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Abstract. We propose a novel KZG-based sum-check scheme, dubbed
Losum, with optimal efficiency. Particularly, its proving cost is one multi-
scalar-multiplication of size k—the number of non-zero entries in the
vector, its verification cost is one pairing plus one group scalar multipli-
cation, and the proof consists of only one group element.

Using Losum as a component, we then construct a new lookup argument,
named Locq, which enjoys a smaller proof size and a lower verification
cost compared to the state of the arts cq, cq+ and cq++. Specifically,
the proving cost of Locq is comparable to cq, keeping the advantage that
the proving cost is independent of the table size after preprocessing. For
verification, Locq costs four pairings, while cq, cq+ and cq++ require
five, five and six pairings, respectively. For proof size, a Locq proof con-
sists of four G; elements and one G2 element; when instantiated with
the BLS12-381 curve, the proof size of Locq is 2304 bits, while cq, cq+
and cq++ have 3840, 3328 and 2944 bits, respectively. Moreover, Locq
is zero-knowledge as cq+ and cq++, whereas cq is not. Locq is more
efficient even compared to the non-zero-knowledge (and more efficient)
versions of cq+ and cq++.
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1 Introduction

Lookup arguments |[GW20,[EFG22] are protocols that allow a prover to convince
a verifier that all the elements in a lookup vector v appear in another vector ¢
called the table, where the verifier holds only the commitments to these vectors.
Lookup arguments are usually succinct, i.e., the running time of the verifier is
sublinear to the vector sizes.

Lookup argument has been widely used to improve SNARKs [PFMT22,
CBBZ22] and is one of the key reasons for the recent rapid development of Zero-
Knowledge Virtual Machines (ZKVMs) [Ris22,[VM22,Mid22]. Before the intro-
duction of lookup arguments, it is very expensive to prove 32- to 256-bit boolean
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operations using SNARKSs |Grol6,{CHM™20L/COS,[Set20] as it is costly to sim-
ulate them in arithmetic circuits; thus they are considered SNARK-unfriendly.
Lookup arguments mitigate this issue by transforming the SNARK-unfriendly
operations into lookups in tables. For example, the expensive-to-verify statement
“a op b = ¢” is replaced by “(a,b,c) is a row of T,” that is efficiently handled
by lookup arguments, where 75, is a table whose rows range over of all possi-
ble values of (a, b, ¢) that are valid input-output combinations, and “op” can be
arbitrary operation.

However, the table sizes for the lookup arguments can be huge for operations
with even small input sizes. For example, the 16-bit XOR, operation has a lookup
table whose number of rows is as large as 232. Therefore, recent works have
focused on constructing lookup arguments whose proving cost is sublinear or
even independent of the table size |[ZBK™22,|[PK22, GK22,ZGK ™22, EFG22].
All these works use KZG [KZG10] as the underlying polynomial commitment
scheme, thus enjoying constant proof size (constant number of group and field
elements) and verification costs (constant number of pairing checks). As the state
of the art in this line of works, Eagen et al. [EFG22| proposed cq, which, for the
first time, reduces the proving cost to O(m) group operations plus O(mlogm)
field operations where m is the size of the lookup vector. Meanwhile, compared
to the previous works, the verification cost of cq is comparable (five pairings),
and the proof size is the smallest. As its core technique, cq uses the logarithmic
deriwative [Hab22] method to reduce the lookup argument to the univariate
sum-check |BCR™19|. To eliminate the dependence of the proving cost on the
table size, cq proposes the cached quotient method that shifts the majority of the
prover work to the preprocessing phase. Despite the performance improvements,
cq does not consider zero-knowledge.

Very recentlyﬂ following the framework of cq, Companelli et al. [CFFT23|
propose cq+ and cq++ that improve the proof size of cq. More specifically,
these schemes use the univariate sum-check [BCR'19| and the cached quotient
technique as cq does, and come with the zero-knowledge property with small
overheads—the zero-knowledge versions have one more group element in proof
sizes compared to the non-zero-knowledge version. In addition, they propose
zkcq+ that achieves full zero-knowledge, which further conceals the table content
from the Veriﬁerﬂ at the cost of two more group elements in the proof.

Because of the wide applications of lookup arguments in building SNARKSs
deployed in blockchain-based cryptocurrencies [zkS22,|(GPR21], any small effi-
ciency improvements to lookup arguments may bring significant financial ben-
efits in practice. In this work, we make further progress in this line of work on
table-size independent lookup arguments. Our contributions are summarized in

Sect [[1]

! Concurrent to this work.
2 This requires the table has been randomized by a mask when computing its com-
mitment, before putting it into the lookup argument.
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Table 1. Locq has a comparable proving cost, a smaller proof size, and a lower verifica-
tion cost, compared to the state of the arts in the line of KZG-based lookup arguments
with sublinear-or-zero independence on table size. Here m is the lookup vector size, N
is the table size, P stands for “pairing check”. Prep. stands for “Preprocessing Cost”.
Vrf. stands for “Verification Cost”. The F,G1, G2 in “Proof Size” refer to field/group
elements, and in “Preprocessing” and “Proving Cost” they refer to field/group opera-
tions. “#Bits” is the bit size of the proof when instantiated with BL.S12-381, for which
a Gy element takes 384 bits, a G2 element takes 768 bits, and a F element takes 256
bits. Hom. means this lookup argument supports multi-column table lookups by ho-
momorphically combining the columns using random linear combination. ZK. stands
for zero-knowledge, where v/ means it is zero-knowledge only if the table polynomial
t(X) is not considered secret, while v'v" means the protocol is full zero-knowledge, i.e.,
it also works when ¢(X) is masked by a random p - Zu(X), in which case the verifier
learns no information of ¢(X), either. The “*” stands for the zero-knowledge versions
of cq+ or cq++.

Prep. Proof Size

Scheme FYG, G, |G| F|#Bits Proving Cost Vrf..Hom.|ZK.
Caulk [ZBK'22] [O(Nlog N) [14] 1 [4] 7168 [O(m? + mlog(N))(F + G1) 4P v vV
Caulk+ [PK22| O(Nlog N) [ 71 [2] 3968 [O(m?)(F + G1) 3P v Vv
Flookup |[GK22] [O(Nlog? N)| 6 | 1 [4] 4096 [6mG; + mG2 + O(m logZ m)F |3P X |x
Baloo [ZGK 22| | O(Nlog N) [12] 1 [4] 6400 [13mG1 + mG2 + O(m log? m)F|5P v oo|x
cq |[EFG22| O(NlogN) | 8 | - [3] 3840 [8mG1 + O(m logm)F 5P v X
‘cq+ |CFFT23| O(NlogN) | 7| - [1] 2944 [8mG; + O(m log m)F 5P v [x
cq++ |[CFFT23] |O(NlogN) |6 | - |1] 2560 [8mG1 + O(mlogm)F 6P v |x
cq+* |[CFFT23] |O(NlogN) |8 | - |1]| 3328 [8mG1 + O(mlogm)F 5P v |V
cq++* [CFFT23]| O(Nlog N) | 7 | - |1]| 2944 [8mG1 + O(m logm)F 6P v |V
zkeq+ |CFFT23[ [O(Nlog N) | 9 | - [1] 3712 [8mG; + O(mlog m)F 6P v VY
Locq (This work) [O(NlogN) [ 4 | 1 [-] 2304 [6mG1 + mG2 + O(mlogm)F [4P v vV

1.1 Contributions

We put forward a novel KZG-based zero-knowledge lookup argument, Locq,
with the proving cost independent of the table size and with smaller proof size
and verification cost, compared to the state of the arts cq and even the non-
zero-knowledge versions of cq+ and cq++. As a core component of Locq, we
introduce a new KZG-based univariate sum-check, Losum, with optimal proving
cost, verification cost and proof size. Our main contributions are summarized as
follows.

