
Lattice-Based Succinct Mercurial Functional
Commitment for Circuits: Definitions and

Constructions

Hongxiao Wang1, Siu-Ming Yiu1(�), Yanmin Zhao1, Zoe L. Jiang2, and Min
Xie2

1 The University of Hong Kong, Hong Kong, China
{hxwang, smyiu, ymzhao}@cs.hku.hk

2 Harbin Institute of Technology, Shenzhen, Shenzhen, China
zoeljiang@hit.edu.cn, minxie@stu.hit.edu.cn

Abstract. Vector commitments gain a lot of attention because of their
wide usage in applications such as blockchain and accumulator. Mercu-
rial vector commitments and mercurial functional commitments (MFC),
as significant variants of VC, are the central techniques to construct
more advanced cryptographic primitives such as zero-knowledge set and
zero-knowledge functional elementary database (ZK-FEDB). However,
the current MFC only supports linear functions, limiting its application,
i.e. building the ZK-FEDB that only supports linear function queries.
Besides, to our best knowledge, the existing MFC and ZK-FEDBs, in-
cluding the one proposed by Zhang and Deng (ASIACRYPT ’23) using
RSA accumulators, are all in the group model and cannot resist the at-
tack of quantum computers.
To break these limitations, we formalize the first system model and secu-
rity model of MFC for circuits. Then, we target some specific properties
of a new falsifiable assumption, i.e. the BASIS assumption proposed by
Wee and Wu (EUROCRYPT ’23) to construct the first lattice-based suc-
cinct mercurial functional commitment for circuits. To the application,
we show that our constructions can be used to build the first lattice-
based ZK-FEDB directly within the existing generic framework.

Keywords: Vector commitment · Mercurial commitment · Lattice ·
Zero-knowledge elementary database.

1 Introduction

Vector commitment (VC) [17,6] supports one to commit to a vector of messages,
and later fine-grained opens the commitment at a specific index. Generally, a
standard VC has three properties:

– Succinctness: the sizes of the commitment and the opening are polylogarith-
mic with the length of the vector.

– Binding : the adversary cannot open the commitment to different values at
the same index.

1

– Hiding : the adversary cannot learn the input vector from the commitment.

Later, VCs have been extended to subvector commitment (SVC) [13,23] that
allows the opening to a subvector of the committed vector instead of one index.
And functional commitment (FC) supports opening to a linear map [13], constant
degree polynomial [2], or Boolean circuit [20,23,4,3,22] of the committed input.

Besides, mercurial vector commitment (MVC) [17,6], as one of the most inter-
esting variants of VCs, satisfies the mercurial property additionally. The mericu-
rial property was first proposed by Chase et al. [7] in the mercurial commitment
(MC) which allows the committer to make two kinds of opening: In the soft
opening, the committer can claim that “If I have committed to anything at all,
then the committed value is m”, i.e. it implies that he may commit to the value
m or nothing. While in the hard opening, the committer can declare that “Yes,
I really have committed to the value m”. It means that he must commit to m.
In particular, the commitment c can either be both soft and hard opened only
to the unique value m (if c is hard commitment), or can only be soft opened
to arbitrary values, but cannot be hard opened at all (if c is soft commitment).
Moreover, the committer must decide before generating the commitment which
one of the two cases suits him better: the hard commitment of only one value,
or the soft commitment of nothing at all.

Correspondingly, the MVC allows one to commit a hard commitment to the
input vector or a soft commitment to nothing at all. The hard commitment can
be both hard and soft opened to the unique value at each index, while the soft
commitment can only be soft opened to arbitrary value at every index. Further-
more, the security of MVC, named mercurial hiding requires that the adversary
cannot distinguish between the soft commitment and hard commitment even
given their associated soft openings. One can find that the property of mercurial
hiding in MVC implies the property of hiding in VC. Subsequently, mercurial
subvector commitment (MSVC) [14] was proposed to open to the subvector,
while the existing mercurial functional commitment (MFC) [24] only supports
opening to a linear function of the committed vector.

Applications: MVC and MFC apply to many cryptographic building blocks
such as zero-knowledge set (ZKS) [7,18,5,15], zero-knowledge elementary database
(ZK-EDB) [8,6,14], and zero-knowledge functional elementary database (ZK-
FEDB) [24] in which all utilize the mercurial property in MVC and MFC, i.e.
using the hard commitment (and soft commitment) to denote the existent (and
non-existent) elements and then using the hard opening (and soft opening)
to compose the proof of membership, key-value or function value (and non-
membership) in the database. It guarantees that the generated proof does not
leak any knowledge about the database except the result itself.

Overall, there is neither MFC that supports opening to Boolean circuits nor
lattice-based construction of MFC or ZK-FEDB.

To fill these gaps at one time, roughly speaking, we observe that the property
of hiding in functional commitment is a subset of mercurial hiding property
in mercurial functional commitment and the remaining challenge for achieving
mercurial hiding property is how to generate an indistinguishable valid (soft)

2

opening from the soft commitment. Meanwhile, we notice that the functional
commitment for circuits based on the BASIS assumption proposed by Wee and
Wu [23] supports hiding the commitment. Thus, we intend to solve the remaining
challenges based on their constructions in this paper.

We refer to Table 1 for a comparison among the state of the art.

Scheme AS MC Functions |crs| |C| |π| Tc To Tv

[24] ℓ-DHE ! linear maps ℓ 1 1 ℓ |f | |f |

[2] k-M-ISIS % d-degree polynomial ℓ2d 1 1 ℓ2d |f | 1∗

[23] BASIS % d-depth circuit ℓ2 1 1 ℓ |f | |f |
[4] SIS % d-depth circuit† ℓ 1 ℓ |f | |f | ℓ

[22] ℓ-succinct SIS % d-depth circuit ℓ2 1 1 ℓ |f | |f |

Cons. 4.1 BASIS ! d-depth circuit ℓ2 1 1 ℓ |f | |f |
* It needs additional pre-procession before the verification.
† It is a dual functional commitment where one commits to a function f and opens
to an input x, while other schemes in this comparison are standard functional
commitments where one commits to an input x and opens to a function f .

Table 1. Comparison to current works on (mercurial) functional commitments. For
each scheme, we report the assumption (AS) it is based on, whether it satisfies the
mercurial property (MC), the class of functions it supports, the size of common ref-
erence string crs, commitment C, opening π, and the running times Tc, To, Tv of the
commit, opening, and verification algorithms in terms of the input length ℓ and the
size of the associated function |f |. We assume functions with a single output. For sim-
plicity, we suppress poly(λ, d, log l) terms throughout the comparison (where λ denotes
the security parameter and d refers to either the fixed degree of polynomials or the
fixed depth of Boolean circuits).

1.1 Our Contribution

We define the first succinct mercurial functional commitment for circuits and
propose the first lattice-based construction that supports opening to a Boolean
circuit, achieves succinctness, and satisfies the security requirements of mercurial
(target) binding and mercurial hiding. Furthermore, we show how to utilize
our construction to build the first lattice-based ZK-FEDB directly within the
existing generic framework that allows users to make Boolean circuit queries.

1.2 Technical Overview

We first recall the construction of succinct functional commitment for circuits
based on the BASIS assumption that supports private opening proposed by Wee
and Wu [23]. To simplify, we omit some details.

3

In the setup, it first generates a random target vector u and a random matrix
A with its trapdoor R, then it publishes u, A, and other public parameters as
the common reference string and keeps R as secret.

