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Abstract. It has been shown that the selfish mining attack enables
a miner to achieve an unfair relative revenue, posing a threat to the
progress of longest-chain blockchains. Although selfish mining is a well-
studied attack in the context of Proof-of-Work blockchains, its impact on
the longest-chain Proof-of-Stake (LC-PoS) protocols needs yet to be ad-
dressed. This paper involves both theoretical and implementation-based
approaches to analyze selfish proposing1 attack in the LC-PoS protocols.
We discuss how factors such as the nothing-at-stake phenomenon and the
proposer predictability in PoS protocols can make the selfish proposing
attack in LC-PoS protocols more destructive compared to selfish mining
in PoW. In the first part of the paper, we use combinatorial tools to the-
oretically assess the selfish proposer’s block ratio in simplistic LC-PoS
environments and under simplified network connection. However, these
theoretical tools or classical MDP-based approaches cannot be applied
to analyze the selfish proposing attack in real-world and more compli-
cated LC-PoS environments. To overcome this issue, in the second part of
the paper, we employ deep reinforcement learning techniques to find the
near-optimal strategy of selfish proposing in more sophisticated proto-
cols. The tool implemented in the paper can help us analyze the selfish
proposing attack across diverse blockchain protocols with different re-
ward mechanisms, predictability levels, and network conditions.

Keywords: Blockchain · Proof-of-Stake · Selfish proposing · Deep Q-
learning.

1 Introduction

In Proof-of-Stake (PoS) blockchains, proposers—namely, users who have de-
posited a specific amount of stake in the blockchain ledger—are responsible for
proposing new blocks and extending the blockchain ledger [4]. Once a proposer
is selected to propose a block, it needs to follow a pre-determined fork choice
rule to select a chain on top of which the new block will be proposed. Fork choice
rules are essential for blockchains to achieve safety and liveness [21]. Bitcoin [20]
uses the longest-chain fork choice rule, where miners choose the longest chain

1 As there is no mining process in PoS blockchains, we refer to this attack as “selfish
proposing”.
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to mine on top of it. Although the longest-chain rule was originally designed
for Proof-of-Work (PoW), some PoS-based blockchain protocols have also im-
plemented the longest-chain fork choice rule within their consensus layers, such
as the Ouroboros protocol in Cardano [17,10], the Emmy protocol in Tezos [15],
and Snow White [9]. In PoW, the longest chain refers to the chain with the most
amount of work. However, in PoS, since there is no mining process, the longest
chain refers to the chain that is literally the longest.

One of the most important attacks that can threaten longest-chain-based
blockchain protocols is the selfish mining attack presented by Eyal and Sirer [12].
The authors of this paper have shown that a malicious miner in Bitcoin can in-
crease his payoff by deviating from mining honestly. In the selfish mining attack,
once the attacker mines a new block, he keeps his block secret rather than imme-
diately publishing it to the other mining nodes. By keeping his blocks secret, the
attacker can cause some part of the honest mining power to get wasted since the
honest nodes continue mining on top of the public chain which is shorter than
the attacker’s secret chain. Due to the selfish mining attack, some of the honest
blocks get orphaned, i.e., get excluded from the main chain. This results in an
increase in the ratio of the number of attacker’s blocks added to the main chain
to the total number of main-chain blocks, which we refer to as the attacker’s
“block ratio”. The selfish mining attack is applicable to any blockchain that is
designed based on the longest-chain fork choice rule. Thus, not only the PoW-
based blockchains but also PoS-based blockchains that use the longest-chain
paradigm face the threat of selfish mining. Note that since no mining process is
involved in PoS-based blockchains, we use the term “selfish proposing” rather
than selfish mining to describe this attack in the PoS context.

There exist several reasons that make selfish proposing in PoS even more de-
structive compared to selfish mining in PoW. The first reason is the presence of
the nothing-at-stake phenomenon in PoS-based blockchains. This phenomenon
implies that since there is no mining process in PoS protocols, generating multi-
ple blocks could be wasteless for proposers [7]. Therefore, a PoS proposer has the
flexibility to modify the content of an already generated block as long as the block
is not yet published. However, this is not the case in PoW-based blockchains.
A PoW miner should specify the block content prior to the start of the mining
process, and the block content cannot be changed once it is mined. The block
content, in both PoW and PoS, includes a reference to its parent block. In PoS-
based blockchains, the nothing-at-stake phenomenon allows a selfish proposer to
postpone specifying the block’s parent until just before the block needs to be
published. This can provide a selfish proposer in PoS-based blockchains with a
set of new actions to fortify the selfish proposing attack [13].

Another bottleneck of PoS protocols that leads to a higher selfish propos-
ing profit is the proposer predictability. In PoS protocols, there exists a lottery
mechanism that specifies the block proposer(s) for each slot. To select proposers
in a random manner, the lottery mechanism takes a pseudorandom seed as one
of its inputs. This seed, in most PoS-based blockchains, is extracted from the
blockchain ledger information. To ensure consistency and liveness, the pseudo-
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random seed for each slot needs to be determined when we are sufficiently far
from that specific slot [3]. Knowing these pseudorandom seeds can help valida-
tors predict the block proposers in future slots, which is impossible in PoW.
Based on how the PoS protocol is designed, the validators can have different
levels of predictability. In some protocols, validators can only predict the slots
in which they themselves are selected as proposers, while in other protocols, the
validators can predict the block proposers for all the upcoming slots. In both
of these protocols, a selfish proposer can use information regarding the future
proposers to improve his selfish proposing strategy. During a selfish mining at-
tack in PoW, some of the attacker’s blocks may get orphaned. In PoS protocols
having knowledge about future slot proposers can help a selfish proposer reduce
the risk of losing his blocks during the attack and increase his block ratio.

In PoW blockchains, tools such as the Markov chain and the Markov Deci-
sion Process (MDP) can be used to obtain the selfish miner’s optimal strate-
gies [22,24]. These tools are useful for analyzing environments with a limited set
of actions and states. However, to consider the effect of the nothing-at-stake phe-
nomenon and predictability on the selfish proposer’s strategy in longest-chain
PoS blockchains, it is necessary to handle larger sets of actions and states. There-
fore, the classical MDP-based tools cannot directly be used to analyze the selfish
proposing attack in longest-chain PoS protocols. One approach to assess the en-
vironments with huge sets of actions and states is to use deep reinforcement
learning techniques such as deep Q-learning. These techniques not only enable
us to handle larger sets of actions and states but also facilitate the study of
the selfish proposing profitability under more realistic and complicated environ-
ments. There exist research papers such as [5,6] that have used deep reinforce-
ment learning techniques to analyze selfish mining in PoW protocols. However,
developing a tool for analyzing the selfish proposing attack in longest-chain PoS
has yet to be addressed.

In this paper, we assess the selfish proposing attack in the longest-chain PoS
(LC-PoS) blockchains. In Appendix B, we introduce our model which is built
upon the model presented in [7]. In our paper, we extend and modify the PoS
blockchain model and definitions presented in [7] to propose a realistic model
that fits better to the PoS protocols currently in use. In Appendix C, we define
the terms “block ratio” and “time-averaged profit” and discuss the impact of
the selfish proposing attack on the attacker’s profitability in LC-PoS protocols,
comparing it to the profitability of selfish mining in PoW. In fact, we explain
how an increase in the attacker’s block ratio due to selfish proposing can lead to
a rise in the attacker’s time-averaged profit. In the main body of the paper, we
present:

Nothing-at-stake selfish proposing attack in LC-PoS In Section 2, we
generalize the nothing-at-stake selfish proposing attack introduced in [13] by
taking into account a set of new actions that can lead to a more profitable
strategy. Besides, we prove interesting lower bounds on the minimum amount
of stake share that can make the selfish proposing attack more profitable than
honest proposing in LC-PoS protocols with perfect randomness.
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Predictable selfish proposing attack in full-predictable LC-PoS In Sec-
tion 3, we use combinatorial tools to theoretically assess the selfish proposing
block ratio under multiple strategies in full-predictable LC-PoS protocols. More-
over, we present an optimal selfish proposing strategy for full-predictable LC-PoS
protocols.

Deep Q-learning tool to analyze the selfish proposing attack In Sec-
tion 4, we present a deep Q-learning tool to analyze the selfish proposing attack
in realistic and more complicated LC-PoS environments such as semi-predictable
protocols. We demonstrate how this tool can assist in discovering the near-
optimal selfish proposing strategy for selfish proposers with varying stake shares
and communication capabilities under different LC-PoS environments.

In the main text, terms such as “honest strategy”, “communication ca-
pability”, and “block ratio” are frequently used, which are defined in Defini-
tions 20, 21, and 22 presented in Appendix C, respectively. Readers are encour-
aged to review these definitions before delving into the main text.

2 Nothing-at-stake selfish proposing in LC-PoS protocols

A fundamental difference between LC-PoS protocols and PoW protocols is the
fact that generating a new valid block in LC-PoS protocol is effortless. This
phenomenon which is known as nothing-at-stake can provide an attacker in LC-
PoS protocols with a set of new actions and strategies that are impossible in
PoW protocols. The authors in [13] have introduced the nothing-at-stake selfish
proposing attack. However, the introduced attack is limited to an attacker with
communication capability equal to 0 and can only benefit from a small set of new
actions made possible by the nothing-at-stake phenomenon. In this paper, we
generalize nothing-at-stake selfish proposing by considering a set of new actions
that can lead to an increase in selfish proposing profitability.

Note that throughout this paper, we assume that a block proposer is either
honest or adversarial. The honest proposers, denoted by H, always follow the
honest strategy. The adversarial proposers are under the control of an attacker
denoted by A and can deviate from the honest strategy. We denote by α and η
the attacker’s stake share and communication capability, respectively.

2.1 Intuition behind nothing-at-stake selfish proposing

We first explain how nothing-at-stake can lead to a more profitable selfish propos-
ing attack. In PoW protocols, a miner should specify the content of a block in-
cluding a reference to its parent prior to the start of the mining process. After a
block is successfully mined in PoW protocols, modifying its parent block requires
a significant amount of computational work since the miner needs to mine an
entirely new block to include a different parent. However, in PoS protocols, a
proposer can still change the content of a block after it is proposed and before
it is published. In fact, once a proposer is eligible to propose a block in a PoS
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Fig. 1: Nothing-at-stake selfish proposing

protocol, he has the freedom to change the parent of the block as long as it is
not published without any further effort.

To get an intuition that how the nothing-at-stake phenomenon can fortify
selfish proposing, consider the picture depicted in Figure 1. In this figure, which
is based on the single-proposer model introduced in Definition 11, the block
proposed by proposer P at time slot t is denoted by BP

t . The block proposer
P can be either honest or adversarial, namely P ∈ {H,A}. As can be seen in
Figure 1, the honest chain has a 2-block lead over the adversarial chain. We
assume that none of the adversarial blocks in Figure 1 is published. In a similar
situation in PoW protocols, the attacker should decide whether to give up on his
fork and continue mining on top of the honest chain (block BH

9 ) or to continue
mining on top of his secret chain. On the one hand, if the attacker chooses
to give up, then his 4 adversarial blocks get orphaned. On the other hand, if
the attacker chooses to continue mining on top of his secret chain that is 2
blocks behind, he has a relatively low chance of catching up the public chain
and may risk losing his future blocks. In LC-PoS protocols, however, besides
these two actions, the attacker can perform other reasonable actions. For the
scenario depicted in Figure 1, we explain two actions that a selfish proposer
can only take in LC-PoS protocols. Assume the attacker needs to decide on an
action after that the honest block BH

9 is proposed at time slot t = 9. As the
first reasonable action, the attacker can give up on block BA

1 , change the parent
of BA

4 to BH
3 , and generate a new fork that includes 3 adversarial blocks. In

this case, the length of both adversarial and honest chains gets equal to 3, and
the attacker has a higher chance to orphan the honest chain. As the second
reasonable action, the attacker can give up on blocks BA

1 and BA
4 , change the

parent of BA
7 to BH

6 , and generate a new fork that includes 2 adversarial blocks.
In this case, the adversarial chain has a 1-block lead over the honest chain. These
two actions are examples of a broader set of actions, which we refer to as “jump”.

2.2 Set of actions for nothing-at-stake selfish proposing

In this section, we introduce the set of actions for selfish proposing in LC-PoS
protocols. We assume that the PoS protocol is accompanied by a slashing mech-
anism, i.e., a malicious proposer who publishes two or more contradicting blocks
can get slashed by the other proposers. Therefore, a selfish proposer can publish
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at most one block in each slot. Note that when discussing the attacker’s actions,
it is important to distinguish between the terms “proposing” and “publishing”
blocks. The term that the attacker proposes a block at time slot t indicates that
the attacker is eligible to create a block at time slot t; however, the content of
the block may not be finalized yet. The term that the attacker publishes a block
at time slot t indicates that the content of the block proposed at time slot t is
finalized and honest proposers are aware of that. Regarding honest proposers,
the terms “proposing” and “publishing” can be used interchangeably since an
honest proposer publishes its block immediately after it is proposed.

A brief overview of selfish mining in PoW protocols is presented in Ap-
pendix A.1. In our model, we assume that the attacker works on a secret chain
while the honest proposers work on a single public chain. Let t0 be the time
slot up to which both the attacker’s chain and the public chain share the same
subchain. This indicates that after time slot t0, the honest and adversarial chains
have diverged. We refer to the attacker’s chain (honest chain) proposed after t0
as the adversarial fork (honest fork). Let lA and lH denote the length of the
adversarial fork and the length of the honest fork, respectively. Additionally, let
ti for i ≥ 1 represent the time slot at which the ith block is proposed in the hon-
est fork. The actions are a combination of two subactions and have the format
(subaction1, subaction2), where

subaction1 ∈
{
jumpi

∣∣ i ∈ {0, 1, 2, · · · , lH}
}

,

subaction2 ∈ {override, match, wait} .
(1)

jumpi: The subaction represents that the attacker specifies the starting point of
the fork. If i = 0, the attacker continues working on top of the current fork.
For i ≥ 1, the attacker gives up on the blocks in the adversarial fork proposed
before including time slot ti, adopts the honest fork up to including time slot ti,
and generates a new fork on top of the honest block proposed at time slot ti. In
this case, the new adversarial (honest) fork includes all the adversarial (honest)
blocks proposed after the time slot ti. Note that:

– For i = 0, the subaction is always feasible.

– For i ≥ 1, the subaction is feasible if all the adversarial blocks proposed after
ti are unpublished.

If no adversarial block is proposed after the last block in the honest fork, one
can consider jumplH as the action adopt employed in PoW blockchains, where
the attacker gives up on his private chain and continues mining on top of the
longest public chain. Once the starting point of the fork is specified using action
jumpi, the attacker decides on which of the following subactions to perform on
the new fork. Note that values of lH and lA may get updated after applying
action jumpi.

override: The subaction represents that the attacker publishes his secret fork
whose length is one block longer than the honest fork. This subaction is feasible
if lA > lH.
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match: The subaction represents that the attacker publishes his secret fork whose
length is equal to the honest fork immediately after an honest block is published.
This subaction is feasible if lA ≥ lH and lA ̸= 0.
wait: The subaction represents that the attacker continues proposing new blocks
in the specified fork. This subaction is always feasible.