— We propose a more efficient univariate sum-check scheme called Losum, which
improves the existing univariate sum-check protocol [BCR™19| in the KZG
setting. The cost of Losum is (arguably) optimal for KZG-based sum-checks:
(1) the proving cost is a single multi-scalar-multiplication (MSM) of size k in
G1—the first group of the pairing scheme, where k is the number of non-zero
entries in the input vector; (2) the verification cost is one pairing and one
scalar multiplicatiorﬂ in Gy; and (3) the proof size is a single Gy element.

— We then use Losum as a building block to construct a new lookup argument,
named Locq. Our new lookup argument keeps the property that the proving

3 The cost of one scalar multiplication can be ignored compared to the pairing.



4 Yuncong Zhang, Shi-Feng Sun, and Dawu Gu*

cost is independent of the table size. Moreover, it has a smaller proof size
(4G1 + 1Gs, compared to 8G; + 3F for cq and 6G; + F for the non-zero-
knowledge version of cq++) and a smaller verification cost (four pairings
checks compared to five in cq and cq+ and six in cq++). Moreover, our
scheme enjoys full zero-knowledge as zkcq+. The zero-knowledge property
in our scheme is achieved with almost no additional cost, because Locq (a)
does not contain any field element in the proof, so adding zero-knowledge
is as simple as adding random masks to the committed polynomials; and
(b) does not involve any degree check as in cq, cq+ or cq++, thanks to
using Losum instead of the traditional univariate sum-check [BCR™19]. More
detailed comparisons of this work with existing works on KZG-based table-
size-independent lookup arguments are shown in Table

In addition, both Losum and Locq enjoy the property that they can work for
arbitrary field IFE| In practice, this allows Losum and Locq to choose from much
wider candidates for F that may enjoy better optimization techniques. Particu-
larly, Losum and Locq work even when |F| — 1 is not smooth—has a large power-
of-two factor, which is required by all prior schemes because they only work for
F with large smooth multiplicative subgroups. More precisely, the smooth mul-
tiplicative subgroups still benefit Losum and Locq, but only in (prover-side) effi-
ciency. Specifically, without such subgroups, the complexity of the preprocessing
cost of both Losum and Locq would increase from O(N log N) to O(N log® N);
the number of field operations in the proving cost of Locq would increase from
O(mlogm) to O(mlog®m); and everything else is not affected. In comparison,
all prior schemes completely stop working unless F has large smooth multiplica-
tive subgroups.

We remark that our Losum and Locq require additional trusted setups besides
that of KZG. This slight disadvantage is acceptable in real-world scenarios, as
the setup is only executed once for each different vector size. This reliance on
the trusted party is much weaker than the application-specific trusted setup of
Groth16, which is still widely used in practice. Moreover, the setup for Locq is
only executed once for each different table size and can be reused for all sizes
of lookup vectors. Therefore, in practice, the setups of Losum and Locq can be
accomplished together with that of KZG to avoid additional invocation of the
trusted third party.

1.2 Technical Overview

For a quick understanding of our work, we give a high-level explanation about
how we achieve the smaller proof size and verification cost in both Losum and
Locq.

Univariate sum-check. Let F be a finite field whose size is a large prime. Given
a commitment to a polynomial f(X) and a domain H C T, the goal of the

4 As long as F is sufficiently large, as required by all succinct arguments.
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univariate sum-check protocol is to prove to a succinct verifier that the sum of
the evaluations of f(X) over His s € F,i.e., >, .y f(h) = 5. Our new sum-check
method is based on the following observation: for the special case where s = 0,
which we refer to as the zero sum-check, the set of all the polynomials that
satisfy the requirement forms a linear space, and thus can be represented as the
linear combination of a set of basis polynomials, denoted by ¢;(X),- -, ca(X),
where d is the dimension of this linear space and is determined by the degree
bound on f(X). Therefore, the zero sum-check on f(X) is equivalent to proving
that there exist coefficients by, --- ,bg € F such that f(X) = Z?Zl bic;(X). For
a concrete choice of basis polynomials, please refer to Sect.

When f(X) is committed using the KZG scheme, this relation of linear com-
bination is easy to prove using the following technique, which is heavily used in
Groth16 [Grol6]. In the setup phase, we sample a secret random «, and pre-
compute the commitments to a - ¢;(X) for every . In the online phase, the
prover computes the commitment to f'(X) := « - f(X) by linearly combining
the precomputed commitments to « - ¢;(X), which is only possible when f(X) is
a linear combination of ¢;(X) since the prover does not know «. The proof thus
contains a single group element, which is the commitment to f/(X). The verifi-
cation costs a single pairing that checks the relation f(X) - a = f/(X) -1, and
no additional group scalar multiplication is needed. By properly choosing the
basis polynomials ¢;(X), computing the coefficients b; brings no cost at all, so
the total prover cost is a single multi-scalar multiplication (MSM) for computing
the commitment to f'(X).

For the case where s # 0, we pick a polynomial ¢(X) that trivially satisfies
> nhemt(h) = 1, and apply the above technique to f(X) — s - £(X) instead.
The prover cost is still a single MSM, the proof size is still one group element,
and the only additional verification cost besides the pairing is one group scalar
multiplication for computing the commitment to f(X) — s - ¢(X).

Table-size independent lookup argument. We then use this sum-check scheme to
construct a lookup argument. Given the commitments to two polynomials f(X)
and #(X) and two domains D,H C F, where D is a subset of H and |D| is far
smaller than |HJ, the goal of the lookup argument is to prove that for every
u € D, there exists h € H such that f(u) = t(h).

Our work follows the framework of cq by exploiting the following statement
equivalent to the one to prove by the lookup argument: there exists a polynomial
m(X), such that Y . v+ f(u = hen Xm(tlzh Intuitively, this equality implies
that every hole (position where the equation evaluates to infinity) in the left
function is also a hole in the right function, so f(u) must equal some ¢(h).

Using the Schwartz-Zippel Lemma, this equation is checked at a random
B sampled by the verifier, and the equality between two fractional functions is
transformed to a sum-check for the polynomials g(X)—w(X ) where ¢g(X), w(X)
are prover-committed polynomials that satisfy g(u) = = f( =) for h € D and

g(h) =0 for h € H\D, and w(h) = ﬁmg(%) for every h € H. Note that here Locq

differs from cq, as cq does not require g(h) = 0 for h € H\D, so cq executes two
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sum-checks for g(X) and w(X) respectively over D and H, whereas Locq only
uses one sum-check.

We use Losum for the zero sum-check on g(X)—w(X). It remains to prove the
correctness of g(X) and w(X). We accomplish this by exploiting their definitions—
it suffices for the prover show that both g(X)-(8—f(X))—U(X) and w(X)-(8—
t(X)) —m(X) are divided by Zg(X), where U(X) is the polynomial that evalu-
ates to 1 over D and 0 over H\D, and Zy(X) := [[,cu(X — h) is the vanishing
polynomial over H.

To prove this divisibility, the prover computes ¢;(X) and g2(X) by dividing
the two polynomials with Zy(X), respectively. By random linear combination,
the two divisibility checks can be merged into one, and the prover only needs to
commit to a single quotient polynomial ¢(X).

Note that all the polynomials involved in computing ¢(X) are of degree
O(JH]). To reduce the prover cost from O(|H|) to O(|D|), making the lookup
argument table-size independent, we note that g(X), U(X) and Zg(X) are all
divided by Zg(X)/Zp(X), so ¢1(X) can be computed by dividing two polynomi-
als of degree O(|D|) instead. Then we apply the cached quotient technique that
is the same as in cq to compute the commitment to g2(X). The details will be
explained in Sect [4]

Applying all the techniques above, our lookup argument proof consists of only
five group elements, i.e., the polynomial commitments for m(X), g(X), w(X), ¢(X),
and the proof of Losum.

