
Classical Commitments to Quantum States

Sam Gunn∗1, Yael Tauman Kalai†2, Anand Natarajan‡2, and Ági Villányi§2

1UC Berkeley
2MIT

April 19, 2024

Abstract

We define the notion of a classical commitment scheme to quantum states, which allows a
quantum prover to compute a classical commitment to a quantum state, and later open each
qubit of the state in either the standard or the Hadamard basis. Our notion is a strengthening
of the measurement protocol from Mahadev (STOC 2018). We construct such a commitment
scheme from the post-quantum Learning With Errors (LWE) assumption, and more generally
from any noisy trapdoor claw-free function family that has the distributional strong adaptive
hardcore bit property (a property that we define in this work).

Our scheme is succinct in the sense that the running time of the verifier in the commitment
phase depends only on the security parameter (independent of the size of the committed state),
and its running time in the opening phase grows only with the number of qubits that are being
opened (and the security parameter). As a corollary we obtain a classical succinct argument
system for QMA under the post-quantum LWE assumption. Previously, this was only known
assuming post-quantum secure indistinguishability obfuscation. As an additional corollary we
obtain a generic way of converting any X/Z quantum PCP into a succinct argument system
under the quantum hardness of LWE.

∗gunn@berkeley.edu
†tauman@mit.edu
‡anandn@mit.edu
§agivilla@mit.edu

1

Contents

1 Introduction 3
1.1 The Definition . 6
1.2 The Construction . 7
1.3 Applications . 10
1.4 Related Works . 10

2 Technical Overview 11
2.1 Mahadev’s measurement protocol . 15
2.2 Our Single-Qubit Commitment Scheme . 16
2.3 Succinct commitments . 18
2.4 Applications . 19

3 Preliminaries 20
3.1 Quantum information facts . 22
3.2 Hash Family with Local Opening . 22
3.3 Noisy Trapdoor Claw-Free Functions . 24

4 The Distributional Strong Adaptive Hardcore Bit Property 26

5 Classical Commitments to Quantum States 31
5.1 Syntax . 31

5.1.1 Syntax for Succinct Commitments . 33
5.2 Properties . 35

5.2.1 Correctness . 35
5.2.2 Binding . 36

6 Constructions 39
6.1 Construction for Single Qubit States . 39
6.2 Construction of Commmitments for Multi-Qubit States 41
6.3 Construction of Succinct Multi-Qubit Commitments 43

6.3.1 Construction . 44

7 Analysis of the Multi-Qubit Commitment Schemes from Section 6 46
7.1 Correctness . 46
7.2 Binding . 49
7.3 Binding for the Succinct Commitment Scheme . 72

8 Applications 79
8.1 Succinct Interactive Arguments for QMA . 79
8.2 Succinct Interactive Arguments from X/Z Quantum PCPs 82

9 Acknowledgements 84

A Weak commitments to Quantum States (WCQ) 87

B Proof of Lemma 4.5 89

2

1 Introduction

A commitment scheme is one of the most basic primitives in classical cryptography, with far reaching
applications ranging from zero-knowledge proofs [GMW86, BCC88], identification schemes and
signature schemes [FS87], secure multi-party computation protocols [GMW87, CDv88], and succinct
arguments [Mic94]. There is a long history of studying commitments to classical information, both
in the classical and post-quantum worlds. In this work, we focus on the less-studied question
of committing to quantum states. This notion was first systematically explored in a recent work
by Gunn et al. [GJMZ22], who defined and constructed a commitment scheme for quantum states
using quantum messages. In this work, we study the existence of classical commitments to quantum
states, where all messages (the commitment and the opening) are classical, and the receiver is a
classical machine. Our major contributions are a definition of a classical commitment to quantum
states, a construction based on the post-quantum Learning With Errors (LWE) assumption, and
a construction of a succinct commitment to quantum states (analogous to Merkle hashing in the
classical setting [Mer87]), also under post-quantum LWE.1 As an immediate application, we obtain
a succinct classical argument system for QMA based only on post-quantum hardness of LWE,
improving on previous work which required indistinguishability obfuscation [BKL+22]. To our
knowledge, our work constitutes the first work to define a binding classical commitment to quantum
states, and to give a construction that achieves this.

Our construction builds directly on the seminal measurement protocol of Mahadev [Mah18],
which was used by her to construct the first classical argument system for QMA. Loosely speaking,
a measurement protocol is a way for a classical verifier to request a quantum prover to measure
each qubit of a quantum state (of the prover’s choice) in the X or Z basis with the guarantee that
the prover’s opening must be “consistent with a quantum state.” This motivates our definition of a
classical opening of a quantum state: the receiver should be able to request the sender to open each
qubit of the committed state in either the X or Z basis. (One could imagine asking for openings
in more general bases, but these two seem to be a desirable minimum.) However, a measurement
protocol does not automatically give rise to a commitment, for several reasons. First, there is a
major structural difference: in a measurement protocol, all phases of the protocol—even the keys
chosen in the initial setup— may depend on the choice of opening basis! (Indeed, in Mahadev’s
protocol, the keys consist of either “2-to-1” or “injective” claw-free functions depending on the basis
to be measured.) This is far from what we would like in a commitment: the initial “commitment"
phase should be completely independent of the basis in which the receiver ultimately chooses to
request an opening.

Thus, the first step to building our construction is to convert Mahadev’s measurement protocol
into something having the syntax of a commitment2, and henceforth we refer to this modified
protocol as Mahadev’s “weak” commitment3. In the most basic version of this protocol, a quantum
sender holding a qubit in state |ψ〉 interacts with a classical receiver, sending a classical message that
commits to |ψ〉. Later, the sender is requested by the receiver to “open” the committed qubit in either

1More generally, our constructions are based on the existence of a (noisy) claw-free trapdoor function family
with a distributional strong adaptive hard-core bit property, which in particular can be instantiated under the LWE
assumption.

2Technically, we do this by always using the “2-to-1” mode of the claw-free function. Moreover, we do not even
rely on the existence of a dual-mode (as was done by Mahadev [Mah18]), and simply use a “2-to-1” claw-free family.

3We refer to it as a weak commitment since (as we elaborate on below) it does not have the desired binding
property.

3

the standard or the Hadamard basis. To open, the sender performs an appropriate measurement
and returns the outcome, which can be decoded by the receiver (using a cryptographic trapdoor),
to obtain an outcome from measuring |ψ〉 in the appropriate basis.

A commitment scheme must be binding, meaning that the sender cannot change their mind
about the committed state once the commitment has been sent. It turns out that the modified
Mahadev scheme is a “weak” commitment because it partially satisfies the binding property: it is
binding in the standard basis, but not at all binding in the Hadamard basis. In fact, the sender,
after committing to |+〉, can always freely change the committed state to |−〉 without ever being
detected! Relatedly, in the modified Mahadev scheme, the receiver performs a test on the opening
in the standard basis case, and only accepts the opening if it is valid, but performs no test in the
Hadamard case.

Motivated by this observation, we show that a simple twist on Mahadev’s weak commitment
is truly binding (in a rigorous sense which we define) in both bases. We elaborate on our binding
definition in Sections 1.1 and 2, and on our construction in Sections 1.2 and 2, and below only
give a teaser of it. In our construction, the sender first commits to |ψ〉 under Mahadev’s weak
commitment, generating a commitment string y0 and a (multi-qubit) post-commitment state |ψ1〉.
It then coherently opens this state in the Hadamard basis—that is, it executes a unitary version of
the opening algorithm, but does not perform the final measurement, instead producing a quantum
state |ψ1〉. Finally, the sender applies Mahadev’s weak commitment again to the state |ψ1〉, qubit-
by-qubit, obtaining a vector of commitment strings ~y and a post-commitment state |ψ2〉. The
strings (y0, ~y) now constitute a classical commitment to the state |ψ〉. To open this commitment
in the Hadamard basis, the sender simply applies the standard basis opening procedure for the
second Mahadev commitment, yielding a string z which the receiver will test and decode using the
commitment vector ~y. By the standard-basis binding of Mahadev’s commitment, we are guaranteed
that the decoded outcome from z—assuming the test passes—yields the same result as measuring
|ψ1〉 in the standard basis, and by construction, this gives a Hadamard-basis opening of |ψ〉, which
it can then decode using the commitment string y0. But how do we open the commitment in the
standard basis? It is far from obvious that this is even possible! For this we exploit specific features
of the Mahadev scheme—in particular, the fact that the opening procedure is “native”: Opening
in the standard basis constitutes measuring the registers in the standard basis, and opening in the
Hadamard basis constitutes measuring the registers in the Hadamard basis. This fact is useful both
to argue that the opening is correct and to prove that the binding property is achieved. We note
that in our new scheme the verifier tests the validity of both the standard basis opening and the
Hadamard basis opening, and decodes both opening using the cryptographic trapdoor.4

Our basic construction for a single qubit can be extended to states with any number of qubits
to get a non-succinct commitment to a quantum state. We next ask whether our commitment
scheme can be made succinct : can the sender commit to an ` qubit state, and open to a small
number of these qubits, by exchanging much fewer than ` bits with the receiver? Here, already
in the case of “weak” commitments, there is a significant technical obstacle with just the very first
message from the receiver to the sender: openings in Mahadev’s scheme can leak information about
the secret key, so each committed qubit must use a fresh secret key to maintain any security at all.
This means that already in the initial key-exchange phase, the receiver must send the sender ≥ `

4We mention that in Mahdadev’s scheme, the verifier only tests the validity of the standard basis opening, and
this test, as well as the decoding, is done publicly (without the trapdoor). The verifier uses the trapdoor only to
decode the Hadamard basis opening, which it did not test.

4

bits. We show that, surprisingly, the “strong” binding property of our commitment, together with
specific properties of the underlying (noisy) trapdoor claw-free family, allows us to overcome this
barrier. Namely, we show that strong binding, together with specific properties of the underlying
(noisy) trapdoor claw-free family, implies that the openings do not leak information about the key
in our scheme, allowing us to use the same key for all committed qubits. We emphasize that, even
to obtain a succinct “weak” commitment, or a succinct measurement protocol, the only route we
know of using standard (post-quantum) cryptographic assumptions is through our strongly binding
commitments! We view this as an interesting indication of the possible usefulness of our strong
binding property in further applications.

As a teaser for how exactly the leakage occurs, and how we avoid it, for now we remark that
in the Mahadev weak commitment, the adversary can cause the receiver to generate outputs of the
form d′ · s, for known vectors d′ of its choice, where s is the secret. This means that the output for
sufficiently many qubits, may leak the secret s. For an honest sender, this would not be an issue
because the vectors d′ would be obtained by a quantum measurement with unpredictable answers,
and thus have high min-entropy. We show that in our scheme, even dishonest senders are forced
to produce d′ with (sufficient) min-entropy, because of the additional tests done in our opening
procedure. This is what prevents the outcomes from leaking information about s.

Reusing the key directly only gives us a short first message, which yields a “semi-succinct”
commitment, in which messages from the receiver are short, but messages from the sender are long.
In fact, this already yields an application of our results: a fully-succinct classical argument system
for QMA which is secure assuming post quantum security of LWE. We obtain this by following the
template of Bartusek et al. [BKL+22], but replacing their use of Mahadev’s measurement protocol
with our succinct commitment.

Theorem 1.1 (Informal). There exists a (classical) succinct interactive argument for QMA under
the post-quantum Learning With Errors (LWE) assumption.5

This improves on the result of [BKL+22] in terms of cryptographic assumptions: they required
the assumption of post-quantum indistinguishability obfuscation (iO) to succinctly generate ` keys
for Mahadev’s protocol, whereas our protocol only requires the post-quantum security of LWE. It is
currently not known how to deduce post-quantum iO from any standard cryptographic assumptions,
whereas LWE is the “paradigmatic” post-quantum cryptographic assumption.

To construct a succinct argument system for QMA, the approach we and [BKL+22] both follow
is to construct a semi-succinct argument system, and then make it fully succinct by composing with
(state-preserving) post-quantum interactive arguments of knowledge [CMSZ21, LMS22]. It turns
out that the same tools let us construct outright a fully succinct commitment scheme: for this
to be meaningful, we imagine that the sender only opens to a small number of qubits chosen by
the receiver, rather than to all of the qubits. In classical cryptography, succinct commitments are
natural partners of PCPs, as they enable a verifier to delegate the task of checking a PCP to the
prover. While quantum PCPs do not currently exist, we hope that our succinct commitment can
be paired with a suitable future PCP to design interesting protocols.

5More generally, assuming the existence of a (noisy) trapdoor claw free function family with a distributional strong
adaptive hard-core bit property, which we elaborate on later on.

5

1.1 The Definition

Defining a non-succinct commitment scheme Our definition of a (non-succinct) commitment
scheme is a natural extension of the classical counterpart. It consists of a key generation algorithm
Gen that takes as input the security parameter 1λ and a length parameter 1` and outputs a pair
of public and secret keys (pk, sk); a commit algorithm Commit that takes as input a public key pk
and an `-qubit quantum state σ and outputs a classical string y and a post-commitment state ρ,
where y is the commitment to the quantum state σ;6 an open algorithm Open that takes as input
the post-commitment state ρ and a basis choice b = (b1, . . . , b`) ∈ {0, 1}`, where bi = 0 corresponds
to opening the i’th qubit in the standard basis and bi = 1 corresponds to opening the i’th qubit in
the Hadamard basis, and outputs an opening z ∈ {0, 1}`·poly(λ); and the final algorithm Out that
takes as input a secret key sk, a commitment string y, a basis choice b ∈ {0, 1}` and an opening z,
and outputs the measurement result m ∈ {0, 1}` or ⊥ if the opening is rejected.7

We mention that the above syntax yields a commitment scheme that is privately verifiable in
the sense that sk is needed to decode the measurement value m from the opening value z. While
it would be desirable to construct a commitment scheme that is publicly verifiable, where Gen only
generates a public key pk, and this public key is used by the opening algorithm to generate the
output m along with an opening z which can be verified given pk, we believe that this public key
variant is impossible to achieve. This impossibility was formalized on the quantum setting (i.e.,
where the commitment is a quantum state) by [GJMZ22], and we leave it as an open problem to
prove the impossibility in the classical setting.

We require two properties from our commitment scheme: completeness and binding. We note
that for commitments to classical strings it is common to require a hiding property. We do not
require it since one can easily obtain hiding by committing to the commitment string y using a
classical commitment scheme (that is binding and hiding).

• Correctness. The correctness property asserts that if an honest committer commits to an
`-qubit state σ then for any basis choice b ∈ {0, 1}`, the algorithm Out, applied to the opening
string z generated by Open, yields an output m whose distribution is statistically close to the
distribution obtained by simply measuring σ in the basis b.

• Binding. Loosely speaking, the binding property asserts that for any (possibly malicious)
QPT algorithm Commit∗ that commits to an `-qubit quantum state, there is a single extracted
quantum state τ such that for any QPT algorithm Open∗ and any basis (b1, . . . , b`), where
bi = 0 corresponds to measuring the i’th qubit in the standard basis and bi = 1 corresponds
to measuring it in the Hadamard basis, the output obtained by Open∗(b1, . . . , b`) is compu-
tationally indistinguishable from measuring τ in basis (b1, . . . , b`), assuming Open∗ is always
accepted. We relax the requirement that Open∗ is always accepted, and allow Open∗ to be
rejected with probability δ at the price of the two distributions being O(

√
δ)-computationally

indistinguishable. We elaborate on the binding property in Section 2.
6We note that both the length of pk and the length of the commitment string y may grow polynomially with the

length ` of the committed state σ.
7We note that in the actual definition we partition this algorithm into two parts: Ver and Out where the former

only outputs a bit indicating if the opening is valid or not and the latter outputs the actual opening if valid. This
partition is only for convenience.

6

Comparison with Mahadev’s measurement protocol. Our commitment scheme is stronger
than that of a measurement protocol, originally considered in [Mah18] and formally defined in
[BKL+22]. Beyond the syntactic difference, where in a measurement protocol the opening basis
must be determined during the key generation phase (and the key generation algorithm takes as
input the basis b ∈ {0, 1}`), our binding property is significantly stronger. A measurement protocol
guarantees that any (possibly malicious) QPT algorithm Open∗ must be consistent with an `-qubit
state, but different opening algorithms can be consistent with different quantum states.