2.3 Nothing-at-stake selfish proposing with perfect randomness

In this section, we introduce a selfish proposing strategy suitable for longest-
chain PoS protocols with perfect randomness, denoted by πS-PR. Here, the per-
fect randomness implies that the random seed of each time slot is revealed at
the start of the time slot, and consequently, no proposer can predict the slot
seed prior to the start of the slot. This indicates that similar to selfish min-
ing in PoW, a selfish proposer in an LC-PoS protocol with perfect randomness
does not enjoy predictability. Thus, the only difference between selfish mining in
PoW and selfish proposing in LC-PoS with perfect randomness is the nothing-at-
stake phenomenon. The strategy πS-PR and a comprehensive theoretical analysis
of the block ratio gained by following this strategy are presented in Appendix D.
Note that strategy πS-PR is not the optimal strategy that a selfish proposer can
follow in an LC-PoS protocol with perfect randomness. However, we prove in
Appendix D that for some range of the stake share, the introduced strategy can
dominate the optimal selfish mining strategy in PoW [22] and the nothing-at-
stake selfish mining strategy introduced in [13]. Later in Section 4.2, we introduce
a deep Q learning-based method to obtain the near-optimal selfish proposing
strategy in an LC-PoS protocol with perfect randomness.

In the following, we only review the amount of profitable stake share threshold
(introduced in Definition 23) for a selfish proposer following the strategy πS-PR.
In PoW protocols, there is a famous bound that indicates the profitable mining
share threshold of an attacker with communication capability η = 0.5 is equal to
0.25 [12,22]. According to the analysis presented in Appendix D, the profitable
stake share threshold of a selfish proposer with communication capability η =
0.5 in an LC-PoS protocol with perfect randomness is less than 0.24198. This
indicates that a selfish proposer whose stake share is greater than or equal to
0.24198 can increase his block ratio by deviating from the honest strategy in an
LC-PoS protocol with perfect randomness.

We also show in Appendix D that the profitable stake share threshold of a
selfish proposer with communication capability η = 0 in an LC-PoS protocol
with perfect randomness is less than 0.323606. This threshold is lower than
the profitable stake (mining) share threshold achieved by following the optimal
PoW strategy and the nothing-at-stake selfish mining strategy introduced in [13],
which are almost equal to 0.329 and 0.324718, respectively.

3 Selfish proposing in predictable LC-PoS protocols

In this section, we aim to assess the effect of proposer predictability in forti-
fying the selfish proposing attack. Note that a predictable PoS protocol can be
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either semi-predictable (Definition 14) or full-predictable (Definition 15). We dis-
cuss how malicious proposers can use information regarding the upcoming block
proposers in both semi and full-predictable environments to apply a successful
selfish proposing attack with a lower risk of losing their blocks.

In a full-predictable protocol, all the proposers including the attacker can
predict the proposing sequence, the definition of which is presented in Defini-
tion 16. Being aware of the proposing sequence in advance can help the attacker
modify his strategy to increase the selfish proposing block ratio. Consider a sim-
ple example in a full-predictable PoS protocol, where the attacker is eligible
to propose a block, e.g., BA, at time slot t = 1. The attacker should decide
whether he wants to publish block BA immediately or keep it secret in the hope
of orphaning some honest blocks. Due to the full predictability, the attacker can
predict the block proposers of upcoming slots t > 1 at time slot t = 1. Assume
the scenario in which the attacker is lucky and is responsible for proposing an-
other block at time slot t = 2. In this scenario, since the attacker is sure that he
can use his two consecutive blocks of slots t = 1 and t = 2 to orphan at least one
honest block, he would keep block BA secret. As the second scenario, assume the
case in which the attacker is unlucky as he is not among the block proposers in
the near subsequent slots. In this case, especially if the attacker does not enjoy a
high amount of communication capability, the attacker would publish block BA

since he knows if he keeps the block secret, the block would get orphaned with
a high probability.

In a semi-predictable protocol, although the attacker cannot predict a full
list of upcoming block proposers, he is still capable of predicting those time slots
in which he is responsible for proposing a block. The distance between these
adversarial time slots can help the attacker to increase the selfish proposing
success rate. Consider the same example where the attacker is eligible to propose
a block, e.g., BA, at time slot t. Assume the scenario in which the attacker knows
that he can propose his next block at time slot t+ δ, where δ is relatively small.
In this scenario, the attacker may keep the block BA secret due to the low
probability of honest proposers proposing a block within the duration of δ slots.
However, in the scenario where the attacker knows he has no chance to propose a
block for a long period after time slot t, he would publish block BA immediately.

3.1 Selfish proposing in full-predictable LC-PoS protocols

This section presents theoretical methods to analyze selfish proposing in full-
predictable LC-PoS protocols for an attacker with communication capability
η = 0. In this section, we assume that the underlying LC-PoS protocol is an
infinite-full-predictable protocol, where the attacker can predict block proposers
for an infinite number of future time slots in advance. The authors in [7] pre-
sented a selfish proposing strategy for a selfish proposer with communication
capability η = 0 in a full-predictable environment. We denote this strategy by
πSP1. Despite the introduction of strategy πSP1, the authors did not provide any
theoretical analysis for this strategy in [7]. In this section, we first introduce
strategy πSP1 and then calculate the attacker’s block ratio under this strategy.
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Then, we introduce another strategy denoted by πSP2, which we prove can dom-
inate strategy πSP1. Finally, we show that none of the strategies πSP1 and πSP2

are optimal and present an optimal strategy for a selfish proposer with com-
munication capability η = 0 in full-predictable LC-PoS protocols. To present
the selfish proposing strategies, we use the concept of the “longest dominant
chain” defined in Definition 19. Note that LDC(t) and LLDC(t) denote the longest
dominant chain of time slot t and its corresponding length. For presenting the
following strategies, we assume that the LC-PoS protocol is compatible with the
single-proposer model. Strategy πSP1 is defined as follows:
(Strategy πSP1). At each time slot t:

– If LLDC(t) = 0, the attacker does not fork the honest chain and moves to the
next time slot.

– If LLDC(t) > 0, where LDC(t) ends at time slot t′, the attacker forks the honest
chain and keeps the adversarial chain secret within the time slot interval
[t, t′]. At the end of time slot t′, the attacker publishes LDC(t) and orphans
LLDC(t)− 1 honest blocks proposed within the interval [t, t′].

Theorem 1. Let α denote the stake share of an attacker A. The block ratio of
attacker A under strategy πSP1 can be obtained as follows:

BlkRatioA(π
SP1) =

α

1− 2α2
(2)

The proof of Theorem 1 is presented in Appendix E.
We introduce another strategy denoted by πSP2, which can dominate startegy

πSP1.
(Strategy πSP2). At each time slot t:

– If the slot proposer is honest, the attacker does not fork the honest chain
and moves to the next time slot.

– If the slot proposer is the attacker himself, where LDC(t) ends at time slot
t′, the attacker forks the honest chain and keeps the adversarial chain secret
within the time slot interval [t, t′]. At the end of time slot t′, the attacker
publishes LDC(t) and orphans LLDC(t)− 1 honest blocks proposed within the
interval [t, t′].

Theorem 2. Let α denote the stake share of an attacker A. The block ratio of
attacker A under strategy πSP2 can be obtained as follows:

BlkRatioA(π
SP2) =

α(1− α(1− α))

(1− α)2(1 + α)
(3)

The proof of Theorem 2 is presented in Appendix F.
For all 0 < α < 0.5, BlkRatioA(π

SP2) > BlkRatioA(π
SP1). By following

one of the strategies πSP1 or πSP2, none of the adversarial blocks get orphaned
during the selfish proposing attack, which is impossible in PoW selfish mining
attack. Moreover, in both of these two strategies, the attacker always waits until
he can generate the longest possible adversarial fork. By doing so, the attacker
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Fig. 2: Block ratio of selfish proposing strategies in a full-predictable protocol

aims to maximize the number of honest blocks that get orphaned during the
attack. Although strategies πSP1 or πSP2 dominate the optimal PoW selfish mining
strategy, they are not the optimal strategy that an attacker with communication
capability η = 0 can follow in a full-predictable LC-PoS protocol. Consider the
proposing sequence depicted in Figure 2. Following both strategies πSP1 and πSP2,
the attacker’s block ratio would be equal to 6/11. However, the optimal block
ratio that the attacker can achieve is equal to 6/10. In the optimal scenario, the
number of adversarial blocks that get added to the main chain is the same as
that of when following πSP1 or πSP2. However, by following the optimal strategy,
the attacker manages to orphan a greater number of honest blocks. The example
in Figure 2 shows that to achieve the optimal block ratio, the attacker forking
the public chain at time slot t should not always wait until LDC(t) is generated.
In fact, the attacker should sometimes publish the fork at an earlier time slot to
create a better orphaning opportunity at future slots. To introduce the optimal
strategy, we first define the checkpoint slot.

Definition 1 (Checkpoint slot). An honest time slot t is called a checkpoint,
if there is no adversarial time slot t′, where t′ < t, such that its longest dominant
chain, i.e., LDC(t′), ends at a time slot t′′ with t′′ ≥ t.

An honest time slot t being a checkpoint implies that the honest block pro-
posed in slot t cannot be orphaned by an adversarial fork initiated at a time
slot earlier than t. Our checkpoint definition is similar to the Nakamoto block
definition introduced in [11]. In the following, we introduce the selfish proposing
optimal strategy for an attacker with communication capability η = 0 under the
full-predictable model, which is denoted by πO-SP. Let Seq denote the proposing
sequence within the interval [0,∞). In strategy πO-SP, the attacker first needs to
find all the checkpoint time slots denoted by {t1, t2, · · · }. Let subsequence Seqi
be a subset of proposing sequence Seq that corresponds to time slot interval
Ti = (ti, ti+1), i.e., Seqi = Seq(Ti). In Appendix H, we prove that the opti-
mal strategy of selfish proposing in each of these subsequences is independent
of strategies followed in the other subsequences. Therefore, to find the optimal
selfish proposing strategy in the whole proposing sequence Seq, the attacker only
needs to find the optimal strategy for each individual subsequence. The optimal
selfish proposing strategy for an attacker with communication capability η = 0
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Fig. 3: Block ratio comparison in a full-predictable protocol (η = 0)

in a full-predictable model satisfies two properties: (1) it ensures that none of
the adversarial blocks get orphaned, and (2) it maximizes the number of honest
blocks that get orphaned. In an ideal scenario where η = 1, an attacker should
be able to orphan one honest block per each adversarial block. However, since
the attacker’s communication capability is equal to 0, for each adversarial fork
comprising of n adversarial blocks, the attacker can orphan at most n−1 honest
blocks, which is one honest block less than the ideal scenario. This indicates that
when η = 0, each adversarial fork results in the inclusion of an additional honest
block in the main chain compared to the ideal scenario. Therefore, to increase
the number of orphaned honest blocks in each subsequence Seqi, the attacker
should follow the strategy that minimizes the number of adversarial forks in that
subsequence.

(Strategy πO-SP). Find all the checkpoint time slots. For each pair of two con-
secutive checkpoint slots t1 and t2, use Algorithm 1 presented in Appendix G to
find the optimal strategy.

In Appendix H, we prove that strategy πO-SP is the optimal strategy that an
attacker with communication capability η = 0 can follow in full-predictable LC-
PoS protocols. In Figure 3, we compare the block ratios achieved by strategies
πSP1, πSP2, and πO-SP within a full-predictable LC-PoS protocol with the block
ratios of the honest strategy and the optimal PoW selfish mining strategy pre-
sented in [22]. A more precise comparison among the block ratios of strategies
πSP1, πSP2, and πO-SP is presented in Table 1.

Table 1: Block ratio comparison in a full-predictable protocol (η = 0)

stake share 0.3 1/3 0.35 0.4 0.45

πSP1 0.3658 0.4285 0.4635 0.5882 0.7563

πSP2 0.3720 0.4375 0.4740 0.6031 0.7720

πO-SP 0.3722 0.4383 0.4753 0.6054 0.7766
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4 Deep Q-Learning to analyze selfish proposing

Thus far, we have analyzed the selfish proposing attack in simplified LC-PoS en-
vironments such as LC-PoS protocols with perfect randomness and full-predictable
LC-PoS protocols. In this section, we use Deep Q-Learning (DQL) to analyze the
selfish proposing attack in more complicated scenarios, such as semi-predictable
environments, and obtain the near-optimal selfish proposing strategy for all pro-
posers with varying stake shares and communication capabilities.

4.1 DQL implementation in blockchain environments

A brief overview of deep Q-learning is presented in A.2. In a DQL implementation
that is specifically designed for blockchains, each interaction experience with the
blockchain environment has the following format:

et = (st, at, st+1, r
A
t , rHt ) , (4)

where st is the state visited at step t, at is the action performed by the attacker
at step t, st+1 is the subsequent state resulting from taking action at at state st,
and rAt and rHt are the rewards the attacker and the honest proposers received
due to moving from state st to state st+1 under action at, respectively. For
each pair of state s and action a, we define two Q values: the adversarial Q
value denoted by QA

π (s, a) and the honest Q value denoted by QH
π (s, a), where

QA
π (s, a) and QH

π (s, a) represent the expected discounted accumulated reward
for the attacker and honest proposers, respectively, resulting from taking action
a in state s under strategy π.

QA
π (s, a) = E

[ ∞∑
k=0

γkrAt+k|st = s, at = a, π
]
, and

QH
π (s, a) = E

[ ∞∑
k=0

γkrHt+k|st = s, at = a, π
]
.

(5)

DQL uses two neural networks to estimate the Q-values. The first network is
the Q-network, denoted by Qestimate, which is responsible for estimating the
Q-values. The weights of the Q-network are constantly getting updated after
each iteration. The second network is the target network denoted by Qtarget,
which is responsible for calculating the target Q-values. The parameters of the
target network are updated with respect to the Q-network after a pre-determined
number of steps. Both the Q-network and the target network take a state as their
input, which indicates that the number of input nodes is equal to the dimension
size of the state space. The number of output nodes in these networks is equal
to the total number of available actions, with each output node representing the
estimated or target Q-value for the given state under a specific action.

To calculate the block ratio of a selfish proposer in a blockchain environment,
both honest and adversarial Q-values need to be estimated. Therefore, in total,
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we need to implement four separate neural networks: the adversarial Qestimate

and Qtarget as well as the honest Qestimate and Qtarget.
The agent, which is the selfish proposer, follows the ϵ-greedy algorithm to

select the action at each state. As explained in [23], to select the greedy action,
we define an objective function as follows:

O(s, a) =
QA(s, a)

QA(s, a) +QH(s, a)
. (6)

Here, we explain the process of training the adversarial networks. The same pro-
cess is used to train the honest networks. Assume et = (st, at, st+1, r

A
t , rHt ) rep-

resents a state transition experience according to which we want to train the ad-
versarial networks. First, the estimated Q-value is calculated as QA

estimate(st, at).
Then, the target network is used to calculate the target Q-value, which is equal
to rAt + γQA

target(st+1, a
′). Here, a′ is the action that maximizes the objective

function at state st+1, i.e., a
′ = argmaxaO(st+1, a). Once the estimated and the

target Q-values are calculated, a loss function is used to measure the difference
between these two values. The loss is then backpropagated to the adversarial
Q-network to update the network parameters. For more information regarding
the implementation part, readers are referred to [19].