During the commitment phase, due to the property of BASIS assumption,
the commitment C of the input x ∈ {0, 1}ℓ can be sampled by SampPre(x, ·)
via a public matrix composed of A and some public parameters and its public
trapdoor. This mechanism can hide the commitment C. The full analysis can
be found in Definition 2.2 and [23].

Then, we show the opening and verification phases in more detail:

– In the opening phase, it constructs the matrixDf and its associated trapdoor
Rf as below:

Df = [A|C̃f + (f(x)− 1) ·G], Rf =

[
−Vf

I

]
where G = I ⊗ gT is the gadget matrix, C̃f , Vf are generated by the
homomorphic encoding described in Theorem 2.3 taking commitment C,
Boolean circuit f : {0, 1}l → {0, 1}, and input x ∈ {0, 1}ℓ (only for Vf) as
input. Thus, we have DfRf = {−G,G} (by Theorem 2.3) so that Rf is the
gadget trapdoor of Df (by Theorem 2.4). Then it samples the preimage of
the public random target vector u as the opening:

vf ← SampPre(Df ,Rf ,u, s)

where s is the Gaussian parameter.
– In the verification phase, it accepts that vf is the valid opening to (f, y), i.e.

y = f(x), for the commitment C if

∥vf∥ ≤ β ∧ [A|C̃f + (y − 1) ·G]vf = u (1.1)

We omit the analysis of correctness and binding and would like to emphasize
the property of private opening which means that there exist some simulating
algorithms that can randomly sample a fake commitment C without any input
x and generate its valid equivocation opening vf to any function f at any value
y only with the trapdoor R of A.

We observe that private opening meets the part of the mercurial hiding prop-
erty and the rest of this property requires generating the indistinguishable soft
opening for hard commitment and soft commitment without the trapdoor R of
A. To achieve it, inspired by [15,21], we secretly insert a “trapdoor” into the soft
commitment. Here, the difference between [21] is that we do not need to modify
the commitment phase but the opening phase. This is non-trivial work because
we need to guarantee it indistinguishable, valid, and checkable.

We first provide two algorithms to generate the indistinguishable D in hard
commitment and soft commitment respectively:

D = AR̂ and D = G−AR̂

4

where R̂ is short and sampled randomly. Then we extend the matrix Df as
follows:

Df = [A|D|C̃f + (f(x)− 1) ·G]

After that, to generate an opening for the hard commitment, the trapdoor Rf

of Df can be extended naturally by Rf = [−Vf ,0, I]
T; To generate an opening

for the soft commitment, the trapdoor Rf can be constructed by R̂ instead of

Vf , i.e. Rf = [I, R̂,0]T. It means that without the trapdoor R of A, it can still
generate a valid and indistinguishable opening that satisfies Eq. 1.1 for the soft
commitment which does not contain any input messages. Therefore, we need R̂

as the additional opening for the hard commitment and add a check for D
?
= AR̂

during the verification for hard opening.

We provide the formal definition in Section 3 and full constructions and
analysis in Section 4.

1.3 Related Work

There are a number of breakthroughs in the academic research of MCs. The first
MC was proposed by Chase et al. [7] based on a variant of the Diffie-Hellman
(DH) assumption. Catalano et al. [5] presented a trapdoor mercurial commit-
ments (TMC) based on a one-way function. Libert et al. [15] propose the first
lattice-based construction of MC. In addition, Libert and Yung [17] proposed
the concept of MVC and provided two different constructions based on q-DH
assumption and RSA assumption respectively, which support mercurially com-
mit on a q-length vector. Subsequently, Wang et al. [21] propose a lattice-based
construction of MVC that satisfies updatable and aggregatable. Wu et al. [24]
put forward the concept of MFC and gave a pairing-based construction that sup-
ports opening the commitment to a linear function. Then, as the following work
of [10,17], Li et al. [14] proposed the first definitions of MSVC and provided a
construction based on Computational-DH (CDH) assumption in random oracle
which used hash values as coefficients to linearly combine the openings to the
subvector to make the aggregated opening.

Another line of work is to construct the vector commitments and functional
commitments. The concept of VC was first proposed by Catalano and Fiore
in [6] and provided two different constructions of VC based on CDH assump-
tions and RSA assumptions respectively. Then, Libert et al. [16] generalized the
concept of the VC to FC that can open the commitment to a linear function.
Besides, there are numerous works in lattice-based constructions of VC [20,23]
and FC [20,2,23,4,22,3]. Among them, only the constructions of FC for circuits
proposed by Wee and Wu [23] using a new falsifiable family of basis-augmented
SIS assumption (BASIS) satisfy private opening which implies hiding property.
Therefore, our work is based on the BASIS assumption as well.

Overall, there is not any work of an MFC that supports opening to a circuit
or a lattice-based construction.

5

2 Preliminaries

2.1 Notation

Let λ ∈ N denote the security parameter. For a positive integer ℓ, denote the
set (1, ..., l) by [ℓ]. For a positive integer q, we denote Zq as the integers modulo
q. We use bold uppercase letters to denote matrices like A and bold lowercase
letters to denote vectors like x. ∥x∥ is denoted as the infinity norm of vector
x. When X is a matrix, ∥X∥ := maxi,j |Xi,j |. For matrices A1, ...,Al ∈ Zn×m

q ,

we use diag(A1, ...,Al) ∈ Znl×ml
q to be the block diagonal matrix with blocks

A1, ...,Al along the main diagonal (and 0 elsewhere). We let poly(λ) be a fixed
function O(λc) for some c ∈ N and negl(λ) as a function o(λ−c) for all c ∈ N.
We use R

$← {0, 1}m×m′
to denote a sampled matrix R = [r1|...|rm′] ∈ Zm×m′

where ri
$← {0, 1}m for all i ∈ [m′]. For any positive integer k, we denote Ik

as the identity matrix of order k. Let n be a positive integer, q ∈ poly(n) be a
modulus. Define the gadget matrix G = In ⊗ (1, 2, ..., 2⌈log q⌉) ∈ Zn×m′

q where
m′ = n(⌈log q⌉+ 1) and ⊗ denotes Kronecker product.

Min-entropy. According to [9,11,23], for a discrete random variable X, let
H∞(X) = − log(maxx Pr[X = x]) denote its min-entropy. For two (possibly
correlated) discrete random variablesX and Y , the the average min-entropy ofX
given Y is denoted as H∞(X | Y) = − log(Ey→Y maxx Pr[X = x | Y = y]). The
optimal probability of an unbounded adversary guessing X given the correlated
value Y is 2−H∞(X|Y).

2.2 Lattice Preliminaries

Lattice. Let B ∈ Rn×n be a full-rank matrix over R. Then the n-dimensional
lattice L generated by B is L = L(B) = {Bz : z ∈ Zn}. If A ∈ Zn×m

q for integers

n, m, q, we define L⊥(A) = {x ∈ Zm
q : Ax = 0 mod q}.

Discrete Gaussian over Lattice. For integer m ∈ N, we denote DZm,s as
the discrete Gaussian distribution over Zm with width parameter s ∈ R+. For a
matrix A ∈ Zn×l

q and a vector v ∈ Zn
q , let A

−1
s (v) be the pre-image distributed

on x← DZm,s conditioned on Ax = v mod q. A−1
s can be extended to matrices

by applying A−1
s to each column of the input.

