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Abstract
This manuscript provides complete, inversion-free, and explicit group law formulas in Jacobian coordinates for the genus 2
hyperelliptic curves of the form y2 = x5 + a3x3 + a2x2 + a1x + a0 over a field K with char(K ) �= 2. The formulas do not
require the use of polynomial arithmetic operations such as resultant, mod, or gcd computations but only operations in K .
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1 Introduction

Elliptic curves are offered for the use of cryptographic appli-
cations by Miller in 1985 [1] and then by Koblitz in 1987
[2]. Two years later, Koblitz [3] proposed that hyperellip-
tic curves of arbitrary genus can replace elliptic curves in
cryptosystems. However, this claim was falsified by Gaudry
[4], who showed that security is conversely proportional to
the genus. Gaudry’s work led the cryptographic studies to be
focused on the genus 1 and genus 2 cases specifically.

A genus 1 curve is an elliptic curve. The points on an ellip-
tic curve can bemade into an abelian group. In comparison, a
hyperelliptic curve of genus≥ 2 is not an algebraic group by
itself; however, its Jacobian becomes an abelian group under
the binary operation divisor addition. A landmarking algo-
rithm for divisor addition was introduced byDavid G. Cantor
in 1987 [5, §3, §4]. Cantor’s algorithm is deterministic and
works for arbitrary genus hyperelliptic curves. The algorithm
operates on Mumford’s coordinates [6], a polynomial repre-
sentation of divisors, and, consequently, makes heavy use of
polynomial arithmetic, which makes it relatively inefficient
for cryptographic applications in its original form.

Cantor’s algorithm is improved by others [3, 7–9], and
explicit formulas for hyperelliptic curves of particular genus
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are studied. Lange reports in her thesis [10] that Spallek [11]
proposed explicit formulas for the most common addition on
genus 2 curves, later optimized by Harley [12] for odd char-
acteristic curves. Lange [10] advanced Harley’s approach to
arbitrary characteristics. In her thesis [10] and her follow-
ing work [13], Lange presented a complete divisor addition
algorithm on genus 2 hyperelliptic curves in a semi-explicit
manner. Speed-ups [14–16] followed Lange’s work. The
complete inversion-free projective formulas are proposed
in [17–19]. In 2011, Costello and Lauter [20] derived new
formulas for Cantor’s composition step, which incorporates
solving linear systems instead of polynomial arithmetic. In
2014, Hisil and Costello [21] extended the work in [20]
by introducing Jacobian coordinates, reducing the opera-
tion counts significantly. A recent work by Hu et al. [22]
further extends the work in [21] to the case of degenerate
divisor addition. Apart from these developments, which are
the main focus of this work, Gaudry [23] provided explicit
formulas to perform pseudo-group operations on genus 2
Kummer surfaces which are currently the speed leader in
curve-based cryptosystems; see the implementation in [24].
However, some cryptographic constructions enforce the use
of prime order genus 2 Jacobians, which do not allow aKum-
mer parameterization.

This work aims to present complete, inversion-free, and
explicit formulas for divisor addition on genus 2 hyperellip-
tic curves. We closely follow Lange’s thesis [10] and present
an algorithm in affine coordinates. We dispose of all polyno-
mial arithmetic by expressing the operations explicitly. As
the main contribution of this paper, we propose the formu-
las in Jacobian coordinates by exploiting [21]. The formulas
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combine the works in [21] and [22] and handle the missing
cases for the sake of a complete inversion-free algorithm.

The paper is organized as follows. We briefly cover the
fundamental background in Sect. 2. In Sect. 3, we present
the complete and explicit formulas in affine coordinates for
divisor addition as an algorithm. We present the inversion-
free formulas in Jacobian coordinates for themissing cases in
the literature; see Sect. 4. The cost analysis is given in Sect. 5.
We derive our conclusions in Sect. 6. For the convenience of
the reader, we attach computer-aided verification scripts in
the Appendix.

2 Preliminaries

This section recalls basic definitions in the theory of hyper-
elliptic curves. Throughout this section, we assume that K is
a field with char(K) �= 2.

2.1 Hyperelliptic curves

A hyperelliptic curve H of genus g over K is a non-singular
curve with the equation

H(K ) : y2 + h(x)y = f (x) (1)

where h(x), f (x) ∈ K [x], deg(h) ≤ g, deg( f ) = 2g + 1,
and f (x) is monic. We denote the point set of H as H(K̄ ) =
{(x, y) ∈ K̄ × K̄ : y2 + h(x)y = f (x)} ∪ {O} where O is
the single point at infinity. Let P = (x, y), the negative of P
is given as −P = (x,−y − h(x)). In the following sections,
we will use the notation f ′(x) and f ′′(x) for the derivatives
d f (x)
dx and d2 f (x)

dx2
, respectively.

Under the assumption char(K ) �= 2, H can be put in the
simplified form y2 = f (x). Additionally, under the assump-
tion char(K ) �= 5, a genus 2 hyperelliptic curve can be put
in the form

y2 = x5 + a3x
3 + a2x

2 + a1x + a0.

We use the letter H in the following sections to address such
a curve.We note here that the formulas presented in this work
apply to char(K ) = 5 provided that�H �= 0, where� is the
discriminant of f (x).

2.2 Divisors

A divisor D on H is a formal sum

D =
∑

P∈H(K̄ )

nP (P)

where only a finite number of nP ∈ Z are nonzero. The
identity is called the zero divisor, denoted 0, with ∀P, nP =
0. The support of D is the set supp(D) = {P ∈ H(K̄) : nP �=
0} and the degree of D is given by deg(D) = ∑

P∈H(K̄ ) nP .

The order of D at a point P ∈ H(K̄) is the coefficient nP . A
divisor of a function f is given by ( f ) = ∑

P∈H(K̄ ) ord f (P)

where ord f (P) is the multiplicity of f on P .
A semi-reduced divisor has the form D = ∑

nP (P) −
(
∑

nP )(O) where nP ≥ 0 and −P /∈ supp(D) if P ∈
supp(D) unless P = −P with nP = 1. The inverse of a
semi-reduced divisor is formulated as −D = ∑

nP (−P) −
(
∑

nP )(O). A reduced divisor is a semi-reduced divisorwith∑
nP ≤ g.
Throughout this paper we will refer to divisors with one

and two points in their support (other thanO) as; degenerate
and non-degenerate divisors, respectively.

On H , the set of all divisors, denoted DivK̄ (H); degree
zero divisors, namely Div0

K̄
(H); the principal divisors (divi-

sors of a function), denoted PrinK̄ (H) form a group. More-
over, the groups mentioned satisfy

PrinK̄ (H) ⊆ Div0
K̄
(H) ⊆ DivK̄ (H).