1.3 Related Works

The concept of lookup argument is initially introduced by Gabizon et al. in
Plookup |[GW20], though the related ideas have been demonstrated in some ear-
lier works [BEGT91,[BCG™18]. Since lookup arguments are particularly useful
for proving SNARK-unfriendly relations, i.e., relations that are expensive to ex-
press as arithmetic computations, they have been extensively used to boost the
performance of SNARKs [PFM 22 |CBBZ22|. Moreover, they work as an indis-
pensable component in the recent popular ZKVM projects [Mid22,[VM22,Ris22,
zkS22,|Scr22]. Lookup argument has been extensively studied since its introduc-
tion and researchers have focused on improving its efficiency.

Starting from Caulk [ZBK™22|, whose proving cost relies on the table size
logarithmically, there is a line of follow-up works that assume the table is much
larger than the lookup vector, and focus on achieving table-size-independent
proving cost, including Caulk+ [PK22|, Flookup [GK22], Baloo [ZGK™ 22|, cq [EFG22],
and cq+, cq++, zkeg+ by Campanelli et al. [CFFT23|. These schemes can be
used to prove lookups for large tables such as the 32-bit range check and 16-bit
boolean operations, where the tables are fixed and can be preprocessed offline.
Among these schemes, Flookup, Baloo and cq are not zero-knowledge. The latest
cq, cq+ and cq++ are the state of the arts in this line as they have the smallest
asymptotic proving cost. Meanwhile, their verifications cost 2 or 3 more pair-
ings compared to Caulk+ and Flookup. Our work follows this line of research to
further reduce the proof size and verification cost, and achieves zero-knowledge.
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The recently proposed Lasso [STW23] works with huge tables with exponen-
tial sizes, but requires that the table is structured, i.e., is a generalized tensor
product of smaller (size close to the lookup vector) tables.

Other lookup arguments assume the table size is close to that of the lookup
vector, just as Plookup, so these works can be used in cases where the table
is dynamically generated and committed by the prover online. These schemes
include mvlookup [Hab22|, Tip5 [SLST23|, and the lookup argument inside the
HyperPlonk SNARK [CBBZ22|. The mvlookup scheme proposes a powerful tech-
nique called logarithmic derivative, which reduces the lookup argument into a
sum-check [LFKN90] statement. This technique is then adapted to the univariate
case by cq and Tip5, whereas cq uses the univariate sum-check [BCR™19] and
Tip5 uses the running sum vector for doing the sum-check. Both the multivari-
ate and univariate sum-checks are widely used in constructing succinct argument
systems |[GKRO08,BCR™19,|CHM ™20, COS}/ZXZS20,XZZ" 19].

2 Preliminaries

Let X denote the security parameter. Let p be a prime of A bits. Let IF = IF,, be
the prime field of size p. Let v € FY be a vector of size N. Let (u,v) be the
inner product between the two vectors. We say a probabilistic algorithm is PPT
if it runs in polynomial time.

2.1 Bilinear Pairing

A bilinear pairing is a tuple bp = (p,e, g, h,G1,Ga,Gr) where p is a prime,
|G1| = |G2| = |G| =p, g is a generator of Gy and h is a generator of Gy. The
function e : G; X Go — G is a bilinear map that satisfies:

— e(g, h) is a generator of Gr.
— e(g®, h®) = e(g, h)® for every a,b € Z,,.

For any = € F,, let [z]; denote ¢g*, [x]2 denote h* and [z]r denote e(g,h)".
Based on this notation, we use the addition notation for group operations, i.e.,
[zh + [y = [z +yli and ¢+ [z]1 = [c- 2]1.

This work assumes that ¢-DLOG problem is hard for the bilinear pairing
groups, i.e., no PPT adversaries can solve this problem with more than negligible
probability.

Definition 1 (¢-DLOG Problem). Let z be uniformly randomly sampled
from F. On input the bilinear pairing parameters bp and group elements [1]1,
[-Th; [.’I}2]17 Ty [xq]la [1]25 [.’I}]Q, R [xq]27 .ﬁnd x.

Assuming ¢-DLOG is hard on the given bilinear pairing groups, it is easy
to see that the following problem is also hard: given [x71]y, [1]1, [2]1, [z71]s,
[1]2, [z]2, to find z. To see why this is hard, assume we have an algorithm that
solves this problem efficiently, we show that we can solve ¢-DLOG for ¢ = 2, i.e.,
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given any [1]1, [z]1, [#2]1, [1]2, [2]2, [2%]2, find 2. To accomplish this, we choose
new generators ¢’ = [z]; and b’ = [z]2, and let bp’ := (p,e,g’, 1/, G1, Gz, Gr).
Using this new set of parameters, the inputs are written as [z71]1, [1]1, [z]1,
[71]2, [1]2 and [z]2, which can be solved efficiently by our assumption, leading
to contradiction.

2.2 The KZG Polynomial Commitment

The KZG-polynomial commitment |[KZG10] is constructed based on bilinear
pairings. This work only involves the setup and committing algorithms of KZG
and does not use the opening or verification algorithms, because all the poly-
nomial equations in our scheme are checked by the ideal check introduced later
in Sect. without evaluating any polynomials. Therefore, we recall the setup
and committing algorithms of KZG as follows.

— Setup(D1, D2) — ok zc: Given the bilinear pairing parameters bp and the
degree bounds Dy, Dy, uniformly sample € F and output oxz¢ = ([1]1,
[x]lv R [xDl]lv [1]2,[.%]2, T [xDQ}Q)'

— Commit(okzg, f(X),b) — cm: Given the setup parameters ok zg, poly-
nomial f(X) = fo + fiX +--- + f4X? and b € {1,2} indicating which
group this polynomial is committed in, check that d < Dy, and output
em = [F(@)lo = fo - U+ + fa- [+,

2.3 Polynomials and Lagrange Basis

Let H be a subset of F with |H| = N. The Lagrange basis polynomials over H
are the set of polynomials {L(X)}rem where Ly(h) = 1 and Ly(h') = 0 for
any h' € H\{h}. For any polynomial f(X) of degree less than N, f(X) can be
uniquely represented as a linear combination of the Lagrange basis, i.e., f(X) =
Y onen J(h)Lp(X). We call Zy(X) := [[},cu(X —h) the vanishing polynomial over
H. Assuming an implicit ordering over the elements in H, we let f(H) denote
either the vector (f(h))nem or the set {f(h)}nem, depending on the context. For
any two polynomials f(X) and g(X), the vectors f(H) = g(H) if and only if
f(X) — g(X) can be divided by Zy(X).

We will use the univariate version of the Schwartz-Zippel Lemma about poly-
nomials.

Lemma 1 (Schwartz-Zippel). Let f(X) be a univariate polynomial of degree
d over F, S be a finite subset of F, and z be selected randomly and uniformly
from S. Then

d

Prf(z) =0] < 5k

Schwartz-Zippel Lemma can be extended to rational functions of the form f(X)/g(X),
in which case the probability is bounded by % where d := max{deg(f(X)),deg(g(X))}.
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2.4 Algebraic Group Model

The algebraic group model (AGM) [FKL17], introduced by Fuchsbauer et al., is
widely used to prove the security of protocols and schemes that involve elliptic
curve groups. In this model, it is required that whenever the adversary A outputs
an element a in G; for i € {1,2}, A must simultaneously output a vector s € ]Fﬁ
such that (s,t) = a, where t € G is the collection of all G; elements that A has
received. We say such an adversary is algebraic.