Definition 2.1 (SIS Assumption [1]). Let λ be a security parameter, and
n,m, q, β be lattice parameters. The short integer solution assumption SISn,m,q,β

holds if for all efficient adversaries A,

Pr

Ax = 0 ∧ 0 < ∥x∥ ≤ β

∣∣∣∣∣∣ A
$← Zn×m

q ;
x← A(1λ,A)

 = negl(λ)

6

Definition 2.2 (BASIS Assumption [23]). Let λ be a security parameter and
n,m, q, β be lattice parameters, s be a Gaussian width parameter, Samp be an
efficient sampling algorithm that takes a security parameter λ and a matrix
A ∈ Zn×m

q as input and outputs a matrix B ∈ Zn′×m′

q along with auxiliary in-
formation aux. The basis-augmented SIS (BASIS) assumption holds with respect
to Samp if for all efficient adversaries A,

Pr

Ax = 0 ∧ 0 < ∥x∥ ≤ β

∣∣∣∣∣∣
A

$← Zn×m
q ;

(B, aux)← Samp(1λ,A),T← B−1
s (G′

n);
x← A(1λ,A,B,T, aux)

 = negl(λ)

Informally, BASIS assumption requires that SIS assumption is hard towards A
even given a trapdoor T for its related matrix B.

The instantiation of the BASIS assumption with structured matrices (BASISstruct)

is that: algorithm Samp(λ,A) samples Wi
$← Zn×n

q for all i ∈ [ℓ] and outputs

Bl =

 W1A
. . .

WlA

∣∣∣∣∣∣∣
−Gn

...
−Gn

 , aux = (W1, ...,Wl)

Note that the BASISstruct assumption is conceptually similar to k-R-ISIS assump-
tion [2] in which some instances are as hard as standard SIS. However, for now,
there is no analogous reduction for the BASISstruct assumption or k-R-ISIS as-
sumption to standard lattice assumption.

To simplify, we use BASIS to represent BASISstruct in the following, unless
otherwise noted.

Theorem 2.3 (Homomorphic Encoding [11,23]). Let λ be a security pa-
rameter and n = n(λ), m = m(λ), q = q(λ) be lattice parameters. Let m′ =
n(⌈log q⌉ + 1). Let ℓ = l(λ) be an input length. Let F = {Fλ}λ∈N be a family
of functions f : {0, 1}l → {0, 1} that can be computed by a Boolean circuit of
depth at most d = d(λ). Then, there exists a pair of efficient algorithms (EvalF,
EvalFX) with the following properties:

– C̃f ← EvalF(C̃, f): Input a matrix C̃ ∈ Zn×lm′

q and a function f ∈ F , the
input-independent evaluation algorithm outputs a matrix C̃f ∈ Zn×m′

q .

– HC̃,f,x ← EvalFX(C̃, f,x): Input a matrix C̃ ∈ Zn×lm′

q and a function f ∈ F ,
and an input x ∈ {0, 1}ℓ, the input-independent evaluation algorithm outputs
a matrix HC̃,f,x ∈ Zlm′×m′

q .

Moreover, for all security parameter λ ∈ N, matrix C̃ ∈ Zn×lm′

q , all functions

f ∈ F , and all inputs x ∈ {0, 1}ℓ, the matrix C̃f ← EvalF(C̃, f) and HC̃,f,x ←
EvalFX(C̃, f,x) satisfy the following properties:

– ∥HC̃,f,x∥ ≤ (n log q)O(d).

– (C̃− xT ⊗G) ·HC̃,f,x = C̃f − f(x) ·G.

7

Theorem 2.4 (Gadget Trapdoor [23,19]). Let n, m, q, m′be lattice param-
eters. There exists efficient algorithms (TrapGen, SampPre):

– (A,R) ← TrapGen(n,m, q): On input the lattice dimension n, the modulus
q, and the number of samples m, the trapdoor-generation algorithm outputs
a matrix A ∈ Zn×m

q statistically close to uniform over Zn×m
q together with

a trapdoor R ∈ Zm×m′

q which AR = G and ∥R∥ = 1.

– u ← SampPre(A,R,v, s): On input a matrix A ∈ Zn×m
q , a trapdoor R ∈

Zm×m′

q , a target vector v ∈ Zn
q , and a Gaussian width parameter s. If s ≥√

mm′∥R∥ω(
√
log n)), the preimage sampling algorithm outputs a vector u ∈

Zm
q satisfying Au = v and the distribution of u is statistically close to

A−1
s (v).

Remark 2.5. Denote H as a tag if AR = HG for some invertible matrix
H ∈ Zn×n

q .

Remark 2.6. To sample the preimage of a matrix V ∈ Zn×l
q , we denote SampPre(A,

R,V, s) as the algorithms that outputs the matrix where the ith column is SampPre(A,
R,vi, s) and vi is the ith column of V.

3 System Model and Security Model

In this section, we show the definition of our mercurial functional commitment
for circuits and the security properties it requires to satisfy.

Definition 3.1 (Mercurial Functional Commitment). Let λ be the secu-
rity parameter. Let F = {Fλ}λ∈N be a family of functions f : {0, 1}l → {0, 1}
on inputs of length ℓ = l(λ) and can be computed by Boolean circuits of depth
at most d = d(λ). A succinct (trapdoor) mercurial functional commitment for
F comprises the following algorithms:

– crs← Setup(1λ, 1l, 1d): Input a security parameter λ and an input length ℓ,
and a circuit depth d, it outputs common reference string crs and a trapdoor
key tk optionally.

– {(C,D), aux} ← HCom(crs,x): Input the common reference string crs and
an input x ∈ {0, 1}ℓ, it outputs a hard commitment (C,D) and auxiliary
information aux.

– π ← HOpen(crs, f, aux): Input the common reference string crs, a function
f ∈ F , and the auxiliary information aux, it outputs a hard opening π.

– {0, 1} ← HVerify(crs, (C,D), f, y, π): Input the common reference string crs,
a hard commitment (C,D), a function f ∈ F , a value y ∈ {0, 1}, and a hard
opening π, it outputs 0 or 1 to indicate whether π is a valid hard opening.

– {(C,D), aux} ← SCom(crs): Input the common reference string crs, it out-
puts a soft commitment (C,D), and auxiliary information aux.

8

– τ ← SOpen(crs,F, f, y, aux): Input the common reference string crs, a flag
F ∈ {H,S} which indicates that the soft opening τ is for hard commitment
or soft commitment, a function f ∈ F , a value y ∈ {0, 1} and the auxiliary
information aux, it outputs the soft opening τ . If F = H and y ̸= f(x), it
aborts and outputs ⊥.

– {0, 1} ← SVerify(crs, (C,D), f, y, τ): Input the common reference string crs,
the commitment (C,D), a function f ∈ F , a value y ∈ {0, 1}, and soft
opening τ , it outputs 0 or 1 to indicate whether τ is a valid soft opening.

– {C, V, aux} ← FCom(crs, tk): Input the common reference string crs and trap-
door key tk, it outputs a fake commitment (C,D) and auxiliary information
aux.

– π ← EHOpen(crs, tk, f, y, aux): Input the common reference string crs and
the trapdoor key tk, a function f ∈ F , a value y ∈ {0, 1}, and auxiliary
information aux, it outputs a hard equivocation π.

– τ ← ESOpen(crs, tk, f, y, aux): Input the common reference string crs and
the trapdoor key tk, a function f ∈ F , a value y ∈ {0, 1}, and auxiliary
information aux, it outputs a soft equivocation τ .

Remark 3.2 (Proper Mercurial Commitment [15]). Generally, for all ex-
isting constructions, the soft opening of a hard commitment is a proper part of
the hard opening to the same message, so are SVerify and HVerify. Such mercurial
(functional) commitments are called proper mercurial (functional) commitments.