The quotient group Div0
K̄
(H)/PrinK̄ (H) is called the divisor

class group, which is isomorphic to the Jacobian, denoted by
J (H). Two divisors D1, D2 ∈ J (H) are equivalent, denoted
D1 ∼ D2, if D1−D2 ∈ PrinK̄ (H). An important observation
about the Jacobian is that each coset of it has a unique reduced
divisor. Moreover, let D1, D2 ∈ J (H) be reduced divisors;
then there exists a reduced divisor D such that D ∼ D1+D2.

A reduced divisor D ∈ J (H) can be represented using the
Mumford representation [6] with two polynomials as D =
[u(x), v(x)] where the following assumptions hold

(i) u is monic,
(ii) deg(v) < deg(u) ≤ 2,
(iii) u | v2 − f .

Mumford representation of a degenerate divisor D = (P1)−
(O) where P1 = (x1, y1) ∈ H(K ) has the form D = [x −
x1, y1]. Notice that the point in the support of a degenerate
divisor is defined to be in H(K ). For a non-degenerate divisor
D = (P1) + (P2) − 2(O) where P1 = (x1, y1) ∈ H(K̄ )

and P2 = (x2, y2) ∈ H(K̄ ), we will use the notation D =
[x2 + qx + r , sx + t] with q, r , s, t ∈ K . Here, assuming
x1 �= x2,

q = −x1 − x2,

r = x1x2,

s = y1 − y2
x1 − x2

,

t = x1y2 − x2y1
x1 − x2

, (2)
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and otherwise

q = −2x1,

r = x21 ,

s = 5x41 + 3a3x21 + 2a2x1 + a1
2y1

,

t = −3x51 − a3x31 + a1x1 + 2a0
2y1

. (3)

We note that y1 = 0 is not possible by definition of
a reduced divisor whose support cannot contain opposite
points. Finally, the identity is represented by the divisor
[1, 0].

2.3 Cantor’s algorithm

In 1987, Cantor introduced an algorithm [5, §3, §4] to com-
pute divisor addition on hyperelliptic curves, analogous to
class group arithmetic, which is generalized and presented
later by [3, 25]. Cantor’s algorithm uses polynomial arith-
metic and works for all hyperelliptic curves of arbitrary
genus. There are two stages of the algorithm; composition
stage (Algorithm 1 lines 1–5) computes the semi-reduced
divisor that is equal to the addition of the inputs; reduction
stage (Algorithm 1 lines 6–12) computes the related unique
reduced divisor. For further information, we refer the reader
to the appendix of [26]. We use this algorithm to verify the

Algorithm 1 Cantor’s Algorithm [3, 5, 25]
Require: Reduced divisors D1 = [u1, v1], D2 = [u2, v2] such that

D1, D2 ∈ J (H)

Ensure: Reduced divisor D3 = [u, v] where D3 ∼ D1 + D2
1: Compute d1, e1, e2 where d1 = gcd(u1, u2) = e1u1 + e2u2
2: Compute d, c1, c2 where d = gcd(d1, v1+v2+h) = c1d1+c2(v1+

v2 + h)

3: Let s1 ← c1e1, s2 ← c1e2, s3 ← c2 such that d = s1u1 + s2u2 +
s3(v1 + v2 + h)

4: u ← u1u2
d2

5: v ← s1u1v2 + s2u2v1 + s3(v1v2 + f )

d
mod u

6: u′ ← f − vh − v2

u
7: v′ ← (−h − v) mod u′
8: if deg(u′) > g then
9: u ← u′, v ← v′
10: Go to step 6
11: end if
12: u′ ← monic(u′)
13: return u′, v′

correctness of the explicit formulas presented inSect. 3. Since
the computations involving these verifications are tedious,we
prefer to carry them out succinctly with the help of computer

algebra rather than pages-long algebraic investigation. We
now present the complete and explicit group law in Sect. 3.

3 Explicit formulas for divisor addition

We start with basic facts which are referenced in the body of
our algorithm.

Lemma 1 Let D1 and D2 be degenerate divisors such that
D1 �= −D2. Then, D1 + D2 is non-degenerate.

Proof This is simply Mumford’s composition. �

Lemma 2 Let D1 be a degenerate and D2 be a non-
degenerate divisor. Then, D1+D2 cannot be the zero divisor.

Proof Let D1 = [x−x1, y1] and D2 = [x2+q2x+r2, s2x+
t2] as in the definition of the lemma. −D1 = [x − x1,−y1]
is degenerate by construction. Assume that D1 + D2 = 0.
So, D2 = −D1. However, D2 is non-degenerate, contra-
diction. Thus, the addition of a degenerate divisor with a
non-degenerate divisor cannot give the zero divisor. �

Lemma 3 There exists no degenerate divisor D ∈ J (H) such
that 3D = 0.

Proof Let D be a divisor in J (H) such that 3D = 0. Assume
that D = (P) − (O) is degenerate. So, 2D = (−P) − (O).
Nevertheless, by Lemma 1, 2D must be non-degenerate
while (−P) − (O) is clearly degenerate. This is a contra-
diction by Lemma 2. Therefore, D must be non-degenerate.

�

In the remainder of this section, we define two input divisors
D1, D2, and an output divisor D3 = D1 + D2, and examine
the complete formulas for D3. We set divisor D3 = (P5) −
(O) = [x − x5, y5] if D3 is degenerate and D3 = (P5) +
(P6) − 2(O) = [x2 + q3x + r3, s3x + t3] if non-degenerate.

3.1 Trivial inputs

Here, we investigate the output when at least one of the input
divisors is the identity, namely the zero divisor. The cases
are trivial, i.e., if one input divisor is 0 then the output is the
other input divisor (which is also true when both inputs are
0).

3.2 Degenerate/degenerate inputs

Let D1 = (P1)−(O) = [x−x1, y1] and D2 = (P3)−(O) =
[x−x3, y3]. Now,we investigatewhether D1 and D2 are joint
by examining the points at their support: P1 = (x1, y1) and
P3 = (x3, y3) in H(K ).
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• Case x1 = x3: The input divisors are joint with P1 =
±P3.

– Case y1 = −y3: We have P1 = −P3. Thus, D1 =
−D2 and D3 = 0.

– Case y1 = y3: We have P1 = P3. Therefore, D1 =
D2 and D3 = 2D1 = 2(P1) − 2(O) = [x2 + q3x +
r3, s3x + t3] is non-degenerate and can be computed
with Mumford’s composition (3). [Script 2] in the
Appendix verifies the correctness of this formula.

• Case x1 �= x3: The input divisors are disjoint, and D3 =
[x2+q3x+r3, s3x+t3] can be computedwithMumford’s
composition (2). [Script 3] in the Appendix verifies the
correctness of this formula.

Since the conditions above exhaust all possible cases, a
degenerate output is not possible, as stated in Lemma 1. Note
that the case where x1 = x3 and y1 = y3 = 0 (special point
doubling) is handled by “Case y1 = −y3”.