In the following, we explain the state format for the implementation of the
selfish proposing attack in different LC-PoS blockchain environments.

4.2 DQL implementation of nothing-at-stake selfish proposing

In our implementation, each state in LC-PoS blockchains with perfect random-
ness has the following format:

st = (lA, lH, nlH−k1+1
A , · · · , nlH−1

A , nlH
A , publish, match, latest) , (7)

where lA represents the adversarial fork length, lH represents the honest fork
length, ni

A represents the number of adversarial blocks proposed after the time
slot at which the ith block in the honest fork is proposed, publish represents
the number of blocks in the adversarial fork that are published to the honest
network, match represents whether the action match is active or not, and latest

represents whether the latest block is proposed by the honest proposers or not.
Note that this state representation fits both single-proposer and multi-proposer
models. The parameter k1 represents the number of blocks in the honest fork for
which information regarding their subsequent time slots is stored in the state.

As mentioned in Section 2.2, each action consists of two subactions, where
the first subaction is jump, and the second one is chosen among 3 different pos-
sibilities: override, match, and wait. The number of possibilities for subaction
jump gets limited by the value of k1. The state stores information regarding the
current fork as well as information regarding the latest k1 honest blocks. There-
fore, the agent can either continue working on top of the current fork or jump
on top of one of those k1 honest blocks and create a new fork. As a result, the
total number of available actions that the agent can take is equal to 3(k1 + 1).
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This implies that the implemented neural networks should have 3(k1 + 1) out-
puts, where each output represents the Q-value of the input state under one of
the available actions. It is worth mentioning that each state has its own set of
possible actions, which is a subset of the whole available actions.

4.3 DQL implementation of full-predictable selfish proposing

In our implementation, each state in full-predictable LC-PoS blockchains has the
following format:

st =(lA, lH, nlH−k1+1
A , · · · , nlH−1

A , nlH
A , publish, match, latest,

h1, h2, · · · , hk2) .
(8)

In the state representation above, the first part is similar to the state represen-
tation of LC-PoS protocols with perfect randomness. The second part contains
information regarding the proposers of future slots. Due to the full predictabil-
ity, we can assume each slot has exactly one proposer. k2 denotes the number of
future slots whose proposers can be predicted at the current slot. hi represents
the height of the chain in the ith upcoming time slot. Let h0 (the height of the
current slot) be defined to equal 0. In this case, hi can be obtained as follows:

hi =

{
hi−1 + 1 if the ith upcoming time slot is adversarial.

hi−1 − 1 if the ith upcoming time slot is honest.
(9)

4.4 DQL implementation of semi-predictable selfish proposing

In our implementation, each state in semi-predictable LC-PoS blockchains has
the following format:

st =(lA, lH, nlH−k1+1
A , · · · , nlH−1

A , nlH
A , publish, match, latest,

∆1
A, ∆

2
A, · · · , ∆

k3

A ) .
(10)

In the state representation above, the first part is similar to the state represen-
tation of LC-PoS protocols with perfect randomness. The second part contains
information regarding the future adversarial slots. k3 represents the number of
future adversarial blocks whose proposing time slot can be predicted at the cur-
rent time slot. ∆i

A represents the difference between the slot number at which
the ith future adversarial block will be proposed and the current slot number.

In Cardano, which can be considered the most well-known LC-PoS protocol,
proposers use a verifiable random function (VRF) to determine the future slot
proposers. Since the randomness used in the Cardano VRF function is extracted
from the previous epoch, Cardano can be characterized as a semi-predictable
LC-PoS protocol. Our DQL implementation to analyze the selfish proposing
attack within various environments is presented in [1]. The graph depicted in
Figure 4a shows a comparison of the block ratios achieved by a selfish proposer
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(a) Stake (mining) share α = 1
3

(b) Communication capability η = 0

Fig. 4: Block ratio comparison

(miner) with a stake (mining) share equal to 1/3 under various environments
and different communication capabilities. As can be seen in Figure 4a, for selfish
proposers with limited communication capabilities, the predictability of future
slot proposers can lead to a significant increase in the selfish proposing block
ratio. The graph depicted in Figure 4b shows a comparison of the block ratios
achieved by a selfish proposer (miner) with communication capability η = 0
under various environments and different stake (mining) shares. More details
regarding implementation are presented in Appendix I.1.

To move towards a real-world scenario, in Appendix I.2, we present an im-
plementation for the selfish proposing attack within an environment that en-
compasses the location of proposer nodes. The implementation of network node
locations can help us analyze the selfish proposing attack while accounting for
the complexities of real-world network conditions.

5 Conclusion

In this paper, we analyzed the selfish proposing attack in LC-PoS protocols, us-
ing both theoretical and implementation-based methods. The primary takeaway
from this paper is that selfish proposing in LC-PoS protocols is more destructive
compared to selfish mining in PoW protocols. Our analysis showed that while
the nothing-at-stake phenomenon has a slight effect on a selfish proposer’s block
ratio, predictability can significantly increase it, especially when the attacker’s
communication capability is relatively low. In addition to providing theoreti-
cal analysis for selfish proposing in simple environments, such as full-predictable
LC-PoS protocols and LC-PoS protocols with perfect randomness, we have intro-
duced a deep Q-learning-based tool that enables us to analyze selfish proposing
attacks in more complex environments, such as semi-predictable LC-PoS proto-
cols. Using this tool, we can analyze the selfish proposing attack in a realistic
environment, considering specifications such as node locations and the transac-
tion pool structure.
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A Preliminaries

A.1 Selfish mining in PoW

In selfish mining, once a malicious miner mines a new block, he keeps the block
secret and does not publish it immediately. Therefore, the other miners will
continue mining on top of the chain that is no longer the longest chain. By
performing selfish mining, some part of honest mining power gets wasted, and
the attacker can increase his relative revenue. However, the selfish miner who
keeps his block secret cannot make sure that his block will be added to the main
chain in the future since the honest chain may manage to orphan the selfish
miner’s secret chain. Therefore, it is of huge importance that the selfish miner
follows a proper strategy in each state of the chain race [12]. The authors in [22],
proposed an algorithm to find the optimal strategy for selfish mining in Bitcoin,
which uses the Markov Decision Process (MDP) to find the best possible action in
each state based on the attacker’s mining power and communication capability.
The proposed solution is not Bitocin-specific and can be applied to all other
PoW-based blockchains. As mentioned in this paper, each state of selfish mining
in PoW protocols can be represented using a tuple (la, lh, fork), where la denotes
the length of the attacker’s chain, lh is the length of the honest chain, and fork

gives information regarding the miner of the latest block. The set of actions
is composed of four different actions, which are adopt, override, match, and
wait. adopt means the selfish miner leaves his secret chain and continues mining
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on top of the honest chain. override represents that the attacker publishes his
secret chain that is longer than the honest chain. match means once the honest
miners mine a new block, the attacker publishes a conflicting block with the
same height. And finally, wait means that the attacker continues mining on top
of his secret chain.

A.2 Deep Q-Learning

The goal of reinforcement learning, which is one of the fields of AI, is to produce
an autonomous agent that interacts with the environment to learn the optimal
policy, i.e., the policy that can maximize the long-term reward, through trial and
error [2]. Q-learning is a reinforcement learning technique that utilizes Markov
Decision Process (MDP) to find the optimal action for each state. At each time
step t, the agent observes a state st and takes an action at from the action
space. As a result of this action, the agent receives a scalar reward rt and moves
to the next step st+1, according to the environment’s behavior. The discounted
accumulated reward at time step t is defined as Rt =

∑∞
k=0 γ

krt+k, where γ ∈
(0, 1] is the discount factor. In Q-learning, for each pair of state s and action a,
we define a quality function Qπ(s, a) = E

[
Rt|st = s, at = a, π

]
that represents

the expected discounted accumulated reward for taking action a in state s and
then following policy π. An optimal state-action quality function is the maximum
expected discounted accumulated reward achievable by any policy at state s for
action a. To calculate the optimal state-action quality values, the agent stores
the Q-value of each state-action pair in a table and uses the following equation
to update the table after each iteration with the environment:

Q(st, at) = (1− β)Q(st, at) + β[rt + γmax
at+1

Q(st+1, at+1)] , (11)

where β ∈ (0, 1] is the learning rate [18]. For more details regarding Q-learning,
readers are referred to [23,18]. One of the main limitations of Q-learning is that
it is applicable only to environments dealing with a limited number of states
and actions since storing the quality value for each pair of state-action is infeasi-
ble for high-dimensional settings. Deep learning enables reinforcement learning
to scale to high-dimensional states and action spaces [2]. Deep Q-learning [19],
introduced by Mnih et al. in 2015, uses neural networks rather than look-up ta-
bles to approximate the state-action quality values. The neural network takes a
state as its input and outputs a state-action quality value for each action in the
action space. To properly approximate the quality function, the neural network
needs to be trained for a sufficient number of iterations. At each iteration, a loss
function is used to compare the result of predicted output value Q(st, at) with
the target value rt + γmaxat+1 Q(st+1, at+1). The neural network weights get
updated with respect to the loss function. Reinforcement learning was known to
face instability and divergence issues when a neural network is used to implement
the Q function. To solve these issues, the authors in [19] have used two main
ideas, implementing the experience replay mechanism and using two separate
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neural networks to implement the Q function and the target value. In the ex-
perience replay mechanism, the agent stores its interaction experiences with the
environment at each time step, i.e., et = (st, at, rt, st+1), in a database. In each
learning step, a mini-batch of these experiences is randomly selected and used
to train the neural network. By using the experience replay, the network can
learn the new experiences without forgetting about the old ones. Moreover, to
reduce the correlation between the predicted output value and the target value,
two separate neural networks are trained to approximate the value and the tar-
get functions. The weights of the value function get updated at every iteration;
however, the parameters of the target function get updated with respect to the
value function after a pre-determined number of steps.

B Proof of Stake

The model we use to analyze PoS protocols in this paper is built upon the model
introduced in [7]. In this section, we first present a brief summary of the model
introduced in [7] and then extend the model with some new definitions and
notations.

B.1 Overview of the model introduced in [7]

In each PoS protocol, there exists a set of proposers who follow the protocol
to maintain and extend a blockchain ledger. A blockchain ledger consists of a
chain of blocks, where each block is cryptographically connected to its previ-
ous block and stores pieces of semantic information such as transactions. Time
in PoS protocols is divided into a set of slots represented by t. Each proposer,
which is denoted by P , owns one or more pairs of public and private keys and
has a local view. The local view of proposer P at time slot t contains a set of
chains that proposer P is aware of at the start of time slot t. The basic unit of
stake in PoS protocols is called a coin and is denoted by c. In the blockchain
ledger, each coin belongs to an account denoted by acct. Each account, which
may contain multiple coins, is linked to a public key and belongs to the proposer
who owns the corresponding private key of that public key. A transaction en-
ables the transfer of a coin from one account to another account. The proposers
are responsible for proposing new blocks to extend the blockchain ledger. We
use notation Proposer(B) to represent the proposer of block B. Each block B
contains three main items: a pointer to its previous (parent) block denoted by
Parent(B), a time slot tB at which the block is created, and a reference to an
account acctB that witnesses the block validity [7]. A block may contain other
items such as content that includes the transactions.

B.2 Formal model to define PoS protocols

Let ΠPoS denote a PoS protocol. We use notations CH, and Head(CH) to represent
a chain and its rightmost (most recent) block, respectively. B ∈ CH represents
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that block B is included in CH. CH1 ⊆ CH2 represents that chain CH1 is a subchain
of chain CH2. If CH1 results from pruning the k rightmost blocks of CH2, we use
the notation CH1 = Prunek(CH2).

In PoS protocols, the eligibility of proposers for proposing new blocks is as-
sessed based on the coins they own. The probability of a proposer being selected
as the block proposer is proportional to the total number of coins available in
the proposer’s accounts. At the start of each slot, a set2 of accounts is randomly
selected, whose owners are eligible to propose a new block. The random selec-
tion of accounts enhances the blockchain’s decentralization and strengthens its
resistance against censorship. Once a proposer is eligible to propose a block, the
proposer needs to follow the fork-choice rule to select the best chain available in
his local view and then propose the new block on top of the selected chain. The
fork-choice rule is essential to guarantee the blockchain’s liveness [21]. Different
PoS protocols may define different fork-choice rules, leading to distinct interpre-
tations of the term “best chain”. Here, we define the longest-chain fork-choice
rule.

Definition 2 (Longest-chain). Let chainSett represent the set of valid chains
available in the view of proposer P at time slot t. According to the longest-chain
fork-choice rule, the best chain available in chainSett is the chain whose length
is greater compared to the other chains available in ChainSett.

To precisely explain how proposers are selected, the concept of coin ownership
should be discussed. Since multiple proposers may have owned a specific coin
c throughout the history of blockchain, it is of huge importance to determine
which proposer can claim to own the coin c at time slot t. We first define the
term coin owner with respect to a specific chain.

Definition 3 (Coin owner with respect to chain CH). For a given coin c
and a chain CH, coin c belongs only to the last account it has visited in CH. If
assuming that the last visited account is linked to a public key PubK, the owner
of coin c with respect to chain CH, denoted by OwnerCH(c), is the proposer who
owns the corresponding private key of the public key PubK [7].

Additionally, we need to define the term coin owner with respect to a specific
time slot, which is a different concept from Definition 3. For a given coin c at
time slot t, we define two types of ownership: a live owner and a frozen owner.
The coin live owner at time slot t can be considered as the most recent owner
of the coin with respect to the best available chain at time slot t. Whereas the
coin frozen owner at time slot t is the owner of the coin with respect to a specific
subchain of the best available chain at time slot t.

Definition 4 (Coin live owner at slot t). Let CHbest be the best chain in the
view of proposer P at time slot t. The live owner of coin c at time slot t in the
view of proposer P is OwnerCHbest(c).

2 Based on the PoS protocol, the account set corresponding to a specific time slot can
be empty or contain one or more number of accounts.
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PoS protocols define a stake reference subchain, which is a pruned version of
the best chain, and use this subchain to specify frozen coin owners at each time
slot.

Definition 5 (Stake reference subchain). The stake reference subchain of
chain CH at time slot t, which is denoted by RCHstaket , is a subchain of CH resulting
from pruning its k rightmost blocks, i.e., RCHstaket = Prunek

(
CH

)
. Here, k can be

calculated using a deterministic function fstake
prune defined by protocol ΠPoS.

The function fstake
prune takes as input a time slot t and a chin CH and outputs

the number of blocks to be pruned. Function fstake
prune can vary in different PoS

protocols.

Definition 6 (Coin frozen owner at slot t). Let RCHstaket be the correspond-
ing stake reference subchain of the best chain in the view of proposer P at time
slot t. The frozen owner of coin c at time slot t in the view of proposer P is
OwnerRCHstake(c).

In PoS protocols, the concept of frozen coin owner is used to assess the
eligibility of proposers to propose blocks. In other words, the probability of
an account owner being selected as the block proposer is proportional to the
account’s frozen balance, where the frozen balance is calculated based on the
number of coins belonging to that account with respect to the stake reference
subchain.

Definition 7 (Coin-frozen owner mapping). Let RCHstaket be the correspond-
ing stake reference subchain of the best available chain in the view of proposer
P at time slot t. The coin-frozen owner mapping in the view of proposer P at
time slot t, which is denoted by MP

t , represents the mapping between the set of
coins available in the chain RCHstaket and their owners with respect to the chain
RCHstaket .