Correctness. The correctness of a trapdoor mercurial functional commitment
is as follows. Specifically, for all security parameters λ, all functions f ∈ F , all
input x ∈ {0, 1}ℓ, and the common reference string crs ← Setup(1λ, 1l, 1d), the
following conditions must hold with an overwhelming probability.

– For a hard commitment {(C,D), aux} ← HCom(crs,x), a hard opening π ←
HOpen(crs, f, aux) and a soft opening τ ← SOpen(crs,H, f, f(x), aux) to the
hard commitment, there must have HVerify(crs, (C,D), f, f(x), π) = 1 and
SVerify(crs, (C,D), f, f(x), τ) = 1.

– For a soft commitment {(C,D), aux} ← SCom(crs), a soft opening τ ←
SOpen(crs,S, f, y, aux) to the soft commitment, there must have SVerify (crs,
(C,D), f, y, τ) = 1.

– For a fake commitment {(C,D), aux} ← FCom(crs, tk) where tk is the trap-
door key for the construction, a hard equivocation π ← EHOpen (crs, tk, f, y, aux)
and a soft equivocation τ ← ESOpen(crs, tk, f, y, aux) to the fake commit-
ment, there must have HVerify(crs, (C,D), f, y, π) = 1 and SVerify(crs, (C,D)
, f, y, τ) = 1.

Mercurial binding. A proper mercurial functional commitment satisfies mer-
curial target binding if given the common reference string crs, for any adver-
sary A outputs a hard commitment (C,D) which is honestly-generated from
HCom(crs,x) with some input x ∈ {0, 1}ℓ (possibly adversarially chosen), a
function f ∈ F and a hard opening π (or soft opening τ) to the value 1− f(x),

9

the following probability should be negl(λ). 3

Pr

HVerify(crs, (C,D), f, 1− f(x), π) = 1

∣∣∣∣∣∣∣∣
crs← Setup(1λ, 1l, 1d);

x← A(crs);
(C,D)← HCom(crs,x);
{f, π} ← A((C,D), crs)


Mercurial hiding. Given the common reference string crs, for any function
f ∈ F , any input x ∈ {0, 1}ℓ, no efficient adversary can distinguish between hard
commitment with its soft opening {x, (C,D)← HCom(crs,x), τ ← SOpen(crs,H,
f, f(x), aux)} and soft commitment with its soft opening {x, (C,D) ← SCom(
crs), τ ← SOpen(crs,S, f, f(x), aux)}. It uses an equivocation game to prove this.

Equivocation game. There are three sub-games composed of a pair of real sce-
nario and ideal scenario. Given the common reference string crs and the trapdoor
tk, no adversary A can distinguish between the two scenarios in each sub-games.

– HHEquivocation: A picks an input x ∈ {0, 1}ℓ and a function f ∈ F . In
the real game, A will receive (C,D) ← HCom(crs,x), and π ← HOpen
(crs, f, aux). While in the ideal game, A will obtain (C,D)← FCom(crs, tk),
and π ← EHOpen(crs, tk, f, f(x), aux).

– HSEquivocation: A picks an input x ∈ {0, 1}ℓ and a function f ∈ F . In
the real game, A will receive (C,D) ← HCom(crs,x), and τ ← SOpen
(crs,H, f, f(x), aux). While in the ideal game,A will obtain (C,D)← FCom(crs,
tk), and τ ← ESOpen(crs, tk, f, f(x), aux).

– SSEquivocation: In the real game, A will first get (C,D)← SCom (crs), then
choose a function f ∈ F and a value y ∈ {0, 1}, and finally receive τ ←
SOpen(crs,S, f, y, aux). While in the ideal game, A first obtains (C,D) ←
FCom(crs, tk), then chooses a function f ∈ F and a value y ∈ {0, 1}, and
finally receives τ ← ESOpen(crs, tk, f, y, aux).

Succinctness. A mercurial functional commitment is succinct if there exists a
universal polynomial poly(·, ·, ·) such that for all λ ∈ N, the size of the com-
mitment has |(C,D)| = poly(λ, d, log l), and the size of the opening has |π| =
poly(λ, d, log l).

4 Our MFC Construction

In this section, we put forward the detailed constructions of succinct mercurial
functional commitments for circuits based on BASIS assumption. Then we show
the correctness, mercurial binding, mercurial hiding, and succinctness of our
constructions.

3 There exists a stronger notion of mercurial binding where the commitment from
the adversary can be chosen arbitrarily and no need to contain any input message.
However, like existing lattice-based functional commitments for circuits that sat-
isfy private opening [23] and pairing-based constructions in Algebraic Group Model
(AGM) [14,10], our constructions achieve the weak (target) binding.

10

Construction 4.1 (MFC Based on BASIS). Let λ be a security parameter
and F = {Fλ}λ∈N be a family of functions f where each function f : {0, 1}l →
{0, 1} is on inputs of length ℓ = l(λ) and can be computed by a Boolean circuit of
depth at most d = d(λ). Let n = n(λ),m = m(λ), q = q(λ) be lattice parameters.
Let m′ = n(⌈log q⌉+1), and β = β(λ) be the bound. Let s0 = s0(λ), s1 = s1(λ),
s2 = s2(λ) be Gaussian width parameters. The detailed construction is shown
as follows:

– {crs, tk} ← Setup(1λ, 1l): Input a security parameter λ and a input length ℓ ,
it first obtains (A,R)← TrapGen(1n, q,m). Then for each i ∈ [ℓ], it samples

an invertible matrix Wi
$← Zn×n

q and a random vector u
$← Zn

q . Next, it

completes Ri = RG−1(W−1
i G) ∈ Zm×m′

q for each i ∈ [ℓ] and constructs

Bl ∈ Znl×(lm+m′)
q and R̃ ∈ Z(lm+m′)×lm′

q as follows:

Bl =

W1A
. . .

WlA

∣∣∣∣∣∣∣
−G
...
−G

 , R̃ =

[
diag(R1, ...,Rl)

0m′×lm′

]
(4.1)

After that, it samples T← SampPre(Bl, R̃,Gnl, s0). It outputs the common
reference string crs = {A,W1, ...,Wl,T,u} and the trapdoor key tk = R
optionally.

– {(C,D), aux} ← HCom(crs,x): Input the common reference string crs =

{A,W1, ...,Wl,T,u} and a vector x ∈ {0, 1}l, it first samples R̂
$← {0, 1}m×m′

and computes D = AR̂ ∈ Zn×m′

q . Next, it constructs Bl as in Eq. 4.1 and

the target matrix Ux ∈ Znl×m′

q and then uses T to sample the preimage as
follows,

Ux =

−x1W1G
...

−xlWlG

 ,


V1

...
Vl

Ĉ

← SampPre (Bl,T,Ux, s1) (4.2)

Last, it computes C = GĈ ∈ Zn×m′

q . It outputs the hard commitment

(C,D) and the auxiliary information aux = {x,V1, ...,Vl, (C,D), R̂}.
– π ← HOpen(crs, f, aux): Input the common reference string crs = {A,W1, ...,Wl,

T,u}, a function f : {0, 1}l → {0, 1}, and the auxiliary information aux =

{x,V1, ...,Vl, (C,D), R̂}. It first constructs C̃ = [W−1
1 C| · · · |W−1

l C] ∈
Zn×lm′

q , and computes C̃f ← EvalF(C̃, f) and Vf = [V1| · · · |Vl] · HC̃,f,x

where HC̃,f,x ← EvalFX(C̃, f,x). Then, it constructs the trapdoor Rf =

[−Vf |0m′×m′ |Im′]T to sample the preimage as follows,

vf ← SampPre([A|D|C̃f + (f(x)− 1) ·G],Rf ,u, s2)

where D actually equals AR̂. It outputs the hard opening π = {vf , R̂}.