Defining a succinct commitment scheme. The syntax for a succinct commitment differs quite
substantially from the syntax of a non-succinct commitment described above. First, Gen only takes
as input the security parameter 1λ (and does not take as input the length parameter 1`); in ad-
dition, Commit is required to output a succinct commitment of size poly(λ). However, there is a
more substantial difference which stems from the fact that, similarly to the non-succinct variant,
we require a succinct commitment to have an extraction property that asserts that one can extract
an `-qubit quantum state τ such that the output distribution of any successful opening is indistin-
guishable from measuring τ . Since in this setting we consider opening algorithms that only open
a few of the qubits, there is no way we can extract an `-qubit state from such algorithms. As a
remedy, we add an interactive test phase. This test phase is executed with probability 1/2, and
if executed then at the end of it the verifier outputs 0 or 1, indicating accept or reject, and the
protocol terminates without further executing the opening phase, since the test protocol destroys
the state. We note that Mahadev’s measurement protocol has a non-interactive test phase which
is executed with probability 1/2. In our setting this test phase is interactive. It is this interactive
nature that allows us to extract a large state from a succinct protocol.

1.2 The Construction

Our construction: the single qubit case We construct the commitment scheme in stages.
We first construct a single-qubit commitment scheme; this scheme is inspired by the construction
from Mahadev [Mah18]. We elaborate on it in Section 2, but give a very high-level description
here. First, let us recall Mahadev’s weak commitment for a single qubit. In this scheme, the sender
receives a public key that enable it to evaluate a two-to-one trapdoor claw-free (TCF) function
f : {0, 1} ×X → Y.8 For every image y ∈ Y, there are exactly two preimages, which have the form
(0, x0) and (1, x1), where x0, x1 ∈ {0, 1}n, but any such pair (called a “claw”) is cryptographically
hard to find. In Mahadev’s scheme, to commit to a qubit in state |ψ〉 =

∑
b∈{0,1} αb |b〉, the sender

first prepares ∑
b∈{0,1}

∑
x∈X

αb |b〉 |x〉 |f(b, x)〉 ,

and then measures the last register to obtain a random outcome y. The resulting state is the
(n+ 1)-qubit state ∑

b∈{0,1}

αb |b〉 |xb〉 .

To open this in the standard basis, the honest sender measures in the standard basis and returns
(b, xb); the receiver checks that f(b, xb) = y, and if so, records a measurement outcome of b.

8We mention that under the LWE assumption we only have a “noisy” TCF function family, which was constructed
in [BCM+18]. We do not go into this technicality in the introduction and overview sections.

7

Intuitively, this constitutes a “binding” commitment in the standard basis because it is impossible
for the sender to know both x0 and x1, and thus impossible to flip between them. To open in
the Hadamard basis, the honest sender measures in the Hadamard basis; a short calculation shows
that the outcome is a random string d ∈ {0, 1}n+1, where the probability that d · (1, x0 ⊕ x1) ≡ 0
(mod 2) is exactly equal to |α0+α1|2/2, the probability that a Hadamard basis measurement on the
original state |ψ〉 would have yielded +. The receiver uses the cryptographic trapdoor to compute
d · (1, x0 ⊕ x1) (mod 2) as the measurement outcome of the opening, and performs no test. This is
not at all a binding commitment: indeed, the “commitments” to a Hadamard basis states |±〉 look
like

|±〉 7→ 1√
2

(|0〉 |x0〉 ± |1〉 |x1〉),

and one can easily map from one state to the other by applying a Pauli Z operator to the first
qubit.

We now describe our modification to convert this weak commitment (denoted commitW) into a
binding commitment: simply apply a Hadamard transform to the post-commitment state, and then
weakly commit again to the resulting n-qubit state, applying the Mahadev scheme qubit by qubit,
with a new TCF function fi for each qubit.∑

b

αb |b〉 7→commitW→y0
∑
b

αb |b, xb〉

7→H⊗(n+1)
∑

d∈{0,1}n+1

βd |d〉

7→commitW→y1,...,yn+1
∑
d

βd
∣∣d1, x′1,d1〉 . . . ∣∣∣dn+1, x

′
n+1,dn+1

〉
.

Here, dj denotes the jth bit of d, and x′j,b denotes the corresponding preimage of yj under the TCF
function fj (so fj(b, x′j,b) = yj).

Let us see how to open this commitment. It will be easier to start with the Hadamard basis:
to open in this basis, the sender measures their state in the standard basis, and returns the string
(d1, x1, . . . , dn+1, xn+1). The receiver checks that each (di, xi) is a preimage of the corresponding yi,
and the records the measurement outcome as (d1, . . . , dn+1) · (1, x0 ⊕ x1). To open in the standard
basis, the sender measures their state in the Hadamard basis, obtaining a (long) string z, and
the receiver converts this into a measurement outcome by applying the Mahadev procedure for the
Hadamard basis. Specifically, it first splits z into equal blocks of size n+1, and applies the Mahadev
Hadamard procedure on each block, to get n+ 1 bits m1, . . . ,mn+1.

z = (z1, . . . , zn+1)

7→ (m1 = z1 · (1, x′1,0 ⊕ x′1,1), . . . ,mn+1 = zn+1 · (1, x′n+1,0 ⊕ x′n+1,1))

Now, this corresponds to the outcome of opening the weak commitment of
∑

d βd |d〉 in the Hadamard
basis. But this state in turn was equal to the Hadamard transform of

∑
b αb |b, xb〉. Thus, the out-

comes m1, . . . ,mn+1 should look like the outcome of measuring
∑

b αb |b, xb〉 in the standard basis:
that is, like a preimage of y0 under the TCF function f ! Thus, the receiver tests the outcomes by
checking that

f(m1, . . . ,mn+1) = y0,

8

and if this passes, it records m1 as the measurement outcome.
At an intuitive level, what makes this commitment scheme binding is that the receiver performs

a test in both bases. More formally, we show binding in two parts: (1) there exists a qubit state
consistent with the openings reported by the sender, and (2) for any two opening algorithms, the
openings they generate are statistically indistinguishable. The proof of (1) uses standard techniques
from the analysis of Mahadev’s protocol—in particular, the “swap isometry” as presented in [Vid20],
but the proof of (2) is new to our work. Our arguments are based on the collapsing property of the
TCF functions used to generate y1, . . . , yn (in the Hadamard basis case), and y0 (in the standard
basis case). Jumping ahead, we note in the succinct setting the situation is reversed. We can obtain
(2) basically “for free” from the non-succinct setting, whereas the proof of (1) incurs most of the
technical burden in this work.

Our construction: multiple qubits, and succinctness From the single-qubit scheme de-
scribed above, we construct a non-succinct multi-qubit commitment scheme, by committing qubit-
by-qubit, and thus repeating the single-qubit construction `-times, where ` is the number of qubits
we wish to commit to. This transformation is generic and can be used to convert any single-qubit
commitment scheme into a non-succinct multi-qubit one. We emphasize that in the resulting `-qubit
scheme, both the public-key and the commitment string grow with `, since the former consists of `
public-keys and the latter consists of ` commitment strings, where each corresponds to the under-
lying single-qubit scheme. We then convert this scheme into a succinct commitment scheme. This
is done in two stages:

1. Stage 1: Reuse the same public key, as opposed to choosing ` independent ones. Namely,
the public key consists of a single public key pk corresponding the underlying single-qubit
commitment scheme. To commit to an `-qubit state, commit qubit-by-qubit while using the
same public key pk. We refer to such a commitment scheme as semi-succinct since the public
key is succinct but the commitment is not.

We note that while this construction is generic, the analysis is not. In general, reusing the same
public-key may break the binding property. We prove that if we start with our specific single-
qubit commitment scheme then the resulting semi-succinct multi-qubit scheme remains sound.
We recall, that as mentioned above, if we start with Mahadev’s single qubit weak commitment
protocol and convert it into a multi-qubit weak commitment while reusing the same public
key, then the resulting measurement protocol becomes insecure. The reason is that a malicious
sender may generate openings d in the Hadamard basis that cause the receiver’s “decoding”
outcomes d · (1, x0 ⊕ x1) to leak bits of sk—recall that the receiver must use the secret key
to decode, as x0 and x1 cannot be computed efficiently without it. Indeed, the TCF function
family that we (and Mahadev) use is the LWE based construction due to [BCM+18], which
has the property that d · (1, x0 ⊕ x1) = d′ · s, where s is a secret key9 and d′ can be efficiently
computed from d and x0. Once enough information about the secret s has been revealed,
the scheme is no longer a secure measurement protocol, let alone a secure commitment: with
knowledge of s, it becomes easy to distinguish the outcomes of the commitment from outcomes
of measuring a true quantum state! Thus, to argue the security of our semi-succinct scheme,
we must exploit specific properties of our single-qubit scheme. Indeed, we crucially use the

9In their construction the public key is an LWE tuple (A,As + e). The secret key is actually a trapdoor of the
matrix A but revealing the secret s is sufficient to break security.

9

binding property of our scheme which implies that the openings z reported by a successful
sender must always have high min-entropy, which in our construction implies that d′ has
min-entropy. We then use a specific property of the underlying TCF function family from
[BCM+18], which we call the “distributional strong adaptive hardcore bit” property. Roughly,
this property ensures that if the opening d has min-entropy then d · (1, x0⊕x1) (which in their
construction is equal to d′ · s) does not reveal information about sk.

2. Stage 2: Convert any semi-succinct commitment scheme into a succinct one. This part is
generic and shows how to convert any semi-succinct commitment scheme into a succinct one.
Our transformation is almost identical to that from [BKL+22], who showed how to convert
any semi-succinct interactive argument (which is one where only the verifier’s communication
is succinct, and where the prover’s communication can be long) into a fully succinct one. We
elaborate on the high-level idea behind this transformation in Section 2.

1.3 Applications

We show how to use our succinct commitment scheme to construct succinct interactive argument
for QMA. As a simpler bonus, we also use it show how to compile a hypothetical quantum PCP
in “X/Z form” into a succinct interactive argument. For the X/Z PCP compiler the idea is simple:
In the succinct interactive argument the prover first succinctly commits to the X/Z PCP, then the
verifier sends its X/Z queries and finally the prover opens the relevant qubits in the desired basis.
The succinct interactive argument for QMA is more complicated, and follows the blueprint from
[Mah18, BKL+22]. We elaborate on this in Section 2.1.

1.4 Related Works

Our work is inspired by the measurement protocol of Mahadev [Mah18], which has the same cor-
rectness guarantee as our commitment scheme. However, a measurement protocol (as was formally
defined in [BKL+22]) does not require binding to hold; rather it only requires that an opening is
consistent with a qubit. This qubit may be different for different opening algorithms. Indeed, the
measurement protocol of Mahadev, as well as the ones from followup works, are not binding in
the Hadamard basis. Mahadev uses this measurement protocol to construct classical interactive
arguments for QMA. Mahadev’s measurement protocol, which was proven to be secure under the
post-quantum LWE assumption, is a key ingredient in our construction.

Mahadev’s measurement protocol is not succinct. In a followup work, Bartusek et al. [BKL+22]
constructed a succinct measurement protocol, by using Mahadev’s measurement protocol as a key
ingredient, and thus obtaining a succinct classical interactive arguments for QMA. However the
security of their protocol, and thus the soundness of the resulting QMA argument, relies on the
existence of a post-quantum secure indistinguishable obfuscation scheme (in addition the post-
quantum LWE assumption). We mention that Chia, Chung and Yamakawa [CCY20] also construct
a succinct measurement protocol, which they use to obtain a succinct 2-message argument forQMA.
However, in their scheme the prover and verifier share a polynomial-sized structured reference string
(which requires a trusted setup to instantiate), and their security is heuristic.10

10More specifically, their scheme uses a hash function h, and it is proved to be secure when h is modeled as a
random oracle, but the protocol description itself explicitly requires the code of h (i.e. uses h in a non-black-box
way).

10

We improve upon these works by constructing a succinct classical commitment scheme for quan-
tum states that guarantees binding (which is a stronger security condition than the one offered by a
measurement protocol), based only on the post-quantum LWE assumption. As a result, we obtain a
succinct classical interactive arguments for QMA, under the post-quantum LWE assumption. Our
analysis makes use of techniques developed in [Mah18, Vid20, BKL+22], in addition to several new
ideas that are needed to obtain our results.

We mention that our work, as well as all prior works mentioned above, require the receiver (a.k.a
the verifier) to hold a secret key sk which is needed to decode the prover’s message and obtain the
measurement output. We mention that the recent work of Bartusek et al. [BKNY23] considers the
public-verifiable setting, where decoding can be done publicly. They construct a publicly verifiable
measurement protocol in an oracle model, which is used as a building block in their obfuscation of
pseudo-deterministic quantum circuits.

So far we only focused on prior work where the verifier (and hence the communication) is
classical. We mention that recently Gunn et al. [GJMZ22] defined and constructed a quantum
commitment scheme to quantum states, where both parties are quantum. In their setting, the
quantum committer sends a quantum commitment to the receiver, and later opens by sending a
quantum opening. The receiver then applies some unitary operation to recover the committed
quantum state. This is in contrast to the classical setting where the receiver is classical and cannot
hope to recover the committed quantum state, and instead only obtains an opening in a particular
basis (standard or Hadamard). We mention that the quantum commitment scheme from [GJMZ22]
relies on very weak cryptographic assumptions, and in particular, ones that are implied by the
existence of one-way functions.

Finally, simultaneously and using different techniques from this work, a succinct argument sys-
tem for QMA based on the assumption of quantum Fully Homomorphic Encryption (qFHE) was
achieved by [MNZ24]. While both papers use common techniques from [BKL+22] to go from semi-
succinctness to full succinctness, the core techniques are essentially disjoint. In particular, [MNZ24]
does not use commitments to quantum states, but instead directly analyzes the soundness of the
KLVY [KLVY22] compilation of a particular semi-succinct two-prover interactive proof for QMA.
We leave it as an interesting open question for future work whether their result can yield an alternate
construction of our primitive of quantum commitments.

Roadmap We refer the reader to Section 2 for the high-level overview of our techniques, to
Section 3 for all the necessary preliminaries, to Section 5 for the formal definition of a succinct and
non-succinct commitment scheme, to Section 6 for the constructions, to Section 7 for the analysis,
and to Section 8 for the applications.

2 Technical Overview

In this section we describe the ideas behind our commitment schemes and their applications in more
depth yet still informally. Our first contribution is defining the notion of a classical commitment
scheme to quantum states. Let us start with the non-succinct version, and in particular the single-
qubit case. As mentioned in the introduction, such a commitment scheme consists of algorithms

(Gen,Commit,Open,Out)

11

where Gen is a PPT algorithm that takes as input the security parameter 1λ and outputs a pair of
keys (pk, sk); Commit is a QPT algorithm that takes as input a public key pk and a single-qubit
quantum state σ and outputs a classical commitment string y and a post-commitment state ρ;
Open is a QPT algorithm that takes as input the post-commitment state ρ and a bit b ∈ {0, 1},
where b = 0 corresponds to a standard basis opening and b = 1 corresponds to a Hadamard basis
opening, and outputs a classical opening z; and Out is a polynomial-time algorithm that takes as
input the secret key sk, a commitment string y, a basis b ∈ {0, 1} and an opening z and it outputs
an element in {0, 1,⊥}.

We require the scheme to satisfy a correctness and a binding property. The correctness property
is straightforward and was formalized in prior work [BKL+22]. It is the binding property that is
tricky to formulate and achieve.

Defining Binding: the single qubit setting In the classical setting, the binding condition
asserts that for any poly-size algorithm Commit∗ that generates a commitment y (to some classical
string), and for every poly-size algorithms Open∗1 and Open∗2, the probability that they successfully
open to different strings is negligible. In the quantum setting the analogous property is the following:
For any QPT algorithm Commit∗ that generates a commitment y (to a quantum state), and for
QPT algorithms Open∗1 and Open∗2 (that are accepted with probability 1) and every basis choice
b ∈ {0, 1}, the output distributions of Open∗1 and Open∗2 are statistically close or computationally
indistinguishable. This is indeed one of the properties we require.11 But this property on its own
is not enough. We also need to ensure that the opening is consistent with some qubit. Namely, we
require that there exists a QPT extractor Ext such that for every QPT algorithm Open∗ (that is
accepted with probability 1), Ext given black-box access to Open∗ can extract from Open∗ a quantum
state τ such that for every basis b ∈ {0, 1} the output of Open∗ is computationally indistinguishable
from measuring τ in basis b. We mention that this latter condition was formalized in [BKL+22] as
a security property from a measurement protocol.

We construct a commitment scheme that achieves the above two properties. However, to make
this definition meaningful we must consider opening algorithms that are accepted with probability
smaller than 1. Indeed, we consider opening algorithms that are accepted with probability 1−δ and
obtain O(

√
δ)-indistinguishability in both the requirements above. We note that we can assume

that Open∗ is accepted with probability 1− δ by repeating the commitment protocol Ω(1/δ) times
(assuming the committer has many copies of the state they wish to commit to).