3.3 Degenerate/non-degenerate inputs

We continue with the addition of a non-degenerate and a
degenerate divisor. We assume that the inputs are swapped,
if necessary, in order to have D1 and D2, degenerate and non-
degenerate, respectively. Let D1 = (P1)−(O) = [x−x1, y1]
and D2 = (P3) + (P4) − 2(O) = [u2(x), v2(x)] = [x2 +
q2x+r2, s2x+t2]be divisors in J (H)where P1 = (x1, y1) ∈
H(K ) − {O}.

• Case u2(x1) = 0: Since x1 ∈ K is a root of the polyno-
mial u2(x), we deduce that u2(x) must have the roots
x3, x4 ∈ K satisfying (x3 − x1)(x4 − x1) = 0, though
we do not know x3 and x4 explicitly. Without loss of
generality, we assume x3 = x1. Now, we compute,
y3 = v2(x1), x4 = −q2 − x3, and y4 = v2(x4). Clearly,
x1, y1, x3, y3, x4, y4 ∈ K . Before we proceed to investi-
gate the following subcases, we note that P3 = (x3, y3)
and P4 = (x4, y4) are in H(K ) − {O}.
– Case y1 = −y3: We have P1 = −P3. The points P1

and P3 cancel out each other which results in the
degenerate output D3 = (P4) − (O) = [x − x4, y4].

– Case y1 = y3: Here P1 = P3 and we continue with
investigating the rare case P1 = P3 = P4.
* Case x1 = x4: We have P1 = ±P4. Now, P1 =

−P4 is not possible, because otherwise D2 =
(P1) + (−P1) − 2(O) would be non-reduced.
Thus, P1 = P3 = P4 which leads us to the
formula D3 = 3(P1) − 3(O) = 3D1 in [22,

§3.2] with

q3 = 3x1 − A2,

r3 = a3 − 2AB + 3x1(q3 − x1),

s3 = Aq3 − B,

t3 = Ar3 − C

(4)

where

A = 2y21 f
′′(x1) − f ′(x1)2

8y31
,

B = f ′(x1)
2y1

− 2Ax1,

C = y1 − Ax21 − Bx1.

Note that D1 = (P1) − (O) cannot have
order three1. Note also that the denominators
of q3, r3, s3, and t3 are all powers of y1. Here,
y1 �= 0 because the case y1 = 0 is handled in
“Case y1 = −y3”. Therefore, the denominators
never vanish. [Script 4] in the Appendix verifies
the correctness of this formula.

* Case x1 �= x4: Now, P4 is disjoint with other
points in both supports. So, the addition con-
sists of the doubling of D1 = (P1) − (O) and
the accumulation of (P4) − (O) on 2D1. In this
case, we compute divisor 2(P1)−2(O) = [x2+
qx+r , sx+t] as inEq. (3).Note that the denomi-
nator y1 in Eq. (3) does not vanish since the case
y1 = 0 is again handled in “Case y1 = −y3”.
Now, D3 = 2(P1) + (P4) − 3(O) can be com-
puted with the generic formula in [22, §3.1] as
follows,

q3 = x4 − q − A2,

r3 = a3 + q2 − r − A(B + s)

+ x4q3,

s3 = Aq3 − B,

t3 = Ar3 − C

(5)

where

A = y4 − sx4 − t

x24 + qx4 + r
,

B = s + q A,

C = t + r A.

Notice that the denominator of A vanishes only
when P4 is in the support of divisor 2(P1)−2(O),

1 This is assumed in [22, §3.2]. The proof can be found in Lemma 3.
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which is in contradiction with the assumption
x1 �= x4. [Script 5] in the Appendix verifies the
correctness of this formula.

• Case u2(x1) �= 0: In this case, we have disjoint divisors,
and the generic addition formula in [22, §3.1] applies
directly. We have

q3 = x1 − q2 − A2,

r3 = a3 + q22 − r2 − A(B + s2) + x1q3,

s3 = Aq3 − B,

t3 = Ar3 − C

(6)

where

A = y1 − s2x1 − t2
x21 + q2x1 + r2

,

B = s2 + q2A,

C = t2 + r2A.

Note that x21 + q2x1 + r2 = u2(x1) �= 0. [Script 6] in the
Appendix verifies the correctness of this formula.

Finally, we remark that the addition of a non-degenerate divi-
sor with a degenerate divisor cannot give the zero divisor by
Lemma 2.

3.4 Non-degenerate/non-degenerate inputs

In this section, we examine the last and most common addi-
tion, where both inputs are non-degenerate. Let D1 = (P1)+
(P2) − 2(O) = [u1(x), v1(x)] = [x2 + q1x + r1, s1x + t1],
and D2 = (P3) + (P4) − 2(O) = [u2(x), v2(x)] = [x2 +
q2x + r2, s2x + t2].

• Case u1 = u2: This implies that {x1, x2} = {x3, x4},
though we do not know xi and yi explicitly. We continue
by investigating v1 and v2.

– Case v1 = −v2: We have either v1(x1) = −v2(x3)
and v1(x2) = −v2(x4) or v1(x1) = −v2(x4) and
v1(x2) = −v2(x3) which implies that {y1, y2} =
{−y3,−y4}. Thus, D1 = −D2 and D3 = 0.

– Case v1 = v2: Similarly, we have either v1(x1) =
v2(x3) and v1(x2) = v2(x4) or v1(x1) = v2(x4)
and v1(x2) = v2(x3) which implies that {y1, y2} =
{y3, y4}. Also, note that y1 �= 0 or y2 �= 0 because
otherwise {y1, y2} = {−y3,−y4}, which is covered
in “Case v1 = −v2”. Thus, D1 = D2 and the dou-
bling operation D3 = 2D1 is present. We define the
common subexpressions A, B, and C for doubling as
in [21, §5].

A =
(
(q21 − 4r1 + a3)q1 − a2 + s21

)
(q1s1 − t1)

+ (3q21 − 2r1 + a3)r1s1,

B = 2(q1s1 − t1)t1 − 2r1s
2
1 ,

C =
(
(q21 − 4r1 + a3)q1 − a2 + s21

)
s1

= + (3q21 − 2r1 + a3)t1.

(7)

The doubling formula in [21, §5] is not defined for
two cases; when the output is degenerate and when
the denominator B vanishes. The approach in [10,
§3.1,§3.4] properly handles each case leaving aminor
use of polynomial arithmetic. Our little contribution
here is to eliminate the polynomial arithmetic and
carry out the computation solelywith field arithmetic.
Therefore, we need to pinpoint algebraically the case
where the output is degenerate or non-degenerate.
These cases are given as follows.
* Case B = 0: B is equal to −2y1y2 which corre-

sponds to the resultant(h + 2v1, u1) calculated
in [10, §3.1]. Now, B = 0 induces at least
one of the points in the support being a special
point which gives the identity when doubled.
We assume y2 = 0 without loss of general-
ity and compute x2 by explicitly calculating
gcd(u1, v1) = x − x1 as in [10, §3.1]. We have
x2 = −t1/s1, x1 = −q1 − x2 and y1 = v1(x1).
Finally, D3 = 2(P1) − 2(O) can be computed
with the composition formula (3).