Assuming ¢-DLOG is hard, the bilinear pairing check becomes computa-
tionally equivalent to checking quadratic relations on polynomials, explained as
follows.

Suppose the adversary is given inputs [1]y, []1, -, [z and [1]g, [z]2, -+ -,
[2%])2, where z is secretly uniformly chosen from F, and outputs a,b € G; and
¢,d € Go such that e(a,c) = e(b,d). Being algebraic, the adversary simultane-
ously outputs the coefficients ag, - - - , a4 € IF, such that a = Eg:o a;[z']1 (similar
for b, ¢, d).

Let fo(X) =ao+a1X + -+ a,X?, then by definition a = [f,(x)]1 (similar
for fp(X), fo(X) and f4(X)). For convenience, we say whenever the adversary
outputs a € Gy, it simultaneously outputs the polynomial f,(X) such that a =
[fa(@)]1.

Since e(a, ¢) = e(b,d), we have f,(z)f.(z) = fo(x)fs(z). Now we claim that
the polynomial equation f,(X)f.(X) = f»(X)fa(X) also holds. Otherwise, the
polynomial fo(X)fe(X) — fo(X) fa(X) would be a non-zero polynomial that has
a root at x. Then by computing the at most 2¢g roots of this polynomial, we
restrict x to 2¢ candidates and then solve the ¢-DLOG problem by brute force.
Therefore, the hardness of ¢-DLOG problem implies the polynomial equation
fa(X)fc(X) = fb(X)fd(X)

The same argument can be extended to any quadratic relations on the poly-
nomials. This technique is heavily exploited by the line of works from Caulk to cq,
where the pairing check on the group elements is referred to as the real pairing
check, and the implied polynomial equation is referred to as the ideal check.

2.5 Argument of Knowledge

An argument of knowledge IT is a protocol involving two parties, a prover and
a verifier. In general, it consists of three algorithms, namely Setup, Prove and
Verify, and allows the prover to convince the verifier that given a string x it
knows a witness w such that (z,w) is in an NP relation.

Definition 2. An argument of knowledge for an indexed family of NP relations
{Rind}indez is a triple of algorithms IT = (Setup, Prove, Verify) with the following
syntax:

— Setup(ind, 1) — (o, 0v,7): in the offline phase, Setup is given the index ind
and 1* outputs a common reference string (SRS) denoted by o, a verifier SRS
ov, and a trapdoor T that is optional for zero-knowledge.
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— (Prove(o, z,w), Verify(oy, z)) — b: in the online phase, Prove receives input
o,oy and a pair of (x,w) € Rina, and Verify receives input oy and x. The
parties interact with each other. Finally, Verify outputs 0 or 1.

The algorithms should satisfy the following security requirements.
— Completeness. For any ind € Z and (z,w) € Rind,

[b _ ’Setup(ind, 1) = (0,0v,7)

(Prove(a, z,w), Verify(oy,z)) — b | L

— Argument-of-Knowledge. For any PPT algorithm Prove®, there exists a PPT
extractor E such that for any ind € T and auxiliary inputs z € {0, 1}*

Setup(ind, 1*) — (o, 0v,T)

Prove* (o, z, L;r) — (z,st)

(Prove® (o, z,st; ), Verify(oy, x)) — b
E(o,z;7) = w

Pr|b=1A(z,w) € Rina = negl.

An argument of knowledge may optionally be:

— Non-interactive: The entire interaction consists of a single message 7 from
the prover to the verifier.

— Public-coin: All the messages sent from the verifier are fresh random coins.
In this case, the argument of knowledge can be transformed into a non-
interactive protocol by the Fiat-Shamir transformation [FS86].

— Succinct: The communication cost is sublinear to the witness size, and the
verification cost is sublinear to the cost of verifying (z,w) € Rinq using its
standard NP verification.

— Zero-Knowledge: Let tr{Prove(o, x, w), Verify(oy, x)) denote the transcript of
an execution, i.e., all the messages exchanged during the interaction. There
exists a PPT simulator S such that for any ind € Z, (z,w) € Rinq4, the
following two distributions have negligible statistical distance

tr(Prove(o, z,w), Verify(ov,x)) : | _ [ S(ov,z,7):
Setup(ind, 1) — (o, 0v,7) % Setup(ind, 1*) — (o,0v,7) [

Univariate sum-checks (in the KZG-setting) are a class of arguments of
knowledge for the following relation, indexed by the bilinear pairing parameters,
the domain H C F and the KZG setup parameters ok zg = ({[z']1} 2, {[1]2, [z]2})-

Rum = {((0,8)7f(X)) o= [ S S ) = } o
bp,H,ocxzc

heH

Lookup arguments are a class of arguments of knowledge for the following
relation, indexed by the bilinear pairing parameters, the domains D, H C F and

the KZG setup parameters o zg := ({[331]1 Z_D;O’ {[$Z]2 go):
RLookup =
(cpyer), = [f(2)]1, et = [t(x)]2,
<(f(X),t(X))> deg(f(X)) N D), deg(t(X)) < [H], C)

( )g ( bp,D,H,0x zc
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3 Losum: Optimal Sum-check for KZG

We introduce Losum, a new univariate non-interactive sum-check scheme whose
communication cost is a single group element, proving cost is a single MSM, and
verification cost is dominated by one pairing. Moreover, unlike the existing uni-
variate sum-check [BCR™19], Losum does not require the interpolation domain
H to have any special structure, so it works for any field F as long as the field is
sufficiently large.

3.1 Overview

Our method is based on the following observation: for a polynomial f(X) of
degree at most D, where D > [H]|, proving the equality >, f(h) = 0 is
equivalent to proving that f(X) is a linear combination of a given set of basis
polynomials. In more detail:

— The set Z := {f(X) € F<P[X] : 3", .y f(h) = 0} forms a linear space of
dimension D.

— For all h € H\{h*}, L;,(X) — L~ (X) € Z for a fixed h* in H.

— Foralli < D— [H|, X'Zy(X) € 2.

— The set B := {Ln(X) = L+ (X)}nem (ae) U {X Zua(X)}25 ) is a linearly
independent subset of Z. Since |B| = D, B is a basis of Z.

Therefore, proving that a committed f(X) satisfies ), iy f(h) = 0 is equiv-
alent to proving that f(X) is a linear combination of B. For a more general
sum-check, i.e., >, . f(h) = s for any s € IF, we choose a representative poly-
nomial /;(X) whose sum is trivially s, and prove that f(X) —£5(X) € Z. One
obvious choice of £5(X) is s - Lp« (X).

Formally, the sum-check problem is reduced to the following statement: there

exist {bp }nem (n+} and {qi}i_olm such that

D—|H|
FX)=s-Lpe(X) = > by (Ln(X) = L= (X)) + Y ¢ - X' Zu(X).
heH\{h*} i=0

Note that ¢; are exactly the coefficients of the quotient polynomial from dividing
f(X) by Zu(X). To compute by, we evaluate both sides of this equation at every
h € H\{h*}, and get that by is just f(h). Therefore, if the prover starts the
protocol from the evaluation representation of f(X), the prover does not need
any additional computation to compute the linear combination coefficients. This
is the reason why we choose this basis. Depending on the scenario in which the
protocol is used, a different basis may be more appropriate. For example, if the
prover stores f(X) by its coefficients, then a better basis would be the set of
polynomials of the form a, X* — by.

Using the same technique as in Pinocchio [PHGR13|, Grothl6 [Grol6] and
Marlin [CHM™20|, we can force the prover to output a linear combination of
a given polynomial set {c;(X)} as follows. The idea is to let the trusted third
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party select a random secret o € F and produce a set of G1 elements {[ae;(z)]1 }-
These elements are included in the SRS. Moreover, the verifier SRS should
include [a]2. The prover simply produces the proof 7 := [af(z)]1 computed
by linearly combining the elements {[ac;(x)]1}, and the verifier checks that
e(m,[1]2) = e([f(2)]1, [@]2). Intuitively, without learning the secret «, the only
way for the prover to generate [af(x)]; is linearly combing {[ac;(x)]1}, which
would be impossible if f(X) is not a linear combination of {¢;(X)}.