The multi-qubit setting So far we focused on the single-qubit setting. When generalizing
the definitions to the multi-qubit setting we distinguish between the non-succinct setting and the
succinct setting, starting with the former. The syntax can be generalized to the non-succinct multi-
qubit setting in a straightforward way by committing and opening qubit-by-qubit. Generalizing the
binding definition to the multi-qubit setting is a bit tricky. In particular, recall that we assumed
that Open∗ is accepted with high probability when opening in both bases. As mentioned, this is a
reasonable assumption since we can require the committer to commit to its state many (Ω(1/δ))
times, then open half of the commitments in the standard basis and half of them in the Hadamard

11Jumping ahead, we note that our non-succinct commitment scheme achieves statistical closeness and our succinct
commitment scheme achieves computational indistinguishability. We mention that Mahadev’s scheme [Mah18], as
well as its successors [BKL+22], do not satisfy this property since these schemes offer no binding on the Hadamard
basis.

12

basis. If any of them are rejected then output ⊥ and otherwise, choose a random one that was
opened in the desired basis b and use that as the opening. Generalizing this to the `-qubit setting
must be done with care to avoid an exponential blowup in `. Clearly, we do not want to assume
that for every basis choice (b1, . . . , b`) ∈ {0, 1}`, Open∗ successfully opens in this basis with high
probability, since we cannot enforce this without incurring an exponential blowup. Yet, in order
for our extractor to be successful, we need to ensure that Open∗ succeeds in opening each qubit
in each basis with high probability. To achieve this, without incurring an exponential blowup, we
require that Open∗ succeeds with high probability to open all the qubits in the standard basis (i.e.,
succeeds with (b1, . . . , b`) = (0, . . . , 0)) and succeeds with high probability to open all the qubits in
the Hadamard basis (i.e., succeeds (b1, . . . , b`) = (1, . . . , 1)). This can achieved via repetitions, as
in the single qubit setting. Specifically, in this setting we ask 1/3 of the repetitions to be opened in
the 0` basis, 1/3 to be opened in the 1` basis, and the remaining 1/3 to be opened in the desired
(b1, . . . , b`) basis. Jumping ahead, we note that the extractor Ext uses Open∗ with basis (b, . . . , b)
to extract the state τ . We refer the reader to Definition 5.6 for the formal definition.

Our construction for the single qubit case We start by describing our commitment scheme in
the single-qubit case. Our starting point is Mahadev’s [Mah18] measurement protocol. Her protocol
is binding in the standard basis but offers no binding guarantees, and in fact fails to provide any
form of binding, when opening in the Hadamard basis. Moreover, in her protocol the opening basis
must be determined ahead of time and the public key pk used to compute the commitment string
depends on this basis. Specifically, her protocol uses a family of (noisy) trapdoor claw-free functions,
where functions can be generated either in an injective mode or in a two-to-one mode. The public
key of the commitment scheme consists of a public key corresponding to an injective function if the
verifier wishes to open in the standard basis, and corresponds to a two-to-one function if the verifier
wishes to open in the Hadamard basis.

We first notice that it is not necessary to determine the opening basis in the key generation
phase. In fact, we show that one can always use the two-to-one mode, irrespective of the basis
we wish to open in. Moreover, we show that this “dual mode” property is not needed altogether.
This observation is quite straightforward and was implicitly used in the analysis in prior work
[Vid20, BKL+22].

Our first instrumental idea is that we can obtain binding in both bases if we compose Mahadev’s
weak commitment twice! Namely, to commit to a state σ, we first apply Mahadev’s measurement
protocol, denoted by CommitW, to obtain

(y,ρ)← CommitW(pk,σ).

As mentioned, this already guarantees binding when opening in the standard basis, but fails to
provide binding when opening in the Hadamard basis. To fix this we make use of the fact that
Mahadev’s measurement protocol has the property that the Open algorithm always measures the
post-commitment state in either the standard basis or the Hadamard basis. We apply to the post-
commitment state ρ the unitary that computes Hadamard opening Open(·, 1), which is simply the
Hadamard unitaryH⊗(n+1), where n+1 is the number of qubits in ρ (n being the security parameter
associated with the underlying NTCF family), and we commit to the resulting state. Namely, we
compute

ρ′ ← H⊗(n+1)[ρ] and (y′,ρ′′)← CommitW(pk′,ρ′),

13

where pk and pk′ are independent keys,12 and where throughout our paper we use the shorthand

U [ρ] = UρU †

to denote the application of a unitary U to a mixed state ρ.
To open the commitment in the Hadamard basis, we just need to measure ρ′ in the standard

basis. Binding in the Hadamard basis follows from the fact that ρ′ was committed to via the classical
string y′, and from the fact that Mahadev’s measurement protocol provides binding in the standard
basis. However, it is no longer clear how to open in the standard basis, since the original post-
commitment state ρ is no longer available, and has been replaced with ρ′′. Here we use the desired
property mentioned above, specifically, that algorithm Open generates a standard basis opening by
measuring the state in the standard basis, and generates a Hadamard basis opening by measuring
the state in the Hadamard basis. This implies that measuring ρ in the standard basis is equivalent
to measuring ρ′ in the Hadamard basis.

The reader may be concerned that we may have lost the binding in the standard basis, since
opening in the Hadamard basis is not protected. But this is not the case, since it is the commitment
string y that binds the standard basis measurement, and the commitment string y′ that binds the
Hadamard basis measurement.

Multi-qubit commitments One can use this single qubit commitment scheme to commit to an
`-qubit state, by committing qubit-by-qubit. This results with a long commitment string of size ` ·
poly(λ) and with a long public key, since the public key consists of ` public keys (pk1, . . . , pk`), where
each pki is generated according to the single qubit scheme. As mentioned in the introduction, our
main goal is to construct a succinct commitment scheme. Following the blueprint of [BKL+22], we
do this in two steps. We first construct a semi-succinct commitment scheme where the commitment
string is long, but the public-key is succinct. We then show how to convert the semi-succinct scheme
into a fully succinct one.

Semi-succinct commitments In our semi-succinct commitment scheme we generate a single
key pair (pk, sk)← Gen(1λ) corresponding to the single-qubit scheme, and simply use pk to commit
to each and every one of the qubits. The question is whether this is sound. Let us first describe the
main issue that comes up when trying to prove soundness, and then we will show how we overcome it.
The issue is that our commitment scheme is privately verifiable, and thus a QPT algorithm Open∗,
which produces an opening z, does not know the corresponding output bit m = Out(sk,y, b, z) since
sk is needed to compute m. Therefore, perhaps a malicious QPT algorithm Open∗ can generate
z in a way such that m leaks information about sk. In particular, perhaps Open∗ can generate `
openings z1, . . . , z` such that their corresponding outputs m1, . . . ,m` completely leak sk.

Recall that our binding property consists of two parts: The first asserts that for any QPT
algorithm Commit∗ that commits to an `-qubit state via a classical commitment string y, it holds
that for any two QPT opening algorithms Open∗1 and Open∗2 and any basis choice (b1,b`), the
output distributions produced by these two opening algorithms are (computationally or statistically)
close. In our construction we get statistical closeness, and hence the closeness holds even if sk is
leaked. Indeed, the proof of this property in the semi-succinct setting is the same as the proof in
the non-succinct setting. The issue is with the second part: Given sk, the distributions generated

12Using different and independent public keys pk and pk′ is important in our analysis.

14

by ExtOpen∗ and Open∗ are no longer computationally indistinguishable. Diving deeper into our
scheme and its analysis, we note that the standard basis outputs produced by ExtOpen∗ and Open∗

are actually statistically close, and it is the Hadamard basis outputs that are only computationally
indistinguishable.

We next examine the leakage that the decoded messages m1, . . . ,m` may contain about the
secret key, and argue that even given this leakage, the Hadamard basis outputs produced by ExtOpen∗

and Open∗ remain computationally indistinguishable. To this end, we will need to use additional
properties about Mahadev’s measurement protocol, and thus recall it in Section 2.1 below. Jumping
ahead, we mention that one property that we rely on is the fact that in Mahadev’s protocol, Out
does not use the secret key when generating standard basis outputs (and the secret key is only used
to generate Hadamard basis outputs).

Recall that in our commitment scheme, the secret key consists of two parts, (sk, sk′), since we
apply Mahadev’s protocol twice (where sk is for a single qubit state and sk′ is for an (n+ 1)-qubit
state). We mention that when opening in the standard basis, the outputm can only leak information
about sk′. This is the case since to open in the standard basis, we first use sk′ to generate a standard
basis opening z for Mahadev’s protocol, and then use Mahadev’s Out algorithm to decode z, which
as mentioned above, can be done publicly without the secret key sk (since it is a standard basis
opening). Importantly, we show that the computational indistinguishability of the Hadamard basis
opening only relies on the fact that sk is secret, and does not rely on the secrecy of sk′. Thus,
the remaining problem, which is at the heart of the technical complication, is the leakage of the
Hadamard basis openings on sk. We note that in Mahadev’s protocol, the Hadamard basis openings
may leak the entire sk. What saves us in our setting is the fact that we tie the hands of the adversary
when opening in the Hadamard basis. To explain this in more detail we need to recall Mahadev’s
measurement protocol.

2.1 Mahadev’s measurement protocol

As mentioned, Mahadev’s measurement protocol [Mah18] uses a noisy TCF family.13 In this
overview, for the sake of simplicity, we describe her scheme assuming we have a noiseless TCF
family, which is a function family associated with algorithms

(GenTCF,EvalTCF, InvertTCF)

where GenTCF is a PPT algorithm that takes as input the security parameter 1λ and outputs a key
pair (pk, sk); Eval is a poly-time deterministic algorithm that takes as input the public key pk, and
a pair (b,x) where b ∈ {0, 1} is a bit and x ∈ {0, 1}n (where n = poly(λ)), and outputs a value y,
and Eval(pk, ·) is a two-to-one function where every y in the image has exactly two preimages of the
form (0,x0) and (1,x1); InvertTCF takes as input the secret key sk and an element y in the image
and it outputs the two preimages ((0,x0), (1,x1)).

In what follows we show how Mahadev uses a TCF family to construct a measurement protocol.
The following protocol slightly differs from Mahadev’s scheme, and in particular the basis choice
is not determined during the key generation algorithm. The measurement protocol consists of
algorithms (Gen,Commit,Open,Out) defined as follows:

• Gen is identical to GenTCF; it takes as input the security parameter 1λ and outputs a key pair
(pk, sk).

13As mentioned above, her work, as well as followup works, use a dual-mode TCF family; we avoid this technicality.

15

• Commit takes as input pk and a single-qubit pure state |ψ〉 = α0 |0〉+ α1 |1〉 and generates∣∣ψ′〉 = α0 |0, x0〉+ α1 |1, x1〉

such that Eval(pk, (0,x0)) = Eval(pk, (1,x1)) = y, and outputs y as the commitment string.

• Open takes as input the post-committed state |ψ′〉 and a basis b ∈ {0, 1}; if b = 0 it returns
the outcome z of measuring |ψ′〉 in the standard basis, which is of the form (b, xb), and if
b = 1 it returns the outcome z of measuring |ψ′〉 in the Hadamard basis.

• Out takes as input (sk,y, b, z), and if b = 0 it checks that Eval(pk, z) = y and if this is the
case it outputs the first bit of z, and otherwise it outputs ⊥. If b = 1 if outputs z · (1,x0⊕x1)
where ((0,x0), (1,x1)) = InvertTCF(y).

Note that Mahadev’s measurement protocol is not fully binding. The issue is that a cheating prover
can produce any opening in the Hadamard basis, and will never be rejected. For instance, a cheating
prover could commit to |+〉 honestly, apply a Z to the first qubit of the post-commitment state,
and then open to |−〉.

2.2 Our Single-Qubit Commitment Scheme

We convert Mahadev’s protocol into a binding commitment scheme by adding another step to
the commitment algorithm, as described in the beginning of Section 2. More specifically, our
commitment scheme consists of algorithms (Gen,Commit,Open,Out) defined as follows:

• Gen(1λ) generates n+ 2 TCF keys (pki, ski)i∈{0,1,...,n+1}, where each (pki, ski) ← GenTCF(1λ),
and outputs pk = (pk0, pk1, . . . , pkn+1) and sk = (sk0, pk1, . . . , skn+1).

• Commit(pk, |ψ〉) operates as follows:

1. Parse pk = (pk0, pk1, . . . , pkn+1).

2. Apply Mahadev’s measurement protocol to commit to |ψ〉 = α0 |0〉 + α1 |1〉 w.r.t. pk0;
i.e., generate ∣∣ψ′〉 = α0 |0, x0〉+ α1 |1, x1〉

such that Eval(pk0, (0,x0)) = Eval(pk0, (1,x1)) = y0.

3. Compute
H⊗(n+1)

∣∣ψ′〉 =
∑

d∈{0,1}n+1

βd |d〉 ,

4. Use Mahadev’s measurement protocol to commit qubit-by-qubit to the above (n + 1)-
qubit state, w.r.t. public keys pk1, . . . , pkn+1 to obtain the state∑

d∈{0,1}n+1

βd |d〉
∣∣x′1,d1

〉
. . .
∣∣∣x′n+1,dn+1

〉
and strings y1, . . . ,yn+1 such that for every i ∈ [n+ 1],

Eval(pki, (0,x
′
i,0)) = Eval(pki, (1,x

′
i,1)) = yi.

16

5. Output (y0,y1, . . . ,yn+1), and (for simplicity) rearrange the post-commitment state to
be ∑

d∈{0,1}n+1

βd
∣∣d1,x

′
1,d1

〉
. . .
∣∣∣dn+1,x

′
n+1,dn+1

〉
• Open takes as input the post-commitment state ρ and a basis b ∈ {0, 1}. If b = 1 (corre-

sponding to opening in the Hadarmard basis) then it outputs the measurement of the state ρ
in the standard. If b = 0 (corresponding to opening in the stanadard basis) then it outputs
the measurement of the state ρ in the Hadamard basis.

• Out takes as input the secret key sk = (sk0, sk1, . . . , skn+1), a commitment string y =
(y0,y1, . . . ,yn+1), a basis b ∈ {0, 1} and an opening string z ∈ {0, 1}(n+1)2 and does the
following:

1. If b = 1 then parse
z = (d1,x

′
1,d1

, . . . ,dn+1,x
′
1,d1

)

and check that for every i ∈ [n+ 1] it holds that

yi = Eval(pki, (di,x
′
i,di

)).

If all these checks pass then output d · (1,x0⊕x1), where ((0,x), (1,x1)) = Invert(sk0y0).
Otherwise, output ⊥.

2. If b = 0 then parse z = (z1, . . . , zn+1), and for every i ∈ [n+ 1] compute

((0,x′i,0), (1,x
′
i,1)) = Invert(ski,yi) and mi = zi · (1,x′i,0 ⊕ x′i,1)

If Eval(pk0, (m1, . . . ,mi+1)) = y0 then output m1, and otherwise output ⊥.

Analyzing the leakage. We next analyze the leakage that a cheating QPT algorithm Commit∗

and a cheating QPT algorithm Open∗ obtain by, given pk = (pk0, pk1, . . . , pkn+1), generating a
commitment string y = (y1, . . . ,y`), where each yi = (yi,0,yi,1, . . . ,yi,n+1), a basis (b1, . . . , b`) and
an opening z = (z1, . . . , z`), and obtaining outputs mi = Out(sk,yi, bi, zi) for every i ∈ [`]. Denote
by

I = {i : bi = 0} and J = {i : bi = 1}.

We distinguish between the leakage obtained from {mi}i∈I and that obtained from {mi}i∈J . As
mentioned above, {mi}i∈I only leaks information about sk1, . . . , skn+1, since sk0 is not used when
computing {mi}i: bi=0. For i ∈ J , it holds that

mi = di · (1,xi,0 ⊕ xi,1) where ((0,xi,0), (1,xi,1)) = InvertTCF(sk0,yi,0),

where zi = (di,1,x
′
i,1,d1

, . . . ,di,n+1,x
′
i,n+1,dn+1

). This may leak information about sk0. In particular,
if we use the underlying (noisy) TCF family from [BCM+18], along with an adversarially chosen
d = (d1, . . . ,d`) then {mi}i∈J may leak part of the secret key which breaks the indistinguishability
between the output produced by Open∗ and ExtOpen∗ .

We get around this problem by arguing that in our scheme if z is accepted then it must be the
case that “the important” bits of d have min-entropy ω(log λ).14 For this we rely on the fact that the

14We emphasize that this is not the case for Mahadev’s scheme, since in her scheme every Hadamard opening d is
accepted.

17

underlying TCF family has the adaptive hardcore bit property, which the (noisy) TCF family from
[BCM+18] was proven to have under the LWE assumption. We actually need the stronger condition
that “the importants” bits of d have min-entropy ω(log λ) even given some auxiliary input (which
comes into play due to the fact that we are opening many qubits). We prove this for the specific
NTCF family from [BCM+18]. Specifically, we prove that under the LWE assumption, the NTCF
family from [BCM+18] has a property which we refer to as the distributional strong adaptive hardcore
bit property. We argue that this property, together with the min-entropy property of d, implies that
the leakage obtained from di · (xi,0 ⊕ xi,1) is benign and does not break the indistinguishability
between the output produced by Open∗ and ExtOpen∗ .