In addition to the stake reference subchain, PoS protocols define another
concept as the seed reference subchain. PoS protocols rely on pseudo-random
seeds extracted from the ledger to randomly select a set of proposers who are
eligible to propose new blocks.

Definition 8 (Seed reference subchain). The seed reference subchain of
chain CH at time slot t, which is denoted by RCHseedt , is a subchain of CH resulting
from pruning its k′ rightmost blocks, i.e., RCHseedt = Prunek′

(
CH

)
. Here, k′ can

be calculated using a deterministic function fseed
prune defined by protocol ΠPoS.

The function fseed
prune takes as input a time slot t and a chain CH and outputs the

number of blocks to be pruned. The seed reference subchain is used to extract a
random seed for time slot t.

Definition 9 (Time slot seed). Let CHbest and RCHseedt be the best chain and
its corresponding seed reference subchain in the view of proposer P at time slot
t. The seed of time slot t in the view of proposer P , which is denoted by sPt ,
can be calculated using a deterministic function frandom defined by protocol ΠPoS,
which takes the chain RCHseedt as its input and extracts a pseudo-random number
as its output.
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For each time slot in PoS protocols, a set of accounts is selected, whose owners
are eligible to propose a block at that time slot.

Definition 10 (Eligible account set). Let sPt and MP
t be the corresponding

seed and the coin-frozen owner mapping of time slot t in the view of proposer
P . The eligible account set of time slot t in the view of proposer P , denoted by
acctSetPt , represents the set of accounts whose owners are eligible to propose a
block at time slot t with respect to the view of proposer P . The eligible coin set
acctSetPt can be obtained using the deterministic function facctSet defined by
protocol ΠPoS, which takes time slot seed sPt and the coin-frozen owner mapping
MP

t as its inputs and outputs a randomly selected set of accounts.

Based on how the eligible account set is defined, PoS protocols can be divided
into two groups: the single-proposer model and the multi-proposer model.

Definition 11. In a general categorization, PoS protocols are divided into one
of the following models:

– Single-proposer model: for each time slot t, the eligible account set exactly
contains a single account.

– Multi-proposer Model: for each time slot t, the eligible account set can be
empty or contain one or more accounts.

One can consider the process of determining the eligible account set as an
account selection lottery held at each slot. The randomness of the time slot
seed results in a different lottery output for each slot. If in a longest-chain PoS
protocol, the time slot seed is extracted from the best available chain rather
than the seed reference subchain, a malicious proposer would be able to run as
many account selection lotteries as the number of blocks in the block tree at each
slot. This would increase the malicious proposer’s chance to build a longer chain
compared to the honest chain. To understand how the security of longest-chain
PoS protocols is affected by the number of pruned blocks of the seed reference
subchain, i.e., k′, readers can refer to [3]. There exists an attack in the PoS
blockchain called the coin-grinding attack that can be applied to the protocols
where RCHseedt ⊆ RCHstaket . In this attack, since a malicious proposer can get aware
of the time slot seed earlier than the coin-frozen owner mapping of that time
slot, the malicious proposer can transfer coins between his accounts to increase
his winning chance in the account selection lottery. To mitigate the coin-grinding
attack, the PoS protocol should be designed in a way that RCHstaket ⊂ RCHseedt .

Each PoS protocol ΠPoS can be defined using two deterministic functions: a
validating function Validate(·) and a proposing function Propose(·). Function
Validate(·) verifies the validity of blocks, and function Propose(·) is used to
propose new blocks and extend the blockchain. In the following, we will define
these two functions. Note that our definition of validating function is almost
the same as the definition presented in [7] with the difference that we use the
concept of frozen coin owner to specify proposers.

Definition 12 (Validating function). Function Validate(·) takes a block as
input and determines whether the block is valid or not. Note that each block
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B ∈ CH includes a pointer to its parent Parent(B), a time slot tB at which the
block is proposed, a reference to an account acctB, and a signature 3 σB proving
the ownership over the account acctB. Block B is valid at time slot t from the
point of view of proposer P if and only if:

– Parent(B) is valid.

– Assume CH⌈B represent a subchain of CH resulting from pruning its rightmost
blocks up to including block B. Assume further that acctSettB be the corre-
sponding eligible account set of time slot tB with respect to the chain CH⌈B

4. Then

acctB ∈ acctSettB (12)

and

σB is a valid signature. (13)

– tB ∈ (tParent(B), t]

Definition 13 (Proposing function). The function Propose(·) takes as input
a chain CH, a time slot t, an account acct, and a private key PvtK correspond-
ing to the account acct. For any account acct at anytime t, if there exists a
valid block B, where Parent(B) = Head(CH), tB = t, and acctB = acct, then
Propose(CH, t, acct, PvtK) = B; otherwise, Propose(CH, t, acct, PvtK) = ⊥.

If in a PoS protocol, the seed and the coin-frozen owner mapping of a time
slot are known prior to the start of the time slot, the proposers can specify the
eligible account set of that time slot before its start. This phenomenon is called
predictability in PoS protocols.

Definition 14 (D-semi predictable). A PoS protocol is called D-semi pre-
dictable if at any given time slot t, any proposer P can predict whether his own
accounts belong to acctSetPt+D′ for all 0 < D′ ≤ D.

Definition 15 (D-full predictable). A PoS protocol is called D-full predictable,
if at any given time slot t, any proposer P can predict acctSetPt+D′ for all
0 < D′ ≤ D.

To (partially) predict the eligible account set at time slot t, the seed and
the coin-frozen owner mapping of time slot t should be known to the pro-
posers. Therefore, having a D-semi/full predictable PoS protocol indicates that
RCHseedt+D′ ⊆ CHbestt and RCHstaket+D′ ⊆ CHbestt , for all time slot t and for all 0 < D′ ≤ D.

3 The signature should be applied to a piece of information related to the current
block.

4 CH⌈B can be considered as the best available chain in the view of Proposer(B) at
time slot tB .
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B.3 Supplementary Definitions

The following definitions are specific to the single-proposer model.

Definition 16 (Proposing sequence). For two time slots t1 and t2, where
t1 ≤ t2, the proposing sequence corresponding to the time-slot interval T =
[t1, t2], which is denoted by Seq(T ), is an ordered list of blocks that specifies the
proposer of each block proposed during the interval [t1, t2]. The blocks in Seq are
ordered by the time slot at which they are proposed. BH

i (BA
i ) indicates that the

ith block in the sequence Seq is an honest (adversarial) block.

Note that not all the blocks of Seq are guaranteed to be included in the main
chain since some of them may get orphaned. In a full-predictable protocol, the
attacker can predict the elements of the proposing sequence S in advance.

Definition 17 (Honest (adversarial) proposing subsequence). Each propos-
ing sequence can be partitioned into two subsequences known as the honest and
the adversarial proposing subsequences. The honest (adversarial) proposing sub-
sequence corresponding to the interval T = [t1, t2], which is denoted by SeqH(T )
(SeqA(T )), is an ordered list of honest (adversarial) blocks proposed during the
interval [t1, t2]. The length of a proposing subsequence is equal to the number of
blocks included in that subsequence.

For instance, let {BA
1 , BA

2 , BH
3 , BA

4 , BH
5 } be the proposing sequence within

the time-slot interval [1, 5]. In this case, {BH
3 , BH

5 } and {BA
1 , BA

2 , BA
4 } repre-

sent the honest and adversarial proposing subsequences within interval [1, 5],
respectively.

Definition 18 (Chain race). For two slots t1 and t2, where t1 ≤ t2, the chain
race corresponding to the time-slot interval [t1, t2] is the race between the ad-
versarial private chain and the honest public chain that satisfies the following
properties:

– Before t1, both the adversarial and honest chains share the same subchain
denoted as C⌈t1 .

– Adversarial private chain is made up of the sequence C⌈t1 ||{BA
i , · · · , BA

j },
where {BA

i , · · · , BA
j } is the adversarial proposing subsequence corresponding

to the interval [t1, t2].

– The honest public chain is made up of the sequence C⌈B
A
i ||{BH

i′ , · · · , BH
j′},

where {BH
i′ , · · · , BH

j′} is the honest proposing subsequence corresponding to
the interval [t1, t2].

If the length of the adversarial proposing subsequence within the interval
[t1, t2] is greater than the length of its corresponding honest proposing subse-
quence, the attacker can win the chain race corresponding to the interval [t1, t2].
Winning the chain race within the interval [t1, t2] indicates that if the attacker
forks the main chain at time slot t1 (creates a fork on top of the last block
proposed before t1), the adversarial chain within interval [t1, t2] can orphan the
honest proposers’ consecutive blocks proposed within the same interval.
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Definition 19 (Longest dominant chain). The longest dominant chain start-
ing at a time slot t1, which is denoted by LDC(t1), is the chain made up of the
adversarial proposing subsequence corresponding to the interval [t1, t2], where the
interval [t1, t2] satisfies the following properties:

– t2 ≥ t1.
– The attacker wins the chain race corresponding to the interval [t1, t2].
– There is no time slot such as t3, where t3 > t2 and the attacker wins the

chain race corresponding to the interval [t1, t3].

If there is no such a chain starting at time slot t1, LDC(t1) is called to be empty
and is denoted by LDC(t1) = ∅.

We denote by LLDC(t) the length of the longest dominant chain starting at t.
If LDC(t) is empty, then LLDC(t) = 0. Note that if the attacker is the proposer of
a block BA

t at time slot t (slot t is adversarial), then LDC(t) cannot be empty,
and min(LLDC(t)) = 1. The minimum length occurs when LDC(t) comprises only
BA

t .

C On profitability of the selfish proposing attack

In this section, we define the terms “block ratio”, “relative revenue”, and “time-
averaged profit” and discuss the effect of selfish proposing on these terms in
LC-PoS protocols. We first define the honest strategy in LC-PoS protocols.

Definition 20 (Honest strategy). A proposer always chooses to propose his
new block on top of the longest chain available in his view. If the proposer man-
ages to propose a new block, he immediately publishes the block to all the other
proposers.

We assume that block proposers are divided into two groups: (1) honest pro-
posers, denoted by H, who follow the honest strategy, and (2) the adversarial
proposers who are under the control of an attacker, denoted by A, and may devi-
ate from the honest strategy to gain a higher profit. The blocks that are proposed
by honest proposers (the attacker) are called honest (adversarial) blocks.

Definition 21 (Communication capability). We denote by η the communi-
cation capability of attacker A. This means, in the case of a block race, where two
blocks are published simultaneously by attacker A and an honest proposer, the
fraction of total honest proposers that receive the block proposed by the attacker
first is equal to η. The honest proposers who receive the block proposed by the
attacker first propose their new block on top of the attacker’s block.

C.1 Block ratio

The term “bock ratio” is defined as follows:
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Definition 22 (Block ratio). The block ratio of attacker A who follows strat-
egy π is defined as follows:

BlkRatioA(π) = lim
t→∞

NBA
t

NBA
t +NBH

t

= lim
t→∞

NBA
t

NBT
t

, (14)

where NBA
t , NBH

t , and NBT
t denote the number of adversarial blocks, the num-

ber of honest blocks, and the total number of blocks in the main chain up to
including time slot t, respectively.

It is obvious that selfish proposing can result in a change in the attacker’s
block ratio since some of the honest and adversarial blocks may get orphaned, i.e.,
remain out of the main chain. However, selfish proposing cannot always result in
an increase in the attacker’s block ratio, especially for the attackers who own a
small amount of stake share. Depending on the underlying LC-PoS protocol and
its detailed specifications of the longest-chain rule, the attacker needs to own a
minimum threshold of stake share to make his block ratio under selfish proposing
surpass that of honest proposing. To this end, we first discuss the specifications
of the longest-chain rule and then define the profitable threshold.

In the longest-chain protocols, proposers always propose a new block on top
of the longest chain. However, in the case when there are multiple chains with the
same height, different longest-chain protocols may apply different choice rules to
the same-height forks. For instance, the winning chain can be selected randomly,
be the chain with a lower VRF output, or be the chain that the proposer has
received first. In this paper, we assume when there exist multiple chains with
the same height, the proposers choose the chain that is received in their local
view earlier than the other chains.

Definition 23 (Profitable stake (mining) share threshold). For each pro-
tocol Π, the minimum amount of stake (mining) share for an attacker with com-
munication capability η that satisfies

BlkRatioA(π
selfish) ≥ BlkRatioA(π

honest)

is called the profitable stake (mining) share threshold and is denoted by αΠ(η).

In this paper, we calculate the profitable stake share threshold for different
LC-PoS protocols.

C.2 Relative revenue

In PoS protocols, proposers who actively participate in blockchain extension
are incentivized with a reward. This reward, which is in the form of coins, can
be derived from multiple sources; however, we will focus only on two of these
sources: (1) the transaction fee reward, which is a number of coins paid by the
transaction owner to proposers for the inclusion of his transaction in a block,
and (2) the incentivizing reward, which is a number of coins paid by the protocol
to proposers for generating new blocks.
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Definition 24 (Relative revenue). The relative revenue of attacker A who
follows strategy π is defined as follows:

RelRevenueA(π) = lim
T→∞

∑T
t=1 NCA

t∑T
t=1

(
NCA

t +NCH
t

) , (15)

where NCA
t and NCH

t respectively denote the number of reward coins5 gained
by the attacker and the honest proposers at time slot t6.

Knowing that a proposer who owns the profitable stake share threshold can
increase his block ratio by applying the selfish proposing attack, the first question
that needs to be addressed is whether selfish proposing can also lead to an
increase in the attacker’s relative revenue or not. The answer depends on the
reward mechanism of the underlying LC-PoS protocol. For instance, in the first
version of Ouroboros [17], i.e., the underlying protocol of Cardano, the authors
have claimed that the introduced protocol is resistant to the selfish proposing
attack as its reward mechanism is designed in a way that the attacker has no
incentive to deviate from the protocol. In the first version of Ouroboros, the
epoch reward is distributed among the proposers proportional to their stake
shares rather than their block ratio in the epoch. In other words, the reward
mechanism is not sensitive to whether a slot leader (proposer) has issued a block
or not in its assigned time slot. Therefore, although selfish proposing can result
in a change in the attacker’s block ratio, it cannot affect the reward ratio, i.e.,
relative revenue, the attacker receives. However, this kind of reward mechanism
in which the reward is distributed according to the proposers’ stake share rather
than their effort on extending the chain can lead to an unfair reward distribution.
An offline proposer can collect a higher amount of reward compared to an active
proposer just because of owning a greater stake share. To bring fairness back
to the implemented version of Cardano, the epoch reward assigned to a stake
pool (proposer), which is calculated proportional to its stake share, is adjusted
by the pool performance. The pool performance is defined as the block ratio
divided by the stake ratio. Therefore, in the implemented version of Cardano,
the relative revenue of a proposer is positively correlated with his block ratio,
and selfish proposing can still threaten blockchain progress. As can be seen in
the longest-chain blockchain protocols, such as Bitcoin, Cardano, etc., it seems
that to fairly incentivize the proposers to participate in the blockchain extension,
the reward mechanism should be designed in a way that the relative revenue of
a proposer is positively correlated with his block ratio. And whenever there is a
positive correlation between the relative revenue and the block ratio, the selfish
proposing attack can result in an increase in the attacker’s relative revenue.