3.2 Protocol Description

Exploiting the above techniques, we propose Losum for proving that the sum of
f(X) over H is s, presented as follows.

Setup. On input the pairing bp = (p, e, g, h, G1,Ga,Gr), the domain H of size
N, and the SRS oxzc = ({[z']1}2,, {[1]2, [z]2}) previously generated by the
KZG setup where D > N, the trusted third party samples o € F, and outputs
the SRS that include:

— {la-(Ln () — Ly (2))]1 nem (ney» and {[a-2' Zy(z)]1 1125~ where h* is picked

from H arbitrarily;
— Verifier SRS: [1]2, [Lin+(2)]1, and [o]s.

Prove. On input f(X) and H:

1. Divide f(X) by Zg(X) and let the quotient be ¢(X) = Z?:o X"
2. Output the proof m computed as below

d

mi= Y f(h) o (Ln(@) = Lo (@) + Y ai - o’ - Ze(a)h.

heH\{r*} i=0

Verify. On input 7, s, [f(x)]1, check

e([f(@)] = s - [Ln- (2)h1, [a]2) = e(m, [12)-

3.3 Security and Efficiency Analysis
We prove that Losum is an argument of knowledge.

Theorem 1. The three algorithms in Sect.[3.3 form an argument of knowledge
for the relation Rsym defined in Equation , in the algebraic group model.
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Proof. Completeness. Let f(X) denote f(X) mod Zg(X), then the right side,
after divided by «, has exponent

Y f0) - (Li(w) = Li+ (2)) + (@) Zn()

heH\{h*}
= Y L@ = Y f(h)Le(2) + q(x) Zu(x)
heH\{h*} heH\{h*}

(F@) = FO) L (@) = (5 = F0) Loe (2) + 0() Zas(x)
= f(2) - sLn-(2) + 4(2) Za(a)
— f(2) = sLn-(2),

which is the same as the exponent of the left side.

Knowledge soundness. Let A be any PPT adversary. Since A is algebraic,
whenever A outputs ¢, 7 € G1, A simultaneously outputs the linear coefficients
corresponding to ok zq, [Ln+ (7)]1, [ (Ly(z) — Ly (2))]1 and oz’ Zy(x). We can
then build the extractor E that executes whatever A executes, obtains the lin-
ear coeflicients, and computes the polynomials f1(X), f2(X), p1(X) and pa(X)
satisfying ¢ = [f1(2)]1 + a - [f2(2)]1 and 7 = [p1(z)]1 + a - [p2(z)]2 by linearly
combining the polynomials corresponding to the G; elements in the SRS. Then
our extractor outputs f(X) = f1(X). Now we prove that [f(z)]1 = ¢, i.e. f2(X)
must be the zero polynomial, and ), iy f(h) = s.

If the verification passes, i.e.,

e([fi(@) +a-[fa(x)]1 — s+ [Ln+(2)]1, [a]2) = e(m, [1]2),

we have
a- (fi(x) — sLp- () + a® - fao(x) = p1(x) + a - pa(z)

which can be rewritten into
—p1(z) + a - (fi(z) — pa(x) — sLp-(z)) + @ - fao(x) = 0.

Then by ¢-DLOG assumption, pi(z) = 0, fi(z) — p2(z) — sLp«(z) = 0 and
fa(x) = 0, except with negligible probability. Otherwise, we will get a non-trivial
equation of a. We can then build an adversary that solves o with non-negligible
probability from [a]; and [a]2, by preparing the SRS using the target [«]; and
[a]2, breaking the ¢-DLOG assumption.

By ¢-DLOG assumption again, p1(X) = 0, f1(X) — p2(X) — sLp«(X) =0
and fo(X) = 0, except with negligible probability. Otherwise, we would obtain
non-trivial equations for z and construct an adversary that solves x given the
KZG parameters.

Therefore, f(X) = f1(X) = p2(X) + sLp+(X), where p2(X) is the linear
combination of Ly (X) — Ly (X) and X*Zg(X), thus sums to 0 over H. We then
have Y e £(1) = 5 and [f(@) = [f1(@)] — . 0
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Efficiency. The setup algorithm is dominated by computing {«-(Lp (z)—Lp~(z))}
and {[ax'Zy(x)]1}. So the cost is O(Dlog D) scalar multiplications in Gy if H
is a multiplicative group, in which case we use FFT on G; elements. Other-
wise, these can be computed with O(D log? D) scalar multiplications using the
multi-point evaluation algorithm [Kun73].

The prover is dominated by computing 7 and ¢(X ). Computing 7 requires an
MSM of size k+deg(f(X))—N or simply k if deg(f(X)) < N, where k is the num-
ber of non-zero entries in f(H). Computing ¢(X) costs only O(deg(f(X)) — N)
additions in F if H is a multiplicative group, since Zy(X) would have the simple
form X~ — 1. For general H, this takes O(deg(f(X)) — N)log®(deg(f(X)) — N)
field operations. Note that computing ¢(X) can be ignored if deg(f(X)) < N.In
practice, f(X) is usually computed by adding a masking polynomial p- Zg(X) to
a polynomial of degree less than N in the first place, as in our lookup argument
described in the next section. In this case, ¢(X) is simply p.

The verifier is dominated by a pairing, plus a scalar multiplication for com-
puting s-[Lp~(2)]1. Note that this scalar multiplication is omitted if s = 0, which
is a common situation in the use cases of sum checks.

4 Locq: Improved Lookup Argument

We construct a new zero-knowledge lookup argument Locq that has a smaller
proof size and a smaller verification cost than cq and its subsequent works cq-,
cq++, the state-of-the-art lookup arguments.

4.1 Overview

The design of Locq essentially follows the framework of cq. To explain our idea
more clearly, we briefly recall the cq scheme. The goal of lookup argument is
to make the prover convince the verifier that, given two committed polynomials
f(X) and t(X), the set f(D) := {f(u) : v € D} is a subset of ¢(H) := {t(h) :
h € H}, where D and H are two different domains inside F. We will refer to
f(X) or f(D) as the lookup vector and ¢(X) or ¢t(H) as the table. Let m := |D|
and N := |H|. We assume m is much smaller than N and D is a subset of
H. Note that, like in Losum, we do not require any algebraic structure on D
or H. However, we will mention where the running time can be reduced from
O(mlog® m) to O(mlogm) when D or H are multiplicative subgroups.

To prove f(D) C t(H), cq leverages a technique called logarithmic deriva-
tive, first proposed by Habock et al. [Hab22], which is based on the observation
that f(D) C t(H) if and only if there exist my, for every h € H such that
> ueD X+M = heH X’_”ith(h) Intuitively, this equality is possible only if both
sides have the same set of holes, implying that every f(u) is a hole on the right
side, which is possible only if f(u) € t(H). Note that when f(D) C ¢(H), the
unique choice of my, is the number that ¢(h) appears in f(D).

To prove this equality between two rational functions, the prover commits the
polynomial m(X) such that m(h) = my, for h € H. Note that committing m(X)
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only requires O(m) scalar multiplications because {my }necm contain at most m
non-zero elements. Then the verifier samples a random § and asks the prover to
show that ), ﬁ(u) = heH % Intuitively, by Schwartz-Zippel Lemma
(for rational functions), the unpredictability of 5 guarantees that the original
equality holds with overwhelming probability. Now it remains for the prover to
convince the verifier of the equality between these two sums.