In more detail, for Mahadev’s measurement protocol, the proof that the Hadamard outputs
of ExtOpen∗ and Open∗ are computationally indistinguishable relies on the adaptive hardcore bit
property, which states that for every QPT adversary A,

Pr[A(pk) = (b,xb,d,d · (1,x0 ⊕ x1))] ≤
1

2
+ negl(λ)

where ((0,x0), (1,x1)) = Invert(sk,Eval(pk, b,xb)). We need to argue that this holds even if A gets
as auxiliary input a bunch of elements of the form

(bi,xi,bi ,di · (1,xi,0 ⊕ xi,1)).

While in general this is not true, we prove that it is true for the (noisy) TCF family from [BBCM93],
if each di has ω(log λ) min-entropy (even conditioned on (d1, . . . ,di−1)), under the LWE assumption.

2.3 Succinct commitments

As mentioned in the introduction, our main result is a succinct commitment scheme, where Commit
commits to an `-qubit state by generating a succinct classical commitment string that consists of
only poly(λ) many bits, and Open generates an opening to any qubit i ∈ [`] in any basis b ∈ {0, 1},
where the opening consists of only poly(λ) many bits. Importantly, the guarantee we provide is
that even if Open∗ only opens to a few qubits, we should still be able to extract the entire `-qubit
quantum state from Open∗.15 This seems impossible to do, since how can we extract information
about qubits that were never opened? Indeed, to achieve this we need to change the syntax.

We add to the syntax an interactive test phase. Similar to the test round in Mahadev’s protocol,
our test phase is executed with probability 1/2, and if it is executed then after the test phase the
protocol is terminated and the opening phase is never run. This is the case since the test phase
destroys the quantum state. Importantly, we allow the test phase to be interactive. It is this
interaction that allows us to extract a long `-qubit state from Open∗. Loosely speaking, in this
test phase, we choose at random b ← {0, 1} and ask the prover to provide an opening to all the
`-qubits in basis b`. To ensure that the protocol remains succinct, we ask for the openings to be
sent in a succinct manner, using a Merkle hash. Then the prover and verifier engage in a succinct
interactive argument where the prover proves knowledge of the committed openings. For this we
use Kilian’s protocol and the fact that it is a proof-of-knowledge even in the post-quantum setting
[CMSZ21, VZ21]. Then the verifier sends the prover the secret key sk and the prover and verifier
engage in a succinct interactive argument where the prover proves that the committed openings are
accepted (w.r.t. sk). This is also done using the Kilian protocol.

15This guarantee is important for our applications, as we will see in Section 2.4.

18

In addition, we allow the commit phase to be interactive. This allows Commit to first generate
a non-succinct commitment y, and send its Merkle hash, denoted by rt. Then the committer can
run a succinct proof-of-knowledge interactive argument, to prove knowledge of a preimage of y.
Importantly, the proof-of-knowledge must be state-preserving, which means that we can extract
y without destroying the state. Such a state-preserving proof-of-knowledge protocol was recently
constructed in [LMS22]. This interactive commitment phase allows us to reduce the binding of the
succinct commitment scheme to that of the semi-succinct one. This part of the analysis is similar
to [BKL+22].

2.4 Applications

We construct a succinct interactive argument for QMA and a compiler that converts any X/Z PCP
into a succinct interactive argument, both under the LWE assumption. For simplicity we do not
use our succinct commitment scheme to construct these succinct interactive arguments. Rather we
use our semi-succinct commitment scheme to construct a semi-succinct interactive argument. We
then rely on a black-box transformation from [BKL+22] which shows a generic transformation for
converting any semi-succinct interactive argument for QMA into a fully succinct one.16

Compiling an X/Z PCP into a semi-succinct interactive argument Our compiler uses
a succinct commitment in a straightforward way. The succinct interactive argument proceeds as
follows:

1. The verifier generates a key pair (pk, sk) ← Gen(1λ) corresponding to the underlying semi-
succinct commitment scheme.

2. The prover commits to the X/Z PCP |π〉 by generating a classical commitment string y ←
Commit(pk, |π〉). It sends y to the verifier.

3. With probability 1/2 the verifier behaves as the PCP verifier and chooses small set of indices
(i1, . . . , ik) along with basis choices (b1, . . . , bk); with probability 1/2 the verifier chooses a
random b← {0, 1} and sends b to the prover.

4. If the prover receives a bit b then it opens the entire PCP in the standard basis if b = 0 and
in the Hadamard basis if b = 1. Otherwise, if the prover receives a set of indices (i1, . . . , ik)
along with basis choices (b1, . . . , bk) then the prover opens these locations in the desired basis.

Completeness follows immediately from the completeness of the underlying semi-succinct commit-
ment scheme. To argue soundness, fix a cheating prover P ∗ that is accepted with high probability.
We rely on the soundness property of the underlying commitment scheme to argue that there exists
a QPT extractor that extracts a state |π∗〉 from P ∗, such that on a random challenge produced by
the PCP verifier (for which P ∗ succeeds in opening with high probability), the output of P ∗ is close
to the the outcome obtained by measuring |π∗〉 directly, which implies that |π∗〉 is an X/Z PCP
that is accepted with high probability, implying that the soundness property holds.

16We mention that this transformation was used (in a non-black-box way to convert our semi-succinct commitment
scheme into a succinct one.

19

Semi-succinct interactive argument for QMA To obtain a semi-succinct argument, we follow
the blueprint of Mahadev [Mah18]. Namely, we first convert the QMA witness into one that can
be verified by measuring only in the X/Z basis. For this we rely on a result due to Fitzsimons,
Hajdušek, and Morimae [FHM18] which shows how to convert multiple copies of the QMA witness
into an `-qubit state |π〉 that can be verified by measuring it only in the X/Z basis. Importantly,
this state can be verified by measuring it in a random basis (b1, . . . , b`)← {0, 1}`. Armed with this
tool, the semi-succinct interactive argument proceeds as follows:

1. The verifier generates a key pair (pk, sk) corresponding to the underlying semi-succinct com-
mitment scheme.

2. The prover converts its (multiple copies) of the QMA witness into a state |π〉 by relying on
the [FHM18] result, and computes y← Commit(pk, |π〉).

3. With probability 1/2 the verifier chooses at random a seed s ∈ {0, 1}λ and sends s to the
prover, and with probability 1/2 the verifier chooses a random b← {0, 1} and sends b to the
prover.

4. If the prover receives a bit b then it sends the opening of the commitment in the basis b`. If
it receives a seed s then it uses a pseudorandom generator to deterministically expand s to a
pseudorandom string (b1, . . . , b`) and sends an opening of the commitment in basis (b1, . . . , b`).

5. The verifier uses its secret key to compute the output corresponding to this opening. If any
of the openings are rejected it rejects. Otherwise, in the case that it sent a seed, it accepts if
the verifier from [FHM18] would have accepted.

To argue soundness, fix a cheating prover P ∗ that is accepted with high probability. We first
rely on the soundness property of the underlying commitment scheme to argue that the QPT
extractor extracts a state |π∗〉 from P ∗, such that for any choice of basis b = (b1, . . . , b`) for
which P ∗ succeeds in opening with high probability, the output corresponding to these openings
are computationally indistinguishable from measuring |π∗〉 in basis b. By the soundness of the
underlying scheme [FHM18] we note that for a random basis (b1, . . . , b`), the state would be rejected
with high probability. Hence it must also be the case if the basis is pseudorandom, as otherwise one
can distinguish a pseudorandom string from a truly random one.

3 Preliminaries

Notations. For any random variables A and B (classical variables or quantum states), we use
the notation A ≡ B to denote that A and B are identically distributed, and use A

ε≡ B to denote
that A and B are ε-close, where closeness is measured with respect to total variation distance for
classical variables, trace distance for mixed quantum states, and ‖ · ‖2 distance for pure quantum
states. For every two ensemble of distributions A = {Aλ}λ∈N and B = {Bλ}λ∈N we use the notation
A ≈ B to denote that A and B are computationally indistinguishable, i.e., for every polynomial
size distinguisher D there exists an negligible function µ = µ(λ) such that for every λ ∈ N,

|Pr[D(a) = 1]− Pr[D(b) = 1]| ≤ µ(λ)

20

where the probabilities are over a ← Aλ and b ← Bλ. For every ε = ε(λ) ∈ [0, 1), we use the
notation A

ε
≈ B to denote that for every polynomial size distinguisher D and for every λ ∈ N,

|Pr[D(a) = 1]− Pr[D(b) = 1]| ≤ ε(λ)

where the probabilities are over a← Aλ and b← Bλ.
For any random variable A, we denote by Supp(A) the support of A; i.e.,

Supp(A) = {a : Pr[A = a] > 0}.

We denote strings in {0, 1}∗ by bold lower case letters, such as x. We let PPT denote probabilistic
polynomial time, QPT denote probabilistic quantum polynomial time, and QPT denote quantum
polynomial time.

Let H be a complex Hilbert space of finite dimension 2n. Thus, H ' C2n where C denotes
the complex numbers. A pure n-qubit quantum state is a unit vector |Ψ〉 ∈ H. Namely, it can be
written as

|Ψ〉 =
∑

b1,...,bn∈{0,1}

αb1,...,bn |b1, . . . , bn〉

where {|b1, . . . , bn〉}b1,...,bn∈{0,1} forms an orthonormal basis of H, and where αb1,...,bn ∈ C satisfy∑
b1,...,bn∈{0,1}

|αb1,...,bn |2 = 1.

We refer to n as the number of qubits in |Ψ〉. We sometimes divide the registers of |Ψ〉 into named
registers. We often denote these registers by calligraphic upper-case letters, such as A and B, in
which case we also divide the Hilbert space into H = HA ⊗HB, so that each quantum state |Ψ〉 is
a linear combination of quantum states |ΨA〉 ⊗ |ΨB〉 ∈ HA ⊗HB.17 We denote by

|Ψ〉A = TrB(|Ψ〉 〈Ψ|) ∈ HA,

where TrB is the linear operator defined by

TrB(|ΨA〉 〈ΨA| ⊗ |ΨB〉 〈ΨB|) = |ΨA〉 〈ΨA| · Tr(|ΨB〉 〈ΨB|),

where Tr is the trace operator.
Let D(H) denote the set of all positive semidefinite operators on H with trace 1. A mixed state

is an operator ρ ∈ D(H), and is often called a density matrix. We denote by

U [σ] = UσU †.

For any binary observable O and bit b ∈ {0, 1} we let ΠO,b[σ] denote the unnormalized projection
of σ to the state that has value b when measured in the O-basis. Namely,

ΠO,b[σ] = ΠO,bσΠ†O,b.

We let X and Z denote the Pauli matrices:

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
.

For any single qubit register A, we denote by XA (respectively, ZA) the unitary that applies the
Pauli X (respectively, Z) unitary to the A register of a given quantum state and applies the identity
unitary to all other registers.

17We sometimes give registers names that correspond to their purpose, such as a coin register or an open register.

21

3.1 Quantum information facts

We use the following infant version of the gentle measurement lemma.

Lemma 3.1. Let |ψ〉 be a pure state and Π be a projector such that 〈ψ|Π |ψ〉 = 1 − ε. Then
‖Π |ψ〉 − |ψ〉 ‖2 =

√
ε.

Proof. Calculate:
‖Π |ψ〉 − |ψ〉 ‖22 = 1− 〈ψ|Π |ψ〉 = ε.

We also use the following version for mixed states.

Lemma 3.2. Let ρ be a mixed state and Π be a projector such that Tr[Πρ] = 1 − ε. Then 1
2‖ρ −

Π[ρ]‖1 ≤
√
ε.

Proof. This is Lemma 9.4.2 of [Wil11].

Lemma 3.3. Suppose |ψ1〉ABC and |ψ2〉ABC are pure states with A being a single-qubit register,
and U is a unitary acting on register B. Let CUAB denote the controlled version of U , with A being
the control system and B the target. Then

‖CUAB ⊗ IC(|ψ1〉 − |ψ2〉)‖2 = ‖ZA ⊗ IBC (|ψ1〉 − |ψ2〉)‖2,

where Z is the Pauli Z operator.

Proof. In the following calculation we omit factors of identity that are clear from context.

‖CUAB(|ψ1〉 − |ψ2〉)‖22 = ‖ |0〉 〈0|A (|ψ1〉 − |ψ2〉) + |1〉 〈1|A ⊗ UB(|ψ1〉 − |ψ2〉)‖22
= ‖ |0〉 〈0|A (|ψ1〉 − |ψ2〉)‖22 + ‖ |1〉 〈1|A ⊗ UB(|ψ1〉 − |ψ2〉)‖22
= ‖ |0〉 〈0|A (|ψ1〉 − |ψ2〉)‖22 + ‖ |1〉 〈1|A ⊗ UB(|ψ1〉 − |ψ2〉)‖22
= ‖ |0〉 〈0|A (|ψ1〉 − |ψ2〉)‖22 + ‖ |1〉 〈1|A (|ψ1〉 − |ψ2〉)‖22
= ‖ |0〉 〈0|A (|ψ1〉 − |ψ2〉)− |1〉 〈1|A (|ψ1〉 − |ψ2〉)‖22
= ‖ZA(|ψ1〉 − |ψ2〉)‖22.

3.2 Hash Family with Local Opening

A hash family with local opening consists of the following algorithms:

Gen(1λ)→ hk. This PPT algorithm takes as input a security parameter λ (in unary) and outputs
a hash key hk.

Eval(hk,x)→ rt. This deterministic poly-time algorithm takes as input a hash key hk and a string
x ∈ {0, 1}N and outputs a hash value (often referred to as hash root) rt ∈ {0, 1}poly(λ,logN).

Open(hk,x, i)→ (b,o). This deterministic poly-time algorithm takes as input a hash key hk, a
string x ∈ {0, 1}N and an index i ∈ [N]. It outputs a bit b ∈ {0, 1} and an opening o ∈
{0, 1}poly(λ,logN).

22

Ver(hk, rt, i, b,o)→ 0/1. This deterministic poly-time algorithm takes as input a hash key hk, a
hash root rt, an index i ∈ [N], a bit b ∈ {0, 1} and an opening o ∈ {0, 1}poly(λ,logN). It
outputs a bit indicating whether or not the opening is valid.

Definition 3.4. A hash family with local opening (Gen,Eval,Open,Ver) is required to satisfy the
following properties.

Opening completeness. For any λ ∈ N, any N = N(λ) ≤ 2λ, any x = (x1, . . . , xn) ∈ {0, 1}N ,
and any index i ∈ [N],

Pr

 b = xi
∧ Ver(hk, rt, i, b,o) = 1

:
hk← Gen(1λ),
rt = Eval(hk,x),
(b,o) = Open(hk,x, i)

 = 1− negl(λ).

Computational binding w.r.t. opening. For any poly-size adversary A, there exists a negli-
gible function negl(·) such that for every λ ∈ N,

Pr

[
Ver(hk, rt, i, 0,o0) = 1
∧ Ver(hk, rt, i, 1,o1) = 1

:
hk← Gen(λ),
(1N , rt, i,o0,o1)← A(hk)

]
= negl(λ).

Theorem 3.5 ([Mer88]). Assuming the existence of a collision resistant hash family there exists a
hash family with local opening (according to Definition 3.4).

Definition 3.6. A hash family with local opening (Gen,Eval,Open,Ver) is said to be collapsing if
any QPT adversary A wins in the following game with probability 1

2 + negl(λ):

1. The challenger generates hk← Gen(1λ) and sends pk to A.

2. A(hk) generates a classical value (rt, j) and a quantum state σ.

A sends (rt, j,σ) to the challenger.

3. The challenger does the following:

(a) Apply in superposition the algorithm Ver(hk, rt, j, ·, ·) to σ, and measure the output. If
the output is 0 then send ⊥ to A. Otherwise, denote the resulting state by σ′

(b) Choose a random bit b← {0, 1}.
(c) If b = 0 then send σ′ to A.

(d) If b = 1 then measure σ′ in the standard basis and send the resulting state to A.

4. Upon receiving the quantum state (or the symbol ⊥), A outputs a bit b′.

5. A wins if b′ = b

Theorem 3.7 ([Unr16, CMSZ21]). There exists a hash family with local opening that is collapsing
assuming the post-quantum hardness of LWE.

