 4, 3 ) and nlc(s∞10) = 9.

In this paper we will further investigate the varying behaviour of nonlinear complexity
of binary sequences sn under circular shift operators, thereby characterizing periodic bi-
nary sequences s∞n with a prescribed nonlinear complexity. As a result, we are enabled to
reveal more explicit relations between nlc(s∞n ) and nlc(an), where an is a certain n-length
subsequence of s∞n . Throughout this paper, we will denote c = nlc(sn) and ω = nlc(s∞n )

for a finite-length sequence sn and the corresponding periodic sequence s∞n , respectively.

Suppose a∞n is a binary sequence with period n and nonlinear complexity ω generated
by an ω-stage FSR. Recall from Figure 1 that a∞n = (a0, a1, a2, . . . ) can be equivalently
expressed as a cycle of states (a0, a1, . . . , an−1), where at = F t(a0) for t ≥ 0. Given a
state ai, its companion state is defined by âi = (ai, . . . , ai+ω−2, ai+ω−1) with ai+ω−1 =

ai+ω−1 ⊕ 1. A companion pair (ai, âi) = (ai, ai+d) for certain d ≥ 1 can be denoted
as (ai,Fd(ai)). The structure of (ai,Fd(ai)) will be frequently used in our discussion.
Without loss of generality, we assume d ≤

⌊
n
2

⌋
(since for the case that d > bn

2
c we can

consider the companion pair (ai+d,Fn−d(ai+d))). We shall consider its left shift sequence
s∞n = (Li(an))∞, which has a companion pair (s0,Fd(s0)) with d ≤ bn

2
c. Here we consider

s∞n instead of a∞n for simplifying the notation in subsequent sections.

3 Characterizations of finite-length sequences

In this section, we consider finite-length sequences with certain structure and discuss
the change of nonlinear complexities of those sequences under circular shift operators.

We first recall recent results on the nonlinear complexity of binary sequences.

Lemma 4. ( [25]) For a binary finite-length sequence (s0, s1, . . . , sn−1), if it has nonlinear
complexity c ≥ n

2
, then there exists exactly one pair of identical subsequences of length c−1

with different successors in (s0, s1, . . . , sn).

Lemma 5. ( [25]) Let c and d be two positive integers with c + d ≥ 3, and a binary
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sequence given by

sc+d =

q repetitions︷ ︸︸ ︷
(s0, . . . , sd−1) . . . (s0, . . . , sd−1)(s0, . . . , sr−1, sr) = sqd (s0, . . . , sr−1, sr) (1)

where q = b c+d−1
d
c, 0 ≤ r = (c + d− 1)− qd < d, sd is aperiodic and sqd =

q repetitions︷ ︸︸ ︷
sd . . . sd , and

when r = 0, (s0, . . . , sr−1, sr) is deemed as s0. Then when c ≥ d, the sequence sc+d in (1)
has nonlinear complexity c.

The binary sequences of the form in (1) will be heavily used in subsequent discussions.
Note that sc+d can be equivalently expressed as

(s0, s1, . . . , sc−2) = (sd, sd+1, . . . , sc+d−2) and sc−1 6= sc+d−1.

Given a sequence sc+d = (s0, s1, . . . sc+d−1), its two subsequences s[0:c] and s[d:c+d] are
overlapped at components sd, . . . , sc−1 when c > d and are exactly next to each other
when c = d. Liang et al. [25] showed that when c ≥ d the sequence sc+d has nonlinear
complexity c and spacing d between its companion pair (s0,Fd(s0)) if and only if it has
the form as in (1). When c < d, the statement is neither true for sufficiency nor for
necessity. The result in Lemma 5 helps us calculate the nonlinear complexity of a binary
sequence sn starting with sc+d in a direct way.

Corollary 1. Suppose a binary sequence sn = (s0, . . . , sn−1) has its subsequence sc+d of
the form in (1) for certain positive integers c and d with 1 ≤ d ≤ min{n− c, bn

2
c}. Then

we have nlc(sn) ≥ c, where the equality is achieved when c ≥ bn
2
c.

Proof. When c ≥ d, it follows from Lemma 5 that nlc(sc+d) = c. Then nlc(sn) ≥
nlc(sc+d) = c. When c < d, the subsequence sc+d is of the form

sc+d = (s0, . . . , sc−2, sc−1, . . . , sd−1)(s0, . . . , sc−2, sc−1),

where the subsequences (s0, . . . , sc−2) have different successors. By Lemma 1 we have
nlc(sc+d) ≥ c. So it is clear that nlc(sn) ≥ c.

If c ≥ bn
2
c, then by Lemma 2 (ii) recursively, we have nlc(sn) = nlc(sc+d). Note that

nlc(sc+d) = c since c ≥ bn
2
c ≥ d. Thus nlc(sn) = c if c ≥ bn

2
c.

Below we define a set B(n, c) that helps us establish a connection between nonlinear
complexities of s∞n and sn.
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Definition 2. For 1 ≤ c < n and 1 ≤ d ≤ min{n − c, bn
2
c}, we denote by B(n, c, d) the

set of aperiodic binary sequences sn starting with sc+d in (1), namely,

B(n, c, d) = { sn = sc+d s[c+d:n] = ((s0, . . . , sd−1)
q (s0, . . . , sr−1, sr)︸ ︷︷ ︸

length=c+d

s[c+d:n]) } (2)

where sd is aperiodic, sr = sr⊕1, and the subsequence s[c+d:n] is chosen from Zn−c−d
2 such

that sn is aperiodic. We call the parameter d the spacing of sn, denoted by spac(sn), and
define

B(n, c) =

min{n−c,bn
2
c}⋃

d=1

B(n, c, d). (3)

By Corollary 1, for the case of c ≥ bn
2
c, any sn ∈ B(n, c) has nonlinear complexity c.

When c ≥ n
2
, Lemma 4 shows that sc+d actually contains the unique companion pair in

sn; moreover, Lemma 2 (ii) indicates that the subsequence s[c+d:n] in sn can be arbitrarily
chosen. It is to be noted that for each given n, c and d, the set B(n, c, d) is non-empty.
As a matter of fact, as the subsequence sc+d is aperiodic and s[c+d:n] can be arbitrarily
chosen. The existence of aperiodic sequences in B(n, c, d) can be easily confirmed.

The following lemma characterizes the change of nonlinear complexities of sequences
in B(n, c) under the left circular shift operators.

Lemma 6. For sn ∈ B(n, c, d) and a positive integer t < c, its left shift sequence Lt(sn)

belongs to B(n, c− t, d). In particular, when c− t ≥ bn
2
c, we have

nlc(Lt(sn)) = nlc(sn)− t = c− t.

Proof. According to Definition 2, the sequence sn ∈ B(n, c, d) has the form

sn = sc+ds[c+d:n] = (s0, . . . , sd−1)
q(s0, . . . , sr−1, sr)︸ ︷︷ ︸

length=c+d

s[c+d:n], (4)

which implies (s0, s1, . . . , sc−2) = (sd, sd+1, . . . , sc+d−2) and sc−1 6= sc+d−1. Let an =

L(sn). Then (a0, . . . , ac−3) = (s1, . . . , sc−2) = (sd+1, . . . , sc+d−2) = (ad, . . . , ac+d−3) and
ac−2 = sc−1 6= sc+d−1 = ac+d−2. Thus we can write an as

L(sn) = an = ac+d−1a[c+d−1:n] = (a0, . . . , ad−1)
q1(a0, . . . , ar1−1, ar1)︸ ︷︷ ︸

length=c+d−1

a[c+d−1:n], (5)
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where ad = (a0, a1, . . . , ad−1) = (s1, s2, . . . , sd−1, s0), q1 = b (c+d−1)−1
d

c = b c+d−2
d
c, r1 =

(c + d − 2) − q1d and (a0, . . . , ar1−1, ar1) reduces to ar1 when r1 = 0. It is clear that
ad = L(sd) is aperiodic. Thus we have L(sn) ∈ B(n, c−1, d). Furthermore, it follows from
Corollary 1 that L(sn) has nonlinear complexity c− 1 when c− 1 ≥ bn

2
c. By repeatedly

applying the above process, the desired statement follows.

Lemma 6 can be interpreted alternatively: given a sequence an ∈ B(n, c− 1, d) in (5)
with d ≤ n− c and c− 1 ≥ bn

2
c, if an−1 = ad−1, then its right cyclic shift sequence R(an)

has the form in (4), implying that sn = R(an) belongs to B(n, c, d) and has nonlinear
complexity nlc(an) + 1. With this observation, we introduce the following parameter of
a sequence in B(n, c, d) with c ≥ bn

2
c, which indicates the potential increment of the

nonlinear complexity of sequences under the right circular shift operators.

Definition 3. Given a certain positive integer t, if a sequence sn in B(n, c, d) satisfies

sn−1−i = s(d−1−i)mod d for 0 ≤ i < t, and sn−1−t 6= s(d−1−t)mod d,

then we call sn−t, . . . , sn−1 the added terms of sn and denote by add(sn) the number t of
the added terms of sn.

Definition 3 indicates that (sn−t, . . . , sn−1) = (s(d−t)mod d, . . . , s(d−1)mod d). As shown
in Figure 2, for the case that t < d, the subsequences s[d−t:d] and s[n−t:n] in gray are
identical and sd−1−t 6= sn−1−t. In this case sn−t, . . . , sn−1 in gray are the added terms of
sn. For some sequences sn, we may have add(sn) = t ≥ d. In such a case, it follows that
(sn−t, . . . , sn−d−1, sn−d, . . . , sn−1) = (sn−(t−d), . . . , sn−1, s0, . . . , sd−1).

sn = (s0, . . . , sd−1)
q(s0, . . . , sr−1, sr) (sc+d, . . . , sn−1)

= (s0, . . . , sd−1−t, sd−t, . . . , sd−1)(sd, . . . , sn−t−1, sn−t, . . . , sn−1).