To show this equality, the prover commits two polynomials g(X) and w(X)

of degree less than |D| and |H]|, respectively, such that g(u) = m for u e D

and w(h) = BT%)L) for h € H. To prove that it has committed to the correct g(X)
and w(X), the prover shows the committed polynomials satisfy that g(X)(5 —
f(X))—1isdivided by Zp(X) and w(X)(8—t(X)) —m(X) is divided by Zg(X).
These are achieved by committing the quotient polynomials ¢;(X) and ¢2(X),
where the commitment to g2(X) is computed by the cached quotient technique
to make the prover complexity independent of N. Finally, the prover shows that
> wen 9(u) = >, cyw(h), which is equivalent to the original equality. This step
is accomplished using univariate sum-check [BCR™19].

We explain the cached quotient technique in more detail as it is also used
in Locq to compute [g2(x)]1. Note that ¢2(X) = L%J since w(X)t(X) is
the only item that has degree at least N. To compute the commitment [g2(2)];
with O(m) group operations online, the prover preprocesses, in the offline phase,
[gn(z)]1 for h € H where g, (X) := L%J These pre-computed [gn(x)]; are
called the cached quotients for the table ¢(X). In the online phase, [g2(z)]; is
computed by [g2(z)]1 = > ,cqgw(h)gn(z)]1, which involves at most m group
scalar multiplications because there are at most m nonzero w(h).

Locq improves over cq exploiting the following techniques.

Interpolate g(X) over H instead of over D. Instead of defining g(X) by interpo-
lating #(u) over D, we additionally require that g(h) = 0 for h € H\D. In this
way, the sum of g(X) over H is still the desired sum » ﬁ(u), we thus merge
the two sum-checks: the prover only needs to show that the sum of g(X) —w(X)
over H is zero. This optimization is also adopted by cq+, although presented in
a different form.

This redefinition of g(X) brings several challenges, which we address as fol-
lows.

1. The degree of g(X) increases from m to N, so the prover should avoid
computing its coefficients explicitly, and instead compute its commitment
using precomputed commitments for Ly (X).

2. To prove the correctness of g(X), in addition to checking that g(X)(8—f(X))
evaluates to 1 over D, the verifier should also check that it evaluates to
zero over H\D. Therefore, we redefine ¢;(X) to be the quotient between
g(X)(B — f(X)) —U(X) and Zg(X), where U(X) is the polynomial that
evaluates to 1 over D and 0 over H\D. In general, U(X) has degree N — 1.
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However, when H and D are multiplicative subgroups, U(X) is % - %g; —
x&(i::% and has degree N — m.

3. Although the degree of g1(X) is still O(m), computing g; (X) naively would
bring O(N log® N) cost to the prover. To address this, note that all of Z(X),
g9(X) and U(X) are divided by the polynomial %, so q1(X) can be al-
ternatively computed by dividing ¢'(X)(8 — f(X)) — U'(X) with Zp(X),
where ¢'(X) and U’(X) are defined by dividing ¢(X), U(X) with 2“88, re-
spectively. Note that U’(X) can be precomputed offline, and ¢’(X) can be

computed by interpolating g(u) - c; ! over D, where ¢, is the evaluation of
Zu(X)

Zp(X)
When H and D are multiplicative subgroups, both U’(X) and ¢, ! become
the constant ¢, and the total cost of computing ¢;(X) can be reduced to

N>
O(mlogm).

at u € D. Both can be accomplished with O(m log? m) complexity.

Merge the two quotient polynomials. Since the correctness of both g(X) and
w(X) are reduced to divisibility by Zg(X), the two divisibility checks can be
merged into one by random linear combination. Specifically, the verifier samples
¢, and the prover shows that the polynomial

(8= (X)) 9(X) =UX) + ¢ ((B—HX) - w(X)) — m(X))

is divided by Zg(X) by sending one quotient polynomial ¢(X), instead of ¢; (X)
and ¢o(X) separately.

Use Losum instead of univariate sum-check. We apply a slightly modified Losum
to prove that the sum of g(X) —w(X) over H is zero, rather than the univariate
sum-check [BCR™19] used by cq. The modification to Losum is because g(X)
and w(X) are committed in different groups, so instead of multiplying « to
g(X) — w(X), the verifier multiplies «~! to the proof 7 in the pairing check.
Moreover, because the degree of g(X) — w(X) is smaller than N, there is no
need to include aX?Zy(X) in the SRS (unless for i = 0, if zero-knowledge is
needed, as explained later). Losum reduces the overall cost of Locq because it
costs a single G; element in the proof and a single pairing in the verification.
Moreover, it does not require any degree check as the original univariate sum-
check, nor introduce any additional divisibility check.

Add zero-knowledge. Finally, we make the protocol zero-knowledge with almost
zero overhead. The idea is to add random multiples of Zy(X) to m(X), g(X)
and w(X), respectively. This will make the degree of g(X) — w(X) achieve N,
so we additionally add aZg(X) to the SRS of Losum. Because our protocol does
not involve any degree check and the proof does not contain any polynomial
evaluations, these randomizations suffice to guarantee zero-knowledge without
affecting the performance.
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4.2 Protocol Description

The complete protocol is presented as follows, where we split the setup algorithm
into a universal setup and a preprocessing procedure. The universal setup is
executed once for all tables of the specific size, while the preprocessing is executed
for each table without a trusted third party.

Setup. On input D,H of size m, N, respectively, where D C H, the bilinear
pairing parameter bp = (p, e, g, h,G1,G2,Gr), and the SRS for KZG oxzg =
{[=1 3o, {[z']2}2.,), the setup procedure outputs the SRS computed as fol-
lows:

1. Let {Ln(X)}nen be the Lagrange basis polynomials over H, U(X) = > o Lu(X),
U(X)= %ﬁ?;x), and ¢, be the evaluation of %g; at u for u € D.
2. Execute the modified setup algorithm of Losum to generate jo5um = ([a™]2, [a-

Zu(x)]1, {la- (Ln(z) — L= (x))]1 }hem (n+}), where h* is picked from D arbi-
trarily.
3. Output srs that includes
— OKZG) Olosum {[Lh(‘r)]h [Lh(x)]Q}h@HIv [ZH(:C)]D UI(X)7 and {CU}UGD'
— Verifier SRS: [U(X)]1, [Zu(2)]2, [@7 ]2, [1]1, and [1]2.

Preprocess. On input (X)) and srs, the preprocessor outputs srs; x) as follows:
1. For h € H, divide L;(X)t(X) by Zg(X) and get the quotient g (X).
2. Output {[gn(2)]1}nem and [t(2)]:.

Prover. On input f(X),t(X), [f(z)]1, [t(z)]2, srs and srs,(x), the prover interacts
with the verifier as follows:

Round 1. For h € H, let my, be the number of times that ¢(h) appears in f(D).
Sample 7 & F. Send [m(2)]1 := > pem mnlLn(w)]1 + 01 - [Zu(z)]1 to the verifier.
Round 2. Receive 8 from the verifier.
Round 3.

1. Sample d2, d3 & F and let
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3. Invoke the proving algorithm of Losum to compute 7y, for g(X) — w(X).
In detail,

1

Tsum = Z o N [Ot : (Lu(x) - Lh* (1‘))}1—
w€D\{h*} B = fu)
5%% o (La(@) = Ly ()1 + (52 — 8) - [~ Zaa(a))1.
heH\{h*}

4. Send [g(x)]a, [w(x)]1, Tsum to the verifier.

Round 4. Receive ¢ from the verifier.

Round 5.

-1

1. Interpolate =4 over D to get g'(X) := 3=, cp #zu)Ku (X) where K, (X)
is the Lagrange basis polynomial over D. Divide ¢'(X)- f(X) by Zp(X), take
the quotient, then add d5 - (8 — f(X)) to get ¢1(X).