23

3.3 Noisy Trapdoor Claw-Free Functions

In what follows we define the notion of a noisy trapdoor claw-free function family. This notion is
simpler than the notion of a dual-mode noisy trapdoor claw-free function family which was used for
certifiable randomness generation in [BCM+18] and by Mahadev [Mah18] in her classical verification
protocol for QMA. This simpler notion suffices for our work.18

Definition 3.8. A noisy trapdoor claw-free function (NTCF) family is described by PPT algorithms
(Gen,Eval, Invert,Check,Good) with the following syntax:

Gen(1λ)→ (pk, sk). This PPT key generation algorithm takes as input a security parameter λ (in
unary) and outputs a public key pk and a secret key sk.

We denote by Dpk the domain of the (randomized) function defined by pk, and assume for
simplicity that Dpk is an efficiently verifiable and samplable subset of {0, 1}n(λ). We denote by
Rpk the range of this (randomized) function.

Eval(pk, b,x)→ y. This PPT algorithm takes as input a public key pk, a bit b ∈ {0, 1} and an
element x ∈ Dpk, and outputs a string y distributed according to some distribution χ = χpk,b,x.

Invert(sk,y)→ ((0,x0), (1,x1)). This deterministic polynomial time algorithm takes as input a se-
cret key sk, and an element y in the range Rpk and outputs two pairs (0,x0) and (1,x1) with
x0,x1 ∈ Dpk, or ⊥.

Check(pk, b,x,y)→ 0/1. This deterministic poly-time algorithm takes as input a public key pk, a
bit b ∈ {0, 1}, an element x ∈ Dpk and an element y ∈ Rpk and outputs a bit.

Good(x0,x1,d)→ 0/1. This deterministic poly-time algorithm takes as input two domain elements
x0,x1 ∈ Dpk and a string d ∈ {0, 1}n+1. It outputs a bit that characterizes membership in the
set:

Goodx0,x1 := {d : Good(x0,x1,d) = 1} (1)

We specify that Good(x0,x1,d) ignores the first bit of d.

For the purpose of this work, we allow Good to output a vector (as opposed to a single bit).19

Specifically, Good may output a vector in {0, 1}k (for some k = k(λ) ∈ N) in which case we
define

Goodx0,x1 := {d : Good(x0,x1,d) 6= 0k}.

We require that the following properties are satisfied.

1. Completeness:

(a) For all (pk, sk) ∈ Supp(Gen(1λ)), every b ∈ {0, 1}, every x ∈ Dpk, and y ∈ Supp(Eval(pk, b,x)),

Invert(sk,y) = ((0,x0), (1,x1))

such that xb = x and y ∈ Supp(Eval(pk, β,xβ)) for every β ∈ {0, 1}.
18Our formulation is from [BKL+22] (without the dual-mode requirement).
19We use this extension to analyze our succinct commitment scheme.

24

(b) For all (pk, sk) ∈ Supp(Gen(1λ)), there exists a perfect matching Mpk ⊆ Dpk × Dpk such
that Eval(pk, 0,x0) ≡ Eval(pk, 1,x1) if and only if (x0,x1) ∈ Mpk.

(c) For all (pk, sk) ∈ Supp(Gen(1λ)), every b ∈ {0, 1} and every x ∈ Dpk,

Pr[Check(pk, b,x,y) = 1] = 1 (2)

if and only if y ∈ Supp(Eval(pk, b,x)).

(d) For all (pk, sk) ∈ Supp(Gen(1λ)) and every pair of distinct domain elements x0,x1, the
density of Goodx0,x1 is 1− negl(λ).

2. Efficient Range Superposition: For every (pk, sk) ∈ Supp(Gen(1λ)) and every b ∈ {0, 1},
there exists an efficient QPT algorithm to prepare a state |ϕb〉 such that:

|ϕb〉 ≡
1√
Dpk

∑
x∈Dpk

y∈Rpk

√
ppk(b,x,y) |x〉 |y〉 (3)

for some negligible function µ(·). Here, ppk(b,x,y) denotes the probability density of y in the
distribution Eval(pk, b,x).

3. Adaptive Hardcore Bit: For every QPT adversary A there exists a negligible function µ
such that for every λ ∈ N,

Pr[A(pk) = (y, b,x,d, v) : Check(pk, b,x,y) = 1 ∧ d ∈ Goodx0,x1 ∧ d · (1,x0 ⊕ x1) = v] ≤ 1

2
+ µ(λ),

where the probability is over (pk, sk)← Gen(1λ), and where ((0,x0), (1,x1)) = Invert(sk,y).

Claim 3.9. [BCM+18] There exists a NTCF family assuming the post-quantum hardness of LWE.

In this work we rely on the fact that every NTCF family is collapsing, as defined below.20

Definition 3.10. A NTCF family (Gen,Eval, Invert,Check,Good) is said to be collapsing if any QPT
adversary A wins in the following game with probability 1

2 + negl(λ):

1. The challenger generates (pk, sk)← Gen(1λ) and sends pk to A.

2. A(pk) generates a classical value y ∈ Rpk and an (n(λ) + 1)-qubit quantum state σ = σS,Z ,
where the S register contains a single qubit and the Z register contains n(λ) many qubits.

A sends (y,σ) to the challenger.

3. The challenger does the following:

(a) Apply in superposition the algorithm Check to σ, w.r.t. public key pk and the image string
y, and measure the bit indicating whether the output of Check is 1. If the output does
not equal 1, send ⊥ to A. Otherwise, denote the resulting state by σ′

(b) Choose a random bit b← {0, 1}.
(c) If b = 0 then it send σ′ to A.

20This definition is similar to Definition 3.6 adapted to a NTCF family.

25

(d) If b = 1 then measure the S register of σ′ in the standard basis and send the resulting
state to A.

4. Upon receiving the quantum state (or the symbol ⊥), A outputs a bit b′.

5. A wins if b′ = b

Remark 3.11. An equivalent definition of collapsing is obtained by replacing Item 3d with the
following: If b = 1 then send to A the state ZS [σ′]. In this work we use both of these formulations,
since it is sometimes easier to work with one and other times with the other.

Claim 3.12. [Unr16] Every NTCF family is collapsing.

In what follows we define an extension of the collapsing property and argue that any NTCF
family satisfies it. This extension may appear to be unnatural, but we make use of it when proving
the binding property of our commitment schemes.

Claim 3.13. For every polynomial ` = `(λ), every NTCF family (Gen,Eval, Invert,Check,Good) is
`-extended collapsing, where the `-extended collapsing definition asserts that every QPT adversary
A wins in the following extended collapsing game with probability 1

2 + negl(λ):

1. The challenger generates ` independent public keys pk1, . . . pk` ← Gen(1λ) and sends (pk1, . . . , pk`)
to A.

2. A(pk1, . . . , pk`) generates a subset J ⊆ [`], classical values {yj}j∈J where each yj ∈ Rpkj , and
a |J | · (n(λ) + 1)-qubit quantum state σ = σ{Sj ,Zj}j∈J , where each register Sj consists of a
single qubit and each register Zj consists of n(λ)-qubits.

A sends (J, {yj}j∈J ,σ) to the challenger.

3. The challenger does the following:

(a) For every j ∈ J apply in superposition the algorithm Check to the (Sj ,Zj) registers of σ
w.r.t. pkj and yj, and check that the output is 1. If this is not the case send ⊥ to A.

(b) Otherwise, choose a random bit b ← {0, 1} and measure the registers {Sj}j∈J in the
standard basis if and only if b = 1.

(c) Send the resulting state to A.

4. Upon receiving a quantum state (or the symbol ⊥), A outputs a bit b′.

5. A wins if b′ = b

Claim 3.13 follows from Claim 3.12 together with a straightforward hybrid argument.

4 The Distributional Strong Adaptive Hardcore Bit Property

The binding property of our succinct commitment scheme relies on a variant of the adaptive hardcore
bit property, which we define next.

26

Definition 4.1. A NTCF family (Gen,Eval, Invert,Check,Good) is said to have the distributional
strong adaptive hardcore bit property if there exists a QPT algorithms A and C such that the
following holds: A takes as input pk and a quantum state σ, and outputs a tuple (y, b,x,ρ) such
that Check(pk, b,x,y) = 1 and ρ is a state containing at least n + 1 qubits. Denote by O1 the
registers containing the first n + 1 qubits, and denote by O2 all other registers. C takes as input
the state ρO2 and outputs aux← C(ρO2). Denote by ρaux the post measurement state, and assume
that ρ satisfies that with overwhelming probability over aux, for every d′ ∈ {0, 1}k the probability
of measuring registers O1 of ρaux in the standard basis and obtaining d ∈ {0, 1}n+1 such that
Good(d,x0,x1) = d′ is negligible in λ. Then

(pk,y,x0 ⊕ x1,d · (1,x0 ⊕ x1), aux) ≈ (pk,y,x0 ⊕ x1, U, aux) (4)

where (pk, sk) ← Gen(1λ), (y, b,x,ρ) ← A(pk,σ), ((0,x0), (1,x1)) = Invert(sk,y), (aux,ρaux) ←
C(ρO2), d is obtained by measuring registers O1 of ρaux in the standard basis, and U is uniformly
distributed in {0, 1}.

Moreover, there exists skpre, which is efficiently computable from sk, such that given (pk,y, b,xb)
and skpre one can efficiently compute x1−b such that if Check(pk, b,xb,y) = 1 then Check(pk, 1 −
b,x1−b,y) = 1, and Equation (4) holds even if C takes as input skpre in addition to the state ρO2.

We argue that the NTCF from [BCM+18], defined below, satisfies the distributional strong
adaptive hardcore bit property (under LWE).

The NTCF family from [BCM+18] The NTCF family from [BCM+18] is a lattice based con-
struction and makes use of the following theorem from [MP11].

Theorem 4.2 (Theorem 5.1 in [MP11]). Let n,m ≥ 1 and q ≥ 2 be such that m = Ω(n log q). There
is an efficient randomized algorithm TrapGenMP(1n, 1m, q) that returns a matrix A ∈ Zm×nq together
with a trapdoor tA ∈ Zmq such that the distribution of A is negligibly (in n) close to the uniform
distribution. Moreover, there is an efficient algorithm InvertMP that, on input (A, t,A ·s+e), where
‖e‖ ≤ q

C
√
n log q

and where C is a universal constant, returns s and e with overwhelming probability
over (A, tA)← TrapGenMP(1n, 1m, q).

The NTCF family (Gen,Eval, Invert,Check,Good) from [BCM+18] is defined as follows:

• Gen(1λ) is associated with the following:

– Prime q ≤ 2λ of size super-polynomial in λ.

– n = n(λ) and m = m(λ), both polynomially bounded functions of λ, such that m ≥
n log q and n ≥ λ.

– Two error distributions χ, χ′ over Zq, that are associated with bounds B,B′ ∈ N such
that:

1. B
B′ = negl(λ).

2. B′ ≤ q
2C
√
n·m·log q , where C is the universal constant from Theorem 4.2.

3. Pre←χm [‖e‖ > B] = negl(λ).
4. Pre′←(χ′)m [‖e′‖ > B′] = negl(λ).
5. e′ ≡ e′ + e, for e← χm and e′ ← (χ′)m.

27

It does the following:

1. Generate (A, tA)← TrapGenMP(1n, 1m, q).
2. Choose a random bit string s← {0, 1}n and a random error vector e← χm.
3. Let u = A · s + e.
4. Output pk = (A,u) and sk = (A,u, tA).

• Eval(pk, b, ·) is a function with domain Znq and range Zmq . Eval(pk, b,x) parses pk = (A,u),
samples e′ ← (χ′)m, and outputs y = Ax + bu + e′ (where all the operations are done
modulo q).

Equivalently, we think of Eval(pk, b, ·) as a function with domain {0, 1}w for w , n · dlog qe,
where each element x ∈ Znq is matched to its bit decomposition. Namely, denote by

J : Znq → {0, 1}w

the bit decomposition function where each element in Zq is converted to its bit decomposition
in {0, 1}dlog qe. We think Eval as taking as input an element z ∈ {0, 1}w, computing x =
J−1(z) ∈ Znq ,21 and then applying Eval(pk, b,x).

Remark 4.3. We note the change in notation: In the definition of a NTCF family, we denoted
the input length by n, and here we denote it by w.

• Invert(sk,y) does the following:

1. Parse sk = (A,u, tA).
2. Compute InvertMP(A, tA,y) = x

3. If ‖y −A · x‖ ≤ 2
√
m ·B′ then output ((0, J(x)), (1, J(x− s))).

4. Otherwise, output ((0, J(x + s)), (1, J(x))).

• Check(pk, b, J(x),y) outputs 1 if and only if ‖y −Ax− bu‖ ≤ 2
√
m ·B′.

• Good(J(x0), J(x1),d) outputs d′ ∈ {0, 1}n such that

d · (1, J(x0)⊕ J(x1)) = d′ · s

where the inner product in both sides of the equation above is done modulo 2. The vector d′

is computed as follows, using the fact that x1 = x0 − s (where subtraction is modulo q) and
the fact that s ∈ {0, 1}n.

1. Partition d ∈ {0, 1}w+1 into its first bit, denoted by d0, and the following n blocks, each
of size dlog qe, denoted by d[1], . . . ,d[n] ∈ {0, 1}dlog qe.

2. For every b ∈ {0, 1}, partition J(xb) into blocks J(xb,1), . . . , J(xb,n), each of size dlog qe.
3. For every i ∈ [n] let

d′i = d[i] · (J(x0,i)⊕ J(x0,i − 1)),

where · denotes inner product mod 2 and where x0,i − 1 is done mod q
21J−1 : {0, 1}w → Znq is the function that breaks its input into n blocks of length dlog qe each, and replaces each

such block (b1, . . . , bdlog qe) with the element (
∑dlog qe
i=1 bi · 2i−1) mod q, which is an element in Zq.

28

4. Output the string d′ ∈ {0, 1}n.

Note that
d · (1, J(x0)⊕ J(x1)) = d0 + d′ · s mod 2.

Claim 4.4. The NTCF family from [BCM+18] satisfies the distributional strong adaptive hardcore
bit property assuming the post-quantum hardness of LWE.

The proof of Claim 4.4 makes use of the following lemma from [BCM+18].

Lemma 4.5. [BCM+18] Let q be a prime, k, n ≥ 1 integers, and C ← Zk×nq a uniformly random
matrix. With probability at least 1−qk ·2−

n
8 over the choice of C the following holds for the fixed C.

For all v ∈ Zkq and any distinct vectors d′1,d
′
2 ∈ {0, 1}n\{0n}, the distribution of (d′1 ·s,d′2 ·s), where

both inner produces are done mod 2 and where s ← {0, 1}n is uniform conditioned on Cs = v, is
within statistical distance O(q

3k
2 · 2

−n
40) of the uniform distribution over {0, 1}2.

Remark 4.6. We note that [BCM+18] proved this lemma for a single vector d′ (as opposed to two
distinct ones). Their proof carries over to this setting as well, and we include it in Appendix B for
completeness.

Proof of Claim 4.4. We define skpre, corresponding to sk = (A,u, tA), to be skpre = InvertMP(A, tA,u).
Thus skpre = s, where u = A · s + e and e is a low norm vector.

Fix any QPT circuit C and any QPT algorithm A that takes as input pk = (A,A · s + e) and a
quantum state σ, and outputs a tuple (y, b,x,ρ), such that Check(pk, b,x,y) = 1 and ρ is a state
that has registers O1 and O2, where O1 contains w + 1 qubits, and with overwhelming probability
over aux ← C(ρO2 , s) it holds that the residual state ρaux satisfies that for every d′ ∈ {0, 1}n the
probability of measuring registers O1 of ρaux in the standard basis and obtaining d ∈ {0, 1}w+1 such
that Good(d,x0,x1) = d′ is negligible in λ.

We need to prove that

(pk,y, J(x0)⊕ J(x1),d · (1, J(x0)⊕ J(x1)), aux) ≈ (pk,y, J(x0)⊕ J(x1), U, aux) (5)

where (pk, sk) ← Gen(1λ), (y, b,x,ρ, C) ← A(pk,σ), ((0,x0), (1,x1)) = Invert(sk,y), (d, aux) is
obtained by letting aux ← C(ρO2 , s) and d is the outcome of measuring the O1 registers of the
residual state ρaux in the standard basis, and U is uniformly distributed in {0, 1}.

To this end, we define an alternative algorithm Ĝen(1λ), which is the same as Gen(1λ) with the
only difference being that rather than choosing (A, tA) via the TrapGen algorithm, it chooses A to
be close to a low rank matrix. Specifically, Ĝen(1λ) does the following:

1. Let δ = ε/2 and let k = nδ.

2. Sample (B, tB)← TrapGenMP(1k, 1m, q).

3. Sample C← {0, 1}k×n and N← χm×n.

4. Let Â = B ·C + N.

5. Sample s← {0, 1}n and e← χm.

6. Let û = Â · s + e.

29

7. Output p̂k = (Â, û) and ŝk = (Â,B, tB, s).

The LWE implies that A ≈ Â which in turn implies that

(A,u, s,y, b,x,ρ) ≈ (Â, û, s, ŷ, b̂, x̂, ρ̂) (6)

where

• s← {0, 1}n and e← χm.