5 The coins a block proposer receives include the transaction fees as well as possibly
a reward for his contribution in extending the blockchain.

6 Note that based on the reward mechanism used in a protocol, a block proposer at
slot t may receive coin(s) exactly in the same slot t or in a slot later than t. In this
definition, we consider both of these scenarios as the proposer’s coin(s) in slot t.
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Long-range and short-range selfish proposing In PoS protocols, since the
essence of both block reward and stake is the same thing, namely coin, the reward
that a proposer collects can get added to his stake. When all the proposers follow
the honest strategy, the relative revenue that a proposer collects is equal to his
stake ratio. Therefore, if all the proposers add the collected reward to their stake,
the proposers’ stake ratios remain unchanged. However, if a malicious proposer
starts the selfish proposing attack, his relative revenue becomes greater than
his stake ratio. Conversely, honest proposers’ relative revenue falls below their
stake share. Therefore, after adding the collected reward to their stake, the
selfish proposer’s stake ratio will increase, while the stake ratio of others will
decrease. This implies that by applying a long-range selfish proposing attack
in LC-PoS protocols, the stake share of the selfish proposer will gradually grow
and eventually exceed more than one-half. Therefore, we can conclude that in an
LC-PoS protocol ΠLC-PoS, a selfish proposer A who owns stake share αA < 51%
and communication capability η, can perform 51% attack at a point in the future
provided that: i) proposers are rewarded proportional to the number of blocks
they have contributed to the main chain, ii) protocol ΠLC-PoS runs infinitely, and

iii) αA > αΠLC-PoS

η .
To assess the selfish proposer’s relative revenue in a short period of time, we

define the term “short-range relative revenue”.

Definition 25 (Short-range relative revenue). Let BRef
1 and BRef

2 be two
consecutive stake reference blocks in the main chain. Assume attacker A follows
strategy π during the interval T =

(
t(B

Ref
1 ), t(B

Ref
2 )

]
. The short-term relative

revenue of attacker A in the interval T is defined as follows:

RelRevenueA
(
π, T

)
=

∑
t∈T NCA

t∑
t∈T

(
NCA

t +NCH
t

) . (16)

In this paper, we will show that with the same amount of (stake or mining)
share and communication capability, selfish proposing in LC-PoS protocols can
result in a higher short-term relative revenue compared to selfish mining in PoW
protocols. If assuming all the blocks receive the same amount of transaction fees
and the incentivizing reward is distributed exactly proportional to the proposers’
block ratio, a proposer’s relative revenue will be equal to his block ratio.

C.3 Time-averaged profit

We can assess the profitability of selfish proposing using both concepts of block
ratio and time-averaged profit. We first define the time-averaged profit. Note
that in the following definition, we ignore the cost of block production as it is
negligible in PoS protocols compared to PoW.

Definition 26 (Time-averaged profit). The time-averaged profit (profit per
time slot) of attacker A who follows strategy π is defined as follows:

ProfitA(π) = lim
T→∞

∑T
t=1 NCA

t

T
, (17)
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where NCS
t is the number of coins the attacker received at time slot t.

Most of the papers related to PoW protocols have used the concept of relative
revenue to analyze selfish mining profitability. However, the authors in papers
such as [16] have argued that time-averaged profit is a better benchmark com-
pared to the relative revenue to assess profitability. Here, we first briefly explain
why the relative revenue does not reflect the whole story behind the profitability
of selfish proposing in LC-PoS protocols.

Let BRef
1 and BRef

2 be two consecutive stake reference blocks in the main chain
and the time slot interval T is defined as T =

(
t(BRef

1 ), t(BRef
2 )

]
. Assume attacker

A has followed the honest strategy and owned stake share α > αΠLC-PoS

η before and
including the reference block BRef

1 and decides to follow selfish strategy πselfish

in the interval T . Due to the selfish proposing attack, there is an increase in the
expected value of relative revenue during the interval T , i.e.,

E
[
RelRevenueshortA

(
πselfish, T

)]
> α . (18)

However, since the amount of A’s stake share is the same before and during
the interval T , the attacker’s chance of winning the proposer selection lottery is
the same before and after the start of the attack. This implies that the expected
number of blocks added to the main chain by attacker A in the interval T is equal
to or even less7 than the expected number of blocks attacker A contributed to
the main chain during the same period of time slots before starting the attack.
Therefore, an increase in the relative revenue after starting the selfish proposing
attack does not necessarily reflects an increase in the selfish proposer’s time-
averaged profit. Using time-averaged profit, we can assess the amount of reward
a selfish proposer receives regardless of the honest proposers’ collected reward.

Difference in time-averaged profit between LC-PoS and PoW: In PoW
protocols, there exists a difficulty adjustment mechanism (DAM) that controls
transaction throughput by modifying the mining difficulty (mining target). It
is shown that before a DAM, the time-averaged profit of selfish mining cannot
surpass the time-averaged profit of honest mining in PoW protocols. However,
once the difficulty level of mining gets adjusted, the mining puzzle gets easier
and the selfish miner can mine a new block in a shorter period of time. Therefore,
by applying DAM, the selfish miner’s time-averaged profit increases. This shows
that a selfish miner in PoW protocols should maintain the attack for a couple
of difficulty periods to increase his time-averaged profit and compensate for his
loss at the start of the attack.

In LC-PoS protocols, the stake share of a selfish proposer will gradually grow
during the selfish proposing attack, which can guarantee an increase in the long-
term time-averaged profit of the attacker. However, to assess the short-term
time-averaged profit of selfish proposing in LC-PoS protocols, we should take
into account the rewarding mechanism used in the LC-PoS protocol.

7 Note that some of the adversarial blocks may get orphaned after starting the selfish
proposing attack.
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Transaction reward per slot: If assuming that the total amount of trans-
action fee a block can receive is the same before and after the attack, the at-
tacker’s transaction reward per slot will not increase after the attack because
the attacker’s stake share, and consequently, his block generation rate have not
changed. However, in a real-world scenario, the attacker can utilize selfish propos-
ing to increase his transaction reward per slot. As a result of a selfish proposing
attack, the block generation rate decreases, resulting in a reduction in trans-
action throughput. In such a competitive situation, a transaction owner who
wants his transaction to get included in a block should increase the transaction
fee. Therefore, there will be a rise in the amount of transaction fees, and accord-
ingly, the attacker’s transaction reward per slot will increase. Moreover, when
a selfish proposer manages to orphan an honest block, the selfish proposer can
steal the valuable or MEV transactions included in the honest block and put
them in his own block to further enhance his time-averaged profit.

Incentivizing reward per slot: We consider two scenarios for the distribution
of incentivizing rewards. In the first scenario, a block proposer who generates a
new block receives an incentivizing reward through a transaction included in the
block. In this case, the selfish proposing attack cannot increase the attacker’s
incentivizing reward per slot. In the second scenario, at the end of each epoch,
which is a predetermined set of time slots, the incentivizing reward is distributed
among proposers proportional to the number of blocks they have contributed to
the main chain during the epoch. In this scenario, if the epoch incentivizing
reward is fixed, a selfish proposer can increase his incentivizing reward per slot
immediately after the start of the attack.

Trade off between transaction throughput and selfish proposer’s time-
averaged profit: Once an attacker starts the selfish proposing attack in an
LC-PoS blockchain, due to orphan occurrence, the average number of blocks per
slot will decrease, which results in a decrease in the transaction throughput. As
already mentioned, in PoW protocols, there is a difficulty adjustment mecha-
nism that aims to balance the transaction throughput by modifying the mining
difficulty. Although in PoS protocols, there is no DAM, there exist some prede-
termined parameters such as slot duration and the average number of blocks per
slot that affect the transaction throughput. In most of the PoS protocols, these
parameters are determined prior to the start of the protocol; however, blockchain
proposers or designers can decide to modify these parameters to balance the
transaction throughput in the occurrence of selfish proposing. The transaction
throughput can get balanced at the cost of an increase in the average number
of blocks per slot, which results in an increase in the selfish proposer’s time-
averaged profit.
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Table 2: States and their corresponding sequences
State Proposing sequence

S0,0 -
S1,0 {BA

1 }
S1,1 {BA

1 , BH
2 }

S2,0 {BA
1 , BA

2 }
S1,2 {BA

1 , BH
2 , BH

3 }

D Selfish proposing attack in LC-PoS protocols with
perfect randomness

D.1 Strategy πS-PR

Strategy πS-PR is suitable for LC-PoS protocols with perfect randomness. We
assume that the LC-PoS environment is compatible with the single-proposer
model. Let α and η denote the attacker’s stake share and communication capa-
bility, respectively. Let BP

t denote the block proposed by proposer P ∈ {A,H}
at time slot t. For the sake of simplicity, the time slot at which the latest com-
mon block between the honest and adversarial chains is proposed is normalized
to be 0. This normalization implies that a fork always starts at time slot t = 1.
In our model, each state corresponds to a specific proposing sequence, where the
concept of proposing sequence is introduced in Definition 16. By following the
strategy πS-PR, the system transitions among five main states, each of them rep-
resented by SlA,lH , where lA (lH) denotes the length of the adversarial (honest)
fork. The corresponding proposing sequences of these 5 states are represented in
Table 2. The selfish proposing strategy πS-PR is presented in Table 3. action0,
action1, and action2, which are mentioned in Table 3, are defined as follows:

action0: The action corresponds to state S0,0, where lH = lA = 0. The
action represents that the attacker waits until a new block is proposed. If the
new block is an honest block, the attacker adopts the honest chain and remains

Table 3: Strategy πS-PR

current state action next state probability reward

S0,0 1− α RA = 0, RH = 1

S1,0 α RA = 0, RH = 0

S1,1 1− α RA = 0, RH = 0

S2,0 α RA = 0, RH = 0

S1,2 (1− η)(1− α) RA = 0, RH = 0

S0,0 η(1− α) RA = 1, RH = 1

S0,0 α RA = 2, RH = 0

S2,0 action1 S0,0 1 RA = R1, RH = 0

S1,1 1− α RA = 0, RH = R2

S0,0 α RA = R3, RH = R4

S0,0 action0

S1,0 wait

S1,1 match

S1,2 action2
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in the same state. If the new block is an adversarial block, the attacker moves
to state S1,0.

action1: The action corresponds to state S2,0, where lH = lA−2. The action
represents that the attacker waits until the point where his lead reduces to 1,
i.e., lH = lA − 1, and then publishes the whole adversarial fork to override the
honest fork.

action2: The action corresponds to state S1,2, the sequence of which is
{BA

1 , BH
2 , BH

3 }. Let L denote the number of consecutive honest blocks proposed
after block BH

3 and before the next adversarial block, where L ≥ 0. This implies
that the first adversarial block after visiting state S1,2 is proposed at time slot
t = 4 + L and can be represented by BA

4+L.

1. In the case that the block proposed at time slot t = 5+L is an honest block
denoted by BH

5+L, the attacker gives up on block BA
1 and generates a new

fork (jump) on top of honest block BH
3+L. In this case, the new state is S1,1,

where the honest fork only contains block BH
5+L, and the adversarial fork

only contains block BA
4+L.

2. In the case that the block proposed at time slot t = 5 + L is an adversarial
block denoted by BA

5+L, the attacker waits until one of the following cases
happens:
(a) If at a future time slot, the condition lA = lH + 1 holds, the attacker

immediately publishes the whole adversarial fork to override the honest
fork. In this case, the new state is S0,0.

(b) If at a future time slot, the condition lA = lH − L holds, the attacker
gives up on block BA

1 and generates a new fork (jump) on top of honest
block BH

3+L, where the new adversarial (honest) fork contains all the
adversarial (honest) blocks proposed after time slot t = 3+L. By doing
so, the new adversarial fork has a one-block lead over the new honest
fork. Then, the attacker immediately publishes the new adversarial fork
to override the new honest fork. In this case, the final state is S0,0.

Note that states S2,0 and S1,2 contain transitions to hidden states that are not
included in the five main states. The set of states and possible transitions are
depicted in Figure 5.

D.2 Block ratio of strategy πS-PR

To obtain the block ratio achieved by following strategy πS-PR, rewards R1, R2,
R3, and R4, which are mentioned in Table 3, need to b calculated. To calculate
the rewards, we use random walking on a (x, y)-grid. Throughout this paper,
a two-dimensional (x, y)-grid is used to represent the chain race between the
honest and adversarial forks. Each proposing sequence can be represented by a
path on this grid, which is referred to as the “block path”. Whenever the time
slot is honest, i.e., the block proposer of the time slot is honest, the block path
moves one step up. Whenever the time slot is adversarial, i.e., the block proposer
of the time slot is the attacker, the block path moves one step to the right.
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Fig. 5: State representation of strategy πS-PR

According to Lemma D.2. presented in [13], the adversarial reward of follow-
ing action1 at state S2,0, i.e., R1, can be obtained as follows:

R1 = 2 +
α

1− 2α
. (19)

Lemma 1. The average honest reward resulting from the transition from state
S1,2 to state S1,1 under action2 (Scenario 1 occurrence) can be obtained as
follows:

RH = R2 =

∑∞
i=0 (2 + i)α(1− α)i+1

Pr(Scenario 1)
= 2 +

1− α

α
. (20)

Proof. We use a two-dimensional (x, y)-grid to represent the chain race as de-
picted in Figure 6. Being at state S1,2 implies that the block path started at
point (0, 0) has reached the point (1, 2). Scenario 1 is equivalent to the event
that once the block path starting at point (1, 2) reaches the line x = 2 at one of
the points (2, 2+ i) for i ≥ 0, it immediately moves one step upward to reach the
point (2, 3+ i). The probability that the block path starting at (1, 2) reaches the
line x = 2 for the first time at point (2, 2+i) and then moves to the point (2, 3+i)
is equal to α(1− α)i+1. Therefore, the probability of Scenario 1 occurrence can
be obtained as follows:

Pr(Scenario 1) =

∞∑
i=0

α(1− α)i+1 = 1− α . (21)

The adversarial reward of Scenario 1 is equal to 0. If assuming L denotes the
number of consecutive honest blocks proposed after being at state S1,2 and be-
fore the next adversarial block is proposed, the honest reward resulting from
Scenario 1 is equal to 2 + L. Therefore, the average honest reward under Sce-
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Fig. 6: Block path in Scenario 1

nario 1 can be obtained as follows:

R2 =

∑∞
i=0 (2 + i)α(1− α)i+1

Pr(Scenario 1)
= 2 +

1− α

α
. (22)

To find R3 and R4, we first present a couple of lemmas.

Lemma 2. Let Pr denote the probability of the event that the block path starting
at point (0, 0) reaches the line y = x − r for r ≥ 1 at least once. We have

Pr =
(

α
1−α

)r

.