* Case B �= 0: Here, the points in the support are
not special points, but a degenerate output is
possible. The line “s = k/(h + 2v) mod u”
of Section 3.4 of [10] is subject to accidental
cancellation, which may lead to a degener-
ate output that is again handled implicitly. An
explicit approach is to detect the degenerate out-
put beforehand and to generate new formulas
free of polynomial arithmetic. For this purpose,
we investigate the common subexpression C .

* Case C = 0: As stated in [22, §3.3], C = 0
implies a degenerate output since the coefficient
of the degree 3 term in the intersection parabola
y = dx3 +ax2 +bx + c is equal to −C/B [22].
The corrected version of the formula in [22, §3.3]
is as follows2

x5 = 2q1 + A2

B2 ,

y5 = x5(q1 + x5)
A

B
− x5s1 + r1

A

B
− t1.

(8)

2 Incorrect x3 is replaced with the correct x5.
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[Script 7] in the Appendix verifies the correct-
ness of this formula.

* Case C �= 0: In this case, the doubling formula in
[21, §5] applies for the non-degenerate output D3

[10, 20].

q3 = 2
A

C
− B2

C2 ,

r3 = A2

C2 + 2q1
B2

C2 − 2s1
B

C
,

s3 = (r1 − r3)
C

B
− q3(q1 − q3)

C

B

+ (q1 − q3)
A

B
− s1,

t3 = (r1 − r3)
A

B
− r3(q1 − q3)

C

B
− t1.

(9)

[Script 8] in the Appendix verifies the correctness of
this formula.

– Case v1 �= ±v2: Since {x1, x2} = {x3, x4} and Pi =
(xi , yi ) are points on the curve, we have {y1, y2} =
{±y3,±y4}. This gives us four configurations
(i) {y1, y2} = {y3, y4},
(ii) {y1, y2} = {−y3, y4},
(iii) {y1, y2} = {y3,−y4}, and
(iv) {y1, y2} = {−y3,−y4}.
Notice that (i) implies v1 = v2 and (iv) implies v1 =
−v2. Thus, either (ii) or (iii) holds in this case but
not (i) and (iv). Without loss of generality, we may
assume P2 = −P4 and so D3 = 2(P1) − 2(O). We
compute x1 = (t1 − t2)/(s2 − s1) and y1 = v1(x1)
as in [10, §3.1]. The doubling of P1 can be done with
the formula (3).

• Case u1 �= u2: Here, the supports of D1 and D2 are not
identical. Thus, we continue with the addition formulas.
We define the common subexpressions A, B, and C as in
[21, §5].

A = (t1 − t2)(q2(q1 − q2)

− (r1 − r2)) − r2(q1 − q2)(s1 − s2),

B = (r1 − r2)(q2(q1 − q2)

− (r1 − r2)) − r2(q1 − q2)
2,

C = (q1 − q2)(t1 − t2) − (r1 − r2)(s1 − s2).

(10)

As before, we try to detect the cases where the addition
formula in [21, §5] is not defined. For that purpose, we
investigate the common subexpressions B and C . The
reason that we concentrate on B is illuminated when we
write B in terms of x1, x2, x3, and x4 which is given as
follows,

B = −(x2 − x4)(x2 − x3)(x1 − x4)(x1 − x3).

The value−B corresponds to the resultant(u1, u2) in [10,
§3.1] and becomes zero when {P1, P2} ∩ {±P3,±P4} �=
∅.
– Case B = 0: The supports of the input divisors are

joint.Without loss of generality wemay assume x1 =
x3 and calculate x1 = −(r1 − r2)/(q1 − q2), y1 =
v1(x1), x3 = x1, y3 = v2(x3), x2 = −q1 − x1,
y2 = v1(x2), x4 = −q2 − x3, and y4 = v2(x4) as in
[10, §3.1].
* Case y1 = −y3: Here, P1 = (x1, y1) and P3 =

(x1,−y1) are negatives of each other. So, D3 =
(P2) + (P4) − 2(O) can be calculated with (2).

* Case y1 = y3: In this case, P1 = (x1, y1) can
be doubled with (3) and P2 = (x2, y2) and
P4 = (x4, y4) can be added one by one using
the procedure in Sect. 3.3.

– Case B �= 0: Here the supports of the divisors are
disjoint.We continue with the investigation of degen-
erate output. An accidental cancellation occurs in
the addition formulas [10, §3.2] when the output is
degenerate, just as in doubling. In [22, §3.3], it is
stated that C = 0 implies a degenerate output since
the coefficient d = −C/B = 0 of the intersection
parabola y = dx3 + ax2 + bx + c annihilates the
degree 3 term.
* Case C = 0: The corrected version of the for-

mula in [22, §3.3] is as follows3

x5 = (q1 + q2) + A2

B2 ,

y5 = x5(q1 + x5)
A

B
− x5s1 + r1

A

B
− t1.

(11)

[Script 9] in the Appendix verifies the correct-
ness of this formula.

* Case C �= 0: The addition formula in [21, §5]
applies. Furthermore, this is the most frequent
case in most cryptographic applications. We
reproduce the formulas here to keep the text self-
contained.

q3 = (q1 − q2) + 2
A

C
− B2

C2 ,

r3 = (q1 − q2)
A

C
+ A2

C2 + (q1 + q2)
B2

C2

− (s1 + s2)
B

C
,

3 Incorrect x3 is replaced with the correct x5.
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s3 = (r1 − r3)
C

B
− q3(q1 − q3)

C

B

+ (q1 − q3)
A

B
− s1,

t3 = (r1 − r3)
A

B
− r3(q1 − q3)

C

B
− t1.

(12)

[Script 10] in the Appendix verifies the correct-
ness of this formula.

4 Jacobian coordinates

The first inversion-free projective formulas for divisor addi-
tion on genus 2 hyperelliptic curves are proposed by Lange
in [17] where an affine divisor (q1, r1, s1, t1) is represented
as (Q1, R1, S1, T1, Z1) satisfying (λQ1 : λR1 : λS1 : λT1 :
λZ1) = (q1 : r1 : s1 : t1 : 1) and λ �= 0. Lange improved
the operation counts by adopting a new weighting where
(q1, r1, s1, t1) is represented as (Q1, R1, S1, T1, Z1,W1)

satisfying (λ2Q1 : λ2R1 : λ3μS1 : λ3μT1 : λZ1 : μW1) =
(q1 : r1 : s1 : t1 : 1 : 1) and λ,μ �= 0 in [19].