• u = A · s + e and û = Â · s + e.

• (y, b,x,ρ) = A(pk,σ) for pk = (A,u).

• (ŷ, b̂, x̂, ρ̂) = A(p̂k,σ) for p̂k = (Â, û).

We next argue that

(Â,u,y, J(x0)⊕ J(x1),d · (1, J(x0)⊕ J(x1)), aux) ≈ (Â,u,y, J(x0)⊕ J(x1), U, aux) (7)

where in the above equation, to avoid cluttering of notation, we omit some of the “hat” notation,
and denote by p̂k = (Â,u) distributed according to Ĝen(1λ), (y, b,x,ρ)← A(p̂k,σ) for p̂k = (Â,u),
xb = x, x1−b = xb − (−1)bs, and (d, aux) is obtained by measuring computing aux ← C(ρO2 , s)
and d is the outcome of measuring the O1 registers of the residual state ρaux in the standard basis.
Equation (5) follows immediately from Equation (7), together with the fact that A ≈ Â and the
fact that the distributions in Equations (5) and (7) can be generated efficiently from A and Â,
respectively.

Let
d′ = Good(x0,x1,d) ∈ {0, 1}n,

then by the definition of Good,

d · (1, J(x0)⊕ J(x1)) = d0 ⊕ d′ · s.

Therefore, to prove Equation (7) it suffices to prove that

(Â,u, s,y, b,x, d0,d
′ · s, aux) ≈ (Â,u, s,y, b,x, d0, U, aux).

To prove the above equation it suffices to prove that with overwhelming probability over C← Zk×nq

it holds that for every v ∈ Zkq , for every distribution Dv (that depends on v) that outputs (d′,ρO2)
such that with overwhelming probability d′ has min-entropy ω(log λ) given aux← C(ρO2 , s),

(s, aux,d′ · s) ≡ (s, aux, U), (8)

where s is sampled randomly from {0, 1}n conditioned on Cs = v. We note that the distribution
of d′ may not have min-entropy ω(log λ) (conditioned on aux) since it is generated w.r.t. Â and not
w.r.t. A, and while A ≈ Â, checking if a distribution has min-entropy cannot be done efficiently.
Nevertheless, the distribution Dv is indistinguishable from having min-entropy ω(log λ), and thus
it suffices to prove Equation (8). To this end, for every C ∈ Zk×nq and v ∈ Zvq consider the sets

S = {x ∈ {0, 1}n : C(x) = v} and X = {0, 1}n \ {0n}

30

and the hash function
h : S × X → {0, 1},

defined by
h(x,d′) = x · d′ mod 2.

Lemma 4.5 implies that for all but negligible fraction of C and v it holds that h is 2-universal,
which together with the leftover hash lemma, implies that Equation (8) holds, as desired.

5 Classical Commitments to Quantum States

In this section we define the notion of a classical commitment to quantum states. Our definition is
stronger than the notion of a measurement protocol, originally considered in [Mah18] and formally
defined in [BKL+22],22 in several ways. First, the opening basis is not determined during the key
generation phase. Namely, the key generation algorithm, Gen, takes as input only the security
parameter (in unary), as opposed to taking both the security parameter and the opening basis. In
particular, the opening basis can be determined after the commitment phase, and can be chosen
adaptively based on any information that the parties have access to. Importantly, our binding
property is significantly stronger. It guarantees that for any QPT cheating committer C∗.Commit
that commits to an `-qubit quantum state, there is a single extracted quantum state τ such that
for any QPT algorithm C∗.Open and any basis opening (b1, . . . , b`), where bi = 0 corresponds to
measuring the i’th qubit in the standard basis and bi = 1 corresponds to measuring it in the
Hadamard basis, the opening obtained by C∗.Open(b1, . . . , b`) is computationally indistinguishable
from measuring τ in basis (b1, . . . , b`), assuming the opening of C∗.Open is accepted. In contrast,
in the soundness guarantee of a weak commitment scheme, the extracted state τ may depend
on C∗.Open, which can be chosen adaptively after the commitment phase and hence is not truly
binding.23

5.1 Syntax

In what follows we define the syntax of a commitment scheme. We present two definitions. The
first is the syntax for a non-succinct commitment scheme, where the length of the commitment
string that commits to an `-qubit quantum state, grows polynomially with `. More specifically,
in this definition the length ` is determined in the key generation algorithm, and the run-time of
all the algorithms grow polynomially with `. In Section 5.1.1 we define the syntax for a succinct
commitment scheme, where the verifier’s run-time grows poly-logarithmically with `.

Definition 5.1. A (non-succinct) classical commitment scheme for quantum states is associated
with algorithms (Gen,Commit,Open,Ver,Out) and has the following syntax:

1. Gen is a PPT algorithm that takes as input a security parameter λ and a length parameter
` (both in unary), and outputs a pair (pk, sk) ← Gen(1λ, 1`), where pk is referred to as the
public key and sk is referred to as the secret key.

22We refer to this weaker notion as a “weak classical commitment,” and recall its definition in Appendix A (for
completeness).

23Indeed, the weak classical commitment scheme from [Mah18] is only binding in the standard basis, and offers no
binding guarantees when opening in the Hadamard basis.

31

2. Commit is a QPT algorithm that takes as input a public key pk and an `-qubit quantum state σ
and outputs a pair (y,ρ) ← Commit(pk,σ), where y is a classical string referred to as the
commitment string and ρ is a quantum state.

3. Open is a QPT algorithm that takes as input a quantum state ρ and a basis (b1, . . . , b`) ∈ {0, 1}`
(where bj = 0 corresponds to opening the j’th bit in the standard basis and bj = 1 corresponds
to opening it in the Hadamard basis). It outputs a pair (z,ρ′) ← Open(ρ, (b1, . . . , b`)), where
z is a classical string, referred to as the opening string, and ρ′ is the residual state (which is
sometimes omitted).

4. Ver is a polynomial time algorithm that takes a tuple (sk,y, (b1, . . . , b`), z), where sk is a
secret key, y is a commitment string (to the quantum state), (b1, . . . , b`) ∈ {0, 1}` is a string
specifying the opening basis, and z is an opening string. It outputs 0 (if z is not a valid
opening) and outputs 1 otherwise.

5. Out is a polynomial time algorithm that takes a tuple (sk,y, (b1, . . . , b`), z) (as above), and
outputs an `-bit string m← Out(sk,y, (b1, . . . , b`), z).

The protocol associated with the tuple (Gen,Commit,Open,Ver,Out) is a two party protocol be-
tween a QPT committer C and a PPT verifier V and consists of two phases, COMMIT and OPEN.
During the COMMIT phase, V takes as input security parameter λ and a length parameter ` and
C takes in an arbitrary quantum state σ. During the OPEN phase, V takes as input a basis bit
(b1, . . . , b`) ∈ {0, 1}`. The protocol proceeds as follows:

• COMMIT phase:

1. [C← V]: V samples (pk, sk)← Gen(1λ, 1`) and sends the public key pk to C.
2. [C→ V]: C computes (y,ρ)← Commit(pk,σ) and sends the commitment string y to V.

• OPEN phase:

1. [C← V]: V sends an opening basis (b1, . . . , b`) to C.
2. [C→ V]: C computes (z,ρ′)← Open(ρ, (b1, . . . , b`)) and sends z to V.
3. [V]: V checks that Ver(sk,y, (b1, . . . , b`), z) = 1, and if so it outputs m← Out(sk,y, (b1, . . . , b`), z)

as the decommitment. Otherwise, it outputs ⊥.

Remark 5.2. One could define Open,Ver,Out to operate on one qubit at a time. Namely, one could
define Open to take as input a quantum state ρ an index j ∈ [`] and a basis b ∈ {0, 1}, and output a
pair (z,ρ′)← Open(ρ, (j, b)), and define Ver and Out to take as input (sk,y, (j, b), z) and output a
bit (indicating accept/reject for Ver and indicating an output bit for Out). Indeed, in our definition
of a succinct classical commitment to quantum state, stated in Section 5.1.1 below, Open, Ver and
Out operate on one qubit at a time. In addition, our constructions in Section 6 are defined where
Open, Ver and Out operate on one qubit at a time.

Note that in the syntax above the length of the public key pk as well as the length of the
commitment y grows with the number of qubits in the committed state (denoted by `). In this
work we also construct succinct commitments where the length of pk and the commitment y grow
only with the security parameter (and grow only poly-logarithmically with `). In what follows we
define the syntax of a succinct classical commitment scheme for multi-qubit quantum states.

32

5.1.1 Syntax for Succinct Commitments

The syntax of a succinct commitment is similar to that of a non-succinct commitment scheme
(defined above), with the following main differences:

1. The key generation algorithm (Gen) takes as input only the security parameter λ and does
not depend on the size ` of the committed quantum state.

This change ensures that the runtime of Gen does not grow with `.24

2. The opening algorithm (Open) opens one qubit at a time. Namely, it takes as input the post-
commitment quantum state ρ, a single index j ∈ [`] and a basis b ∈ {0, 1}, and it outputs an
opening to the j’th qubit.

The reason for this change is that in some of our applications we commit to a long quantum
state but open only a small portion of it. For example, this is the case in our compilation of
a X/Z quantum PCP into a succinct argument (see Section 8).

3. The succinct commitment has two additional components. The first is an interactive protocol
that verifies that the prover “knows” a non-succinct commitment string corresponding to this
succinct commitment. This protocol is referred to as Ver.Commit, and is a protocol between a
poly-time (classical) prover P and a PPT verifier V .25 The second is a Test protocol that tests
that the committer can open all the qubits in a valid manner. We note that Test is executed
with probability 1/2, and if it is executed then Open is not executed (since Test destroys the
quantum state needed for the Open algorithm).26

Formally a succinct commitment scheme for quantum states consists of

(Gen,Commit,Ver.Commit,Test,Open,Ver,Out)

such that

1. Gen is a PPT algorithm that takes as the security parameter λ (in unary) and outputs a pair
(pk, sk)← Gen(1λ).

2. Commit is a QPT algorithm that takes as input a public key pk and an `-qubit quantum state σ
and outputs a tuple (rt,y,ρ) ← Commit(pk,σ), where rt is a succinct classical commitment
to σ (of size poly(λ, log `)), y is its non-succinct counterpart, and ρ is the residual quantum
state.

3. Ver.Commit is an interactive protocol between a poly-time prover P with input (pk, rt,y) and
a PPT verifier V with input (sk, rt). At the end of the protocol, V outputs a verdict bit in
{0, 1}, corresponding to accept or reject (1 corresponding to accept and 0 corresponding to
reject). The communication complexity is poly(λ, log `).

4. Test is an interactive protocol between a QPT prover PTest with input (pk, rt,y,ρ) and a BPP
verifier VTest with input (sk, rt). At the end of the protocol, V outputs a verdict bit in {0, 1},
corresponding to accept or reject.

24One could give Gen the parameter ` in binary, but our scheme does not require it.
25We note that since P is a classical algorithm the quantum state remains unchanged.
26This is also the case in the Test phase in Mahadev’s measurement protocol [Mah18].

33

5. Open is a QPT algorithm that takes as input a quantum state ρ, an index j ∈ [`], and a
basis bj ∈ {0, 1} (where bj = 0 corresponds to measuring the j’th qubit in the standard
basis and bj = 1 corresponds to measuring it in the Hadamard basis). It outputs a pair
(z,ρ′) ← Open(ρ, (j, bj)), where z is a classical string of length poly(λ, log `), referred to as
the opening string, and ρ′ is the residual state (which is sometimes omitted).

6. Ver is a polynomial time algorithm that takes a tuple (sk, rt, (j, bj), z), where sk is a secret key,
rt is a succinct classical commitment string to an `-qubit quantum state, j ∈ [`], bj ∈ {0, 1} is
a bit specifying the opening basis, and z is an opening string. It outputs 0 (if z is not a valid
opening) and outputs 1 otherwise.

7. Out is a polynomial time algorithm that takes a tuple (sk, rt, (j, bj), z), and outputs a bit
m← Out(sk, rt, (j, bj), z).

Remark 5.3. We extend Ver and Out to take as input (sk, rt, (J,bJ), z) instead of (sk, rt, (j, bj), z),
where J ⊆ [`] and bJ ∈ {0, 1}|J |, in which case the algorithms run with input (sk, rt, (j, bj), z) for
every j ∈ J . We extend Open in a similar manner.

The succinct commitment protocol associated with the tuple

(Gen,Commit,Ver.Commit,Test,Open,Ver,Out)

is a two party protocol that consists of three phases, COMMIT, CHECK and OPEN, as follows:

• COMMIT phase:

1. [C← V]: V samples (pk, sk)← Gen(1λ) and sends the public key pk to C.

2. [C → V]: C computes (rt,y,ρ) ← Commit(pk,σ) and sends the succinct commitment
string rt to V.

• CHECK phase:

1. Run Ver.Commit protocol between the prover P with input (pk, rt,y) and the verifier V
with input (sk, rt). If V rejects then the commitment rt is rejected and the protocol ends.

2. Otherwise, choose at random c← {0, 1}.
3. If c = 0 then go to the OPEN phase.

4. If c = 1 then run the Test protocol, where the prover PTest takes as input (pk, rt,y,ρ)
and the verifier VTest takes as input (sk, rt). If VTest rejects then the commitment rt is
rejected and otherwise it is accepted. At the end of the Test protocol the commitment
protocol ends (the Open phase is not executed).

• OPEN phase:

1. [C← V]: V sends a subset J ⊆ [`] and an opening basis bJ ∈ {0, 1}|J | to C.

2. [C→ V]: C computes (z,ρ′)← Open(ρ, (J,bJ)) and sends z to V.

3. [V]: V checks that Ver(sk, rt, (J,bJ), z) = 1, and if so outputs m← Out(sk, rt, (J,bJ), z)
as the decommitment bit. Otherwise, it outputs ⊥.

34

5.2 Properties

We require that a commitment scheme satisfies two properties, correctness and binding, defined
below.

5.2.1 Correctness

We define the correctness guarantee separately for the non-succinct and the succinct setting, starting
with the former.

Definition 5.4 (Correctness). A (non-succinct) classical commitment scheme is correct if for any
`-qubit quantum state σ, and any basis b = (b1, . . . , b`) ∈ {0, 1}`,

Real(1λ,σ,b) ≡ σ(b), (9)

where σ(b) is the distribution obtained by measuring each qubit j of σ in the basis specified by bj
(standard if bj = 0, Hadamard if bj = 1), and Real(1λ,σ,b) is the distribution resulting from the
following experiment:

1. Generate (pk, sk)← Gen(1λ, 1`).

2. Generate (y,ρ)← Commit(pk,σ).

3. Compute (z,ρ′)← Open(ρ,b).

4. If Ver(sk,y,b, z) = 0 then output ⊥.

5. Otherwise, output Out(sk,y,b, z).

Definition 5.5 (Succinct Correctness). A succinct classical commitment scheme is correct if for
any `-qubit quantum state σ, any basis b = (b1, . . . , b`) ∈ {0, 1}`, and any subset J ⊆ [`], the
following two conditions holds:

Realc=0(1
λ,σ, J,bJ) ≡ σ(J,bJ) and Realc=1(1

λ,σ, J,bJ) ≡ 1 (10)

where:

• σ(J,bJ) is the distribution obtained by measuring each qubit j ∈ J of σ in the basis specified
by bj (standard if bj = 0 and Hadamard if bj = 1).

• Realc=0(1
λ,σ, J,bJ) is the distribution resulting from the following experiment:

1. Generate (pk, sk)← Gen(1λ).

2. Generate (rt,y,ρ)← Commit(pk,σ).

3. Run the protocol Ver.Commit between P with input (pk, rt,y) and V with input (sk, rt).
If V rejects then then output ⊥.

4. Otherwise, compute (z,ρ′)← Open(ρ, (J,bJ)).

5. If Ver(sk, rt, (J,bJ), z) = 0 then output ⊥.
6. Otherwise, output Out(sk, rt, (J,bJ), z).

35

• Realc=1(1
λ,σ, J,bJ) is the distribution resulting from the following experiment:

1. Generate (pk, sk)← Gen(1λ).

2. Generate (rt,y,ρ)← Commit(pk,σ).

3. Run the protocol Ver.Commit between P with input (pk, rt,y) and V with input (sk, rt).
If V rejects then then output ⊥.

4. Execute Test where the prover PTest takes as input (pk, rt,y,ρ) and the verifier VTest takes
as input (sk, rt). If VTest rejects then output ⊥ and if it accepts then output 1.