Proof. We prove the lemma using induction. First, we find the probability that
the block path reaches the line y = x − 1 at least once, i.e., P1. Assume the
block path reaches the line y = x − 1 for the first time at point (s + 1, s). To
achieve this, the block path should reach point (s, s) without passing below the
line y = x and then move one step to the right. The number of paths from point
(0, 0) to point (s, s) without passing below the line y = x is equal to the sth

Catalan number denoted by cs. Therefore, the probability of reaching the line
y = x− 1 for the first time at point (s+ 1, s) is equal to csα

s+1(1− α)s. Thus,
the probability of reaching the line y = x− 1 can be calculated as follows:

P1 = α

∞∑
s=0

cs
(
α(1− α)

)s
=

α

1− α
. (23)

The formula for solving the series above is presented in [8]. Next, we find the
probability that the block path reaches the line y = x − 2 at least once, i.e.,
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Fig. 7: Representation of probability Pk

P2. Assume the block path reaches the line y = x− 2 for the first time at point
(s + 2, s). To achieve this, the block path should reach point (s + 1, s) without
passing below the line y = x − 1 and then move one step to the right. The
number of paths from point (0, 0) to point (s+ 1, s) without passing below the
line y = x − 1 is equal to cs+1. Therefore, the probability of reaching the line
y = x−2 for the first time at point (s+2, s) is equal to cs+1α

s+2(1−α)s. Thus,
the probability of reaching the line y = x− 2 can be calculated as follows:

P2 = α2
∞∑
s=0

cs+1

(
α(1− α)

)s
=

α

1− α

∞∑
s=1

cs
(
α(1− α)

)s
=

( α

1− α

)2

. (24)

As the next step, assume Pk−1 =
(

α
1−α

)k−1

and Pk =
(

α
1−α

)k

for k ≥ 2. We

need to prove Pk+1 =
(

α
1−α

)k+1

. Considering the grid depicted in Figure 7, we

obtain:

Pk = αPk−1 + (1− α)Pk+1 =⇒ Pk+1 =
Pk − αPk−1

1− α
=

( α

1− α

)k+1

. (25)

Lemma 3. Let Pr denote the probability of the event that the block path starting

at (0, 0) never reaches the line y = x− r for r ≥ 1. We have Pr = 1−
(

α
1−α

)r

.

Proof. The probability of the complementary event of never reaching the line
y = x− r, i.e., Pr, is calculated in Lemma 2. Therefore, we have Pr = 1−Pr.
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Lemma 4. Let Gr
s for r ≥ 1 denote the number of paths in a (x, y)-grid from

start point (0, 0) to the point (s, s) without reaching the lines y = x + 1 and
y = x− r (define Gr

0 to be equal to 1). We have:

∞∑
s=0

Gr
s

(
α(1− α)

)s
=

( 1

1− α

) 1− ( α
1−α )

r

1− ( α
1−α )

r+1
,

∞∑
s=0

sGr
s

(
α(1− α)

)s
=

α
(
1− ( α

1−α )
r
)
− r( α

1−α )
r

(1− α)(1− 2α)
(
1− ( α

1−α )
r+1

)
+

(r + 1)α
(
1− ( α

1−α )
r
)
( α
1−α )

r

(1− α)2(1− 2α)
(
1− ( α

1−α )
r+1

)2 .

(26)

Proof. Assume Event1(s) is defined as follows: (i) the block path starting at (0, 0)
reaches the point (s, s), and (ii) before reaching the point (s, s), the block path
never passes the line y = x and never reaches the line y = x−r. According to the
definition of Gr

s, the probability of Event1(s) is equal to Gr
sα

s(1− α)s. Assume
Event2(s) is defined as follows: (i) the block path starting at (0, 0) passes the line
y = x for the first time at point (s, s), and (ii) before reaching the point (s, s),
the block path never reaches the line y = x− r. Event2(s) happens if, after the
occurrence of Event1(s) and reaching the point (s, s), the block path immediately
moves one step up to pass the line y = x and reach the point (s, s+1). Therefore,
the probability of Event2(s) is equal to Gr

sα
s(1 − α)s+1. Assume Event3(s) is

defined as follows: (i) the block path starting at (0, 0) passes the line y = x for the
first time at point (s, s), and (ii) the block path never reaches the line y = x− r
both before and after reaching the point (s, s). Event3(s) happens if, after the
occurrence of Event2(s) and reaching the point (s, s+ 1), the block path never
reaches the line y = x − r. The event that the block path starting at (s, s + 1)
never reaches the line y = x − r is equivalent to the event that the block path
starting at (0, 0) never reaches the line y = x− (r+1), the probability of which
is equal to 1 − ( α

1−α )
r+1 according to Lemma 3. Therefore, the probability of

Event3(s) is equal to Gr
sα

s(1−α)s+1
(
1− ( α

1−α )
r+1

)
. Note that since 1−α > α,

a block path will eventually pass the line y = x. Therefore, the sum of Event3(s)
probabilities over all values of s is equal to the probability that the block path
never reaches the line y = x− r, the probability of which is equal to 1− ( α

1−α )
r

according to Lemma 3. As a result,

∞∑
s=0

Gr
sα

s(1− α)s+1
(
1− (

α

1− α
)r+1

)
= 1− (

α

1− α
)r

⇒
∞∑
s=0

Gr
s

(
α(1− α)

)s
=

( 1

1− α

) 1− ( α
1−α )

r

1− ( α
1−α )

r+1
.

(27)
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To prove the second equality in Lemma 4, we use the variable substitution α(1−
α) = x in the equality above. We have:

∞∑
s=0

Gr
sx

s =
( 2

1 +
√
1− 4x

) 1− ( 1−
√
1−4x

1+
√
1−4x

)r

1− ( 1−
√
1−4x

1+
√
1−4x

)r+1
. (28)

By taking the derivative from both sides, then multiplying both sides to x, and
finally substituting x = α(1 − α), the second equality in Lemma 13 can be
obtained.

Lemma 5. The probability that the block path starting at (0, 0) reaches the line

y = x+ 1 before reaching the line y = x− r for r ≥ 1 is equal to
1−( α

1−α )r

1−( α
1−α )r+1 .

Proof. The event that the block path reaches the line y = x + 1 for the first
time at point (s, s+1) without having reached the line y = x− r is the same as
Event2(s) introduced in proof of Lemma 4, the probability of which is equal to
Gr

sα
r(1 − α)r+1. The probability that the block path starting at (0, 0) reaches

the line y = x+ 1 before reaching the line y = x− r is equal to the sum of the
Event2(s) probabilities over all values of s, which can be obtained as follows:

∞∑
s=0

Gr
sα

s(1− α)s+1 =
1− ( α

1−α )
r

1− ( α
1−α )

r+1
. (29)

Lemma 6. The probability that the block path starting at (0, 0) reaches the line

y = x− r for r ≥ 1 before reaching the line y = x+1 is equal to 1− 1−( α
1−α )r

1−( α
1−α )r+1 .

Proof. The event that the block path starting at (0, 0) reaches the line y = x−r
for r ≥ 1 before reaching the line y = x + 1 is the complement of the event
introduced in Lemma 5.

Lemma 7. Let F r
s for r ≥ 1 denote the number of paths in a (x, y)-grid from

start point (0, 0) to the point (s+ r − 1, s) without reaching the lines y = x+ 1
and y = x− r (define F 1

0 to be equal to 1). We have:

∞∑
s=0

F r
s

(
α(1− α)

)s
=

( 1

αr

)(
1−

1− ( α
1−α )

r

1− ( α
1−α )

r+1

)
,

∞∑
s=0

sF r
s

(
α(1− α)

)s
=

α(r + 1)(1 + ( α
1−α )

r)

(1− α)r+1(1− ( α
1−α )

r+1)2
−

2α

(1− 2α)(1− α)r(1− ( α
1−α )

r+1)
.

(30)

Proof. Assume Event1(s) is defined as follows: (i) the block path starting at (0, 0)
reaches the point (s+ r − 1, s), and (ii) before reaching the point (s+ r − 1, s),
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the block path never reaches the lines y = x + 1 and y = x − r. According to
the definition of F r

s , the probability of Event1(s) is equal to F r
s α

s+r−1(1− α)s.
Assume Event2(s) is defined as follows: (i) the block path starting at (0, 0)
reaches the line y = x − r for the first time at point (s + r, s), and (ii) before
reaching the point (s + r, s), the block path never reaches the line y = x + 1.
Event2(s) happens if, after the occurrence of Event1(s) and reaching the point
(s + r − 1, s), the block path immediately moves one step to the right to pass
to reach the point (s + r, s), which is located in the line y = x − r. Therefore,
the probability of Event2(s) is equal to F r

s α
s+r(1− α)s. The sum of Event2(s)

probabilities over all values of s is equal to the probability that the block path
starting at (0, 0) reaches the line y = x − r before reaching the line y = x + 1,
the probability of which is calculated in Lemma 6. Therefore, we have:

∞∑
s=0

F r
s α

s+r(1− α)s = 1−
1− ( α

1−α )
r

1− ( α
1−α )

r+1
, (31)

which results in the first equality in Lemma 7. To prove the second equality in
Lemma 7, we use the variable substitution α(1 − α) = x in the equality above.
We have:

∞∑
s=0

F r
s x

s =
( 2

1−
√
1− 4x

)r(
1−

1− ( 1−
√
1−4x

1+
√
1−4x

)r

1− ( 1−
√
1−4x

1+
√
1−4x

)r+1

)
. (32)

By taking the derivative from both sides, then multiplying both sides to x,
and finally substituting x = α(1 − α), the second equality in Lemma 7 can be
obtained.

Lemma 8. The average adversarial and honest rewards resulting from the tran-
sition from state S1,2 to state S0,0 under action2 (Scenario 2 occurrence) can
be obtained as follows:

RA = R3 = 3α+
∞∑
r=1

∞∑
s=0

(2 + s)Gr
sα

1+s(1− α)r+s+1 + (3 + r + s)F r
s α

1+r+s(1− α)r+s ,

RH = R4 =

∞∑
r=1

∞∑
s=0

(2 + r)Gr
sα

1+s(1− α)r+s+1 ,

(33)

where the series above can be calculated using series introduced in Lemmas 4
and 7.

Proof. If assuming L = 0 (recall that L denotes the number of consecutive
honest blocks proposed after being at state S1,2 and before the next adversarial
block is proposed), Scenario 2a is equivalent to the event that the block path
starting at (1, 2) reaches the point (3, 2). The probability of this event is α2, and
its corresponding adversarial reward and honest reward are equal to 3 and 0,
respectively.
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Consider the picture depicted in Figure 8. If assuming L = r, where r ≥ 1,
Scenario 2a is equivalent to the event that the block path starting at (1, 2) reaches
the point (1, 2+ r), then moves 2 steps to the right to reach the point (3, 2+ r),
and then reaches one of the points {(3 + r + i, 2 + r + i)|i ≥ 0} (line y = x− 1)
without reaching any of the points {(3+ i, 3+ i+ r)|i ≥ 0} (line y = x+ r). The
probability that the block path starting at (1, 2) reaches the point (1, 2+ r) and
then moves to the point (3, 2+ r) is equal to α2(1−α)r. Assume the block path
reaches the line y = x−1 at point (3+ r+ s, 2+ r+ s). The event that the block
path starting at the point (3, 2 + r) reaches the line y = x− 1 for the first time
at point (3 + r + s, 2 + r + s) without reaching the line {(3 + i, 3 + i+ r)|i ≥ 0}
beforehand is equivalent to the event that that the block path starting at (0, 0)
reaches the line y = x− r for the first time at point (r + s, s) without reaching
the line y = x + 1 beforehand. The probability of the latter event is equal to
F r
s α

r+s(1 − α)s, where F r
s for r ≥ 1 is introduced in Lemma 7. Therefore, the

probability that the block path starting at (1, 2) moves to the points (1, 2 + r),
and then moves to the point (3, 2+r), and finally reaches point (3+r+s, 2+r+s)
before reaching the line {(3+ i, 3+ i+ r)|i ≥ 0} is equal to F r

s α
r+s+2(1−α)s+r.

If the block path reaches the line y = x − 1 at point (3 + r + s, 2 + r + s), the
adversarial reward and the honest reward resulting from Scenario 2a is equal
to 3 + r + s and 0, respectively. Therefore, the average adversarial reward and
honest reward under Scenario 2a can be obtained as follows:

R′
3 =

3α2 +
∑∞

r=1

∑∞
s=0 (3 + r + s)F r

s α
r+s+2(1− α)r+s

Pr(Scenario 2a)
,

R′
4 = 0 .

(34)

If assuming L = 0, Scenario 2b cannot happen.

Fig. 8: Block path in Scenario 2a
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Consider the picture depicted in Figure 9. If assuming L = r, where r ≥ 1,
Scenario 2b is equivalent to the event that the block path starting at (1, 2) reaches
the point (1, 2+ r), then moves 2 steps to the right to reach the point (3, 2+ r),
and then reaches one of the points {(3 + i, 3 + i + r)|i ≥ 0} (line y = x + r)
before reaching any of the points {(3 + r + i, 2 + r + i)|i ≥ 0} (line y = x− 1).
The probability that the block path starting at (1, 2) reaches the point (1, 2+ r)
and then moves to the point (3, 2 + r) is equal to α2(1− α)r. Assume the block
path reaches the line y = x + r at point (3 + s, 3 + r + s). The event that the
block path starting at the point (3, 2+ r) reaches the line y = x+ r for the first
time at point (3 + s, 3 + r + s) without reaching the line y = x − 1 beforehand
is equivalent to the event that the block path starting at (0, 0) reaches the line
y = x+1 for the first time at point (s, s+1) without reaching the line y = x− r
beforehand. The probability of the latter event is equal to Gr

sα
s(1−α)s+1, where

Gr
s for r ≥ 1 is introduced in Lemma 4. Therefore, the probability that the block

path starting at (1, 2) moves to the point (1, 2+ r), and then moves to the point
(3, 2+ r), and finally reaches the point (3+ s, 3+ r+ s) before reaching the line
y = x − 1 is equal to Gr

sα
s+2(1 − α)r+s+1. If the block path reaches the line

y = x+r at point (3+s, 3+r+s), the adversarial reward and the honest reward
resulting from Scenario 2b is equal to 2+s and 2+r, respectively. Therefore, the
average adversarial reward and honest reward under Scenario 2b can be obtained
as follows:

R′′
3 =

∑∞
r=1

∑∞
s=0 (2 + s)Gr

sα
2+s(1− α)r+s+1

Pr(Scenario 2b)
,

R′′
4 =

∑∞
r=1

∑∞
s=0 (2 + r)Gr

sα
2+s(1− α)r+s+1

Pr(Scenario 2b)
.

(35)

Fig. 9: Block path in Scenario 2b
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Fig. 10: Block ratio comparison (communication capability η = 0.5)

Finally, the average adversarial and honest rewards resulting from the transition
from state S1,2 to state S0,0 under action2 (Scenario 2 occurrence) can be
obtained as follows:

RA = R3 =
Pr(Scenario 2a)R′

3 + Pr(Scenario 2b)R′′
3

Pr(Scenario 2)
,

RH = R4 =
Pr(Scenario 2a)R′

4 + Pr(Scenario 2b)R′′
4

Pr(Scenario 2)
.

(36)

As Pr(Scenario 2) = α, the equations presented in 33 can be obtained.

Having access to R1, R2, R3, and R4, we can use the Markov chain depicted
in Figure 5, to calculate the block ratio achieved by following strategy πS-PR.
In Figure 10, we compare the block ratio achieved by strategy πS-PR with those
achieved by the honest strategy and the optimal PoW selfish mining strategy [22]
for an attacker with communication capability η = 0.5. As can be seen in Fig-
ure 5, strategy πS-PR can dominate the optimal PoW selfish mining strategy for
some range of stake shares.