Hisil and Costello introduced Jacobian coordinates for
hyperelliptic curves of genus 2 in [21]. Their work trans-
fers the weights of x and y coordinates of H across
Mumford coordinates and provides a weighted projec-
tive representation of divisors. Let (q1, r1, s1, t1) represent
an affine non-degenerate divisor [x2 + q1x + r1, s1x +
t1] ∈ J (H). Such divisor (q1, r1, s1, t1) is represented as
(Q1, R1, S1, T1, Z1,W1) satisfying (λ2Q1 : λ4R1 : λ3μS1 :
λ5μT1 : λZ1 : μW1) = (q1 : r1 : s1 : t1 : 1 : 1) and λ,μ �= 0.
We refer to [21] for further details.

In this work, we represent degenerate divisors follow-
ing the same construction. Let (x1, y1) represent an affine
degenerate divisor [x − x1, y1] ∈ J (H). By adapting the
weights above to x , y coordinates, we represent (x1, y1)
as (X1,Y1, Z1,W1) satisfying (λ2X1 : λ5μY1 : λZ : μW ) =
(x1 : y1 : 1 : 1) and λ,μ �= 0.

The inversion-free formulas in weighted Jacobian coor-
dinates are given only for the most common addition and
doubling (corresponding to Eqs. (9) and (12) resp.) in [21],
and only for the cases that contain degenerate divisors in [22].
Moreover, the degenerate divisors in [22] are considered to
be in affine coordinates.

By following the same order as in Sect. 3, we present
inversion-free formulas with all divisors in weighted Jaco-
bian coordinates for the sake of a complete inversion-free
divisor addition algorithm.We omit the cases that are already
given in [21, 22] by referring the reader to the mentioned
papers. Finally, a complete and inversion-free divisor addi-
tion algorithm is given in https://github.com/ozbayelif/jac-
on-jac in Magma [27]. The code is optimized to reduce
operation counts by eliminating the common subexpressions

in the formulas. Throughout this section, we will repre-
sent the output divisor as D3 = (P5) + (P6) − 2(O) =
(Q3, R3, S3, T3, Z3,W3) if non-degenerate and as D3 =
(P5) − (O) = (X5,Y5, Z5,W5) if degenerate.

4.1 Degenerate/degenerate inputs

Let the input divisors be represented asD1=(X1,Y1, Z1,W1)

and D2 = (X2,Y2, Z2,W2). The inversion-free formulas of
the two cases D1 = D2 and D1 �= D2 are given in [22,
§4.4]; however, the input divisors are considered to be in
affine coordinates.

The formula for the case D1 = D2 given below corre-
sponds to Eq. (3).

Q3 = −2X1

R3 = X2
1

S3 =
(
a1Z

8
1 + 2a2X1Z

6
1 + 3a3X

2
1Z

4
1 + 5X4

1

)
W1

T3 =
(
2a0Z

10
1 + a1X1Z

8
1 − a3X

3
1Z

4
1 − 3X5

1

)
W1

Z3 = Z1

W3 = 2Y1

(13)

The inversion-free version of Eq. (2) for D1 �= D2 is as
follows.

Q3 = −X1Z
2
2 − X2Z

2
1

R3 = X1Z
2
2X2Z

2
1

S3 = Y1Z
5
2W2 − Y2Z

5
1W1

T3 =
(
X1Y2Z

3
1W1 − X2Y1Z

3
2W2

)
Z2
1 Z

2
2

Z3 = Z1Z2

W3 =
(
X1Z

2
2 − X2Z

2
1

)
W1W2

(14)

4.2 Degenerate/non-degenerate inputs

Let the input divisors be represented as D1 = (P1) −
(O) = (X1,Y1, Z1,W1) and D2 = (P3) − (P4) − 2(O) =
(Q2, R2, S2, T2, Z2,W2). As investigated in Sect. 3.3, there
exist 4 cases that can occur.

The case where P1 = −P3 gives the degenerate output
D3 = (P4) − (O) whose coordinates can be recovered, as
described in “Case u2(x1) = 0”, with the following formula.

X3 = X1

Y3 = S2Z
3
1X3Z

2
2 + T2Z

5
1

Z3 = Z1

W3 = W2Z
5
2

X4 = −Q2Z
2
1 − X3Z

2
2

Y4 = S2Z
3
1X4 + T2Z

5
1

Z4 = Z1Z2

W4 = W2

(15)
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The inversion-free tripling formula in [22], for P1 = P3 =
P4, leaves the point P1 to be tripled in affine coordinates.
Here, the fully weighted formula is given, which corresponds
to Eq. (4).

F ′ =
(
a1Z

8
1 + 2a2X1Z

6
1 + 3a3X

2
1Z

4
1 + 5X4

1

)
W1

F ′′ = 2
(
a2Z

6
1 + 3a3X1Z

4
1 + 10X3

1

)

K = 8Y 3
1

A =
(
2F ′′Y 2

1 − F ′2)W1

B = 2F ′Y 2
1 − AX1

C = Y1K − (AX1 + 2B) X1W1

Z3 = K Z1

Q3 = 3X1K
2 − A2

R3 = a3Z
4
3 −

(
4AB − 3X1

(
Q3 − X1K

2
))

K 2

S3 = AQ3W1 − 2BK 2W1

T3 = AR3W1 − CK 4

W3 = W1

(16)

The following case is where P1 = P3 �= P4. Let 2D1 =
(Q, R, S, T , Z ,W ) be computed with Eq. (13). Then, 2D1

and (P4) − (O) can be added, as in Eq. (5), with the below
formula.

K =
(
QZ2X4Z

2
4 + X2

4Z
4 + RZ4

4

)
W4

A = Y4Z
5W −

(
SZ3

4X4Z
2 + T Z5

4

)
W4

B = SK Z4 + AQ

C = T K Z4 + AR

L = K Z4W

M = K ZW

Q3 = X4M
2 − QL2 − A2

R3 =
(
a3Z

4 + Q2 − R
)
L4 − A (B + K SZ4) L

2

+ Q3X4M
2

S3 = AQ3 − BL2

T3 = AR3 − CL4

Z3 = K Z Z4W

W3 = 1

(17)

The last case corresponds to Eq. (6), where the supports are
disjoint. The formula in [22] leaves P1 in affine coordinates.

The fully-weighted formula is given below.

K =
(
Q2Z

2
2X1Z

2
1 + X2

1Z
4
2 + R2Z

4
1

)
W1

A = Y1Z
5
2W2 −

(
S2Z

3
1X1Z

2
2 + T2Z

5
1

)
W1

B = S2K Z1 + AQ2

C = T2K Z1 + AR2

L = K Z1W2

M = K Z2W2

Q3 = X1M
2 − Q2L

2 − A2

R3 =
(
a3Z

4
2 + Q2

2 − R2

)
L4

− A (B + K S2Z1) L
2 + Q3X1M

2

S3 = AQ3 − BL2

T3 = AR3 − CL4

Z3 = K Z1Z2W2

W3 = 1

(18)

4.3 Non-degenerate/non-degenerate inputs

Let the input divisors be D1 = (P1) + (P2) − 2(O) =
(Q1, R1, S1, T1, Z1,W1) and D2 = (P3) + (P4) − 2(O) =
(Q2, R2, S2, T2, Z2,W2).