Figure 2: Added terms in Definition 3 for t < d

Remark 1. Note that each sn in B(n, c) with c ≥ bn
2
c has add(sn) ≤ n − c − 1. For sn

in B(n, c, d) with c ≥ bn
2
c, assume add(sn) = t, we now consider the sequence s2n = snsn.

From Definition 3, in the subsequence (sn−t, . . . , sn−1, s0, . . . , sc+d−1) of s2n we have

(sn−t, . . . , sn−1, s0, . . . , sc−2) = (sn−t+d, . . . , sd−1, sd, . . . , sc+d−2) and sc−1 6= sc+d−1.
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Let vd = (v0, . . . , vd−1) = (sn−t, . . . , sn−t+d−1). Then

(sn−t, . . . , sn−1, s0, . . . , sc+d−1) =

q2 repetitions︷ ︸︸ ︷
(v0, . . . , vd−1) · · · (v0, . . . , vd−1)(v0, . . . , vr2−1, v̄r2),

where q2 = b c+d+t−1
d
c and r2 = (c + d + t− 1)− q2d. Thus the above subsequence satisfies

(sn−t, . . . , sn−1, s0, . . . , sc+d−1) ∈ B(c+d+ t, c+ t, d) with nonlinear complexity c+ t. Then
c + t ≤ nlc(s2n) ≤ n− 1, implying t ≤ n− c− 1.

For a binary sequence sn ∈ B(n, c), the following proposition shows that add(sn) plays
an important role in the varying behaviour of the nonlinear complexity of sequences under
the right circular shift operators.

Proposition 1. For sn ∈ B(n, c, d) with c ≥ bn
2
c, d ≤ min{n− c, bn

2
c} and add(sn) = t,

the nonlinear complexity values of its shifted sequences have the following properties,

(i) for any 1 ≤ k ≤ min{t, n− c− d}, Rk(sn) ∈ B(n, c + k, d) and nlc(Rk(sn)) = c + k;

(ii) for any t < k ≤ n− c− d, we have nlc(Rk(sn)) = c + t.

Proof. (i) For sn ∈ B(n, c, d) with add(sn) = t, we have (sn−t, . . . , sn−1) = (s(d−t)mod d, . . . ,

s(d−1)mod d), thus

(sn−t, . . . , sn−1)(s0, . . . , sc−2) = (s(d−t)mod d, . . . , s(d−1)mod d)(sd, sd+1, . . . , sc+d−2),

and sc−1 6= sc+d−1. When n− c− d ≥ 1, let an = R(sn), thus

(a0, a1, . . . , ac−1) = (sn−1, s0, . . . , sc−2) = (sd−1, sd, . . . , sc+d−2) = (ad, ad+1, . . . , ac+d−1)

and ac 6= ac+d. That is to say, we can write an as

R(sn) = an = ac+d+1a[c+d+1:n] = (a0, . . . , ad−1)
q2(a0, . . . , ar2−1, ar2)︸ ︷︷ ︸

length=c+d+1

a[c+d+1:n],

where q2 = b (c+d+1)−1
d

c = b c+d
d
c and r2 = (c+d+1)−1−q2d. So we see that the sequence

an = R(sn) belongs to B(n, c + 1, d) and has nonlinear complexity c + 1.

When t ≤ n − c − d, by induction on t, we see that the sequence an = Rk(sn) with
k ≤ t belongs to B(n, c + k, d) and has nonlinear complexity c + k. When t > n − c − d

and k ≤ n − c − d, the statement holds similarly. However, when t > n − c − d and
n − c − d < k ≤ t, the sequence an = Rk(sn) satisfies ai = ai+d with 0 ≤ i < n − d and
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d ≤ min{n − c, bn
2
c} ≤ bn

2
c, implying that an is contained in the periodic sequence a∞d

and then nlc(an) ≤ nlc(a∞d ) ≤ d − 1 ≤ bn
2
c − 1, that is to say, an = Rk(sn) no longer

belongs to B(n, c + k, d). The difference between cases of t ≤ n− c− d and t > n− c− d

are visualized in Figure 3, where a copy of sn is added on its left side and the gray
area covers the sequence sc+d as in (1). Therefore, for any 1 ≤ k ≤ min{t, n − c − d},
nlc(Rk(sn)) = nlc(sn) + k = c + k.

(s0, . . . , sd−1)
q(s0, . . . , sr−1, sr) (sc+d, . . . , sn−1)(s0, . . . , sd−1)

q(s0, . . . , sr−1, sr) (sc+d, . . . , sn−1)

snsn
t ≤ n− c− d

Rt(sn)

t ≤ n− c− d

(s0, . . . , sd−1)
q(s0, . . . , sr−1, sr) (sc+d, . . . , sn−1)(s0, . . . , sd−1)

q(s0, . . . , sr−1, sr) (sc+d, . . . , sn−1)

snsn
t > n− c− d

Rt(sn)

t > n− c− d

Figure 3: The visualized description of Proposition 1 (i)

(ii) Let Rt(sn) = an. It follows from Proposition 1 (i) and t < n− c− d that

Rt(sn) = an ∈ B(n, c + t, d) with an−1 6= ad−1 (6)

and nlc(an) = c + t. Then ac+t+d is the subsequence formed exactly by the companion
pair (a0,Ad(a0)) of an. For any t < k ≤ n − c − d, we have Rk(sn) = Rk−t(an) contains
ac+t+d, which implies that nlc(Rk(sn)) ≥ c+ t. We shall prove the statement by induction
on k. Suppose that the nonlinear complexity of Rt+1(sn) = R(an) is larger than c + t,
that is to say, nlc(R(an)) = c′ > c + t. Note that it follows from Lemma 4 and c′ > bn

2
c

that Rk(sn) only has a unique companion pair. If the unique companion pair of R(an) =

(an−1, a0, . . . , an−2) does not begin with an−1, then L(R(an)) = an = (a0, . . . , an−2, an−1)

contains the unique companion pair of R(an), which implies that nlc(an) ≥ nlc(R(an)) =

c′. It contradicts that nlc(an) = c+ t < c′ = nlc(R(an)). Thus the unique companion pair
of R(an) = (an−1, a0, . . . , an−2) begins with an−1, which yields that R(an) ∈ B(n, c′, d′).
Hence an−1 = ad′−1. Together with (6), we have ad′−1 = an−1 6= ad−1, implying that
d′ 6= d. According to Lemma 6, L(R(an)) = an ∈ B(n, c′− 1, d′) with nlc(an) = c′− 1 and
d′ 6= d. Moreover an ∈ B(n, c + t, d) with nlc(an) = c + t, thus c′ = c + t + 1. That is to
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say, an satisfies an ∈ B(n, c+ t, d) and an ∈ B(n, c+ t, d′) with d′ 6= d. From the structure
of an in (1), it is clear that

ai = ai+d, ai = ai+d′ , 0 ≤ i ≤ c− 2 and ac−1 6= ac+d−1, ac−1 6= ac+d′−1. (7)

In the case of c+t ≥ n/2, it follows from Lemma 4 that an only has a unique companion
pair, which contradicts that d′ 6= d. In the case of c = bn

2
c with odd n and t = 0, i.e.

c + t = bn
2
c, without loss of generality, suppose d′ < d then 1 ≤ d′ < d ≤ bn

2
c. If d < bn

2
c,

then according to (7), one has ac−1−d = ac−1 and ac−1−d = ac+d′−1−d implying that
ac−1 = ac+d′−1−d, while ac+d′−1−d = ac+d′−1 and ac−1 6= ac+d′−1 follows ac−1 6= ac+d′−1−d.
It is a contradiction. If d = bn

2
c, then from (7) we can see that

(ac, ac+1, . . . , ac+d′−1) = (ac−d, ac+1−d, . . . , ac+d′−1−d) = (a0, a1, . . . , ad′−1) = ad′ ,

thus its Hamming weight wt(ac, ac+1, . . . , ac+d′−1) = wt(ad′). While again by (7), one has

(ac, ac+1, . . . , ac+d′−2, ac+d′−1) = (acmod d′ , . . . , a(c+d′−2)mod d′ , a(c+d′−1)mod d′ ⊕ 1),

where (acmod d′ , . . . , a(c+d′−2)mod d′ , a(c+d′−1)mod d′) is a shifted version of ad′ . Hence wt(ad′)
6= wt(ac, ac+1, . . . , ac+d′−1), which is a contradiction. Thus

nlc(R(an)) = nlc(Rt+1(sn)) = c′ = c + t.

By induction on k ranging from t + 1 to n− c− d, the proof follows.

Given a sequence sn ∈ B(n, c, d), Proposition 1 reveals the changing pattern of nlc(Rk(sn))

for k ≤ n − c − d. However, when k > n − c − d, the change of nlc(Rk(sn)) does not
indicate a strong pattern. Consider a sequence sn ∈ B(n, c) with c ≥ bn

2
c. The varying

behaviour of nlc(Rk(sn)) for 0 ≤ k ≤ n− 1 is discussed in Remark 2.

Remark 2. Without loss of generality, we assume c = bn
2
c. For sn ∈ B(n, bn

2
c), among

the right shift sequences Rk(sn) : k = 0, 1, . . . , n − 1, there may exist positive integers
0 < j1 < · · · < jr ≤ n− 1 such that Rj1(sn), . . . , Rjr(sn) also belong to B(n, bn

2
c).