2. Compute [¢1(x)]1 using its coefficients and ok zg, and compute [g2(x)]1 by

() = 3 g L@+ 05 (8 1~ b)),

heHﬁ_t

3. If t(X) has been masked by a random p - Zg(X), then [g2(z)]; should addi-
tionally add p - [w(x)];.
4. Send [g(z)]1 := [g1(2)]1 + ¢ - [g2(x)]1 to the verifier.

Verifier. On input [f(x)]1, [t(x)]2 and the verifier SRS, the verifier interacts with
the prover as follows.

Round 1. Receive [m(x)]; from the prover.

Round 2. Sample a uniformly random g € F and send 3 to the prover.
Round 3. Receive [g(2)]z2, [w(z)]1, Tsum from the prover.

Round 4. Sample a uniformly random ¢ € F\{0} and send ¢ to the prover.

Round 5. Receive [g(x)]1 from the prover, then

1. Invoke the verification algorithm of Losum to check 7gym. In detail

e(—=[w(@)]1, [12) - e([1]1; [9(2)]2)-

2. Check the correctness of [g(x)]z and [w(z)]; in batch

e('ﬂ_suma [ail]Q)

e(B-[th = [f (@), [g(@)l2) - e(C - [w(@)l, B - [1]2 = [t(2)]2) =
e([U(@)] +C- [m(x)h, [t2) - elg(@)]1, [Za(2)]2)-
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Note that in the two pairing checks, [w(z)]; and [g(x)]2 are repeatedly multi-
plied to different polynomials, so the two checks can be merged into one using
random linear combination to save one pairing. Specifically, they are statistically
equivalent to: sample § € I, then check

e((B+0) - 11 = [f(@)]1; [9(2)]2) - e([w()]1, (CF = 6) - [La = C- [tH(x)]2) =
e(8 " Teum, [0 ]2) - e([U(@)]1 + ¢ - [m(@)]1, [1]2) - e([a(@)1, [Zu(@)]2).

4.3 Security and Efficiency Analysis
We prove that Locq is a zero-knowledge argument of knowledge.

Theorem 2. Viewing the preprocessing algorithm as part of the setup algorithm,
the four algorithms in Sect[{.3 form a zero-knowledge argument of knowledge for
the relation Riookup defined in Equation @), in the algebraic group model.

Proof. For simplicity, we prove the completeness and soundness of the protocol
without the final merge of two pairing checks. The equivalence between the
original two pairing checks and the merged check holds for any pairing checks of
this form.

Completeness. The second pairing equation is satisfied by definition if g(X),
w(X), ¢(X) are computed as expected. Then, by definition, the sums 7, - g(u)
and ),y w(h) are equal. Then the first pairing equation follows from the fact
that, after divided by «, Tsym i8S a commitment to the polynomial

1
(Lu(X) = Lp- (X)) + o W(Lh(){) — Ly (X))

+ (62 = 03) - Zu(X) = g(X) — w(X).

T
B 1)

u€D\{h*

This equality of polynomials holds because, by definition of g(X) and w(X), the
two sides (a) have the same leading coefficient for X%, i.e., do — d3; (b) evaluate
to the same value at every h € H\{h*}; and (c) both sides sum to zero over H,
so their evaluations must also match at 1.

Knowledge soundness. Note that all the group elements in srs allow the ad-
versary to compute G; elements as commitments to polynomials of the form
ao(X) + « - ao(X) where the degree of ag(X) is at most D and the degree
of an(X) is at most N, and the sum of a,(X) over H is zero. For Gy ele-
ments, the adversary can only output commitments to polynomials of the form
ao(X)+aq-1-a~ 1. Being algebraic, whenever the adversary outputs a Gy (resp.
G2) group element, it simultaneously outputs the linear coefficients that allow
us to recover ag(X) and aq(X) (resp. aq-1).

Specifically, when the adversary outputs ¢y, ¢, ¢p, cw, ¢y that are supposed
to be [g(x)]1, [m(z)]1, Tsum, [w(x)]1 in the proof and [f(x)]; in the instance, re-
spectively, the adversary also outputs go(X), go(X) where ¢, (X) sums to 0 over
H, such that ¢, = [go(2)]1 + & [¢a(X)]1, and similarly outputs mo(X), ma(X),
Po(X); pa(X), fo(X), fa(X), wo(X), wa(X).
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Likewise, when the adversary outputs c, and c¢; that are supposed to be
[g(x)]2 in the proof and [t(x)]2 in the instance, it simultaneously outputs go(X), go-1,
to(X), ta-1, such that ¢, = [go(z)]2+ga-1-[a ]2 and ¢; = [to(z)]2+ta-1-[a .

By the first pairing check, we have

(90(x) + ™"+ ga-1) = (wo (@) + o wa(x))

which can be reformulated into

ga—1 = po(x) + - (go(x) — wo(w) = pa(@)) — 0% - wa(x) = 0 (4)

We then have that

1. po(x) = go-1,
2. go(z) —wo(x) = palz),
3. we(z) =0.

Otherwise, the adversary would get a non-zero equation of « that allows the
adversary to solve for . We can then build an adversary that computes « from
[@™!2 and [a]; by breaking the ¢-DLOG assumption. Then we claim that the
corresponding polynomials output from the adversary also satisfy

1. pO(X) = YGa-1,
2. go(X) — wo(X) = pa(X),
3. wa(X) = 0.

Otherwise, we can build an adversary that uses these non-zero polynomials to
solve for x, breaking the ¢-DLOG assumption. Therefore, we have w(X) =
wp(X) and that go(X) —w(X) is a polynomial that sums to zero over H since
Pa(X) is guaranteed to have this property.

By the second pairing check (and applying ¢-DLOG assumption again),

(B—(fo(X)+a-fa(X)))-(90(X)+a™ +ga-1)+Cw(X)-(B—(to(X)+ta-1-a™ 1))
U(X) + ¢ (mo(X) +a-ma(X)) + (90(X) + - ga(X)) - Zu(X), (5)

where we have already applied the conclusion that wg(X) = w(X). Therefore,
Zm(X) divides the polynomial
(B = (fo(X) +a- fa(X))) - (90(X) + a7 go-r) = U(X)+
¢ (w(X) - (B = (to(X) +ta-r - ™) + (mo(X) + & mq (X))

Because ( is sampled after all these polynomials are output from the adversary,
and this division with non-negligible probability over ¢, we conclude that both

(B = (fo(X) +a fa(X))) - (90(X) + a7 - go1) = U(X) (6)

and
w(X) - (B = (to(X) +tor -a™h)) + (mo(X) + a - ma(X)) (7)
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are divided by Zg(X) with overwhelming probability, i.e., evaluates to zero over
H.

For polynomial @, because f is sampled after f(X) is output from the
adversary, so the part (8 — (fo(X) + a - fo(X))) evaluates to nonzero values
over H except with negligible probability. Therefore, go(X) + a~! - g,-1 must
be zero over H\D. However, if g, ! # 0, the adversary would be able to solve
for a, breaking the ¢-DLOG assumption. So g, ! = 0 and go(X) = g(X). Then
if fo(u) # 0 for any u € D, the adversary can solve « by substituting h in
this equation. So f,(u) = 0 for every u € D. By definition of U(X), we have
g(u) = m for u € D.