We omit the cases where the output is degenerate and
refer the reader to [22, §4.3]. Likewise, we refer to [21] for
the common subexpressions in Jacobian coordinates and the
formulas for the common cases. Throughout this section, we
use the notation Pi = (XPi ,YPi , ZPi ,WPi ) for the points in
the supports to avoid confusion between the Z ,W coordi-
nates of points and divisors.

We continue with doubling where u1 = u2 and v1 = v2.
The case B = 0 does not involve a degenerate divisor, yet
it is a rare case where the common addition formulas do
not work. Hence, the case is missing in the literature. When
B = 0, the result D3 = 2(P1) − 2(O) can be calculated by
making the coordinates of P1 explicit as below and doubling
it with Eq. (13).

XP2 = −T1

XP1 = − (Q1S1 − T1) S1

YP1 = (
S1T1 + XP1

)
S41

ZP1 = S1Z1

WP1 = W1

(19)

The addition in the case u1 = u2, v1 �= ±v2 gives D3 =
2(P1) − 2(O). The coordinates of P1 can be computed with

123



Journal of Cryptographic Engineering

the following formula and can be doubled with Eq. (13).

K = S1Z
3
2W2 − S2Z

3
1W1

XP1 =
(
T2Z

5
1W1 − T1Z

5
2W2

)
K

YP1 =
(
S1XP1 + T1Z

2
2K

2
)
K 3Z3

2

ZP1 = K Z1Z2

WP1 = W1

(20)

Now we investigate addition where u1 �= u2. We focus on
the case B = 0 which indicates that the input divisors share
exactly one common point in their supports. The coordinates
of the points in the supports can be calculated as below.

K = Q1Z
2
2 − Q2Z

2
1

XP1 =
(
R2Z

4
1 − R1Z

4
2

)
K

YP1 =
(
S1XP1 + T1K

2Z2
2

)
K 3Z3

2

ZP1 = Z1Z2K

WP1 = W1

XP2 = XP1

YP2 =
(
S2XP2 + T2K

2Z2
1

)
K 3Z3

1

ZP2 = ZP1

WP2 = W2

XP3 = −Q1K
2Z2

2 − XP1

YP3 =
(
S1XP3 + T1K

2Z2
2

)
K 3Z3

2

ZP3 = ZP1

WP3 = W1

XP4 = −Q2K
2Z2

1 − XP2

YP4 =
(
S2XP4 + T2K

2Z2
1

)
K 3Z3

1

ZP4 = ZP1

WP4 = W2

(21)

In the case where YP1 = −YP3 , the result is D3 = (P2) +
(P4) − 2(O) and can be calculated with Eq. (14).

If YP1 = YP3 , the result can be calculated by doubling P1
with Eq. (13) and adding P2 and P3 with Eq. (14).

5 Cost analysis

The divisor addition on genus 2 hyperelliptic curves is intri-
cate, with plenty of different cases. Although rare cases have
a low chance of occurrence, handling them in cryptographic
applications is vital. While some of the rare cases are quite

costly to handle, some others are not.
In Fig. 1; we illustrate all the cases of divisor addition on

genus 2 hyperelliptic curves; we present the operation counts
and point out the gaps in the literature, which are filled with
this work. The dashed edges represent the missing cases in
the literature that are proposed with fully-weighted formulas
in Jacobian coordinates here. We refer to; degenerate/degen-
erate addition as 1+1, degenerate/non-degenerate addition as
1+ 2, and non-degenerate/non-degenerate addition as 2+ 2.
The letter ‘M’ stands for the number of field multiplications;
‘S’ for field squarings; and ‘D’ for addition or multiplication
with constants, respectively. Each edge represents a condi-
tion to be checked before determining the present case, with
respect to the algorithm in Sect. 3. The operation counts given
below the edges denote the cost of checking the condition. In
some cases, the operations required for determining the case
to be handled also provide common subexpressions, which
are shared with the addition formulas in that context. Each
leaf of the tree corresponds to a case in Sect. 3. The operation
counts of each case are given in the leaves.

The case where u1 �= u2, B = 0, and P1 = P3 leads to
8 different cases enumerated with ‘*’ in front. In that case,
D1 = (P1) + (P2) − 2(O) and D2 = (P1) + (P4) − 2(O).
Adding D1 and D2 requires doubling P1 and adding P2 and
P4 to the result. Here, 2 cases may occur while the addition
of P2: either P1 = P2 or P1 �= P2 (P1 = −P2 is not possible
since D1 would not be reduced otherwise). When P1 = P2,
the addition of 2(P1) − 2(O) and (P2) − (O) corresponds
to the tripling in Eq. (4). If P1 �= P2, the addition can be
done with Eq. (6). Let (P5) + (P6) − 2(O) be the result for
both cases. The result may or may not contain a point in its
support joint with (P4)− (O). That leads to 4 cases for both:

• *1 and *5: −P4 = P5 (output P6),
• P4 = P5

– *2 and *6: P5 = P6 (Eq. (4)),
– *3 and *7: P5 �= P6 (Eq. (5)),

• *4 and *8: ±P4 �= P5 (Eq. (6)).

We note that P5 and P6 can be interchanged without loss of
generality.

The operations needed for the detection of the cases are
also taken into account in contrast to the previous works,
which present the operation counts for specific cases. This
may lead to differences with the operation counts given in
the literature.However, exceptional outputsmay be produced
when assumptions on the inputs are made without checking
if the conditions are met. Thus, it is sensible to include the
cost of case detection to demonstrate the performance of our
complete algorithm.
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Fig. 1 Divisor addition cases
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6 Conclusion

This paper introduced explicit and inversion-free formulas
for the complete group law of genus 2 hyperelliptic curves.
The formulas are derived from Cantor’s algorithm and pre-
sented case by case in regard to whether the divisors are
degenerate or non-degenerate. This work can be seen as a
completion of the works started in [21] and [22] on Jacobian
coordinates.

Any cryptographic application which enforces using a
prime order genus 2 Jacobian is amenable to introducing
exceptional situations, such as the addition of two divisors
with joint support. Our formulas provide an efficient fallback
that eliminates the need for polynomial arithmetic required
by Cantor’s algorithm. Although the formulas we present
consist of rare cases, a cryptographic application based on
an operation such as digital signature verification is expected
to handle all cases properly. In such a scenario, our com-
plete algorithm can be used to prevent active attacks based
on faulty inputs which target to trigger an exceptional output.