5.2.2 Binding

In what follows we define the binding condition. Intuitively, our binding guarantee is that a cheat-
ing committer cannot change the way they open based on any information they learn after the
commitment phase, and that the opening distribution is consistent with the distribution of a qubit.

For simplicity, we consider only cheating algorithms that are accepted with high probability.
This can be ensured by repetition. Namely, for every ε, δ > 0 by repeating the commitment and
opening protocol O

(
log(1/ε)

δ

)
times, if a cheating C∗ is accepted in all of executions with probability

at least ε then a random execution is accepted with probability at least 1− δ.
We first define the binding property for the (non-succinct) commitment and then define it for

the succinct commitment.

Definition 5.6 (Binding). A classical (non-succinct) commitment scheme to a multi-qubit quantum
state is said to be computationally binding if there exists a QPT oracle machine Ext such that for
any QPT algorithm C∗.Commit, any poly(λ)-size quantum state σ, any polynomial ` = `(λ), any
basis b = (b1, . . . , b`), and any QPT algorithms C∗1.Open and C∗2.Open, for every i ∈ {1, 2}

RealC
∗.Commit,C∗i .Open(λ,b,σ)

η
≈ IdealExt,C

∗.Commit,C∗i .Open(λ,b,σ) (11)

and
RealC

∗.Commit,C∗1.Open(λ,b,σ)
η
≈ RealC

∗.Commit,C∗2.Open(λ,b,σ) (12)

where η = O
(√

δ
)
and

δ = E
(pk,sk)←Gen(1λ,1`)

(y,ρ)←C∗.Commit(pk,σ)

max
i∈{1,2},

b′∈{b,0,1}

Pr
[
Ver(sk,y,b′,C∗i .Open(ρ,b′)) = 0

]
. (13)

and where RealC
∗.Commit,C∗.Open(λ,b,σ) is defined as follows:

• (pk, sk)← Gen(1λ, 1`).

• (y,ρ)← C∗.Commit(pk,σ).

1. Compute (z,ρ′)← C∗.Open(ρ,b).

2. If Ver(sk,y,b, z) = 0 then output ⊥.

3. Otherwise, let m = Out(sk,y,b, z).

36

4. Output (pk,y,b,m).

IdealExt,C
∗.Commit,C∗.Open(λ,b,σ) is defined as follows:

1. (pk, sk)← Gen(1λ, 1`).

2. (y,ρ)← C∗.Commit(pk,σ).

3. Let τA,B = ExtC
∗.Open(sk,y,ρ).

4. Measure τA in the basis b = (b1, . . . , b`) to obtain m ∈ {0, 1}`.

5. Output (pk,y,b,m).

Remark 5.7. Throughout this write-up to avoid cluttering of notation we omit the superscript
C∗.Commit from

RealC
∗.Commit,C∗.Open(λ,b,σ) and IdealExt,C

∗.Commit,C∗.Open(λ,b,σ),

and denote these by

RealC
∗.Open(λ,b,σ) and IdealExt,C

∗.Open(λ,b,σ),

respectively.

Remark 5.8. We prove that our commitment scheme is sound with η ≤ 10
√
δ. Note that δ is a

bound on the probability that the openings of C∗i .Open are rejected not only on basis b, but also on
basis 0 and 1. We note that for Equation (12) we do not need to bound the probability that C∗i .Open
is rejected on basis 0 and basis 1, and indeed we do not bound these probabilities in the proof (see
Lemma 7.10). The reason we need to bound these probabilities to prove Equation (11) is that our
extractor uses the openings of C∗i .Open on basis 0 and 1 to extract the quantum state.

Remark 5.9. We mention that we prove a stronger condition than the one given in Equation (12).
This is done in Lemma 7.10. The strengthening is due to two reasons. First, we prove Equation (12)
by induction on `, and for the induction step to go through we need to strengthen the induction
hypothesis, and as a result we prove a stronger guarantee. Second, we allow the cheating algorithm
C∗.Open to depend on a part of the secret key sk. This is needed to obtain our succinct interactive
argument for QMA in Section 8.1 and is needed for our applications in Section 8.

Definition 5.6 assumes that C∗.Open opens all the qubits of the committed state. Indeed, we
use C∗.Open to extract an `-qubit quantum state. In what follows we define the notion of binding
for a succinct commitment, where C∗.Open may only open to a subset J ⊆ [`] of the qubits, and
hence cannot be used to extract the entire state (as was done in Definition 5.6). While we can
extract a state consisting of |I| qubits from C∗.Open, for our applications we will need to extract
the entire `-qubit state, even if C∗.Open only opens to the qubits in J (without blowing up the
communication). This is precisely the purpose of the Ver.Commit protocol; instead of extracting
from C∗.Open we extract from the (cheating) prover P ∗ of the Ver.Commit protocol. We note that
even though Ver.Commit is a succinct protocol, its interactive nature will allow us to extract the
(non-succinct) `-qubit state from P ∗.

37

Definition 5.10 (Succinct Binding). A succinct classical commitment scheme to a multi-qubit
quantum state is said to be computationally binding if there exists a QPT oracle machine Ext such
that for any QPT algorithm C∗.Commit, any poly(λ)-size quantum state σ, any polynomial ` = `(λ),
any QPT prover P ∗ for the Ver.Commit protocol, any QPT prover P ∗Test for the Test protocol, any
J ⊆ [`] and bJ = (bj)j∈J ∈ {0, 1}|J |, any ε > 0, and any QPT algorithms C∗1.Open and C∗2.Open,
for every i ∈ {1, 2}

RealC
∗.Commit,P ∗,C∗i .Open(λ, (J,bJ),σ)

ζ
≈ IdealExt,C

∗.Commit,P ∗,P ∗Test(λ, (J,bJ),σ, ε) (14)

and
RealC

∗.Commit,P ∗,C∗1.Open(λ, (J,bJ),σ)
η
≈ RealC

∗.Commit,P ∗,C∗2.Open(λ, (J,bJ),σ) (15)

where RealC
∗.Commit,P ∗,C∗.Open(λ, (J,bJ),σ) is defined as follows:

1. Generate (pk, sk)← Gen(1λ).

2. Compute (rt,ρ)← C∗.Commit(pk,σ).27

3. Compute the Ver.Commit protocol between P ∗(pk, rt,ρ) and V (sk, rt). If V rejects then out-
put ⊥. Denote the resulting quantum state of P ∗ at the end of this protocol by ρpost.28

4. Compute (zJ ,ρ
′)← C∗.Open(ρpost, (J,bJ)).

5. If Ver(sk, rt, (J,bJ), zJ) = 0 then output ⊥.

6. Otherwise, let mJ = Out(sk, rt, (J,bJ), z).

7. Output (pk, rt, (J,bJ),mJ).

Let δ0 be the probability that at the end of the protocol Ver.Commit the verifier rejects. Namely, δ0
is the probability that Item 3 above outputs ⊥. Denote by ρpost the state of P ∗ after the Ver.Commit
protocol. Let δ′0 be the probability that the verifier VTest(sk, rt) outputs ⊥ in the Test protocol when
interacting with P ∗Test(pk, rt,ρpost). Let

δ = max
i∈{1,2}

Pr[Ver(sk, rt,bJ , zJ) = 0] and z = C∗i .Open(ρpost,bJ), (16)

and let
η = O

(√
δ0 + δ

)
and ζ = O

(√
δ0 + δ′0 + δ

)
+ ε. (17)

IdealExt,C
∗.Commit,P ∗,P ∗Test(λ, (J,bJ),σ, ε) is defined as follows:

1. Generate (pk, sk)← Gen(1λ).

2. Compute (rt,ρ)← C∗.Commit(pk,σ).

3. Let τA,B = ExtP
∗,P ∗Test(sk, rt,ρ, 1d1/εe).

27Note that a malicious C∗.Commit may choose rt maliciously without a corresponding non-succinct commitment
string y. We assume without loss of generality that all the auxiliary information it has about rt is encoded in ρ.

28If P ∗ was honest then it would have been classical and hence ρ would have remained unchanged. But since we
are considering a malicious P ∗ it may alter its quantum state during the Ver.Commit protocol.

38

4. Measure the J qubits of τA in the basis bJ to obtain mJ ∈ {0, 1}|J |.

5. Output (pk, rt, (J,bJ),mJ).

Remark 5.11. In the succinct soundness definition above we assume that ` = `(λ) is polynomial
in the security parameter. We could also consider ` that is super-polynomial in λ, in which case we
will obtain binding assuming the post-quantum `-security of the LWE assumption; i.e., assuming that
a poly(`) size quantum circuit cannot break the LWE assumption. The proof for a general (super-
polynomial) ` is exactly the same as the one where ` = poly(λ), the only difference is that now we
consider adversaries that run in poly(`) time.

6 Constructions

In this section we present our constructions. We first construct a classical commitment scheme for
committing to a single qubit state. This can be found in Section 6.1. Then, we show a generic
transformation that converts any single-qubit commitment scheme into a multi-qubit commitment
scheme. This can be found in Section 6.2. In this scheme the size of the public key and the
size of the commitments grow with the length of the quantum state committed to. Finally, in
Section 6.3 we show how to construct a succinct multi-qubit commitment scheme, where the size
of the public key as well as the size of the commitment grows only with the security parameter
(and poly-logarithmically with the length of the quantum state committed to). We analyze these
schemes in Section 7.

6.1 Construction for Single Qubit States

In this subsection, we describe our commitment scheme for a quantum state that consists of a single
qubit, denoted by α0 |0〉+ α1 |1〉. We use as a building block the commitment algorithm CommitW
from [Mah18] for the multi-qubit case. This algorithm makes use of a NTCF family

(GenNTCF,EvalNTCF, InvertNTCF,CheckNTCF,GoodNTCF).

The public key pk used by CommitW to commit to an `-qubit state is of the form pk = (pk1, . . . , pk`)
where each pkj is a public key generated by GenNTCF(1λ).29 The QPT algorithm

CommitW

(pk1, . . . , pk`),
∑

s∈{0,1}`
αs |s〉S


outputs the following:

1. A measurement outcome y = (y1, . . . ,y`), where each yj ∈ Rpkj .

2. A state |ϕ〉 such that
|ϕ〉 ≡

∑
s∈{0,1}`

αs |s〉S |xs〉Z , (18)

where xs = (xs1 . . . ,xs`) where each xsj ∈ Dpkj and is such that

yj ∈ Supp(Eval(pkj , sj ,xsj)).
29We mention that [Mah18] used a dual mode NTCF family, where each pki is generated either in an injective mode

in a two-to-one mode, depending on the opening basis which is assumed to fixed ahead of time.

39

Construction 6.1 (Commitment Scheme). Our construction uses a noisy trapdoor claw-free (NTCF)
function family (GenNTCF,EvalNTCF, InvertNTCF,CheckNTCF,GoodNTCF) and the algorithm CommitW
defined above. Our algorithms are defined as follows:

• Gen(1λ) :

1. For every i ∈ {0, 1, . . . , n+ 1} sample (pki, ski)← GenNTCF(1λ), where n = n(λ) is such
that the domain of each trapdoor claw-free function is a subset of {0, 1}n.

2. Let pk = (pk0, pk1, . . . , pkn+1) and sk = (sk0, sk1, . . . , skn+1).

3. Output (pk, sk).

• Commit(pk, α0 |0〉+ α1 |1〉) :

1. Parse pk = (pk0, pk1, . . . , pkn+1)

2. Compute (y0, |ϕ0〉)← CommitW(pk0, α0 |0〉+ α1 |1〉), where

|ϕ0〉S,Z ≡
∑

s∈{0,1}

αs |s〉S |xs〉Z

Here, xs ∈ {0, 1}n and y0 ∈ Supp(EvalNTCF(pk0, s,xs)) for every s ∈ {0, 1}. Note that
register S consists of 1 qubit and Z consists of n qubits.

3. Apply the Hadamard unitary H⊗(n+1) to |ϕ0〉 to obtain

|ϕ1〉S,Z = H⊗(n+1) |ϕ0〉

≡ 1√
2n+1

∑
d∈{0,1}n+1

(−1)d·(0,x0)(α0 + (−1)d·(1,x0⊕x1)α1)︸ ︷︷ ︸
βd

|d〉S,Z

4. Apply the algorithm CommitW with pk1 to register S of |ϕ1〉S,Z , and for every i ∈
{2, . . . , n + 1} apply CommitW with pki to register Zi of |ϕ1〉S,Z . Denote the output
by (y1, . . . ,yn+1) and the resulting state by

|ϕ2〉S,Z,Z′ ≡
1√

2n+1

∑
d∈{0,1}n+1

βd |d〉S,Z
∣∣∣x′1,d1 ,x′2,d2 , . . . ,x′n+1,dn+1

〉
Z′

where for every i ∈ {1, . . . , n+ 1} and every di ∈ {0, 1},

yi ∈ Supp(EvalNTCF(pki, di,x
′
i,di

)).

Note that the Z ′ register consists of n · (n + 1) qubits, and we partition these qubits to
registers Z ′1, . . . ,Z ′n+1, each consisting of n qubits.

5. Rename the register S to Z1 and split the register Z into registers Z2, . . . ,Zn+1 of 1 qubit
each. Permute the registers to obtain a state |ϕ3〉 such that

|ϕ3〉 ≡
1√

2n+1

∑
d∈{0,1}n+1

βd |d1〉Z1

∣∣x′1,d1〉Z′1 . . . |dn+1〉Zn+1

∣∣∣x′n+1,dn+1

〉
Z′n+1

6. Output (y0,y1, . . . ,yn+1) and |ϕ3〉.

40

• Open(|ϕ〉 , b):
If b = 1 (corresponding to an opening in the Hadamard basis) then output the measurement of
|ϕ〉 in the standard basis, and if b = 0 (corresponding an opening in the standard basis) then
output the measurement of |ϕ〉 in the Hadamard basis.

• Ver(sk,y, b, z):

1. Parse sk = (sk0, sk1, . . . , skn+1).

2. Parse y = (y0,y1, . . . ,yn+1).

3. If b = 1 then do the following:

(a) Parse z = (d1,x
′
1, . . . , dn+1,x

′
n+1) and let d = (d1, . . . , dn+1).

(b) Compute ((0,x0), (1,x1)) = InvertNTCF(sk0,y0).
(c) Verify that

– CheckNTCF(pki, di,x
′
i,yi) = 1 for every i ∈ {1, . . . , n+ 1}.

– d ∈ Goodx0,x1.
If any of these checks does not hold output 0 and otherwise output 1.

4. If b = 0 then do the following:

(a) Parse z = (z1, . . . , zn+1) where each zi ∈ {0, 1}n+1.
(b) For every i ∈ {1, . . . , n+ 1} compute ((0,x′i,0), (1,x

′
i,1)) = InvertNTCF(ski,yi).

(c) If there exists i ∈ [n+ 1] such that zi /∈ Goodx′i,0,x′i,1 then output 0.

(d) Else, for every i ∈ [n+ 1] let mi = zi · (1,x′i,0 ⊕ x′i,1).
(e) If CheckNTCF(pk0,m1, (m2, . . . ,mn+1),y0) 6= 1, output 0. Else, output 1

• Out(sk,y, b, z):

1. Parse sk = (sk0, sk1, . . . , skn+1).

2. Parse y = (y0,y1, . . . ,yn+1).

3. If b = 1:

(a) Compute ((0,x0), (1,x1)) = InvertNTCF(sk0,y0).
(b) Parse z = (d1,x

′
1, . . . , dn+1,x

′
n+1) and let d = (d1, . . . , dn+1).

(c) Output m = d · (1,x0 ⊕ x1).

4. If b = 0:

(a) Parse z = (z1, . . . , zn+1).
(b) Compute ((0,x′1,0), (1,x

′
1,1)) = InvertNTCF(sk1,y1).

(c) Output m1 = z1 · (1,x′1,0 ⊕ x′1,1).

6.2 Construction of Commmitments for Multi-Qubit States

There are two ways one can extend our single-qubit commitment scheme to the multi-qubit setting.
The first is to commit to an `-qubit state qubit-by-qubit by generating ` key pairs and using the
i’th key pair to commit and open to the i’th qubit. This construction results with key size and
commitment size that grow linearly with `, and is presented below. The second approach is to extend

41

our single qubit commitment scheme to a succinct multi-qubit commitment scheme. This is done in
two steps. First, we construct a semi-succinct multi-qubit commitment scheme, which is the same
as the non-succinct one, except that we generate a single key pair (pk, sk) and commit to each of the
` qubits using the same public key pk. This results with a commitment string (y1, . . . ,y`). Then
we show how to convert the semi-succinct commitment scheme into a succinct one. We elaborate
on this approach in Section 6.3.