In Figure 11, we compare the block ratio achieved by strategy πS-PR with
those achieved by the honest strategy, the optimal PoW selfish mining strat-
egy [22], and the nothing-at-stake selfish mining strategy introduced in [13] (de-
noted by S-PR2) for an attacker with communication capability η = 0. Strategy
πS-PR can dominate both the optimal PoW selfish mining strategy and the strat-
egy S-PR2 for some range of stake shares.

E Strategy πSP1 in full-predictable protocols

We use a two-dimensional (x, y)-grid to depict the chain race. The proposing
sequence is represented by a path on this grid, which is referred to as the“block
path”. Whenever the time slot is honest, i.e., the block proposer of the time
slot is honest, the block path moves one step up. Whenever the time slot is
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Fig. 11: Block ratio comparison (communication capability η = 0)

adversarial, i.e., the block proposer of the time slot is the attacker, the block
path moves one step to the right.

To calculate the block ratio of strategy πSP1, we first present two helpful
lemmas.

Lemma 9. The probability that the block path starting at (0, 0) never reaches
the line y = x for x ≥ 1 is equal to 1− 2α.

Proof. To never reach the line y = x for x ≥ 1, the block path should move
one step up to the point (0, 1) as the first step, the probability of which is equal
to 1− α. We need to calculate the probability of the event that the block path
starting at (0, 1) never reaches the line y = x for x ≥ 1. To this end, we calculate
the probability of the complementary event, i.e., the event that the block path
starting at (0, 1) reaches the line y = x at least once. Assume the block path
starting at (0, 1) reaches the line y = x for the first time at point (s, s) for s ≥ 1.
The number of paths from point (0, 1) to the point (s, s) for s ≥ 1 without
reaching the line y = x before point (s, s) is equal to s− 1th Catalan number
denoted by cs−1. Therefore, the probability of the event that the block path
starting at (0, 1) reaches the line y = x for the first time at point (s, s) for s ≥ 1
is equal to cs−1α

s(1 − α)s−1. As a result, the probability of the event that the
block path starting at (0, 1) reaches the line y = x at least once can be obtained
as follows:

∞∑
s=1

cs−1α
s(1− α)s−1 = α

∞∑
s=0

cs(α(1− α))s =
α

1− α
. (37)

The formula for calculating the series in the equation above is presented in [8].
Therefore, the probability of the event that the block path starting at (0, 1)
never reaches the line y = x is equal to 1− α

1−α = 1−2α
1−α . Finally, the probability

that the block path starting at (0, 0) never reaches the line y = x for x ≥ 1 is
equal to (1− α) 1−2α

1−α = 1− 2α.
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Lemma 10. The probability that the block path starting at (0, 0) reaches the line

y = x− 1 but never passes it is equal to α(1−2α)
(1−α)2 .

Proof. The number of paths from point (0, 0) to point (s+1, s) without passing
the line y = x−1 is equal to s+ 1th Catalan number denoted by cs+1. Therefore,
the probability of the event that the block path starting at point (0, 0) reaches
the line y = x−1 at point (s+1, s) without passing the line y = x−1 is equal to
cs+1α

s+1(1−α)s. The event that the block path starting at point (s+1, s) never
reaches the line y = x − 1 again is equivalent to the event that the block path
starting at (0, 0) never reaches the line y = x again, the probability of which is
presented in Lemma 9. Therefore, the probability of the event that the block path
starting at point (0, 0) reaches the line y = x−1 for the last time at point (s+1, s)
without ever passing the line y = x − 1 is equal to cs+1α

s+1(1 − α)s(1 − 2α).
Therefore, the probability that the block path starting at (0, 0) reaches the line
y = x− 1 but never passes it can be obtained as follows:

∞∑
s=0

cs+1α
s+1(1− α)s(1− 2α) =

1− 2α

1− α

∞∑
s=1

cs(α(1− α))s

=
1− 2α

1− α
(

1

1− α
− 1) =

α(1− 2α)

(1− α)2
.

(38)

Following strategy SP1, the main chain can be divided into two recurrent
cycles: the adversarial cycle and the honest cycle. An adversarial cycle starts
at time slot t, where t represents the time slot whose corresponding longest
dominant chain is a non-empty set, i.e., LLDC(t) > 0. During adversarial cycles,
a set of consecutive adversarial blocks is added to the main chain, and honest
blocks get orphaned. Between every two adversarial cycles, there is an honest
cycle, where a set of consecutive honest blocks is added to the main chain. Honest
cycles include the time slots whose corresponding longest dominant chain is an
empty set. Therefore, to obtain the block ratio, the average length of both honest
and adversarial cycles should be calculated.

Lemma 11. Let LSP1
H denote the length of the honest cycle CycleH under the

strategy SP1. We have:

E(LSP1
H ) =

1 + α

α
. (39)

Proof. Assume the honest cycle CycleH starts at time slot t from the point (0, 0)
as depicted in Figure 12. The assumption that CycleH starts from point (0, 0)
results in the block path never reaching the line y = x at x > 0. To illustrate this
fact, assume the previous adversarial cycle before CycleH starts at time slot t′,
where t′ < t, and ends at time slot t−1. Assume further that there exists a time
slot such as t′′ > t at which the block path reaches the line y = x at x > 0. In
this case, the attacker could win the chain race within the interval [t′, t′′], which
is against our assumption that the chain race within the interval [t′, t− 1] is the
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Fig. 12: Honest cycle of the strategy SP1

longest dominant chain starting at time slot t′. It is obvious that LSP1
H cannot be

equal to 0 or 1 because in such cases the block path reaches the line y = x at
x > 0. Therefore, LSP1

H ≥ 2.
Knowing that the block path never reaches the line y = x at x > 0, LSP1

H = i
represents the event that the block path reaches the line y = x+(i−1) at x > 0
without reaching any of the lines y = x+(j−1) at x > 0 for 1 < j < i given that
the block path never reaches the line y = x. This means that during the honest
cycle, the block path goes i steps up (i consecutive honest blocks are added to
the main chain within the interval [t, t + (i − 1)]) to reach point (0, i), and in
the subsequent adversarial cycle which starts at t+ i, the block path reaches the
line y = x+ (i− 1) at x > 0 starting from point (0, i) without never passing it.
Reaching the line y = x+(i−1) at x > 0 starting from point (0, i) indicates that
LDC(t+ i) > 0, and thus, slot t+ i is the starting slot of a new adversarial cycle.
Note that the block path cannot pass the line y = x+ (i− 1) at x > 0 because
otherwise there should have been a time slot t′ ∈ [t, t+(i−1)] with LLDC(t′) > 0,
which means that the honest cycle length should have been less than i. Let E1

and E2 represent the event that the block path starting at point (0, 0) reaches
the line y = x+(i−1) at x > 0 without reaching any of the lines y = x+(j−1)
at x > 0 for 1 < j < i and the event that the block path starting at point (0, 0)
never reaches the line y = x at x > 0, respectively.

Pr(LSP1
H = i) = Pr(E1|E2) =

Pr(E1 ∩ E2)

Pr(E2)
. (40)

Event E1 ∩ E2 represents the event that the block path reaches the line y =
x + (i − 1) at x > 0 without reaching any of the lines y = x + (j − 1) at x > 0
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for 0 < j < i. The probability that the block path reaches point (0, i) is equal
to (1 − α)i. The event that the block path starting at point (0, i) reaches the
line y = x+ (i− 1) but never passes it is equivalent to the event that the block
path starting at point (0, 0) reaches the line y = x − 1 but never passes it.
The probability of the latter event, which is presented in Lemma 10, is equal to
α(1−2α)
(1−α)2 . Therefore, for i ≥ 2, we have:

Pr(E1 ∩ E2) = (1− α)i
α(1− 2α)

(1− α)2
. (41)

As according to Lemma 9, the probability of event E2 is equal to 1−2α, Pr(LSP1
H =

i) for i ≥ 2 can be obtained as follows:

Pr(LSP1
H = i) = (1− α)i

α

(1− α)2
. (42)

Therefore, the average length of an honest cycle can be calculated as follows:

E(LSP1
H ) =

∞∑
i=2

i · Pr(LSP1
H = i) =

1 + α

α
. (43)

Lemma 12. Let LSP1
A denote the length of an adversarial cycle CycleA under

the strategy SP1. We have:

E(LSP1
A ) =

1

1− 2α
. (44)

Proof. Assume the adversarial cycle CycleA starts at time slot t from the point
(0, 0) as depicted in Figure 13. The assumption that CycleA starts at point
(0, 0) results in the event that the block path starting at (0, 0) reaches the line
y = x− 1 but never passes it. Because, if the block path starting at (0, 0) never
reaches the line y = x−1, then the LDC(t) would be an empty set, indicating that
the time slot t cannot be the starting time slot of an adversarial cycle. Besides, if
the block path starting at (0, 0) passes the line y = x−1, there should be a time
slot t′ < t with LLDC(t′) > 0 within the previous honest cycle. This indicates that
the adversarial cycle CycleA should start at an earlier time slot rather than t,
which is against our assumption.

Knowing that the block path reaches the line y = x− 1 but never passes it,
LSP1
A = i represents the event that the block path reaches the line y = x− 1 for

the last time at point (i, i − 1), where i ≥ 1, given that the block path reaches
the line y = x − 1 but never passes it. Let E1 and E2 represent the event that
the block path reaches the line y = x− 1 for the last time at point (i, i− 1) and
the event that the block path reaches the line y = x− 1 but never passes it. We
have:

Pr(LSP1
A = i) = Pr(E1|E2) =

Pr(E1 ∩ E2)

Pr(E2)
. (45)
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Fig. 13: Adversarial cycle of the strategy SP1

Event E1∩E2 represents the event that the block path reaches the line y = x−1
for the last time at point (i, i−1) without ever passing it. According to the proof
presented in Lemma 10, the probability Pr(E1∩E2) can be calculated as follows:

Pr(E1 ∩ E2) = ciα
i(1− α)i−1(1− 2α) . (46)

Since according to Lemma 10, the probability of event E2 is equal to α(1−2α)
(1−α)2 ,

Pr(LSP1
A = i) can be obtained as follows:

Pr(LSP1
A = i) =

ciα
i(1− α)i−1(1− 2α)

α(1−2α)
(1−α)2

. (47)

Therefore, the average length of an adversarial cycle can be obtained as follows:

E(LSP1
A ) =

∞∑
i=1

i · Pr(LSP1
A = i) =

1

1− 2α
. (48)

Note that during an adversarial cycle with length LSP1
A = i, i adversarial blocks

are added to the main chain, and i− 1 honest blocks get orphaned.

Proof (Proof of Theorem 1). Using Lemmas 11 and 12, the block ratio of an
attacker under strategy πSP1 can be obtained as follows:

BlkRatioA(π
SP1) =

E(LSP1
A )

E(LSP1
A ) + E(LSP1

H )
=

α

1− 2α2
. (49)
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F Strategy πSP2 in full-predictable protocols

To calculate the block ratio of strategy πSP2, we first present a couple of helpful
lemmas.

Lemma 13. If assuming the number of paths in a (x, y)-grid from start point
(0, 0) to the point (s, s) without reaching the line y = x− r for r ≥ 1 is denoted
by Dr

s (define Dr
0 to be equal to 1), then we have:

∞∑
s=0

Dr
s

(
α(1− α)

)s
=

1

1− 2a

(
1− (

α

1− α
)r
)

,

∞∑
s=0

sDr
s

(
α(1− α)

)s
=

2α(1− α)

(1− 2α)3

−
( α

1− α

)r(2α(1− α) + r(1− 2α)

(1− 2α)2

)
.

(50)

Proof. Let r ≥ 1. The probability that a block path starting at (0, 0) reaches
the point (s, s) without reaching the line y = x − r is equal to Dr

s

(
α(1 − α)

)s
.

Therefore, the probability that a block path starting at (0, 0) reaches the line
y = x for the last time at the point (s, s) without ever reaching the line y = x−r
is equal to P r

s = Dr
s(1− 2α)

(
α(1−α)

)s
. The sum of all the probabilities P r

s for
s ∈ W is the same as the probability that a block path never reaches the line
y = x− r. Therefore, using Lemma 3, we obtain:

∞∑
s=0

Dr
s(1− 2α)

(
α(1− α)

)s
= 1− (

α

1− α
)r ⇒

∞∑
s=0

Dr
s

(
α(1− α)

)s
=

1

1− 2a

(
1− (

α

1− α
)r
)

.

(51)

To prove the second equality in Lemma 13, we use the variable substitution
α(1− α) = x in the equality above. We have:

∞∑
s=0

Dr
sx

s =
1−

(
1−

√
1−4x

1+
√
1−4x

)r

√
1− 4x

. (52)

By taking the derivative from both sides, we obtain:

∞∑
s=0

sDr
sx

s−1 =
2√

(1− 4x)3
+

4(1−
√
1− 4x)r−1

(
8x2 − 2x− r

√
(1− 4x)3

)
(1 +

√
1− 4x)r+1

√
(1− 4x)5

.

(53)

By multiplying both sides to x and substituting x = α(1−α), the second equality
in Lemma 13 can be obtained.
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Following strategy SP2, the main chain can be divided into two recurrent
cycles: the adversarial cycle and the honest cycle. Note that in strategy SP2, an
adversarial cycle always starts at an adversarial time slot. To obtain the block
ratio of strategy SP2, we first calculate the average length of both honest and
adversarial cycles.

Lemma 14. Let LSP2
H denote the length of the honest cycle CycleH under the

strategy SP2. We have:

E(LSP2
H ) =

1

α(1− α)
. (54)

Proof. Assume the honest cycle CycleH starts at time slot t from the point (0, 0)
as depicted in Figure 14. The assumption that CycleH starts from the point (0, 0)
results in the event that the block path starting at point (0, 0) never reaches the
line y = x at x > 0. The reason is the same as the explanation presented in
Lemma 11. It is obvious that LSP2

H cannot be equal to 0 or 1 because in such
cases, the block path reaches the line y = x at x > 0. Therefore, LSP2

H ≥ 2.
Knowing that the block path never reaches the line y = x at x > 0, LSP2

H = i
represents the event that the block path reaches point (0, i) and then moves to
point (1, i) given that it never reaches the line y = x at x > 0. It means that
during the honest cycle, the block path moves i steps up to reach point (0, i)
(i consecutive honest blocks are added to the main chain within the interval
[t, t+ (i− 1)]), and then, the block path moves one step right at time slot t+ i
to reach point (1, i). This indicates that time slot t+ i is the starting time slot
of the subsequent adversarial cycle. Let E1 and E2 represent the event that the

Fig. 14: Honest cycle of the strategy SP2



Deep Selfish Proposing in Longest-Chain Proof-of-Stake Protocols 49

block path starting at point (0, 0) reaches point (0, i) and then point (1, i) and
the event that the block path starting at point (0, 0) never reaches the line y = x
at x > 0, respectively.