Acknowledgements This work grew upon a question raised by Tanja
Lange to the second author in ASIACRYPT 2014. We also thank the

Script 1 Cantor’s Algorithm for genus 2

Cantor := function(u1 ,v1 ,u2 ,v2 ,f)
d1 ,e1 ,e2:=Xgcd(u1 ,u2); d,c1 ,c2:=Xgcd(d1 ,v1+v2);
s1:=c1*e1; s2:=c1*e2; s3:=c2;
u:=(u1*u2) div d^2; v:=((s1*u1*v2+s2*u2*v1+s3*(v1*v2+f)) div d) mod u;
while Degree(u) gt 2 do

u:=(f-v^2) div u; v:=(-v) mod u;
end while;
u:= Normalize(u);
if Degree(u) eq 0 then

return 1,0;
elif Degree(u) eq 1 then

return -Coefficient(u,0),v;
elif Degree(u) eq 2 then

return Coefficient(u,1), Coefficient(u,0),
Coefficient(v,1), Coefficient(v,0);

else
print "error: Non -reduced divisor !";

end if;
end function;

Script 2 Verification of (3) and Sect. 3.2 “Case y1 = y2”

F<a3,a2 ,a1 ,a0 ,x1 ,y1 >:= FunctionField(Rationals (),6);
_<x>:= PolynomialRing(F);
q,r,s,t:= Cantor(x-x1 ,y1 ,x-x1 ,y1 ,x^5+a3*x^3+a2*x^2+a1*x+a0);
/*** START OF FORMULA ***/
q3:=-2*x1;
r3:=x1^2;
s3 :=(5* x1^4+3* a3*x1^2+2* a2*x1+a1)/(2* y1);
t3:=(-3*x1^5-a3*x1^3+a1*x1+2*a0)/(2* y1);
/*** END OF FORMULA ***/
Q:= RingOfFractions(quo <Parent(Numerator(q))|

y1^2-(x1^5+a3*x1^3+a2*x1^2+a1*x1+a0)>);
Q!(q-q3) eq 0; Q!(r-r3) eq 0; Q!(s-s3) eq 0; Q!(t-t3) eq 0;
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study was done while the second author was at Yaşar University.
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Appendix: Verification Scripts

This section contains Magma [27] scripts that verify the for-
mulas presented in the text and assist in proving selected
theorems. These scripts can be executed freely online through
Web-Magma (http://magma.maths.usyd.edu.au/calc/), not-
ing that each script requires [Script 1] to be loaded in advance.
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Script 3 Verification of (2) and Sect. 3.2 “Case x1 �= x2”

F<a3,a2 ,a1 ,a0 ,x1 ,y1 ,x2 ,y2 >:= FunctionField(Rationals (),8);
_<x>:= PolynomialRing(F);
q,r,s,t:= Cantor(x-x1 ,y1 ,x-x2 ,y2 ,x^5+a3*x^3+a2*x^2+a1*x+a0);
/*** START OF FORMULA ***/
q3:=-x1 -x2;
r3:=x1*x2;
s3:=(y1 -y2)/(x1-x2);
t3:=(x1*y2 -x2*y1)/(x1 -x2);
/*** END OF FORMULA ***/
Q:= RingOfFractions(quo <Parent(Numerator(q))|

y1^2-(x1^5+a3*x1^3+a2*x1^2+a1*x1+a0),
y2^2-(x2^5+a3*x2^3+a2*x2^2+a1*x2+a0)>);

Q!(q-q3) eq 0; Q!(r-r3) eq 0; Q!(s-s3) eq 0; Q!(t-t3) eq 0;

Script 4 Verification of (4)

F<a3,a2 ,a1 ,a0 ,x1 ,y1 >:= FunctionField(Rationals (),6);
_<x>:= PolynomialRing(F);
q1:=-2*x1; r1:=x1^2;
s1 :=(5* x1^4+3* a3*x1^2+2* a2*x1+a1)/(2* y1);
t1:=(-3*x1^5-a3*x1^3+a1*x1+2*a0)/(2* y1);
q,r,s,t:= Cantor(x^2+q1*x+r1,s1*x+t1 ,x-x1 ,y1 ,x^5+a3*x^3+a2*x^2+a1*x+a0);
/*** START OF FORMULA ***/
fdashx1 :=5*x1 ^4+3* a3*x1 ^2+2* a2*x1+a1;
fddashx1 :=20* x1^3+6* a3*x1+2*a2;
A:=(2* y1^2* fddashx1 -fdashx1 ^2)/(8* y1^3);
B:= fdashx1 /(2*y1)-2*A*x1;
C:=y1 -A*x1^2-B*x1;
q3:=3*x1 -A^2;
r3:=a3 -2*A*B+3*x1*(q3 -x1);
s3:=A*q3 -B;
t3:=A*r3 -C;
/*** END OF FORMULA ***/
Q:= RingOfFractions(quo <Parent(Numerator(q))|

y1^2-(x1^5+a3*x1^3+a2*x1^2+a1*x1+a0)>);
Q!(q-q3) eq 0; Q!(r-r3) eq 0; Q!(s-s3) eq 0; Q!(t-t3) eq 0;

Script 5 Verification of (5)

P<a3,a2 ,a1 ,a0 ,q1 ,r1 ,s1 ,t1 ,x3 ,y3 >:= PolynomialRing(Rationals () ,10);
Q<a3,a2 ,a1 ,a0 ,q1 ,r1 ,s1 ,t1 ,x3 ,y3 >:= RingOfFractions(quo <P|

x3^2+q1*x3+r1 , y3 -(s1*x3+t1), /* x1=x3 and y1=y3 */
r1*(s1^2+q1^3-(2*r1 -a3)*q1 -a2)-(t1^2-a0),
q1*(s1^2+q1^3-(3*r1 -a3)*q1 -a2)-(2*s1*t1 -r1*(r1 -a3)-a1)>);

_<x>:= PolynomialRing(Q);
q,r,s,t:= Cantor(x^2+q1*x+r1,s1*x+t1 ,x-x3 ,y3 ,x^5+a3*x^3+a2*x^2+a1*x+a0);
/*** START OF FORMULA ***/
x1:=x3; y1:=y3; x2:=-q1 -x1; y2:=s1*x2+t1;
q2:=-2*x1;
r2:=x1^2;
s2 :=(5* x1^4+3* a3*x1^2+2* a2*x1+a1)/(2* y1);
t2:=(-3*x1^5-a3*x1^3+a1*x1+2*a0)/(2* y1);
A:=(y2 -(s2*x2+t2))/(x2^2+q2*x2+r2);
B:=s2+q2*A;
C:=t2+r2*A;
q3:=x2 -q2 -A^2;
r3:=a3+q2^2-r2-A*(B+s2)+x2*q3;
s3:=A*q3 -B;
t3:=A*r3 -C;
/*** END OF FORMULA ***/
Q!(q-q3) eq 0; Q!(r-r3) eq 0; Q!(s-s3) eq 0; Q!(t-t3) eq 0;
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Script 6 Verification of (6)