For 0 ≤ k < j1, assume sn ∈ B(n, bn
2
c, d) for certain d ≤ bn

2
c has add(sn) = t and

define an integer-valued sequence c0 = (nlc(sn), . . . , nlc(Rj1−1(sn))). Then the values in
the sequence c0 vary in this way: c0 starts with bn

2
c, when k ≤ min{t, n − c − d}, the

values in c0 increase one by one as in Proposition 1 (i); when t < k ≤ n − c − d, the
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values in c0 remain unchanged as in Proposition 1 (ii); and when n− c− d < k < j1, the
change of values in c0 does not exhibit a strong pattern.

For k = j1, assume an = Rj1(sn) ∈ B(n, c, d1) has add(an) = t1 and take

c1 =
(
nlc(Rj1(sn)), . . . , nlc(Rj2−1(sn))

)
=
(
nlc(an), . . . , nlc(Rj′1−1(an))

)
,

where j′1 = j2 − j1. As k increases from j1 to j2 − 1, the values in the sequence c1 vary
in a similar manner as the above analysis for c0. As k ranges from j2 to n − 1, we can
similarly define the sequences ci for i = 2, . . . , r as above. The values in these sequences
vary similarly to that of c0.

To sum up, the above analysis shows that(
nlc(sn), nlc(R(sn), . . . , nlc(Rn−1(sn))

)
= c0 ∪ c1 ∪ · · · ∪ cr,

where the values in each ci, i = 0, 1, . . . , r, vary according to Proposition 1 first and then
change in unclear patterns.

For sequences sn ∈ B(n, c), below we consider a subset E(sn) of its shift equivalence
class and the representative of E(sn), which will be used in our subsequent discussions.

Definition 4. Let sn be a sequence in B(n, c) and E(sn) = {Rk(sn) : 0 ≤ k < n}∩B(n, c).
A sequence s̃n ∈ E(sn) satisfying

add(s̃n) ≥ add(an), ∀an ∈ E(sn)

is said to be a representative sequence of sn. Furthermore, we define R(n, c) as the set of
all sequence representatives in B(n, c), i.e.,

R(n, c) =
⋃

sn∈B(n,c)

{
s̃n ∈ E(sn) : add(s̃n) ≥ add(an),∀an ∈ E(sn)

}
. (8)

The following example illustrates some definitions and results in this section.

Example 1. Consider n = 9 and a binary finite-length sequence s9 = (000010010).
It is clear that s9 = s5s[5:9] = (000010010) ∈ B(9, 4, 1) as in Definition 2, where sc+d is
underlined and sd is in bold for d = 1 and c = 4. By Definition 3 we have add(s9) = 1 since
s8 = 0 = s0 (which is displayed in bold) and s7 6= s0. Since add(s9) = t = 1 < n−c−d = 4,
from Proposition 1 we have nlc(R(sn)) = c + 1 = 5 and nlc(Rk(s9)) = c + t = 5 for
k = 2, 3, 4.
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(iv)

sn = (00100010000010)

Figure 4: The visualized description of Example 1

Furthermore, among the shift sequences Rk(s9) for k = 0, 1, . . . , 8, only the sequences
s9 and R5(s9) belong to B(9, 4), indicating that E(s9) = {s9, R5(s9)} from Definition 4.
Observe that(

nlc(Rk(s9)) : k = 0, 1, . . . , 8
)

= (4, 5, 5, 5, 5) ∪ (4, 5, 6, 3 ) = c0 ∪ c1

where the values in c0 =
(
nlc(Rk(s9)) : k = 0, 1, 2, 3, 4

)
and c1 = (nlc(Rk(s9)) : k =

5, 6, 7, 8) vary as in Proposition 1 and the analysis is as in Remark 2. In addition, since
add(R5(s9)) = 2 > add(s9) = 1, the representative of E(s9) is R5(s9), which belongs to
R(9, 4) as in Definition 4.
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The above discussion for the sequence s9 is visualized in Figure 4 (i), where the axises
represent the values k and the corresponding nlc(Rk(s9)), respectively. In Figure 4 (i),
the sequences in E(s9) are displayed as black solid dots, and the representative sequence of
E(s9) is marked with a rectangle. In addition, the solid line shows the varying behavior of
nlc(Rk(s9)) that can be explained by Proposition 1 and the dotted line shows the varying
behavior of nlc(Rk(s9)) that does not exhibit a strong pattern.

Sequences sn ∈ B(n, bn
2
c) may behave quite differently. To illustrate this, we fur-

ther consider three sequences s9 = (101011101) ∈ B(9, 4, 2), s14 = (00000001111000) ∈
B(14, 7, 1) and s14 = (00100010000010) ∈ B(14, 7, 4) where sc+d is underlined and sd is
in bold. For these sequences, Figure 4 (ii), (iii), (iv) displays the sequences in E(sn),
the representative sequences in E(sn), and the varying behavior of nlc(Rk(sn)) for k =

0, 1, . . . , n− 1, respectively.

At the end of this section, we summarize important notations in Table 1 for readers’
convenience.

4 The nonlinear complexity of sn and s∞n

This section investigates the relation between the nonlinear complexity of periodic
sequences and that of finite-length sequences in B(n, c). Let P(n, ω) denote the set of
n-periodic binary sequences with nonlinear complexity ω, where dlog2(n)e ≤ ω ≤ n − 1

as indicated by Lemma 3 (i). Below we first discuss some properties of subsequences of a
periodic binary sequence s∞n .

Lemma 7. Given a sequence a∞n in P(n, ω), suppose its left shift sequence s∞n = Li(a∞n )

has a companion pair (s0,Fd(s0)) with d ≤ bn
2
c, where s0 = (s0, . . . , sω−1). Then,

(i) sω+d = (s0, . . . , sω+d−1) ∈ B(ω + d, ω, d) and nlc(sω+d) = ω if ω ≥ d;

(ii) when ω + d ≤ n, one has sn = (s0, . . . , sn−1) ∈ B(n, ω, d) and nlc(sn) = ω if ω ≥ d;

(iii) when ω + d > n, for any 0 ≤ j < ω − 1 and n1 = (ω + d) − j, the subsequence
s[j:ω+d] = (sj, . . . , sω+d−1) ∈ B(n1, n1 − d, d).

Proof. (i) For the subsequence sω+d that starts from s0 and ends with sd = Fd(s0) = ŝ0,
we have (s0, . . . , sω−2) = (sd, . . . , sω−2+d) and sω−1 = sω−1+d ⊕ 1. Thus we can write sω+d
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Table 1: Some necessary notations of this paper.

notation description

sn an aperiodic sequence (s0, s1, . . . , sn−1)

s[i:i+k] the subsequence (si, . . . , si+k−1)

sc+d sqd (s0, . . . , sr−1, sr) as in (1)

B(n, c, d) the set { sc+d s[c+d:n] } with 1 ≤ c < n, d ≤ min{n− c, bn
2
c}

B(n, c)
⋃min{n−c,bn

2
c}

d=1 B(n, c, d)

add(sn) for sn ∈ B(n, c, d), the integer t such that

sn−1−i = s(d−1−i)mod d, ∀ 0 ≤ i < t, and sn−1−t 6= s(d−1−t)mod d

B0(n, c) B0(n, c) = {sn ∈ B(n, c) : add(sn) = 0}

E(sn) {Rk(sn) : 0 ≤ k < n} ∩ B(n, c) for sn ∈ B(n, c)

R(n, c)
⋃

sn∈B(n,c) {s̃n ∈ E(sn) : add(s̃n) ≥ add(an),∀ an ∈ E(sn)}

s∞n the periodic sequence (sn)∞ from sn

P(n, ω) the set of sequences with period n and nonlinear complexity ω

S S = {Lk(s∞n ) : s∞n ∈ S, 0 ≤ k < n}

S1
∼= S2 S1 = S2 for two sets S1 and S2 of periodic sequences

as
sω+d = (s0, . . . , sd−1, sd, . . . , sω+d−2, sω−1) = (sqd (s0, . . . , sr−1, sr)).

The statement directly follows from Definition 2 and Lemma 5.

(ii) If ω + d ≤ n, then sω+d is contained in sn, namely,

sn = (s0, . . . , sω+d−1, sω+d, . . . , sn−1) = sω+d s[ω+d:n].

If ω ≥ d, then it implies nlc(sn) ≥ nlc(sω+d) = ω. Since nlc(sn) ≤ nlc(s∞n ) = ω, we have
nlc(sn) = ω and sn ∈ B(n, ω, d).

(iii) For the case of ω + d > n, since the subsequence sω+d belongs to B(ω + d, ω, d),
it follows that si1 = si1+d for 0 ≤ i1 < ω− 1 and sω−1 = sω−1+d. Hence for any j ≥ 0, the
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subsequence s[j:ω+d] also satisfies the relation

si1 = si1+d for j ≤ i1 < ω − 1 and sω−1 = sω−1+d. (9)

This implies that for any j with 0 ≤ j < ω − 1, the subsequence s[j:ω+d] has the form

((sj, . . . , sj+d−1)
q(sj, . . . , sj+r−1, sj+r))

where q = bω+d−j−1
d
c, r = (ω+d− j−1)−qd. According to Definition 2, the subsequence

s[j:ω+d] belongs to B(n1, n1 − d, d) with n1 = ω + d− j.

With the introduced definitions, we present the main theorems of this paper below.

Theorem 1. For any s∞n in P(n, ω) and any integer c with dlog2(n)e ≤ c ≤ min{ω, bn
2
c+

1}, there exists an integer k such that Lk(sn) ∈ B(n, c). Furthermore,

n−1⋃
ω=c

P(n, ω) =
{

(Lk(sn))∞ : sn ∈ B(n, c), 0 ≤ k < n
}
.

On the other hand, given a sequence sn in B(n, c, d) with c ≥ bn
2
c and add(sn) = t, its

companion pairs are of the form sc+d as in (1). This property leads to the statement in
Proposition 1 (i), which implies

add(Rk(sn)) = add(sn)− k and nlc(Rk(sn)) = nlc(sn) + k

for any 1 ≤ k ≤ min{t, n− c− d}. This observation results in a more explicit expression
of the nonlinear complexity of s∞n from its n-length subsequences in R(n, c).