Pr(LSP2
H = i) = Pr(E1|E2) =

Pr(E1 ∩ E2)

Pr(E2)
. (55)

Event E1 ∩E2 represents the event that the block path reaches point (0, i) and
then point (1, i) without ever reaching the line y = x at any future points with
x > 0. The probability that the block path reaches point (0, i) and then point
(1, i) is equal to (1−α)iα. The event that the block path starting at point (1, i)
never reaches the line y = x at x > 0 is equivalent to the event of never reaching
the line y = x − (i − 1) starting at point (0, 0). The probability of the latter
event, which is presented in Lemma 3, is equal to 1 − ( α

1−α )
i−1. For i ≥ 2, we

have:
Pr(E1 ∩ E2) = (1− α)iα

(
1−

( α

1− α

)i−1
)

. (56)

Since, according to Lemma 9, the probability of event E2 is equal to 1 − 2α,
Pr(LSP2

H = i) for i ≥ 2 can be obtained as follows:

Pr(LSP2
H = i) =

(1− α)iα
(
1−

(
α

1−α

)i−1
)

1− 2α
. (57)

Therefore, the average length of an honest cycle can be calculated as follows:

E(LSP2
H ) =

∞∑
i=2

i · Pr(LSP2
H = i) =

1

α(1− α)
. (58)

Lemma 15. Let LSP2
A denote the length of an adversarial cycle under strategy

SP2. We have:

E(LSP2
A ) =

1− α(1− α)

(1− α)(1− 2α)
. (59)

Proof. Assume the adversarial cycle CycleAnew starts at time slot t from the point
(0, 0) as depicted in Figure 15. Assume further that before CycleAnew, there exists
an honest cycle CycleH whose length is equal to k. Since the adversarial cycle
always starts with a time slot whose proposer is adversarial, the block path
always moves one step to the right to reach the point (1, 0). The assumptions
that CycleAnew starts from point (0, 0) and the length of the previous honest
cycle is equal to k result in the event that the block path never reaches the
line y = x − k. To illustrate this fact, assume that before CycleH, there exists
another adversarial cycle CycleAold that starts at time slot t1 and ends at t2.
Assume further that there exists a time slot such as t3 > t at which the block
path reaches the line y = x− k. In this case, the attacker can win the chain race
within the interval [t1, t3], which is against our assumption that the chain race
within the interval [t1, t2] is the longest dominant chain starting at t1.
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Fig. 15: Adversarial cycle of the strategy SP2

Knowing that the block path never reaches the line y = x − k, LSP2
A = i

represents the event that the block path reaches the line y = x − 1 for the last
time at point (i, i−1) given that the block path never reaches the line y = x−k.
Let E1 and E2 represent the event that the block path starting at point (1, 0)
reaches the line y = x− 1 for the last time at point (i, i− 1) and the event that
the block path starting at point (1, 0) never reaches the line y = x−k. We have:

Pr(LSP2
A = i) = Pr(E1|E2) =

Pr(E1 ∩ E2)

Pr(E2)
. (60)

Event E1∩E2 represents the event that the block path reaches the line y = x−1
for the last time at point (i, i− 1) without ever reaching the line y = x− k. The
number of paths from point (1, 0) to point (i, i − 1) without passing through
the line y = x− k is equal to Dk−1

i−1 as introduced in Lemma 13. Therefore, the
probability of the event that the block path starting at point (1, 0) reaches the
point (i, i − 1) without ever passing the line y = x − k is equal to Dk−1

i−1

(
α(1 −

α)
)i−1

. To ensure that the block path reaches the line y = x − 1 for the last
time at point (i, i − 1), the block path should never reach the line y = x − 1
again starting from point (i, i− 1), the probability of which is equal to 1− 2α.
We have:

Pr(E1 ∩ E2) = Dk−1
i−1

(
α(1− α)

)i−1
(1− 2α) . (61)
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Since according to Lemma 3, the probability of event E2 is equal to 1−
(

α
1−α

)k−1
,

Pr(LSP2
A = i) can be obtained as follows:

Pr(LSP2
A = i) =

Dk−1
i−1

(
α(1− α)

)i−1
(1− 2α)

1−
(

α
1−α

)k−1
. (62)

Therefore, using Lemma 13, the average length of an adversarial cycle can be
obtained as follows:

E(LSP2
A ) =

∞∑
i=1

i · Pr(LSP1
A = i) =

1− α(1− α)

(1− α)(1− 2α)
. (63)

Note that during an adversarial cycle with length LSP2
A = i, i adversarial blocks

are added to the main chain, and i− 1 honest blocks get orphaned.

Proof (Proof of Theorem 2). Using Lemmas 14 and 15, the block ratio of an
attacker under strategy πSP1 can be obtained as follows:

BlkRatioA(π
SP2) =

E(LSP2
A )

E(LSP2
A ) + E(LSP2

H )
=

α(1− α(1− α))

(1− α)2(1 + α)
. (64)

G Strategy πO-SP

The algorithm used in the description of strategy πO-SP is presented in Algo-
rithm 1.

H Justifying the optimality of strategy πO-SP

Let ti and ti+1 be two consecutive checkpoint slots. We first discuss how to
find the optimal selfish proposing strategy within the interval (ti, ti+1) and then
prove that this optimal strategy is independent of the strategy that the attacker
follows outside the interval (ti, ti+1). Assume NA and NH represent the num-
ber of adversarial blocks and the number of honest blocks within the interval
(ti, ti+1), respectively. Note that NH ≥ NA − 1 since otherwise ti+1 could not
be a checkpoint slot. When following the selfish proposing attack within the in-
terval (ti, ti+1), not all the NA + NH get added to the main chain due to the
orphan occurrence. We want to calculate the number of adversarial and honest
blocks added to the main chain under the optimal strategy. Due to the proposing
sequence predictability in a full-predictable protocol, the attacker can publish
his blocks in a way that none of them get orphaned. Therefore, all the NA ad-
versarial blocks within interval (ti, ti+1) can get added to the main chain. To
calculate the number of min-chain honest blocks, we first define the term “ad-
versarial cycle”. An adversarial cycle is a set of n ≥ 1 consecutive adversarial
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Algorithm 1 Optimal selfish proposing strategy in full-predictable LC-PoS
environments for attacker with communication capability η = 0

Input: Seq ▷ Seq is a list of -1 and 1 that represents the proposing
sequence within the range (ti, ti+1), where ti and ti+1 are
two consecutive checkpoint slots. The adversarial (honest)
slot is denoted by 1 (-1).

Output: leastCycle ▷ leastCycle is a list that contains the adversarial slots that
serve as the starting points of the adversarial cycles within
the range (ti, ti+1). The number of adversarial slots in
leastCycle is equal to the number of adversarial cycles
within Seq.

1: indx ← 1
2: for t ← 1 to len(Seq) do
3: H[t] ← H[t− 1] + Seq[t] ▷ H[t] represents the height of a block that is pro-

posed at time slot t.
4: if Seq[t] == 1 then
5: aSlots[indx] = t ▷ aSlots is a list of adversarial time slots.
6: indx ← indx+ 1
7: end if
8: end for
9: N ← len(aSlots) ▷ N represents the number of adversarial slots

within the range (ti, ti+1).
10: Chain ← an empty list ▷ Chain contains multiple lists, where each list rep-

resents a specific combination of the adversarial
slots that serve as the starting points of the ad-
versarial cycles within the range (ti, ti+1).

11: for indx ← 1 to N do
12: Chainindx ← an empty list ▷ Chainindx contains multiple lists, where

each list represents a specific combination
of the adversarial slots that serve as the
starting points of the adversarial cycles
before time slot aSlots[indx] ∈ (ti, ti+1).

13: end for
14: for indx ← 1 to N − 1 do
15: if indx == 1 or Chainindx ̸= ∅ then
16: leastCycleindx ← the list with the least number of adversarial

cycles in Chainindx

17: newLeastCycleindx ← concatenate(leastCycleindx, aSlots[indx])
18: for indx′ ← indx to N − 1 do

19: if
H[aSlots[indx]] ≤ H[aSlots[indx′]] and
H[aSlots[indx]] > H[aSlots[indx′ + 1]]

then

20: Chain[indx′ + 1].append(newLeastCycleindx)
21: end if
22: end for
23: if H[aSlots[indx]] ≤ H[aSlots[N ]] then
24: Chain.append(newLeastCycleindx)
25: end if
26: end if
27: end for
28: if ChainN ̸= ∅ then
29: leastCycleN ← the list with the least number of adversarial cycles in ChainN

30: newLeastCycleN ← concatenate(leastCycleN , aSlots[N ])
31: Chain.append(newLeastCycleN )
32: end if
33: leastCycle ← the list with the least number of adversarial cycles in Chain
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blocks in the main chain sandwiched by two honest main-chain blocks. Each
pair of two consecutive adversarial cycles in the main chain are disconnected
by one or more honest blocks. If assuming that the attacker’s communication
capability is equal to zero, each adversarial cycle comprising n adversarial blocks
can orphan at most n − 1 honest blocks. The number of honest blocks added
to the main chain during the selfish proposing attack depends on the number
of adversarial cycles. Assume that c denotes the number of adversarial cycles
within the interval (ti, ti+1). In this case, the number of honest blocks added
to the main chain within the interval (ti, ti+1) is equal to NH − NA + c. An
optimal strategy minimizes the number of main-chain honest blocks. Therefore,
to obtain the optimal strategy, we should find a strategy that minimizes the
number of adversarial cycles. The method presented in Algorithm 1 brute-forces
all the possible combinations of adversarial cycles between two checkpoint slots
to find a combination with the lowest number of adversarial cycles.

Assume πO-SP
i is the optimal strategy corresponding to interval (ti, ti+1),

which is obtained from Algorithm 1. Assume further that the number of or-
phaned honest blocks within interval (ti, ti+1) under strategy πO-SP

i is equal to
NA − c, where c represent the minimum possible number of adversarial cycles
within interval (ti, ti+1). In this part, we discuss knowing about the proposing
sequences in intervals [0, ti] and [ti+1,∞) does not change the optimal strategy
πO-SP
i within interval (ti, ti+1). To prove this claim we need to show that the

adversarial blocks within interval (ti, ti+1) cannot orphan more than NA − c
honest blocks within and outside interval (ti, ti+1). Assume that there is an hon-
est block BH proposed at t′, where t′ /∈ (ti, ti+1). We want to prove that either
it is infeasible for the attacker to orphan block BH using his adversarial blocks
within interval (ti, ti+1), or if he does succeed in orphaning block BH using
his adversarial blocks within interval (ti, ti+1), the number of orphaned honest
blocks will not increase. Consider the scenario that t′ ∈ [ti+1,∞). If adversarial
blocks within interval (ti, ti+1) can orphan block BH, they can also orphan the
honest block proposed at checkpoint time slot ti+1, which is contradictory to
the definition of checkpoint slots. Now consider the scenario that t′ ∈ [0, ti]. In
this case, block BH may get orphaned by the adversarial blocks within interval
(ti, ti+1). Assume the attacker orphans block BH by an adversarial fork denoted
by f , where f contains at least one adversarial block within interval (ti, ti+1).
We claim that if f contains one adversarial block within interval (ti, ti+1), then
all the other adversarial blocks in fork f also belong to interval (ti, ti+1). To
justify this claim, assume fork f contains one adversarial block within interval
[0, ti]. In this case, an adversarial fork starting at a time slot earlier than ti
and ending at a time slot later than ti can orphan an honest block proposed
at t′ ≤ ti, which is contradictory to the assumption that ti is a checkpoint slot.
Knowing that f only contains adversarial blocks within interval (ti, ti+1), we can
prove that modifying strategy πO-SP

i to generate fork f cannot result in a greater
number of orphaned honest blocks. By following strategy πO-SP

i , the minimum
number of adversarial cycles within interval (ti, ti+1) is equal to c. Orphaning
the honest block proposed at t′ ≤ ti using NA adversarial blocks within interval
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(ti, ti+1) leads to the outcome where the number of adversarial cycles either stay
the same or becomes greater than c. This is because the interval [t′, ti+1) con-
tains a greater number of honest blocks compared to interval (ti, ti+1), while the
number of adversarial blocks is the same in both intervals. Therefore, orphan-
ing honest blocks outside interval (ti, ti+1) using the adversarial blocks within
interval (ti, ti+1) cannot lead to a greater block ratio.

I Deep Q-Learning

I.1 Implementation details

In our implementation, the target and Q neural networks are structured with
3 hidden layers, comprising 128, 128, and 64 neurons each. We assigned k1 =
5, indicating that each state stores information regarding the current fork as
well as the possible forks that can be generated on top of the 5 most recent
honest blocks. Therefore, the total number of actions and neurons in the output
layer is equal to 18. In the full-predictable implementation, we set k2 = 54,
indicating that the attacker can predict the block proposers of upcoming 54
slots. In the semi-predictable implementation, we set k3 = 54, indicating that the
attacker is aware of the time slot for up to 54 future adversarial blocks. Therefore,
in LC-PoS implementations with perfect randomness, full predictability, and
semi-predictability, the number of neurons in the input layer is 10, 64, and 64,
respectively. In semi-predictable LC-PoS implementation, we set the average
block generation rate to be equal to 1 block per 20 slots. We set that if during
the training process, lH becomes greater than lA + 5, the action “wait in the
current fork” gets removed from the possible action set. This is to speed up
the training process. A greater bound may result in a more profitable strategy;
however, it reduces the training speed. The results shown in Figures 4a and 4b
are obtained by taking the average of the block ratio achieved over 1,000,000
steps of state transitions under the trained neural networks.

I.2 DQL implementation considering node locations

To obtain the optimal selfish proposing strategy, a proposer should be aware
of his stake share and communication capability. In PoS protocols, it is almost
straightforward for the proposers to calculate their stake share using account
information available in the blockchain ledger. This shows that proposers have
a good understanding of their stake shares. However, the concept of communi-
cation capability is a bit unclear since it is not straightforward to specify the
number of nodes that receive the selfish proposer’s block first during a block
race. To move towards a more practical implementation, rather than passing
communication capability as an input parameter to the environment, we can
implement an environment that encompasses the location of proposer nodes.

We implement the network according to the model introduced in [14]. We
assume that the proposer nodes are distributed according to the Poisson point
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Fig. 16: Node locations

process within a spatial disk. Let di,j and cdi,j denote the distance and the
communication delay between proposer nodes Pi and Pj in the spatial disk. We
assume further that the communication delay between proposer nodes Pi and
Pj follows a normal distribution with mean µ = k · di,j , which is proportional
to the distance between the nodes Pi and Pj , and a constant variance σ2. Let
PA denote the set of adversarial nodes. Consider the scenario in which honest
proposer PH

i and the attacker simultaneously publish two new blocks to the
network. Assume honest proposer PH

j is the proposer of the upcoming time slot.
The attacker wins the block race if there exists at least one adversarial proposer
PA
k ∈ PA that can satisfy the following condition:

cdi,k + cdk,j ≤ cdi,j . (65)

The condition represented above implies that the proposer of the next slot re-
ceives the adversarial block earlier than the honest block and, consequently, pro-
poses his new block on top of the adversarial block. We trained the DQL agent
for an attacker with stake share α = 1

3 under two different network conditions de-
picted in Figure 16: the distributed model and the non-distributed model. In the
distributed model, the adversarial nodes are well-distributed among the honest
nodes. Conversely, in the non-distributed model, the adversarial nodes are al-
most highly concentrated. In our implementation, we assigned k = 1 and σ = 1

25 .
The block ratios achieved under the distributed model and the non-distributed
model are equal to 0.4466 and 0.4051, respectively. This demonstrates that a
high degree of node distribution can lead to an increase in the attacker’s block
ratio.
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