From polynomial , we conclude that for every h, m,(h) = 0, otherwise, we
would get a non-trivial equation of o and the adversary solves for a.. So mq (X)
is a constant multiple of Zg(X). We also have ¢,-1 = 0, because otherwise, w(h)
must be zero for all h € H to prevent the adversary from getting a non-trivial
equation of a. However, since we have already proved that g(X)—w(X) sums to
zero over H, so w(h) = 0 over H would imply that the sum of g(X) over H is zero.
By the conclusion we obtained from polynomial (6)), this means ) m =
0. However, since § is sampled after fo(u) is fixed, this equality holds with
negligible probability. This justifies the claim that ¢,-1 = 0, so ¢(X) = to(X).
Then we have w(h) = gf)t(&)) for every h € H.

Finally, we show that f(X) = fo(X), i.e., fo(X) = 0. To achieve this, we
revisit Equation , which can now be simplified to

(B = (fo(X) + a- fa(X))) - g(X) + - (w(X) - (B — (X))
— (mo(X) + - ma(X))) = U(X) + (90(X) + @ - qa(X)) - Zu(X).
We have already proved that w(X) - (8 — t(X)) — mo(X) is divided by Zg(X).

Define m,, = mq(X)/Zu(X), which is a constant as we have already proved. So
we subtract it from both sides by appropriately redefining go(X). Then we have

(8= (fo(X) +a- fa(X))) - g(X) =U(X) = (q0(X) + - (qa(X) +{my,)) - Zu(X),

which can be reformulated into
(B=fo(X))-g(X)=U(X)=qo(X)-Zu(X) = a(fa(X)g(X)+(ga(X)+{my)-Zu(X)).

Then both sides must be zero. Otherwise, the adversary would solve for . The
right side being zero implies m/, = 0, because f,(X) and g(X) are both selected
before ¢ is sampled. If m] is nonzero then the prover must select g,(X) =

7% — ¢m],. However, this is unlikely to be a polynomial whose sum

over H is zero. So m/, must be zero, and ¢.(X) = —% sums to zero
over H. Since f,(X) is selected before § is sampled, and we have proved that

g(u) = m, we must have % sums to zero over H for every u € H.

Moreover, f,(X) itself also has a zero sum. Together we have |H| 4 1 linearly
independent constraints over the coefficient vector of f,(X), whose size is also
at most |H| + 1. We thus conclude that f,(X) must be zero, so is ¢ (X).



22 Yuncong Zhang, Shi-Feng Sun, and Dawu Gu*

Combining all the conclusions we have so far, we finally obtain the equal-
ity > uep m = D heH % that holds with overwhelming probability for
a non-negligible fraction of 3. We then conclude that the rational function
> ueD X_%f(u) — D heH % must be zero, otherwise this function does not
evaluate to 0 except for negligible fraction of 5. Therefore, this rational function
does not contain any poles, which means that for every f(u), there must exist
some t(h) = f(u). We then define the extractor by invoking the adversary and
outputting ¢(X), f(X).

Zero-knowledge. Given ok zg,cy,c; and the trapdoor «, the simulator out-
puts the transcript ¢y, 8, cg, Cw, Tsum, ¢, ¢q as follows. First, uniformly sample
B,w,9,q € F and ¢ € F\{0} and let ¢, = [w]1, ¢4 = [g]2, ¢ = [g]1. Then com-
pute ¢, = ¢ (g ([Bl1 — ¢f) = [U(@)h — g+ [Zu(@)]1) +w - ([8]2 — ). Finally,
compute Tgym = [a- (¢ —w)]1. This transcript passes the verification by design.
We then argue that its distribution is statistically close to an honest transcript.

We accomplish this by introducing an intermediate distribution of ¢,,, 3,
Cg> Cws Tsum, G, ¢q and argue that this distribution is close to both the afore-
mentioned distribution and the honest distribution. This distribution is defined

as follows. Sample m, 3, g, w,{ uniformly independently, then define mgy,, =
[a- (g —w)]; and ¢ = g-(B—f(@)+Cw-(B—t(z))-U(z)—¢-m

Zu(x
¢g = [g]2, ¢g = [q]1, cm = [m]1. Note t(h)at the simulator cannot directly sam-
ple following the definition of this intermediate distribution because it does not
learn f(z) and t(x).

First, we argue that the distribution is statistically close to the simulated dis-
tribution. Because in both distributions, £, g, w,{ are sampled uniformly inde-
pendently, we only need to show that the conditional distributions of Tsym, g, cm
given 3, g, w, ¢ are close. In both distributions, gy, is deterministically decided
by g, w, so its distributions in both cases are the same. Then we note that in both
distributions, ¢ and m satisfy the same equation of the form A-g+ B-m = C,
where A, B, C are decided by 5, g,w,(, f(z),t(x),U(x), Zu(z). For the simula-
tor, the distribution of g, m is first sampling ¢ uniformly and then solving for m,
whereas the intermediate distribution is first sampling m and then solving for ¢.
Both strategies are uniformly sampling the solution space of this equation, thus
producing the same distribution.

Next, we show that the intermediate distribution is close to the distribution
of an honest transcript. In the honest execution, 1, d2, d3 and 3,  are uniformly
and independently sampled, so the distributions of ¢y, 8, ¢4, cw, ¢ are the same as
in the intermediate distribution. Then in both distributions, 7., and ¢, are the
unique elements that satisfy the pairing checks and are decided deterministically
by ¢m, B, ¢g, cw, (. We thus conclude that the simulated transcript is statistically
indistinguishable from an honest transcript. ad

. Finally, let ¢, = [w],

Efficiency. The verifier cost, after the optimization by the final random linear
combination, is dominated by four pairings (one pairing check plus three addi-
tional pairings). The proof consists of 4 G; elements and 1 Gy elements. The
prover cost consists of:
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— Computing [m(z)]; and [w(x)]; each costs one MSM of size m in Gy.
— Computing [g(x)]2 costs one MSM of size m in Go.
— Computing ¢; (X) can be accomplished as follows:

1. Interpolate #(u) over D into ¢'(X).

2. Evaluate f(X) over DY C F of size m that is disjoint from D by one
interpolation followed by one multi-point evaluation (assuming we only
have the evaluation representation of f(X)).

Evaluate ¢’(X) over D' by one multi-point evaluation of size m.
Evaluate 7(X) := f(X) - ¢/(X) mod Zp(X) over I, by interpolating

-1
Cgi'ff((u")) over D followed by multi-point evaluation over ID'.

5. Divide the evaluation of f(X)-¢'(X) —r(X) over D' by the evaluations
of ZD( )
6. Get the coeflicients of ¢; (X) by one interpolation.
This costs seven interpolation/multi-point evaluations of size m. Then com-
puting [¢(x)]1 costs one MSM of size 2m in G;.
— Computing 74y costs one MSM of size 2m in Gy.

i o

In conclusion, the prover cost is dominated by two G1-MSM of size m, two G-
MSM of size 2m, one Go-MSM of size m, and seven size-m interpolation or multi-
point evaluations that have cost O(mlog® m). When H and I are multiplicative
subgroups, the interpolation or multi-point evaluations are replaced with IFFT
and FFTs that have cost O(mlogm).

Compared to cq, the proving cost of Locq is almost the same: we exchange 2m
scalar multiplications in G; with m scalar multiplications in Gy. According to
the data provided in zkalcﬂ multiplications in Go is roughly three times slower
than multiplications in G for the BL.S12-381 curve implemented by ark-works,
so the overall proving efficiency of Locq is slightly worse than cq. However, the
concrete impact varies significantly by the concrete implementations.

5 Conclusion

We proposed new schemes respectively for the univariate sum-check and the
lookup argument that are essential tools in SNARK and ZKVM constructions.
Both schemes advance the state of the art by reducing the proving costs, verifi-
cation costs, and/or proof sizes. Our schemes can be directly deployed as drop-in
replacements for the existing schemes. Meanwhile, our prover complexity is still
O(mlogm), and it is still an open question to reduce the number of field oper-
ations in the prover to O(m).
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