Theorem 2. For sn in R(n, c) with c ≥ bn
2
c, one has nlc(s∞n ) = nlc(sn) + add(sn).

4.1 Proof of Theorem 1 with c ≤ bn2c+ 1

Proof of Theorem 1. For the periodic sequence a∞n in P(n, ω), suppose its left shift
sequence s∞n = Li(a∞n ) has a companion pair (s0,Fd(s0)) with d ≤ bn

2
c, we shall show that

Lω−c(sn) belongs to B(n, c). According to Lemma 7 (ii), if ω+d ≤ n then the subsequence
sn belongs to B(n, ω, d). This together with Lemma 6 implies that Lω−c(sn) ∈ B(n, c, d);
if ω+d > n, then letting j = ω+d−n we have Lj(sn) ∈ B(n, n−d, d), where n−d ≥

⌈
n
2

⌉
.

We need to consider two cases: n − d ≥ c and n − d < c. For the case that n − d ≥ c,
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by applying Lemma 6, one has Lj+(n−d−c)(sn) = Lω−c(sn) ∈ B(n, c, d); for the case that
n−d < c, since n−d ≥ dn

2
e, we have c = n

2
+1 and d = n

2
, indicating Lj(sn) ∈ B(n, n

2
, n
2
).

That is to say,

Lj(sn) = (sj, . . . , sj+n−1) =
(
(sj, . . . , sj+n

2
−2, sj+n

2
−1)(sj, . . . , sj+n

2
−2, sj+n

2
−1)
)
.

Due to nlc(s∞n ) = ω ≥ c = n
2

+1, the subsequence s[j−1:ω+d] belongs to B(n+1, n+1−d, d)

with d = n
2
. Thus it follows from (9) that sj−1 = sj−1+d and sj−1+(n−d) 6= sj−1+(n−d)+d =

sj−1+n = sj−1. This is a contradiction since sj−1+d = sj−1+(n−d) for d = n
2
. Hence one

always has Lω−c(sn) ∈ B(n, c), the first statement follows.

Therefore, for any sequence a∞n in P(n, ω) and any integer c with dlog2(n)e ≤ c ≤
min{ω, bn

2
c+ 1}, we have

a∞n ∈ {(Lk(sn))∞ : sn ∈ B(n, c), 0 ≤ k < n}.

In addition, it is clear that
{

(Lk(sn))∞ : sn ∈ B(n, c), 0 ≤ k < n
}
⊂

n−1⋃
ω=c

P(n, ω). Thus

for dlog2(n)e ≤ c ≤ min{ω, bn
2
c+ 1}, one has

n−1⋃
ω=c

P(n, ω) =
{

(Lk(sn))∞ : sn ∈ B(n, c), 0 ≤ k < n
}
. �

Theorem 1 presents a one-to-one correspondence between the finite-length sequences
set and a set of all periodic sequences with nonlinear complexity not less than c. For
each periodic sequence s∞n with nonlinear complexity ω ≥ c, Theorem 1 indicates the
structure of an its n-length subsequence an, which is in the form of (2). According to the
structure of finite-length sequences an, we can obtain all periodic sequences with nonlinear
complexities not more than n

2
in Subsection 5.1.

When c = bn
2
c or bn

2
c + 1, from Corollary 1 the nonlinear complexity of the n-length

subsequence an can be determined, i.e. nlc(an) = c. In what follows, we shall determine
the exact value of nonlinear complexity ω of periodic sequences in {(Lk(sn))∞ : sn ∈
B(n, c), 0 ≤ k < n}, where ω belongs to the set [c, n− 1] and c ≥ bn

2
c. With the further

analysis, we can obtain all periodic sequences with nonlinear complexities not less than
n
2
in Subsection 5.2.
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4.2 Proof of Theorem 2 with c ≥ bn2c

Recall from (8) that

R(n, c) =
⋃

sn∈B(n,c)

{s̃n ∈ E(sn) : add(s̃n) ≥ add(an),∀ an ∈ E(sn)} ,

where E(sn) = {Lk(sn) : 0 ≤ k < n} ∩ B(n, c). Note that R(n, c) contains all cyclic
shift inequivalent sequences in B(n, c). From Lemma 3 (ii), it suffices to investigate the
nonlinear complexity of the periodic sequence s∞n derived from sn in R(n, c).

We are now ready to prove Theorem 2, namely, for sn in R(n, c) with c ≥ bn
2
c, one

has nlc(s∞n ) = nlc(sn) + add(sn).

Proof of Theorem 2. Suppose nlc(s∞n ) = ω and (si, Fd(si)) is a companion pair of
s∞n with 1 ≤ d ≤ bn

2
c. For the convenience of readers, without loss of generality we

will simplify i into 0 in the following proof. It allows us to consider the companion pair
(s0, Fd(s0)) of s∞n . Below we will show that ω can be represented as ω = nlc(an)+add(an)

for a concrete n-length subsequence an of s∞n derived from (s0, Fd(s0)), and then prove
that ω = nlc(sn) + add(sn) for sn ∈ R(n, c). We divide the discussion according to the
value of ω + d.

Case (1): ω + d < n. In this case, Lemma 7 (ii) implies sn ∈ B(n, ω, d). Note that
add(sn) = 0, otherwise it follows from Proposition 1 (i) and n − ω − d ≥ 1 that the
nonlinear complexity of R(sn) is ω+ 1, which is larger than nlc(s∞n ) = ω, a contradiction.
By Definition 3 and Lemma 6, we see that an = Lω−c(sn) ∈ B(n, c, d) and add(an) = ω−c,
which implies

ω = c + add(an) = nlc(an) + add(an).

From the fact that sn ∈ R(n, c), we have add(sn) ≥ add(an) = ω − c. On the other
hand, taking add(sn) = t, from Remark 1, there is a pair of identical (c + t − 1)-tuple
subsequences with different successors in s∞n . This implies c + t ≤ ω. Thus in this case
we have add(sn) = add(an) = ω − c.

sω+d = (s0, s1, . . . , sj−1)(sj, sj+1, . . . , sn, . . . , sω+d−1)

length=n

Figure 5: The description of Case (2) in Theorem 2
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Case (2): ω + d ≥ n. In this case, we know the subsequence sω+d satisfies

si = si+d for 0 ≤ i ≤ ω − 2 and si = si+n for i ≥ 0.

Take j = ω+d−n and let an = Lj(sn). Then an = (a0, a1, . . . , an−1) = (sj, sj+1, . . . , sj+n−1)

= (sj, sj+1, . . . , sω+d−1) in Figure 5. It follows from Lemma 7 (iii) that an ∈ B(n, n−d, d).
Since n − d ≥ dn

2
e, an has nonlinear complexity n − d by Corollary 1. From the above

equalities, the sequence an satisfies that for 0 ≤ j1 < j,

a(n−1)−j1 = s(j+n−1)−j1 = s(j−1)−j1 = s(j−1)−j1+d = a(d−1)−j1 ,

where j = ω + d− n < d and j − j1 ≤ d− 1 ≤ ω − 1. Since sn−1 = s−1 6= sd−1, according
to Definition 3, we have

add(Lj(sn)) = add(an) = j = ω + d− n = ω − (n− d).

This implies ω = nlc(an) + add(an).

Consider the following set

S =
{
Lk(sn) : Lk(sn) ∈ B(n, c′), c′ ≥ n

2
and 0 ≤ k < n

}
.

We see that ω can be represented as the form nlc(an) + add(an) for an = Lj(sn), j =

ω+d−n, in S. By Remark 1 we know that for any un ∈ S, u∞n contains a pair of identical
subsequences with length nlc(un) + add(un)− 1 with different successors. Thus we have
ω = max

un∈S
(nlc(un) + add(un)). In the following we shall show ω = c+ t for three subcases.

Subcase (2.1): Consider the set

S0 = {Lk(sn) : 0 ≤ k < n} ∩ B(n, c) = E(sn).

It follows that max
un∈S0

(nlc(un) + add(un)) = c + max
un∈S0

(add(un)) = c + add(sn) = c + t since

sn is a sequence representative of E(sn) with maximal add(sn) = t in the set S0.

Subcase (2.2): Consider S1 = {Lk(sn) : Lk(sn) ∈ B(n, c1), 0 ≤ k < n} with
c1 = c + t1 and t1 ≥ 1. It follows that c1 + max

un∈S1

(add(un)) = c + t1 + max
un∈S1

(add(un)). As

shown in Lemma 6, for each un ∈ S1, one can get Lt1(un) ∈ S0. In addition, since

S1 = {Lk(sn) : Lk(sn) ∈ B(n, c + t1), 0 ≤ k < n}
= {Lk(sn) : Lk+t1(sn) ∈ B(n, c), add(Lk+t1(sn)) ≥ t1, 0 ≤ k < n}
= {Rt1(Lk(sn)) : Lk(sn) ∈ B(n, c), add(Lk(sn)) ≥ t1, 0 ≤ k < n},
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it follows that max
un∈S1

(add(un)) = max
un∈S0

(add(un))− t1 = t− t1. This yields max
un∈S1

(nlc(un) +

add(un)) = c + t1 + (t− t1) = c + t.

Subcase (2.3): Consider S2 = {Lk(sn) : Lk(sn) ∈ B(n, c2), 0 ≤ k < n} with
n
2
≤ c2 < c. Take c2 = c− t2 with t2 ≥ 1 . We shall investigate c− t2 + max

un∈S2

(add(un)) for

S2. For each un ∈ S0, it follows from Lemma 6 that Lt2(un) ∈ S2. In a similar manner,
one has

S0 = {Lk(sn) : Lk(sn) ∈ B(n, c), 0 ≤ k < n}
= {Lk(sn) : Lk+t2(sn) ∈ B(n, c2), add(Lk+t2(sn)) ≥ t2, 0 ≤ k < n}
= {Rt2(Lk(sn)) : Lk(sn) ∈ B(n, c2), add(Lk(sn)) ≥ t2, 0 ≤ k < n}.