11

– {0, 1} ← HVerify(crs, (C,D), f, y, π): Input the common reference string
crs = {A,W1, ...,Wl,T,u}, the hard commitment (C,D), the function
f : {0, 1}l → {0, 1}, the value y ∈ {0, 1} and the hard opening π. It first
computes C̃ = [W−1

1 C| · · · |W−1
l C] ∈ Zn×lm′

q and C̃f ← EvalF(C̃, f). Then,
it checks if the following conditions hold to verify the opening.

∥vf∥ ≤ β, u = [A|D|C̃f + (y − 1) ·G]vf (4.3)

∥R̂∥ ≤ 1, D = AR̂ (4.4)

If they all hold, it outputs 1; Otherwise, it outputs 0.
– {(C,D), aux} ← SCom(crs): Input the common reference string crs, it first

samples Ĉ ← DZm′×m′ ,s1
and R̂

$← {0, 1}m×m′
, then computes C = GĈ

and D = G−AR̂. It outputs the soft commitment (C,D) and the auxiliary

information aux = {(C,D), R̂}.
– τ ← SOpen(crs,F, f, y, aux): Input the common reference string crs = {A,W1,

...,Wl,T,u}, a flag F ∈ {H,S} which indicates that the soft opening τ is
for hard commitment or soft commitment, a function f : {0, 1}l → {0, 1}, a
value y ∈ {0, 1}, and the auxiliary information aux.
If F = H and y equals f(x) where x is phased from aux, then it computes

{vf , R̂} ← HOpen(crs, f, aux) and outputs τ = vf ; If y ̸= f(x), it aborts
and outputs ⊥.
If F = S, it first computes C̃ = [W−1

1 C| · · · |W−1
l C] ∈ Zn×lm′

q and C̃f ←
EvalF(C̃, f). Then, it constructs the trapdoor Rf = [R̂|Im′ |0m′×m′

]T to
sample the preimage as follows,

vf ← SampPre([A|D|C̃f + (y − 1) ·G],Rf ,u, s2)

where D is phased from aux and actually equals G − AR̂. It outputs the
soft opening τ = vf .

– {0, 1} ← SVerify(crs, (C,D), f, y, τ): Input the common reference string crs =
{A,W1, ...,Wl,T,u}, the commitment (C,D), the function f : {0, 1}l →
{0, 1}, the value y ∈ {0, 1}, and soft opening τ . It first computes C̃ =
[W−1

1 C| · · · |W−1
l C] ∈ Zn×lm′

q and C̃f ← EvalF(C̃, f), then check if Eq. 4.3
holds. If it holds, it outputs 1; Otherwise, it outputs 0.

– {(C,D), aux} ← FCom(crs, tk): Input the common reference string crs and

trapdoor key tk. It first samples Ĉ← DZm′×m′ ,s1
, R̂

$← {0, 1}m×m′
and then

computes C = GĈ, D = AR̂. It generates the fake commitment (C,D) and

the auxiliary information aux = {(C,D), R̂}.
– π ← EHOpen(crs, tk, f, y, aux): Input the common reference string crs, trap-

door key tk = R, a function f : {0, 1}l → {0, 1}, a value y ∈ {0, 1}, and
the auxiliary information aux. It first computes C̃ = [W−1

1 C| · · · |W−1
l C] ∈

Zn×lm′

q and C̃f ← EvalF(C̃, f). Then, it constructs the trapdoor Rf =

[R|0m′×m′ |0m′×m′
]T to sample the preimage as follows,

vf ← SampPre([A|D|C̃f + (y − 1) ·G],Rf ,u, s2)

where D actually equals AR̂. It outputs the hard equivocation π = {vf , R̂}.

12

– τ ← ESOpen(crs, tk, f, y, aux): Input the common reference string crs and
trapdoor key tk, the function f : {0, 1}l → {0, 1}, the value y ∈ {0, 1}, and
the auxiliary information aux, it computes vf ← EHOpen(crs, tk, f, y, aux).
It outputs the soft equivocation τ = vf .

Theorem 4.2 (Correctness). For n = λ, m = O(n log q), s0 = O(lm2 log(ln)),
s1 = O(l3/2m3/2 log(nl)·s0), s2 = s1 ·m5/2l3/2 ·(n log q)O(d), and β =

√
m+ 2m′ ·

s2, then the Construction 4.1 is correct.

Proof. Take a security parameter λ, a function f ∈ Fλ and an input x ∈
{0, 1}ℓ. Let {crs, tk} ← Setup(1λ, 1l) where crs = {A,W1, ...,Wl,T,u}. Let
{(C,D), aux} ← HCom(crs,x) and π ← HOpen(crs, f, aux). Let {(C,D), aux} ←
SCom(crs) and τ ← SOpen(crs,F, f, y, aux). Let {(C,D), aux} ← FCom(crs, tk),
π ← EHOpen(crs, tk, f, y, aux), and τ ← EHOpen(crs, tk, f, y, aux). Consider
HVerify(crs, (C,D), f, y, π) and SVerify(crs, (C,D), f, y, τ):

Following the same parameters and constructions of Bl and R̃ in BASIS [23],
we have ∥T∥ ≤

√
lm+m′·s0. By our construction and Theorem 2.4, we also have

∥R̂∥ = 1 and ∥R∥ = 1. We prove the correctness of our proposed construction
from the following aspects.

For hard commitment. Suppose s1 ≥
√
(lm+m′)lm′·∥T∥·ω(

√
log(nl)) =

O(l3/2m3/2 log(nl) · s0), by Theorem 2.4 and construction of (V1, ...,Vl,C) in
Eq. 4.2, for each i ∈ [ℓ], we have

WiAVi −C = −xiWiG

where C = GĈ. As well as AVi −W−1
i C = −xiG for each i ∈ [ℓ]. Let C̃ =

[W−1
1 C| · · · |W−1

l C] and Ṽ = [V1| · · · |Vl]. We have

C̃− xT ⊗G = A · [V1| · · · |Vl] = A · Ṽ (4.5)

Let β0 =
√
lm+m′ ·s1 be the “initial” noise bound. So ∥Vi∥ ≤

√
lm+m′ ·s1 =

β0 (by Lemma 1 in [15]), and thus ∥Ṽ∥ ≤ β0.
By construction, we have HC̃,f,x ← EvalFX(C̃, f,x) and Vf = Ṽ · HC̃,f,x

where by Theorem 2.3, ∥HC̃,f,x∥ ≤ (n log q)O(d). By our notation of norm of

matrix i.e. ∥X∥ := maxi,j |Xi,j |, so that we have ∥Vf∥ ≤ lm′ ·β0 · (n log q)O(d) ≤
lm′ ·

√
lm+m′ · s1 · (n log q)O(d). Thanks to Theorem 2.3 again and according

to Eq. 4.5, we have

AVf = AṼHC̃,f,x = (C̃− xT ⊗G) ·HC̃,f,x = C̃f − f(x) ·G (4.6)

where C̃f ← EvalF(C̃, f).