F<a3,a2 ,a1 ,a0 ,x1 ,y1 ,x2 ,y2 ,x3 ,y3 >:= FunctionField(Rationals () ,10);
_<x>:= PolynomialRing(F);
q1:=-x1 -x2; r1:=x1*x2; s1:=(y1 -y2)/(x1-x2); t1:=(x1*y2 -y1*x2)/(x1 -x2);
q,r,s,t:= Cantor(x^2+q1*x+r1,s1*x+t1 ,x-x3 ,y3 ,x^5+a3*x^3+a2*x^2+a1*x+a0);
/*** START OF FORMULA ***/
A:=(y3 -(s1*x3+t1))/(x3^2+q1*x3+r1);
B:=s1+q1*A;
C:=t1+r1*A;
q3:=x3 -q1 -A^2;
r3:=a3+q1^2-r1-A*(B+s1)+x3*q3;
s3:=A*q3 -B;
t3:=A*r3 -C;
/*** END OF FORMULA ***/
F!(q-q3) eq 0; F!(r-r3) eq 0; F!(s-s3) eq 0; F!(t-t3) eq 0;

Script 7 Verification of (8)

P<a3,a2 ,a1 ,a0 ,q1 ,r1 ,s1 ,t1 >:= PolynomialRing(Rationals (),8);
Q<a3,a2 ,a1 ,a0 ,q1 ,r1 ,s1 ,t1 >:= RingOfFractions(quo <P|

((q1^2-4*r1+a3)*q1 -a2+s1^2)*s1+(3*q1^2-2*r1+a3)*t1 , /* C=0 */
r1*(s1^2+q1^3-(2*r1 -a3)*q1 -a2)-(t1^2-a0),
q1*(s1^2+q1^3-(3*r1 -a3)*q1 -a2)-(2*s1*t1 -r1*(r1 -a3)-a1)>);

_<x>:= PolynomialRing(Q);
x,y:= Cantor(x^2+q1*x+r1 ,s1*x+t1 ,x^2+q1*x+r1 ,

s1*x+t1 ,x^5+a3*x^3+a2*x^2+a1*x+a0);
/*** START OF FORMULA ***/
A:=((q1^2-4*r1+a3)*q1 -a2+s1^2)*( q1*s1-t1)+(3* q1^2-2*r1+a3)*r1*s1;
B:=2*( q1*s1 -t1)*t1 -2*r1*s1^2;
x5:=2*q1+A^2/B^2;
y5:=(A/B*(q1+x5)-s1)*x5+(A/B*r1 -t1);
/*** END OF FORMULA ***/
Q!(x-x5) eq 0; Q!(y-y5) eq 0;

Script 8 Verification of (9)

P<a3,a2 ,a1 ,a0 ,q1 ,r1 ,s1 ,t1 >:= PolynomialRing(Rationals (),8);
Q<a3,a2 ,a1 ,a0 ,q1 ,r1 ,s1 ,t1 >:= RingOfFractions(quo <P|

r1*(s1^2+q1^3-(2*r1 -a3)*q1 -a2)-(t1^2-a0),
q1*(s1^2+q1^3-(3*r1 -a3)*q1 -a2)-(2*s1*t1 -r1*(r1 -a3)-a1)>);

_<x>:= PolynomialRing(Q);
q,r,s,t:= Cantor(x^2+q1*x+r1,s1*x+t1 ,x^2+q1*x+r1 ,

s1*x+t1 ,x^5+a3*x^3+a2*x^2+a1*x+a0);
/*** START OF FORMULA ***/
A:=((q1^2-4*r1+a3)*q1 -a2+s1^2)*( q1*s1-t1)+(3* q1^2-2*r1+a3)*r1*s1;
B:=2*( q1*s1 -t1)*t1 -2*r1*s1^2;
C:=((q1^2-4*r1+a3)*q1 -a2+s1^2)*s1+(3*q1^2-2*r1+a3)*t1;
q3 :=2*(A/C)-B^2/C^2;
r3:=A^2/C^2+2* q1*B^2/C^2-2*s1*(B/C);
s3:=(r1 -r3)*(C/B)-q3*(q1 -q3)*(C/B)+(q1-q3)*(A/B)-s1;
t3:=(r1 -r3)*(A/B)-r3*(q1 -q3)*(C/B)-t1;
/*** END OF FORMULA ***/
Q!(q-q3) eq 0; Q!(r-r3) eq 0; Q!(s-s3) eq 0; Q!(t-t3) eq 0;
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Script 9 Verification of (11)

P<a3,a2 ,a1 ,a0 ,t1 ,t2 ,q1 ,r1 ,s1 ,q2 ,r2 ,s2 >:= PolynomialRing(Rationals () ,12);
Q<a3,a2 ,a1 ,a0 ,t1 ,t2 ,q1 ,r1 ,s1 ,q2 ,r2 ,s2 >:= RingOfFractions(

quo <P|(q1 -q2)*(t1 -t2)-(r1 -r2)*(s1 -s2)>); /* C=0 */
_<x>:= PolynomialRing(Q);
x,y:= Cantor(x^2+q1*x+r1 ,s1*x+t1 ,

x^2+q2*x+r2 ,s2*x+t2 ,x^5+a3*x^3+a2*x^2+a1*x+a0);
/*** START OF FORMULA ***/
A:=(t1 -t2)*(q2*(q1 -q2)-(r1-r2))-r2*(q1-q2)*(s1 -s2);
B:=(r1 -r2)*(q2*(q1 -q2)-(r1-r2))-r2*(q1-q2)^2;
x5:=(q1+q2)+A^2/B^2;
y5:=(A/B*(q1+x5)-s1)*x5+(A/B*r1 -t1);
/*** END OF FORMULA ***/
Q!(x-x5) eq 0; Q!(y-y5) eq 0;

Script 10 Verification of (12)

F<a3,a2 ,a1 ,a0 ,q1 ,r1 ,s1 ,t1 ,q2 ,r2 ,s2 ,t2 >:= FunctionField(Rationals () ,12);
_<x>:= PolynomialRing(F);
q,r,s,t:= Cantor(x^2+q1*x+r1,s1*x+t1 ,x^2+q2*x+r2 ,

s2*x+t2 ,x^5+a3*x^3+a2*x^2+a1*x+a0);
/*** START OF FORMULA ***/
A:=(t1 -t2)*(q2*(q1 -q2)-(r1-r2))-r2*(q1-q2)*(s1 -s2);
B:=(r1 -r2)*(q2*(q1 -q2)-(r1-r2))-r2*(q1-q2)^2;
C:=(q1 -q2)*(t1-t2)-(r1 -r2)*(s1 -s2);
q3:=(q1 -q2 )+2*(A/C)-B^2/C^2;
r3:=(q1 -q2)*(A/C)+A^2/C^2+(q1+q2)*B^2/C^2-(s1+s2)*(B/C);
s3:=(r1 -r3)*(C/B)-q3*(q1 -q3)*(C/B)+(q1-q3)*(A/B)-s1;
t3:=(r1 -r3)*(A/B)-r3*(q1 -q3)*(C/B)-t1;
/*** END OF FORMULA ***/
F!(q-q3) eq 0; F!(r-r3) eq 0; F!(s-s3) eq 0; F!(t-t3) eq 0;
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