Then max
un∈S2

(add(un)) − t2 = max
un∈S0

(add(un)). This yields max
un∈S2

(nlc(un) + add(un)) =

c− t2 + max
un∈S2

(add(un)) = c− t2 + (t + t2) = c + t.

Combining the above three subcases, we have ω = max
un∈S

(nlc(un) + add(un)) = c + t.

The desired conclusion thus follows. �

Remark 3. With the condition in Theorem 2, it follows that each sequence an in the
set E(sn) have nlc(a∞n ) = nlc(s∞n ) = nlc(sn) + add(sn) by Lemma 3 (ii). Equiva-
lently, for any sequence an with nonlinear complexity c ≥ n

2
, by Lemma 4 it contain-

s a unique companion pair (ai, âi). This implies Li(an) ∈ B(n, c). Hence we have
nlc(a∞n ) = nlc(s∞n ) = nlc(sn) + add(sn), where sn is a representative of E(an).

Theorem 2 gives a method to determine the value of the nonlinear complexity of
periodic sequences from that of finite-length sequences. Based on Theorem 2, below we
give a corollary of the value of max

0≤i<n
nlc(Ri(sn)).

Corollary 2. For sn in R(n, c, d) with c ≥ bn
2
c and add(sn) = t, one has

max
0≤i<n

nlc(Ri(sn))

= c + t, if t ≤ n− c− d,

≥ n− d, if t > n− c− d.

Proof. It follows from Theorem 2 that for sn ∈ R(n, c, d) with add(sn) = t, we have
nlc(s∞n ) = c + t. Hence max

0≤i<n
nlc(Ri(sn)) ≤ nlc(s∞n ) = c + t. According to Proposition

1 (i), if t ≤ n − c − d, i.e. c + d + t ≤ n, then Rt(sn) ∈ B(n, c + t, d) with nonlinear
complexity c + t, implying max

0≤i<n
nlc(Ri(sn)) = c + t = nlc(s∞n ); if t > n − c − d, i.e.
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c + d + t > n, then one has Rn−c−d(sn) ∈ B(n, n− d, d) with nonlinear complexity n− d,
thus max

0≤i<n
nlc(Ri(sn)) ≥ n− d.

Based on Corollary 2, we can see that for sn inR(n, c, d) with c ≥ bn
2
c and add(sn) = t,

if t ≤ n − c − d, then max
0≤i<n

nlc(Ri(sn)) = nlc(s∞n ). That is to say, Corollary 2 gives a

sufficient condition of max
0≤i<n

nlc(Ri(sn)) = nlc(s∞n ). When t > n− c− d, numerical results

for n ≤ 30 indicate that max
0≤i<n

nlc(Ri(sn)) = n−d. However, the previous technique is not

sufficient to prove or disprove this equality. If the conjecture is true, then we can obtain
a sufficient and necessary condition of max

0≤i<n
nlc(Ri(sn)) = nlc(s∞n ). Here we propose an

open problem below on this observation and cordially invite interested readers to attack
this problem.

Open Problem 1. For sn in R(n, c, d) with c ≥ bn
2
c and add(sn) = t, is it true that

max
0≤i<n

nlc(Ri(sn)) = n− d when t > n− c− d?

5 Periodic sequences with prescribed nonlinear com-
plexity

Based on new theoretical results in Theorem 1 and Theorem 2, we shall give two algo-
rithms to generate all periodic binary sequences in P(n, ω) with any prescribed nonlinear
complexity. For every shift equivalence class {s∞n , (L(sn))∞, . . . , (Ln−1(sn))∞}, since each
sequence in the class can generate the whole class, it suffices to consider one sequence
with certain property when generating the shift equivalence class. Given a set S of se-
quences with period n, we denote by S the union of all cyclic shift equivalence classes of
sequences in S. Then two sets S1 and S2 are deemed to be cyclic shift equivalent, denoted
as S1

∼= S2, if S1 = S2.

Theorem 3. Let n and ω be two positive integers with dlog2(n)e ≤ ω ≤ n−1. Let B(n, c)

be given in (3), B0(n, c) = {sn ∈ B(n, c) : add(sn) = 0} and R(n, c) be defined by (8),
respectively. Then we have

P(n, ω) ∼= {s∞n : sn ∈ S(n, ω)}

where S(n, ω) is given as follows,
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(i) if ω ≤ n
2
, then S(n, ω) = {sn ∈ B0(n, ω) : Lk(sn) /∈ B(n, ω + 1), 0 < k < n};

(ii) if ω ≥ n
2
, then S(n, ω) = {sn ∈ R(n, c) : add(sn) = ω − c}, where c = dn

2
e.

Proof. (i) According to Theorem 1, for any integer c with dlog2(n)e ≤ c ≤ min{ω, bn
2
c+

1}, we have
n−1⋃
ω=c

P(n, ω) =
{

(Lk(sn))∞ : sn ∈ B(n, c), 0 ≤ k < n
}
.

Then for dlog2 ne ≤ ω ≤ bn
2
c, we can express

P(n, ω)

=
n−1⋃
ω1=ω

P(n, ω1)
∖ n−1⋃

ω2=ω+1

P(n, ω2)

=
{

(Lk(sn))∞ : sn ∈ B(n, ω), 0 ≤ k < n
}∖{

(Lk(sn))∞ : sn ∈ B(n, ω + 1), 0 ≤ k < n
}

∼=
{
s∞n : sn ∈ B(n, ω), Lk(sn) /∈ B(n, ω + 1), 0 < k < n

}
.

For sn in the set
{
sn ∈ B(n, ω) : Lk(sn) /∈ B(n, ω + 1), 0 < k < n

}
, we have sn−1 6= sd−1,

that is to say add(sn) = 0, which implies sn ∈ B0(n, ω). Thus for dlog2(n)e ≤ ω ≤ bn
2
c,

P(n, ω) ∼= {s∞n : sn ∈ S(n, ω)} ,

where S(n, ω) = {sn ∈ B0(n, ω) : Lk(sn) /∈ B(n, ω + 1), 0 < k < n}. As a result, the
desired statement of Theorem 3 (i) follows.

(ii) Again by Theorem 1, let c = dn
2
e and ω ≥ c, we have

n−1⋃
ω=c

P(n, ω) =
{

(Lk(sn))∞ : sn ∈ B(n, c), 0 ≤ k < n
} ∼= {s∞n : sn ∈ R(n, c)}

since R(n, c) contains all cyclic shift inequivalent sequences in B(n, c). Then by Theorem
2 we have P(n, ω) ∼= {s∞n : sn ∈ R(n, c) : add(sn) = ω − c} = {s∞n : sn ∈ S(n, ω)}.

Based on Theorem 3 (i) and (ii), the following two subsections are dedicated to the
generation of periodic binary sequences with any given nonlinear complexity.
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Algorithm 1 Generation of all periodic binary sequences in P(n, ω) with ω ≤ n
2

1: INPUT: Given two global variables n and ω with dlog2(n)e ≤ ω ≤ bn2 c.
2: OUTPUT: The set P(n, ω).
3: Main Algorithm
4: B0(n, ω)← genB(n, ω)
5: B(n, ω + 1)← genB(n, ω + 1)
6: S(n, ω) = {sn ∈ B0(n, ω) : Lk(sn) /∈ B(n, ω + 1), 0 < k < n}
7: P(n, ω) =

{
(Lk(sn))∞ : sn ∈ S(n, ω), 0 ≤ k < n

}
8: function genB(n, c) // Generate B0(n, ω) and B(n, ω + 1)

9: for d = 1 to bn2 c do
10: B(n, c, d)← ∅
11: while (a0, a1, . . . , ad−1) ∈ Zd

2 is aperiodic do
12: for i = 0 to c + d− 2 do
13: si ← aimod d

14: end for
15: sc+d−1 ← a(c+d−1)mod d ⊕ 1

16: for (sc+d, . . . , sn−2) ∈ Zn−c−d−1
2 do

17: sn−1 ← (s0, . . . , sc+d−1, sc+d, . . . , sn−2)

18: if c = ω then
19: sn ← (sn−1, sd−1)
20: else
21: sn ← (sn−1, sn−1) with sn−1 ∈ Z2

22: end if
23: if c ≥ bn2 c or n is prime then // Conditions that sn is aperiodic
24: Add the sequence sn to B(n, c, d)

25: else if sn is aperiodic then
26: Add the sequence sn to B(n, c, d)

27: end if
28: end for
29: end while
30: end for
31: return

⋃
1≤d≤bn

2
c B(n, c, d)

32: end function
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5.1 Periodic sequences with nonlinear complexity ≤ n
2

In this subsection, all periodic sequences in P(n, ω) with dlog2(n)e ≤ ω ≤ bn
2
c can

be generated. By summarizing up the preceding analysis, we propose an algorithm to
generate all periodic binary sequences in P(n, ω) for any dlog2(n)e ≤ ω ≤ bn

2
c.

In Algorithm 1, we provide detailed steps to generate the set B(n, c) for any 1 ≤ c < n.
The function genB(n, ω+1) in Algorithm 1 for ω+1 ≥ n

2
is similar to the algorithm in [25].

For dlog2(n)e ≤ ω ≤ bn
2
c, Algorithm 1 generates all periodic sequences in P(n, ω) based

on Theorem 3 (i).