Let Df = [A|D|C̃f+(f(x)−1)·G] ∈ Zn×(m+2m′)
q where D = AR̂, and Rf =

[−Vf |0m′×m′ |Im′]T ∈ Z(m+2m′)×m′

q . Thus, ∥Rf∥ = ∥Vf∥ ≤ lm′ ·
√
lm+m′ · s1 ·

(n log q)O(d) and by Eq. 4.6, we have

DfRf = −AVf + C̃f + (f(x)− 1) ·G = (2f(x)− 1)G ∈ {−G,G}

13

Thus, Rf is a gadget trapdoor for Df (with tag In or −In, depending on the
value of f(x) ∈ {0, 1}). Suppose m ≥ m′ = O(n log q) and

s2 ≥
√
(m+ 2m′)m′ · ∥Rf∥ · ω(

√
log n) = s1 ·m5/2 · l3/2 · (n log q)O(d)

For soft commitment. By our construction, Df = [A|D|C̃f + (f(x) −
1) · G] ∈ Zn×(m+2m′)

q where D = G − AR̂, and Rf = [R̂|Im′ |0m′×m′
]T ∈

Z(m+2m′)×m′

q . Then, we have ∥Rf∥ = 1 and DfRf = G. Thus, Rf is a gadget
trapdoor for Df . Suppose m ≥ m′ = O(n log q) and

s2 ≥
√
(m+ 2m′)m′ · ∥Rf∥ · ω(

√
log n) = O(m log n)

For fake commitment. By our construction, Df = [A|D|C̃f + (f(x) −
1) · G] ∈ Zn×(m+2m′)

q where D = AR̂, and Rf = [R|0m′×m′ |0m′×m′
]T ∈

Z(m+2m′)×m′

q . Then, we have ∥Rf∥ = 1 and DfRf = G. Thus, Rf is a gadget
trapdoor for Df . Suppose m ≥ m′ = O(n log q) and

s2 ≥
√
(m+ 2m′)m′ · ∥Rf∥ · ω(

√
log n) = O(m log n)

Overall, for each opening vf ← SampPre(Df ,Rf ,u, s2) from hard commit-
ment, soft commitment, and fake commitment, by Theorem 2.4, it must satisfy
Dfvf = u and ∥vf∥ ≤

√
m+ 2m′ · s2 ≤ β so that the verification algorithms

will accept with overwhelming probability. ⊓⊔

Theorem 4.3 (Mercurial Binding). For any polynomial ℓ = l(λ), n = λ,
m = O(n log q), s0 = O(lm2 log(nl)), s1 = O(l3/2m3/2 log(nl) · s0). Under the
BASIS assumption with parameters (n,m, q, β′, s0, l) where β′ = s1 ·m5/2l3/2 ·β ·
(n log q)O(d), Construction 4.1 satisfies mercurial (target) binding.

Proof. Considering that our construction is a proper MFC where the hard open-
ing contains its corresponding soft opening as a proper subset. Thus, we only
focus on the hard-soft case. We now define a sequence of hybrid experiments:

– Hyb0: This is the real mercurial binding experiment:

• The challenger starts by sampling (A,R)← TrapGen(1n, q,m) andWi
$←

Zn×n
q for each i ∈ [ℓ]. Then it constructs R̃ and Bl following the Eq. 4.1.

It samples T ← SampPre(Bl, R̃,Gnl, s0) and u
$← Zn

q . Last, the chal-
lenger sends the common reference string crs = {A,W1, ...,Wl,T,u} to
the adversary A.

• The adversary A chooses an input vector x ∈ {0, 1}ℓ.
• The challenger gives {(C,D), aux} ← HCom(crs,x) to A.
• The adversary A outputs a function f ∈ F and an openings vf to the

value 1− f(x).
• The output of the experiments is 1 if it satisfies the following conditions:

∥vf∥ ≤ β, [A|D|C̃f − f(x) ·G]vf = u (4.7)

whereD = AR̂, ∥R̂∥ ≤ 1, C̃f ← EvalF(C̃, f), and C̃ = [W−1
1 C| · · · |W−1

l C];
Otherwise, the experiments output 0.

14

– Hyb1: Same as Hyb0 except the challenger samples T ← (Bl)
−1
s0 (Gnl) with-

out using the trapdoor R̃ so the common reference string crs is sampled
independently of R.

– Hyb2: Same as Hyb1 except the challenger samples A
$← Zn×m

q .

– Hyb3: Same as Hyb2 except the challenger samples u ← Ar where r
$←

{0, 1}m.

For an adversary A, we write Hybi(A) to denote the output distribution of ex-
ecution of experiment Hybi with adversary A. We omit the proof of Hyb0(A) ≈
Hyb1(A) ≈ Hyb2(A) ≈ Hyb3(A) because they are given in [23] (Lemma 4.26∼4.28)
and same as ours. We now analyze the last step.

Lemma 4.4. Suppose the conditions on n,m, s0, s1 in Theorem 4.3 hold and
m ≥ n log q + λ. Let β′ = s1 · m5/2l3/2 · β · (n log q)O(d). Then, under the
BASIS assumption with parameters (n,m, q, β′, s0, l), for all efficient adversary
A, Pr[Hyb3(A) = 1] = negl(λ).

Proof. Suppose there exists an adversary A where Pr[Hyb3(A) = 1] = ϵ for some
non-negligible ϵ. And an algorithm B will use A to break the BASIS assumption.

Algorithm B first receives the challenge A ∈ Zn×m
q , Bl ∈ Znl×(lm+m′)

q , T ∈
Z(lm+m′)×lm′

q and aux = (W1, ...,Wl), Then B samples r
$← {0, 1}m, computes

u = Ar, and sends the common reference string crs = {A,W1, ...,Wl,T,u} and
to A. The adversary A outputs a vector x ∈ {0, 1}ℓ to B. Algorithm B computes
{(C,D), aux} ← HCom(crs,x) and sends (C,D) and aux to A. The adversary A
can output a function f ∈ F and an opening vf ∈ Zm+2m′

q satisfying Eq. 4.7.
By Eq. 4.6 and u = Ar, we have

u = Ar = [A|AR̂|C̃f − f(x) ·G]vf = [A|AR̂|AVf]vf

Let z = [Im|R̂|Vf]vf−r so that we have Az = 0. We now show 0 < ∥z∥ ≤ β′

in the following two aspects:

– We show ∥z∥ ≤ β′. Since ∥R̂∥ = 1, ∥Vf∥ ≤ lm′ ·
√
lm+m′ · s1 · (n log q)O(d),

∥vf∥ ≤ β, ∥r∥ = 1, and m > m′, we have that

∥z∥ ≤ lm′·
√
lm+m′·s1·(n log q)O(d)·β·(m+2m′)+1 ≤ s1·m5/2l3/2·β·(n log q)O(d)

where s1 ·m5/2l3/2 · β · (n log q)O(d) = β′.

– We show ∥z∥ ̸= 0, i.e. r ̸= [Im|R̂|Vf]vf . Following the same entropy ar-

gument as in [11] (Theorem 3.1), by our construction, [Im|R̂|Vf]vf is a
function of u ∈ Zn

q (and other quantities that are independent of r). By
construction, u contains at most n log q bits of information about r. It leads
that

H∞(r | [Im|R̂|Vf]vf) ≥ H∞(r | u) ≥ m− n log q ≥ λ

It means that Pr[r = [Im|R̂|Vf]vf] ≤ 2−λ.