We now consider the complexity of Algorithm 1, where Steps 4, 5, 6 dominate the
complexity. In generating B0(n, ω), for each 1 ≤ d ≤ bn

2
c the loops on (a0, . . . , ad−1) and

(sω+d, . . . , sn−2) contribute the time and memory complexity O(2n−ω−1), implying Step 4
has complexity O(n2n−ω−2) as d ranges from 1 to bn

2
c. Similarly Step 5 has complexity

O(n2n−ω−2). Step 6 generates the set

S(n, ω) ={sn ∈ B0(n, ω) : Lk(sn) /∈ B(n, ω + 1), 0 < k < n}

=
{
Lk(sn) : sn ∈ B0(n, ω), 0 ≤ k < n

}∖
B(n, ω + 1).

By using the data structure of hash table, this step will have time and memory complexity
O(min{n|B0(n, ω)|, |B(n, ω + 1)|}), where |S| is denoted as the size of a set S. Since
|B0(n, ω)| < 2n−ω−1, the complexity of Algorithm 1 can be obtained as O(n2n−ω−2) +

O(n2n−ω−2) + O(n|B0(n, ω)|) ≈ O(n2n−ω−1).

On the other hand, when one uses a brute-force approach to generating sequences of
given nonlinear complexities, for each n-periodic binary sequence, it is required to cal-
culate its nonlinear complexity with algorithms like the ones proposed in [17, 19], which
have complexity O(n2 log2(n)). On average, we may consider the complexity of exhaus-
tive search for all periodic sequences in P(n, ω) is 2nO(n2 log2(n))

n
≈ O(n log2(n)2n). This

indicates that Algorithm 1 has an advantage of factor 2ω+1 log2(n) over an exhaustive
search for periodic binary sequences in P(n, ω). It is apparent that such an advantage
becomes significant as ω increases.

Below we provide an example to illustrate the process and result of Algorithm 1.

Example 2. Take n = 7 and ω = 3. By the function genB(n, c) in Algorithm 1, we
generate the set B0(n, ω) consisting of 18 binary sequences of length 7. Among these
sequences, these twelve sequences (0001101), (0110100),(1010001), (0001011),(0101100),
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(1011000), (1110100), (1010011), (0100111), (1110010),(1001011),(0101110), satisfy the
property that all their cyclic shift equivalent sequences (except for themselves) are not
contained in B(n, ω + 1). That is to say, the above twelve sequences form the set S(n, ω).
On the other hand, by exhaustive search we obtain the following sequences in P(n, ω):

(0001101)(0011010)(0110100)(1101000)(1010001)(0100011)(1000110)

(0001011)(0010110)(0101100)(1011000)(0110001)(1100010)(1000101)

(1110100)(1101001)(1010011)(0100111)(1001110)(0011101)(0111010)

(1110010)(1100101)(1001011)(0010111)(0101110)(1011100)(0111001)

It is easily seen that P(n, ω) can be obtained by applying circular shift operations on
sequences in S(n, ω), i.e., P(n, ω) = {(Lk(sn))∞ : sn ∈ S(n, ω), 0 ≤ k < n}.

5.1.1 Generation of binary de Bruijn sequences

Here we consider a particular case of n = 2m and ω = m, which corresponds to
the generation of binary de Bruijn sequences of order m. In the literature, graphical,
algorithmic and algebraic approaches have been proposed to generate binary de Bruijn
sequences [32, 33]. The graphical approach, known as the BEST theorem for de Bruijn,
Ehrenfest, Smith and Tutte, showed that there are in total 22m−1−m binary de Bruijn
sequences of order m and they can be derived in an inductive manner [33]. Algorithmic
and algebraic approaches can be used to generate some de Bruijn sequences. However, to
the best of our knowledge, only the graphical approach can constructively generate all de
Bruijn sequences of order m.

For the case of n = 2m and ω = m, we can adjust some steps in Algorithm 1 for
better performance. For a binary periodic sequence, a run of 0’s of length k is a string of
consecutive k 0’s flanked by 1 and a run of 1’s of length k is a string of consecutive k 1’s
flanked by 0. It is well-known that any binary de Bruijn sequence of order m satisfies run
properties as below [30]:

(i) 2m−2−i runs of zeros, 2m−2−i runs of ones of length i, for 1 ≤ i < m− 1;

(ii) no run of zeros nor ones of length m− 1;

(iii) a single run of m zeros and a single run of m ones.

(10)

From the above three properties, it is easily seen that any binary de Bruijn sequence of

order m has Hamming weight 2m−1 and contains the subsequence (1,

m︷ ︸︸ ︷
0, . . . , 0, 1), which
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has the companion pair (0m, 0m−11) with spacing d = 1. With this observation, we can

fix the sequence sc+d in Algorithm 1 as sc+d = sm+1 = (

m︷ ︸︸ ︷
0, . . . 0, 1) and sn−1 = 1, and focus

on only the binary sequences (sm+1, . . . , sn−2) of Hamming weight 2m−1− 2. Thus we can
reduce B0(n, ω) to a smaller set

B̃0(n,m) = {sn = (

m︷ ︸︸ ︷
0, . . . , 0, 1, sm+1, . . . , sn−2, 1) : sn satisfies (10)}, (11)

which is generated in Algorithm 2.

Algorithm 2 Generation of binary sequences in B̃0(2m,m)

1: function genB̃0(n,m) // Generate B̃0(2m,m)

2: sm+1 ← (0, 0, . . . , 0, 1) and B̃0(n,m)← ∅
3: for (sm+1, . . . , sn−2) ∈ Zn−m−2

2 with Hamming weight 2m−1 − 2 do
4: if sn = (0m1, sm+1, . . . , sn−2, 1) satisfies the run properties (10) then
5: Add the sequence sn to B̃0(n,m)

6: end if
7: end for
8: end function

Corollary 3. Let n = 2m with a positive integer m and let B̃0(n,m) be as in (11). Then,
we obtain de Bruijn sequences of order m as follows,

P(n,m) =
{

(Lk(sn))∞ : sn ∈ S(n,m), 0 ≤ k < n
}

where S(n,m) = {sn ∈ B̃0(n,m) : Lk(sn) /∈ B(n,m + 1), 0 < k < n} and |B̃0(n,m)| =
1

22m−2 ( 2m−2

2m−3, 2m−4,...,21, 20
)2 with ( M

m1,m2,...,mk
) = M !

m1!m2! ...mk!
.

Proof. According to the above analysis, we can reduce B0(n, ω) to B̃0(n,m) in (11). Thus
P(n,m) can be obtained immediately from Theorem 3 (i). In the following we determine
the size of B̃0(n,m). A binary sequence of period 2m−1 having the same run distribution
as m-sequences of order m is called as a run sequence. Note that sequences in B̃0(n,m)

are in one-to-one correspondence with all binary run sequences of period 2m − 1. For
each sequence in B̃0(n,m), by deleting one 0 in the longest m run of 0’s, we obtain a run
sequence of period 2m − 1. Hence, the number of B̃0(n,m) is the same as the number of
shift inequivalent run sequences, from [31] which is equal to 1

22m−2 ( 2m−2

2m−3, 2m−4,...,21, 20
)2.
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Example 3. When m = 4, Algorithm 2 generates B̃0(16, 4) with size 36, then we filter
these 36 shift inequivalent sequences by B(16, 5), thus obtaining all 16 shift inequivalent
sequences in P(16, 4). And when m = 5, Algorithm 2 generates B̃0(32, 5) with size 88200,
then we filter these shift inequivalent sequences by B(32, 6), which yields all 2048 shift
inequivalent sequences in P(32, 5).

5.2 Periodic sequences with nonlinear complexity ≥ n
2

Recall from Theorem 3 (ii) that, for ω ≥ n
2
,

P(n, ω) ∼= {s∞n : sn ∈ S(n, ω)} ,

where S(n, ω) for c = dn
2
e is given by S(n, ω) = {sn ∈ R(n, c) : add(sn) = ω − c}. This

result also holds for c = bn
2
c and can be proved similarly. Moreover, the characterizations

on sequences R(n, dn
2
e) in Subsection 5.2.1 can be similarly made for c = bn

2
c but with

several tedious cases to be discussed. We therefore only present relevant results for the
case of c = dn

2
e.

To illustrate the result of Theorem 3 (ii), we first present a toy example below.

Example 4. Take an example for the case n = 8 and c = 4. All finite-length sequences in
B(8, 4) can be obtained from the function genB(n, c) in Algorithm 1, or from the algorithm
in [25] by letting k1 = 0. We first group B(8, 4) into shift equivalence classes. For each
shift equivalence class in B(8, 4), we determine the sequence representatives according to

Definition 4, thereby obtain the set R(8, 4). In this way we get
7⋃

ω=4

P(8, ω) ∼= {s∞n : sn ∈

R(8, 4)}. By computing the number of added terms of each sequence in R(8, 4), we can
determine the nonlinear complexity of the corresponding periodic sequences from Theorem
2. Table 2 lists all binary sequences with period 8 and nonlinear complexity ω, ω ≥ 4,
up to shift equivalence obtained in this way. The result is consistent with the exhaustive
search presented in [17, Table 3.2].

We carry out experiments for n up to 40, and they all confirm that Theorem 3 (ii) is
consistent with exhaustive search.

The previous section discussed the generation of binary de Bruijn sequences, which is a
particular case for ω ≤ n

2
. Below we discuss another particular case where the prescribed

nonlinear complexity ω achieves the maximum value n− 1.
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Table 2: Binary sequences of period 8 with nonlinear complexity ω.