15

Overall, z is a valid solution for B to break the BASIS assumption with non-
negligible probability ϵ− 2−λ. ⊓⊔

By lemmas in [23] and Lemma 4.4, we conclude that for all efficient adversaries
A, Pr[Hyb0(A) = 1] ≤ negl(λ). Therefore, mercurial (target) binding holds. ⊓⊔

Theorem 4.5 (Mercurial Hiding). For n = λ, m = O(n log q), q is prime,
s0 = O(lm2 log(ln)), s1 = O(l3/2m3/2 log(nl)·s0), s2 = s1·m5/2l3/2·(n log q)O(d),
then Construction 4.1 satisfies statistical HHEquivocation, HSEquivocation, and
SSEquivocation.

Proof. The Challenger first sets up the scheme and obtains the common reference
string crs = {A,W1, ...,Wl,T,u} via the real protocol, and tk = R is the
trapdoor. Then we prove the mercurial hiding of our proposed construction in
the equivocation games.

For HHEquivocation. Firstly, D and R are generated in the same way for
both fake and hard commitments. By Theorem 4.2 and Theorem 2.4, since s2 ≥√
(m+ 2m′)m′ · ∥Rf∥ ·ω(

√
log n) = s1 ·m5/2 · l3/2 · (n log q)O(d) in hard opening

and s2 ≥
√

(m+ 2m′)m′ · ∥Rf∥ · ω(
√
log n) = O(m log n) in hard equivocation,

the distributions of vf ← SampPre(Df ,Rf ,u, s2) from both hard opening and
hard equivocation are statistically close to the distribution of vf ← (Df)

−1
s2 (u).

Then, by Theorem 2.4, if s1 ≥
√
(lm+m′)lm′∥T∥·ω(

√
log(nl)) = O(l3/2m3/2

log(nl) · s0), the distribution of of {V1, ...,Vl, Ĉ} ← SampPre(Bl, T,Ux, s1) in
hard commitment is statistically close to the distribution (Bl)

−1
s1 (Ux) where the

target vector Ux is the same as Eq. 4.2.
Let Ā = diag(W1A, ...,WlA), thenBl = [Ā|−1l⊗G].Since s1 ≥ log(lm), by

the distribution of discrete Gaussian preimages (Lemma 2.4 in [21]), the distri-

bution of {V1, ...,Vl, Ĉ} ← (Bl)
−1
s1 (Ux) is statistically close to the distribution{

Ĉ← DZm′×m′ ,s1
, {V1, ...,Vl} ← Ā−1

s1

(
Ux + (1l ⊗GĈ)

)}
where Ĉ is generated in the same way for fake commitment.

Overall, these lead to fake commitments and hard equivocation having ex-
actly the same distribution as hard commitments and hard openings.

For HSEquivocation. Follow the same arguments as HHEquivocation.
For SSEquivocation. We note that Ĉ are generated in the same way for

both fake and soft commitments. By the well-known Leftover Hash Lemma [12],
the distributions of D in fake commitment and D′ in soft commitments are{

D = AR̂|R̂ $← {0, 1}m×m′
}
,

{
D′ = G−AR̂′|R̂′ $← {0, 1}m×m′

}
both statistically close to uniform over Zn×m′

q (Lemma 2.3 in [21]).
Thus, the adversary’s view remains statistically the same if we generate

D in fake commitments from SCom instead of FCom in the ideal experiment.
Moreover, by Theorem 2.4, since s2 ≥

√
(m+ 2m′)m′ · ∥Rf∥ · ω(

√
log n) =

O(m log n) in both soft commitment and fake commitment, the distribution of

16

vf ← SampPre ([A|D′|C̃f + (y − 1) ·G],Rf ,u, s2) in the soft opening and the

distribution of vf ← SampPre([A|D′|C̃f + (y − 1) · G],Rf ,u, s2) in the soft

equivocation are both statistically close to ([A|D′|C̃f +(y−1) ·G])−1
s2 (u). These

lead to fake commitments and soft equivocation having exactly the same distri-
bution as soft commitments and their corresponding soft openings. ⊓⊔

Remark 4.6 (Parameter Instantiation). Let λ be the security parameter
and F = {Fλ}λ∈N be a family of functions f : {0, 1}l → {0, 1} on inputs of
length ℓ = l(λ) which can be computed by Boolean circuits of depth at most
d = d(λ). We provide the parameter instance of Construction 4.1.

– Let ϵ > 0 be a constant, the lattice dimension be n = d1/ϵ · poly(λ) and
m = O(n log q).

– Let the Gaussian parameters be s0 = O(lm2 log(nl)), s1 = O(l3/2m3/2

log(nl) · s0) = O(l5/2m7/2 log2(nl)), and s2 = s1 ·m5/2l3/2 · (n log q)O(d) =
l4 log2 l · (n log q)O(d)

– Let the bound be β = s2 ·
√
m+ 2m′ = l4 log2 l · (n log q)O(d), β′ = s1 ·

m5/2l3/2 ·β · (n log q)O(d) = 2Õ(d) = 2Õ(nϵ) where Õ(·) is denoted to suppress
polylogarithmic factors in λ, d, ℓ.

– Let the modulus be q = β′ ·poly(n) in the BASIS assumption with parameters
(n,m, q, β′, s0, l). Then log q = poly(d, log λ, log l). Note that the BASIS as-
sumption as well as SIS assumption relies on a sub-exponential noise bound.

Remark 4.7 (Succinctness). Following the parameter instance in Remark 4.6,
we show the succinctness of Construction 4.1.

– Commitment size: A commitment to a vector x ∈ {0, 1}ℓ is (C,D) ∈ Zn×m′

q ×
Zn×m′

q where

|C| = |D| = nm′ log q = O(n2 log2 q) = poly(λ, d, log l)

– Opening size: A (hard) opening is (vf , R̂) ∈ Zm+2m′

q × Zm×m′

q where

|vf | = (m+ 2m′) log β = O(nd · log q · log l · log λ) = poly(λ, d, log l)

|R̂| = mm′ = O(n2 · log2 q) = poly(λ, d, log l)

– Common reference string size: The common reference string are crs = {A,W1,

...,Wl,T,u} where A ∈ Zn×m
q , Wi ∈ Zn×n

q , T ∈ Z(lm+m′)×lm′

q , and u ∈ Zn
q ,

where

|crs| = nm log q+ ln2 log q+(lm+m′)(lm′) log q+n log q = l2 ·poly(λ, d, log l)

Therefore, Construction 4.1 is succinct.

17

5 Application: Lattice-Based ZK-FEDB

The main application of MCs is to build ZKS, ZK-EDB, and ZK-FEDB. ZKS
allows a set owner to prove the membership (and non-membership) of an el-
ement x for a set S and ZK-EDB extends the set to an elementary database
D containing key-value pairs (x, v) which others can query the key x. Different
from them, ZK-FEDB [24,25] allows the database owner to provide the proof to
the function value f(x, v) or non-membership after the users query the key x
with some function f to the elementary database. Due to the limitation of exist-
ing MFC, the ZK-FEDB [24] constructed by MFC only supports linear function
queries. The most general ZK-FEDB was first proposed by Zhang and Deng [25]
using an RSA accumulator and set-operation instead of MFC which allows the
user to query the key with Boolean circuits.

However, all existing constructions of ZK-FEDB cannot resist the quantum
computer attack. The current lattice-based constructions of MC and MVC [15,21]
can only be used to build the lattice-based ZKS and ZK-EDB and does not
suffice to construct the ZK-FEDB, i.e. allowing users to make function queries,
especially for Boolean circuit queries.

In this section, we illustrate how to use our construction to build the first
lattice-based ZK-FEDB in the generic framework [24] at a high level.