B(8, 4) R(8, 4) add(sn) ∼= P(8, 4 + add(sn))

(00100011), (10010001), (00110010) (00100011), (10010001), (00110010)

0

(00100011)∞

(10011000), (00100110), (10001001) (10011000), (00100110), (10001001) (10011000)∞

(01100111), (11011001), (01110110) (01100111), (11011001), (01110110) (01100111)∞

(11011100), (01101110), (11001101) (11011100), (11011001), (01110110) (11011100)∞

(11110000), (00001111) (11110000), (00001111) (11110000)∞

(10110100), (01001011) (10110100), (01001011) (10110100)∞

(00001101) (00001101) (00001101)∞

(00001011) (00001011) (00001011)∞

(11110100) (11110100) (11110100)∞

(11110100) (11110100) (11110100)∞

(01010000), (00001010) (00001010)

1

(00001010)∞

(10101111), (11110101) (11110101) (11110101)∞

(00001110) (00001110) (00001110)∞

(11110001) (11110001) (11110001)∞

(10101100) (10101100) (10101100)∞

(01010011) (01010011) (01010011)∞

(11011000) (11011000) (11011000)∞

(00100111) (00100111) (00100111)∞

(00001001), (10010000) (10010000)

2

(10010000)∞

(01000101), (01010001) (01010001) (01010001)∞

(10111010), (10101110) (10101110) (10101110)∞

(11110110), (01101111) (01101111) (01101111)∞

(00001100) (00001100) (00001100)∞

(11110011) (11110011) (11110011)∞

(00010000), (00001000) (00001000)

3

(00001000)∞

(01010010), (01001010) (01001010) (01001010)∞

(10101101), (10110101) (10110101) (10110101)∞

(11101111), (11110111) (11110111) (11110111)∞

Remark 4. It was shown in [27] that sequences in P(n, n − 1) can be generated from a
recursive approach by applying the Euclidean algorithm on n and certain positive integers.
Similarly, the set P(n, n − 2) was later completely characterized in [28]. In this paper,
Theorem 3 (ii) can produce all sequences in P(n, ω) with n

2
≤ ω ≤ n−1. Below we discuss

the connection between Theorem 3 (ii) and the work in [27]. Its connection with the work
in [28] is similar and thus not included here.

For the case ω = n− 1 and a sequence sn ∈ R(n, dn
2
e) with spac(sn) = d, namely,

sn = (

q︷ ︸︸ ︷
sd . . . sd (s0, . . . , sr−1, sr) s[c+d:n]) = (sqd (s0, . . . , sr−1, sr) s[c+d:n]),

suppose add(sn) = t = ω − c = bn
2
c − 1, then sn−1−i = s(d−1−i)mod d for 0 ≤ i < bn

2
c − 1.
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and sn−bn
2
c 6= sd−bn

2
c. When ω + d ≤ n, i.e., d = 1, the sequence sn = (sc0 s0 s

t
0). Then

an = Rt(sn) = (sn−10 s0),

which corresponds to the sequence in [27, Theorem 1 (i)]. When ω + d > n, suppose
s[i:i+ω+d] is the subsequence formed by the companion pair (si, si+d). Then a′n = Li(sn) has
the companion pair (s0, sd). As discussed in the proof of Theorem 2, we know the sequence
an = Lj(a′n) with j = (ω+d)−n belongs to B(n, n−d, d) and has add(an) = ω−(n−d) =

d − 1. This implies that bn = Rd−1(an) satisfies bi = bi+d for i = 0, 1, . . . , n − d − 1 and
has the form

bn = (

q︷ ︸︸ ︷
bd . . . bd (b0, . . . , br−1)) = (bq

d (b0, . . . , br−1))

where r = nmod d and q = n−r
d
. This corresponds to the sequences characterized in

[27, Theorem 1 (ii)]. For instance, given a sequence sn = (0101010010101010) ∈
B(16, 8, 7) with add(sn) = 7, where the added terms are in bold, we have an = L15(sn) =

(0010101001010101) ∈ B(16, 9, 7) with add(an) = 6. Then the sequence bn = Rd−1(an) =

R6(an) = (0101010010101001) has the form (0101010)2(01) = ((01)30)2(01), which is con-
sistent with the instance given in [27, Example 1].

According to Theorem 3 (ii), each periodic sequence with a prescribed nonlinear com-
plexity ω ≥ n

2
can be derived from its n-length subsequence sn in R(n, c) with a desired

add(sn) = ω − c with c = dn
2
e. It is thus of significant interest to further explore the

structure of sequences in R(n, c). The following subsection further discusses the sequence
representatives in R(n, c). After the discussion, we will propose Algorithm 3 to generate
all binary sequences in P(n, ω) with ω ≥ n

2
.

5.2.1 Characterizations on sequence representatives

For sn ∈ B(n, c) with c = dn
2
e given in (2), this section further investigates the set

E(sn) = {Lk(sn) : 0 ≤ k < n}∩B(n, c), which helps us generate sequence representatives
in B(n, c) more efficiently. In what follows, we shall first consider the necessary conditions
such that both sn and Rh(sn) are contained in B(n, c).

Lemma 8. For sn ∈ B(n, c, d) with c ≥ n
2
, if sn has a shift equivalent sequence vn =

Rh(sn) ∈ B(n, c, d′), then h satisfies at least one of inequalities: n−(c+d)+d′ ≤ h < c+d′

and n− (c + d) < h ≤ c + d′ − d.
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Proof. For a sequence sn ∈ B(n, c, d), we shall first prove that if Rh(sn) belongs to
B(n, c, d′), then the value h satisfies n− (c+ d) < h < c+ d′. Suppose that h ≤ n− c− d.
According to (2), sn ∈ B(n, c, d) has the form

sn = (sqd (s0, . . . , sr−1, sr) s[c+d:n]),

where (q − 1)d + r + 1 = c. It is clear that the c-tuples (sq−1d (s0, . . . , sr−1, sr)) and
(sq−1d (s0, . . . , sr−1, sr)) form a companion pair in sn. Due to h ≤ n−(c+d), this companion
pair is also contained in the right cyclic shift sequence Rh(sn). Since nlc(Rh(sn)) = c ≥ n

2
,

Lemma 4 shows that this companion pair is the unique one of Rh(sn). It contradicts the
assumption that Rh(sn) belongs to B(n, c). Thus we have h > n − (c + d). For the
sequence vn = Rh(sn) and h′ = n − h, similarly we have h′ = n − h > n − (c + d′),
implying h < c + d′. Thus the statement n− (c + d) < h < c + d′ holds.

Furthermore, by setting b = h − (n − (c + d))) and b′ = h′ − (n − (c + d′)), we have
b+b′ = (h+h′)− (n− (c+d)+n− (c+d′)) = (2c−n)+d+d′ ≥ d+d′ since c ≥ n

2
. Hence

at least one of b ≥ d′ and b′ ≥ d holds. If b ≥ d′, then n − (c + d) + d′ ≤ h < c + d′; if
b′ ≥ d, then n−(c+d′)+d ≤ h′ = n−h < c+d and thus n−(c+d) < h ≤ (c+d′)−d.

In the proof of Lemma 8, we see the symmetric relation between sn and vn = Rh(sn)

in B(n, c). If a pair of shift equivalent sequences (sn, Rh(sn)) in B(n, c) satisfies h ≤
(c + d′)− d, then (vn = Rh(sn), Rn−h(vn)) satisfies h′ = n− h ≥ (n− (c + d′)) + d where
spac(sn) = d and spac(vn) = d′. Therefore, it suffices to consider the shift equivalent
sequence Rh(sn) of each sn in B(n, c) with (n− (c + d)) + d′ ≤ h ≤ c + d′ − 1.

In the following, for the pair of shift equivalent sequences (sn,vn) in B(n, c), Propo-
sition 2 characterizes certain structure of the sequence sn in (i) and determines vn and
add(vn) in (ii), which will help us find shift equivalent sequences and then determine the
sequence representatives by deleting sequences that are not sequence representatives in
Algorithm 3.

Proposition 2. Suppose a sequence sn ∈ B(n, c, d) with c = dn
2
e has a shift equivalent

sequence vn = Rh(sn) ∈ B(n, c, d′), where (n− (c + d)) + d′ ≤ h ≤ c + d′ − 1. Then

(i) the subsequence s[g:n] of sn satisfies

si = si+d′ for g ≤ i < n− d′, (12)

where g = (c+d)−d′ in the case of d < n−c, and g = 2d−d′−1 in the case of d = n−c;
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(ii) let r1 ≤ g and r2 ≥ n − d′. Suppose si = si+d′ holds for any integer r1 ≤ i < r2 and
si 6= si+d′ for i = r1−1, r2, where the subscripts are taken modulo n. Take c′ = r2−r1 +1.
If c′ ≥ c, then h = c + (n− r2 − 1) and add(vn) = c′ − c.

Proof. (i) Since n − (c + d) + d′ ≤ h < c + d′, s[(c+d)−d′:n] = (s(c+d)−d′ , . . . , sn−1) is
a subsequence of s[n−h:n], and s[n−h:n] is contained in the subsequence vc+d′−1 of vn =

Rh(sn) = s[n−h:n]sn−h in B(n, c, d′). According to the definition of B(n, c, d′) in (2), the
subsequence vc+d′−1 satisfies vi = vi+d′ for i = 0, 1, . . . , c − 2. Thus it follows from
s[(c+d)−d′:n] ⊆ s[n−h:n] ⊆ vc+d′−1 that si = si+d′ for i = (c + d)− d′, . . . , n− d′ − 1. Here it
requires d < n − c from (c + d) − d′ ≤ n − d′ − 1. That is, in the case of d < n − c, the
subsequence s[(c+d)−d′:n] of sn satisfies

si = si+d′ for (c + d)− d′ ≤ i < n− d′. (13)

In the case of d = n− c: consider vn ∈ B(n, c, d′) and Rh′(vn) = sn with h′ = n− h.
We divide the discussion into two subcases according to the value of h′. For the subcase
of h′ ≥ [n − (c + d′)] + d, then h ≤ (c + d′) − d. When d′ < n − c, it follows from (13)
that vn ∈ B(n, c, d′) satisfies vi = vi+d with (c + d′) − d ≤ i < n − d. Thus the pair
of shift equivalent sequences vn and Rh′(vn) = sn has been considered in (13). That is,
when d′ < n − c there is no need to consider sn and Rh(sn) = vn. When d′ = n − c,
(n− (c + d)) + d′ ≤ h ≤ (c + d′)− d implies that n− c ≤ h ≤ c. If c = n

2
with even n, we

have sn = (sd (s0, . . . , sd−2, sd−1)) and h = n
2
. If (s0, . . . , sd−2, sd−1) is aperiodic, then sn

and R
n
2 (sn) are shift equivalent in B(n, n

2
) with the same number of added terms. In this

time, sn can be kept as a candidate for the sequence representatives. If c = k+1 with odd
n = 2k + 1, we have sn = (s2k s0) and k ≤ h ≤ k + 1, while Rk(sn) and Rk+1(sn) do not
belong to B(2k+1, k). That is to say, when d = n− c the subcase of h′ ≥ [n− (c+d′)]+d

does not need to be considered.

For the subcase of h′ < [n − (c + d′)] + d, then h > (c + d′) − d, implying that
(c + d′) + 1 − d ≤ h ≤ c + d′ − 1. Note that n − ((c + d′) + 1 − d) = 2d − d′ − 1. Thus
s[2d−d′−1:n] = (s2d−d′−1, . . . , sn−1) is a subsequence of s[n−h:n], and s[n−h:n] is contained in
the subsequence vc+d′−1 of vn = Rh(sn) in B(n, c, d′). According to the definition of
B(n, c, d′) in (2), we have the subsequence s[2d−d′−1:n] of sn satisfies

si = si+d′ for 2d− d′ − 1 ≤ i < n− d′.

The desired conclusion in (12) thus follows.
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(ii) With the assumption that si = si+d′ holds for r1 ≤ i < r2, the sequence u∞n =

(u0, u1, . . . , un−1)
∞ = Lr1(s∞n ) satisfies

ui = ui+d′ for 0 ≤ i < r2 − r1 and ui 6= ui+d′ for i = −1, r2 − r1. (14)

This implies that uc′+d′ belongs to B(c′ + d′, c′, d′) by c′ = r2 − r1 + 1. When c′ + d′ ≤ n,
from (14) we have un ∈ B(n, c′, d′) with add(un) = 0. Thus, if c′ ≥ c, then by Definition
3 and Lemma 6 we have the sequence vn = Lc′−c(un) ∈ B(n, c, d′) with add(vn) = c′ − c.
When c′ + d′ > n, let u′n = u[c′+d′−n,c′+d′] = Lc′+d′−n(un). It follows from Lemma 7 (iii)
and (14) that u′n ∈ B(n, n − d′, d′) with add(u′n) = c′ + d′ − n. Due to c + d′ ≤ n, again
by Definition 3 and Lemma 6 it implies that Ln−d′−c(u′n) = Lc′−c(un) = vn belongs to
B(n, c, d′) with add(vn) = (c′+d′−n)+(n−d′−c) = c′−c. Together the two cases, we both
have vn = Lc′−c(un) = Lr1+(c′−c)(sn) = Rh(sn) with h = n− (r1 + c′− c) = c+ (n− r2−1)

and add(vn) = c′ − c.

In order to generate the sequence representatives in the setR(n, dn
2
e), from Proposition

2 (i), we only need to investigate sequences sn in B(n, dn
2
e) satisfying (12) for any 1 ≤

d′ ≤ bn
2
c, since only these sequences may have shift equivalent sequences in B(n, dn

2
e).

Thus we can generate the set R(n, c) with c = dn
2
e as follows. For each 1 ≤ d ≤ n− c and

each sc+d, consider sn satisfying (12) for every aperiodic subsequence (sc+d−d′ , . . . , sc+d−1)

with 1 ≤ d′ ≤ n − c. By Proposition 2 (ii), suppose that sn satisfies c′ ≥ c, then we
obtain directly vn = Rh(sn) ∈ B(n, c) and add(vn) = c′ − c. When sn and Rh(sn) = vn

are considered as a pair of shift equivalent sequences in E(sn), the one with less added
terms will be deleted. As we let all subsequences sc+d go through the above process,
every pair of shift equivalent sequences in E(sn) are considered. Thus all sequences an
with maximal add(an) are kept. This allows us to obtain sequence representatives more
efficiently, which in turn constitute the set R(n, c). Below we give an example to illustrate
the above analysis to delete sequences which are not representatives by Proposition 2.

Example 5. Take an example for n = 12, c = 6 and d = 2. Consider sd = s2 = (01)

and sc+d = (01010100). Run through d′ with 1 ≤ d′ ≤ 6. For d′ = 1, by (12) only
the subsequence s[8:12] = (0000) needs to be considered, thus s12 = (010101000000). By
Proposition 2 (ii), we can see that r1 = 6 (the corresponding terms given in bold and
underlined), and r2 = 12 (the corresponding terms are underlined), implying c′ = r2 −
r1 + 1 = 7. Since c′ > c, we get h = n− (r2 + 1− c) = 5. So v12 = Rh(s12) = R5(s12) ∈
B(12, 6, 1) with add(v12) = c′ − c = 1. The pair of shift equivalent sequences s12 and v12
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Algorithm 3 Generation of all periodic binary sequences in P(n, ω), ω ≥ n
2

1: Main Algorithm
2: INPUT: A positive integer n

3: OUTPUT: The set P(n, ω) with dn2 e ≤ ω ≤ n− 1.
4: R(n, dn2 e)← genR(n, dn2 e)
5: P(n, ω) =

{
(Lk(sn))∞ : sn ∈ R(n, dn2 e), add(sn) = ω − dn2 e, 0 ≤ k < n

}
6: function genR(n, dn2 e) // Generate R(n, dn2 e)
7: R(n, c)← ∅, U ← ∅ and c← dn2 e
8: for d = 1 to n− c do
9: while (v0, v1, . . . , vd−1) ∈ Zd

2 is aperiodic do
10: si ← vimod d, 0 ≤ i ≤ c + d− 2, sc+d−1 ← v(c+d−1)mod d ⊕ 1 and V ← ∅
11: if d < n− c then
12: for d′ = 1 to n− c do
13: if (sc+d−d′ , . . . , sc+d−1) is aperiodic then
14: si ← si−d′ , c + d ≤ i ≤ n− 1 and r1 ← c + d− d′

15: if sn = (s0, s1, . . . , sn−1) /∈ U then
16: while sr1−1 = sr1+d′−1 do
17: r1 = r1 − 1

18: end while
19: Similarly obtain r2 such that si = si+d′ holds for n− d′ − 1 ≤ i < r2

20: if ∆ = (r2 − r1 + 1)− c ≥ 0 then //Exclude sequences from R(n, c)

21: If add(sn) < ∆, then add (sc+d, . . . , sn−1) to V

22: Otherwise set h = c + (n− r2 − 1) and add Rh(sn) to U

23: end if
24: end if
25: end if
26: end for
27: Add un ← (sc+d, uc+d, . . . , un−1) with (uc+d, . . . , un−1) ∈ Zn−c−d

2 \V to R(n, c)

28: else if sn = sc+d = (s0, s1, . . . , sc+d−1) /∈ U then
29: Add sn to R(n, c).
30: for d′ = 1 to n− c do
31: if (sn−d′ , . . . , sn−1) is aperiodic, si = si+d′ with i ∈ [2d− 1− d′, n− d′) then
32: Repeat Steps 16−23 while revising Step 21 as
33: If add(sn) < ∆ then add sn to U .
34: end if
35: end for
36: end if
37: end while
38: end for
39: return R(n, c)← R(n, c)\U
40: end function
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Table 3: The shift equivalent sequences for n = 12, c = 6 and d = 2 with sd = (01).

sc+d = (01010100) and vn = Rh(sn) ∈ B(n, c, d′)

d′ sn r1 r2 add(vn) = c′ − c h vn Delete

1 (010101000000) 6 12 1 5 (000000101010) sn

2 –

3 (010101001001) 4 10 1 7 (100100101010) vn

4 (010101000100) 4 11 2 6 (000100010101) sn

5 (010101001010) 2 12 5 5 (010100101010) sn

6 (010101000101) 2 7 0 10 (010100010101) vn

is found, and s12 should be deleted since add(s12) = 0 < add(v12) = 1. Since the last
two terms of sc+d = (01010100) is (00), it is impossible for d′ = 2 by the definition of
aperiodic sequences. The sequences which are not representatives can be deleted similarly
for d′ = 3, 4, 5, 6, which are given in Table 3.

Remark 5. In Algorithm 3, from Proposition 2 we give the detailed steps to generate the
set R(n, c) for any c = dn

2
e. For dn

2
e ≤ ω ≤ n − 1, Algorithm 3 generates all periodic

sequences in P(n, ω) based on Theorem 3 (ii). From the steps in generating R(n, c), we see
that the loops on (v0, . . . , vd−1) and (uc+d, . . . , un−1) contribute the dominating time and
memory complexity, roughly, O(2n/2). This indicates that Algorithm 3 has an advantage
of factor 2n/2n log2(n) compared to the exhaustive search for sequences s∞n with nonlinear
complexity ω.

6 Conclusion

Our contributions in this paper are twofold: the first contribution is to investigate the
varying behavior of the nonlinear complexity of finite-length sequences under circular shift
operators, and the second contribution is the establishment of a one-to-one correspondence
between the set of periodic sequences with certain nonlinear complexities and the set
of certain finite-length sequences with a particular structure. As an application of the
correspondence, we present two efficient algorithms to generate all periodic sequences
with any prescribed nonlinear complexity.
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