Normally, there are three phases in the ZK-FEDB: the committing phase,
the opening phase, and the verification phase: (1) In the committing phase, the
committer will build a binary (or N -ary) tree where the leaf nodes are indexed by
the keys in the elementary database and the root as the database’s commitment.
Thanks to the mercurial property, it can prune the subtrees without any leaves
(keys) in the database to reduce the size and enhance efficiency. After that,
only the subtrees with at least one leaf node in the database are kept. For the
leaf node whose level equals the height of the whole tree, and if its index (key)
is in the database, i.e. D(x) ̸= ⊥, the leaf node contains a hard commitment
of input (x,D(x)) ∈ {0, 1}ℓ generated by our MFC, otherwise it contains a
soft commitment produced by our MFC; for other leaf nodes, i.e. their level is
less than the height of the tree, they contain soft commitments generated by
the standard lattice-based MVC [21] or MC [15]. The remaining nodes in the
tree, i.e. internal node, will contain a hard commitment to their children nodes
generated by the same lattice-based MVC or MV as above. The commitment in
the root node is the final commitment to the database. (2) In the opening phase,
to prove that some key x is in the database and the output of a Boolean circuit
f ∈ F is f(x,D(x)), the committer generates a proof of membership including
all the hard openings for the commitments in the internal nodes on the path
from the root to the leaf x and the hard opening for the commitment in the leaf
node x to the circuit f ; To prove the non-membership, i.e. D(x) = ⊥ (we can
treat ⊥ as 0 in this case), the committer first generates the subtree which x lies
and is pruned before. Then it generates the proof including all the soft openings
for the commitment in the internal nodes on the path from the root to the leaf x
and the soft opening for the soft commitment in the leaf node x to the function
f and value f(x,⊥). (3) In the verification phase, the users will check all the

18

commitments and openings of internal nodes and the leaf node on the path from
the leaf x to the root.

Overall, our constructions of MFC can be used to build the first lattice-
based ZK-FEDB. Compared to the existing ZK-FEDBs, our construction not
only enables the database owner to commit the elementary database, generates
a convinced answer to the query of a Boolean circuit on some key, and allows
the users to verify the answer without leaking any knowledge except the query
result, but also can achieve the security at a post-quantum level.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing. pp. 99–108 (1996)

2. Albrecht, M.R., Cini, V., Lai, R.W., Malavolta, G., Thyagarajan, S.A.: Lattice-
based snarks: Publicly verifiable, preprocessing, and recursively composable. In:
Advances in Cryptology–CRYPTO 2022: 42nd Annual International Cryptology
Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15–18, 2022, Pro-
ceedings, Part II. pp. 102–132. Springer (2022)

3. Balbás, D., Catalano, D., Fiore, D., Lai, R.W.: Chainable functional commitments
for unbounded-depth circuits. In: Theory of Cryptography Conference. pp. 363–
393. Springer (2023)

4. de Castro, L., Peikert, C.: Functional commitments for all functions, with trans-
parent setup and from sis. In: Advances in Cryptology–EUROCRYPT 2023: 42nd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part III. pp. 287–320.
Springer (2023)

5. Catalano, D., Dodis, Y., Visconti, I.: Mercurial commitments: Minimal assump-
tions and efficient constructions. In: Theory of Cryptography: Third Theory of
Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Pro-
ceedings 3. pp. 120–144. Springer (2006)

6. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Public-Key
Cryptography–PKC 2013: 16th International Conference on Practice and Theory in
Public-Key Cryptography, Nara, Japan, February 26–March 1, 2013. Proceedings
16. pp. 55–72. Springer (2013)

7. Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commit-
ments with applications to zero-knowledge sets. In: Eurocrypt. vol. 5, pp. 422–439.
Springer (2005)

8. Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commit-
ments with applications to zero-knowledge sets. Journal of cryptology 26, 251–279
(2013)

9. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Advances in Cryptology-EUROCRYPT
2004: International Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, May 2-6, 2004. Proceedings 23. pp. 523–540.
Springer (2004)

10. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: Aggregating proofs for
multiple vector commitments. In: Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security. pp. 2007–2023 (2020)

19

11. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Proceedings of the forty-seventh annual ACM
symposium on Theory of computing. pp. 469–477 (2015)

12. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

13. Lai, R.W., Malavolta, G.: Subvector commitments with application to succinct ar-
guments. In: Advances in Cryptology–CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceed-
ings, Part I 39. pp. 530–560. Springer (2019)

14. Li, Y., Susilo, W., Yang, G., Phuong, T.V.X., Yu, Y., Liu, D.: Concise mercurial
subvector commitments: Definitions and constructions. In: Information Security
and Privacy: 26th Australasian Conference, ACISP 2021, Virtual Event, December
1–3, 2021, Proceedings 26. pp. 353–371. Springer (2021)

15. Libert, B., Nguyen, K., Tan, B.H.M., Wang, H.: Zero-knowledge elementary
databases with more expressive queries. In: IACR International Workshop on Pub-
lic Key Cryptography. pp. 255–285. Springer (2019)

16. Libert, B., Ramanna, S.C., et al.: Functional commitment schemes: From poly-
nomial commitments to pairing-based accumulators from simple assumptions.
In: 43rd International Colloquium on Automata, Languages and Programming
(ICALP 2016) (2016)

17. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Theory of Cryptography: 7th Theory of
Cryptography Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010.
Proceedings 7. pp. 499–517. Springer (2010)

18. Liskov, M.: Updatable zero-knowledge databases. In: Advances in Cryptology-
ASIACRYPT 2005: 11th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Chennai, India, December 4-8, 2005.
Proceedings 11. pp. 174–198. Springer (2005)

19. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Eurocrypt. vol. 7237, pp. 700–718. Springer (2012)

20. Peikert, C., Pepin, Z., Sharp, C.: Vector and functional commitments from lattices.
In: Theory of Cryptography: 19th International Conference, TCC 2021, Raleigh,
NC, USA, November 8–11, 2021, Proceedings, Part III 19. pp. 480–511. Springer
(2021)

21. Wang, H., Yiu, S.M., Zhao, Y., Jiang, Z.L.: Updatable, aggregatable, succinct
mercurial vector commitment from lattice. In: Tang, Q., Teague, V. (eds.) Public-
Key Cryptography – PKC 2024. pp. 3–35. Springer Nature Switzerland, Cham
(2024)

22. Wee, H., Wu, D.J.: Lattice-based functional commitments: Fast verification
and cryptanalysis. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology – ASI-
ACRYPT 2023. pp. 201–235. Springer Nature Singapore, Singapore (2023)

23. Wee, H., Wu, D.J.: Succinct vector, polynomial, and functional commitments from
lattices. In: Advances in Cryptology–EUROCRYPT 2023: 42nd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Lyon, France, April 23-27, 2023, Proceedings, Part III. pp. 385–416. Springer (2023)

24. Wu, C., Chen, X., Susilo, W.: Concise id-based mercurial functional commitments
and applications to zero-knowledge sets. International Journal of Information Se-
curity 19(4), 453–464 (2020)

25. Zhang, X., Deng, Y.: Zero-knowledge functional elementary databases. In: Guo,
J., Steinfeld, R. (eds.) Advances in Cryptology – ASIACRYPT 2023. pp. 269–303.
Springer Nature Singapore, Singapore (2023)

20

	Introduction
	Our Contribution
	Technical Overview
	Related Work

	Preliminaries
	Notation
	Lattice Preliminaries

	System Model and Security Model
	Our MFC Construction
	Application: Lattice-Based ZK-FEDB