Construction 6.2 (Scheme for Multi-Qubit States). Given any single-qubit commitment scheme
(Gen1,Commit1,Open1,Ver1,Out1) we construct a multi-qubit commitment scheme consisting of al-
gorithms

(Gen,Commit,Open,Ver,Out)

defined as follows, where we define (Open,Ver,Out) to operate one qubit at a time (see Remark 5.2):

• Gen(1λ, 1`):

1. For every i ∈ [`] sample (pki, ski)← Gen1(1
λ).

2. Let pk = (pk1, . . . , pk`) and sk = (sk1, . . . , sk`).

3. Output (pk, sk).

• Commit(pk,σ):

1. Parse pk = (pk1, . . . , pk`).

2. We assume that σ is an `-qubit state, and we denote the ` registers of σ by S1, . . . ,S`.
3. Execute the following steps:

(a) Let ρ0 = σ.
(b) For every j ∈ {1, . . . , `}, apply Commit1 with key pkj to register Sj of the state ρj−1,

obtaining an outcome yj and a post-measurement state (ρj)S1,...,S`,Z1...,Zj .

4. Output (y, (ρ`)S1...S`,Z1,...Z`), where y = (y1, . . . ,y`).

• Open(ρS1...S`,Z1,...Z` , (j, bj)):

1. Apply Open1 with basis bj to registers {Sj ,Zj} of ρS1...S`,Z1,...Z`, obtaining an outcome
zj and post-measurement state ρ′j .

2. Output (zj ,ρ
′
j).

• Ver(sk,y, (j, bj), zj):

1. Parse sk = (sk1, . . . , sk`) and y = (y1, . . . ,y`).

2. Output Ver1(skj ,yj , bj , zj).

• Out(sk,y, (j, bj), zj):

1. Parse sk = (sk1, . . . , sk`), y = (y1, . . . ,y`).

2. Output mj ← Out1(skj ,yj , bj , zj).

42

We consider a semi-succinct version of the commitment scheme described above, which is used
as a stepping stone for proving soundness of the fully succinct commitment scheme constructed in
Section 6.3, below.

Definition 6.3. A semi-succinct classical commitment scheme to quantum states is a commitment
scheme obtained from a single qubit commitment scheme by applying the algorithms qubit-by-qubit,
as in Construction 6.2, but with a single public key pk. Namely, it is similar to Construction 6.2
but where Gen generates a single key pair (pk, sk)← Gen1(1

λ) (as opposed to ` such pairs), and sets
(pki, ski) = (pk, sk) for every i ∈ [`].

Remark 6.4. In Section 7.2, when we prove that our (non-succinct and semi-succinct) multi-
qubit commitment scheme satisfies the binding property, we assume that C∗.Open successfully opens
all the ` qubits in the standard basis with high probability, and successfully opens all the ` qubits
in the Hadamard basis with high probability 1 − δ. Namely, we assume that for every b ∈ {0, 1},
C∗.Open

(
ρ, b`

)
generates an accepting opening with probability 1−δ. To ensure that this assumption

holds, we repeat the commitment phase O(b1/δc) times.30 For each of these commitments, we ask
C∗.Open with probability 1/3 to open all the qubits in the standard basis, with probability 1/3 to open
all the qubits in the Hadamard basis, and with probability 1/3 to open in desired basis b ∈ {0, 1}`.

We emphasize that even if C∗.Open opens only a small subset of the qubits, we still require
that C∗.Open

(
ρ, b`

)
generates a valid opening for every b ∈ {0, 1}. The reason is that our binding

property states that there exists an extractor E that uses any C∗.Open to extract a state τ . We
want the guarantee that even if C∗.Open only opens a small subset, still the extractor can extract
an `-qubit state τ . This is important in some applications, such as compiling any quantum X/Z
PCP into a succinct interactive argument (see Section 8.2). Importantly, we need to do this without
increasing the communication complexity in the opening phase, and in particular it should not grow
with `. In what follows we show how this can be done succinctly.

6.3 Construction of Succinct Multi-Qubit Commitments

Before we present our construction of a succinct multi-qubit commitment scheme, we define one of
the main building blocks used in our construction.

State-Preserving Succinct Arguments of Knowledge Our scheme uses a state-preserving
succinct argument of knowledge system, defined and constructed in [LMS22].

Definition 6.5. [LMS22] A publicly verifiable argument system Π for an NP language L (with wit-
ness relation R) is an ε-state-preserving succinct argument-of-knowledge if it satisfies the following
properties.

• Succinctness: when invoked on a security parameter λ, instance size n, and a relation R
decidable in time T , the communication complexity of the protocol is poly(λ, log T). The
verifier computational complexity is poly(λ, log T) + Õ(n).

• State-Preserving Extraction. There exists an extractor E, with oracle access to a cheating
prover P ∗ and a corresponding quantum state ρ, with the following properties:

30We assume that C.Commit can generate σ⊗b1/δc.

43

– Efficiency: E on input (x, 1λ, ε) runs in time poly(|x|, λ, 1/ε), and outputs a classical
transcript TSim, a classical string w, and a residual state ρSim.

– State-preserving: The following two games are ε-indistinguishable to any QPT distin-
guisher:

∗ Game 0 (Real): Generate a transcript T by running P ∗(ρ,x) with the honest verifier
V . Output T along with the residual state ρ′.

∗ Game 1 (Simulated): Generate ((TSim,w),ρSim)← EP ∗,ρ(x, 1λ, ε). Output (TSim,ρSim).

– Extraction correctness: for any P ∗ as above, the probability that TSim is an accepting
transcript but w is not in Rx is at most ε+ negl(λ).

The following is an immediate corollary.

Corollary 6.6. An ε-state-preserving succinct argument-of-knowledge protocol for an NP language
L (with witness relation R) and extractor E satisfies that for every cheating prover P ∗ and a corre-
sponding quantum state ρ, and every x, if P ∗(ρ,x) convinces the verifier V to accept with probability
1− δ then for

((TSim,w),ρSim)← EP ∗,ρ(x, 1λ, ε),

Pr[(x,w) ∈ R] ≥ 1− δ − 2ε− negl(λ).

Theorem 6.7 ([LMS22]). Assuming the post-quantum poly(λ, 1/ε) hardness of learning with errors,
there exists a (4-message, public coin) ε-state preserving succinct argument of knowledge for NP.

6.3.1 Construction

We are now ready to present our construction of a succinct classical commitment for multi-qubit
quantum states. Our construction uses the following ingredients:

• Collapsing hash family with local opening (GenH,EvalH,OpenH,VerH), as defined in Defini-
tions 3.4 and 3.6.

• A semi-succinct commitment scheme (Genss,Commitss,Openss,Verss,Outss), as defined in Def-
inition 6.3, corresponding to an underlying single-qubit commitment scheme

(Gen1,Commit1,Open1,Ver1,Out1)

• An ε-state-preserving succinct argument of knowledge protocol (P, V), as defined in Defini-
tion 6.5, for the NP languages L∗ and L∗∗ with a corresponding NP relations RL∗ and RL∗∗ ,
respectively, defined as follows:

((hk, rt),y) ∈ RL∗ if and only if EvalH(hk,y) = rt (19)

and
((sk1, hk, rt, rt

′, b), (y, z)) ∈ RL∗∗

if and only if

EvalH(hk,y) = rt ∧ EvalH(hk, z) = rt′ ∧ Verss
(
sk1,y, b

`, z
)

= 1.

44

Construction 6.8 (Succinct Commitment to Multi-Qubit Quantum States). In what follows we
use the ingredients above to construct a succinct commitment scheme to multi-qubit quantum states.

• Gen(1λ):

1. Sample (pk1, sk1)← Gen1(1
λ).

2. Sample hk← GenH(1λ).
3. Let pk = (pk1, hk) and sk = (sk1, hk).
4. Output (pk, sk).

• Commit(pk,σ):

1. Parse pk = (pk1, hk).
2. Compute (y,ρ)← Commitss(pk1,σ).
3. Let rt = EvalH(hk,y).
4. Output (rt,y,ρ).

• Ver.Commit runs the ε-state-preserving succinct argument of knowledge protocol for the NP
language L∗, where P and V take as input the instance (hk, rt) and P takes an additional
input the witness y.31 If V rejects then this commitment string rt is declared invalid, and the
protocol aborts.

• Test is an interactive protocol between PTest with input (pk, rt,y,ρ) and VTest with input (sk, rt)
that proceeds as follows:

1. VTest samples a uniformly random bit b← {0, 1}, and sends b to PTest.
2. PTest generates z← Openss

(
ρ, b`

)
and sends rt′ = EvalH(hk, z) to VTest.

3. Run the ε-state-preserving succinct argument of knowledge protocol for the NP language
L∗, where P and V take as input the instance (hk, rt′) and P takes the additional input
z. If V rejects then this commitment is declared invalid and the protocol aborts.

4. VTest sends sk1 to the prover.
5. Run the ε-preserving succinct argument of knowledge protocol (P, V) for the NP language
L∗∗, where P and V take as input the instance (sk1, hk, rt, rt

′, b) and P takes as additional
input the witness (y, z). If V rejects then this commitment is declared invalid.

6. If V accepts in both steps 2 and 4 above then VTest outputs 1, and otherwise it outputs 0.

Remark 6.9. Note that the Test protocols runs the ε-state-preserving succinct argument of
knowledge twice: once to prove knowledge of z and once to prove knowledge of (y, z). It
may seem that it suffices to run this protocol once, since there is no need to prove knowledge
of z twice. However, in the first protocol the cheating prover does not know sk1 and hence
the z that is extracted, using the extractor from Definition 6.5, can be efficiently computed
without knowing sk1. Then we use the security guarantee of the underlying collision resistant
hash family to argue that the vector z extracted from the second protocol is identical to that
extracted from the first protocol, and hence can be computed efficiently without knowing sk1.
This fact is crucial for the soundness proof to go through.

31Note that in this protocol both the prover and the verifier are classical.

45

• Open((ρ, hk,y), (j, bj)):

1. Parse y = (y1, . . . ,y`).
2. Compute oj = OpenH(hk,y, j).32

3. Compute (zj ,ρ
′)← Openss(ρ, (j, bj)).

4. Output ((yj ,oj , zj),ρ
′).

• Ver(sk, rt, (j, bj), (yj ,oj , zj)):

1. Parse sk = (sk1, hk).
2. Let v0 = VerH(hk, rt, j,yj ,oj).33

3. Let v1 = Ver1(sk1,yj , bj , zj).
4. Output v0 ∧ v1.

• Out(sk, rt, (j, bj), (yj ,oj , zj)):

1. Parse sk = (sk1, hk).
2. Output mj = Out1(sk1,yj , bj , zj).

7 Analysis of the Multi-Qubit Commitment Schemes from Section 6

7.1 Correctness

In this section we prove the correctness of Construction 6.2 and Construction 6.8.

Theorem 7.1. The multi-qubit commitment scheme described in Construction 6.2 satisfies the
correctness property given in Definition 5.4.

Section 6.2 commits to each qubit of a multi-qubit state independently by using the single-qubit
protocol given in construction Construction 6.1 as a black-box. Therefore, to prove Theorem 7.1 it
suffices to prove the following theorem.

Theorem 7.2. The single-qubit commitment scheme described in Construction 6.1 satisfies the
correctness property given in Definition 5.4.

We make use of the following lemma about CommitW throughout the proof.

Lemma 7.3 (Correctness of CommitW). For any `-qubit quantum state |ϕ〉 =
∑

s∈{0,1}` αs |s〉S and
any basis b = (b1, . . . , b`) ∈ {0}` ∪ {1}`,

RealW (1λ, |ϕ〉 ,b)
negl(λ)
≡ σ(b) (20)

where σ(b) is the distribution obtained by measuring each qubit j of |ϕ〉 in the basis specified by bj
(standard if bj = 0, Hadamard if bj = 1), and RealW (1λ, |ϕ〉 ,b) is the distribution resulting from
honestly opening the commitment. Specifically, RealW (1λ, |ϕ〉 ,b) is defined by:

32OpenH(hk,y, j) denotes an opening to the j’th chunk of the preimage y, consisting of yj which is the commitment
to the j’th qubit.

33VerH(hk, rt, j,yj ,oj) denotes the verification of the opening for yj , which is the j’th chunk of the hashed preimage.

46

1. For every i ∈ {0, 1, . . . , `}, sample (pki, ski)← GenNTCF(1λ).

2. Compute (y = (y1, . . . ,y`), |ϕ′〉) ← CommitW((pk1, . . . , pk`), |ϕ〉), where |ϕ′〉 is of the same
form as Equation (18).

3. If b = {0}`:

(a) Measure |ϕ′〉 in the standard basis to get z = (z1, . . . , z`). Parse each zi = (si,xi,si).
If CheckNTCF(pki, si,xi,si ,yi) 6= 1 for some i ∈ [`], output ⊥. Otherwise, output s =
(s1, s2, . . . , s`).

4. If b = {1}`:

(a) Measure |ϕ′〉 in the Hadamard basis to get d = (d1, . . . ,d`) ∈ {0, 1}`(n+1). For each
j ∈ [`], compute ((0,xj,0), (1,xj,1)) = InvertNTCF(skj ,yj). If dj /∈ Goodxj,0,xj,1 for some
j ∈ [`], output ⊥. Otherwise, output m = (m1, . . . ,m`), where each mj = dj · (1,xj,0 ⊕
xj,1).

Proof. This follows directly from the proof of Lemma 5.3 in [Mah18], where the b = {0}` case
corresponds to the Test round and the b = {1}` case corresponds to the Hadamard round.

Recall that in Construction 6.1, the final state |φ3〉 is the result of applying CommitW to the
state

|φ2〉 =
1√

2n+1

∑
d∈{0,1}n+1

βd |d〉 .

in the commitment procedure (pre-measurement)
We now show that the outcome of opening |ϕ3〉 in a basis b ∈ {0, 1} is statistically indistin-

guishable from measuring the initial state, |ψ〉, in the basis b. We proceed with the proof for pure
states, which extends to the case of mixed and entangled states by linearity, and show correctness
for each basis separately. We treat the correctness of CommitW as a black-box. Namely, we make
use of Lemma 7.3 throughout the proof.

Lemma 7.4 (Opening in the Hadamard basis, b = 1). For any pure single-qubit quantum state
|ψ〉 = α0 |0〉+ α1 |1〉 and any NTCF family, the distribution over the outcomes of the following two
experiments are statistically indistinguishable under Construction 6.1:

• Experiment 1. Measure |ψ〉 in the Hadamard basis and report the outcome.

• Experiment 2. Execute Real(1λ, |ψ〉 , b1 = 1), as described in Definition 5.4.

Proof. By inspection, it can be seen that the distribution of outcomes obtained from Real(1λ, |ψ〉 , b1 =
1) here is the same as the outcome obtained from the following procedure:

1. Generate keys (sk0, pk0).

2. Apply the weak commitment once to get y0, |φ1〉 ← CommitW (pk0, |ψ〉).

3. Apply a Hadamard transform to the state to get |φ2〉 = H⊗(n+1) |φ1〉.

4. Execute RealW (1λ, |φ2〉 , 0n+1) to obtain an outcome d = (d0, . . . , dn+1).

47

5. Report an outcome d · (1,x0 ⊕ x1), where {(b,xb)}b=0,1 = InvertNTCF(sk0,y0).

By Lemma 7.3 for standard basis openings, the distribution over d statistically close to the distribu-
tion obtained by measuring |φ2〉 in the standard basis. This, in turn, by construction is equal to the
distribution obtained by measuring |φ1〉 in the Hadamard basis. Finally, by applying Lemma 7.3
again, this time for Hadamard basis openings, this implies that the distribution of d · (1,x0 ⊕ x1)
is statistically close to the distribution obtained by measuring |ψ〉 in the Hadamard basis.

Lemma 7.5 (Opening in the standard basis, b = 0). For any pure single-qubit quantum state
|ψ〉 = α0 |0〉+ α1 |1〉 and any NTCF family, the distribution over the outcomes of the following two
experiments are statistically indistinguishable under Construction 6.1:

• Experiment 1. Measure |ψ〉 in the standard basis and report the outcome.

• Experiment 2. Execute Real(1λ, |ψ〉 , b1 = 0), as described in Definition 5.4.

Proof. By inspection, it can be seen that the distribution of outcomes obtained from Real(1λ, |ψ〉 , b1 =
1) here is the same as the outcome obtained from the following procedure:

1. Generate keys (sk0, pk0).

2. Apply the weak commitment once to get y0, |φ1〉 ← CommitW (pk0, |ψ〉).

3. Apply a Hadamard transform to the state to get |φ2〉 = H⊗(n+1) |φ1〉.

4. Execute RealW (1λ, |φ2〉 , 1n+1) to obtain an outcome m = (m0, . . . ,mn).

5. If CheckNTCF(pk0,m0, (m1, . . . ,mn),y0) = 1, output m0; else, output ⊥.

By Lemma 7.3, applied in the Hadamard basis case, the outcome m has a distribution that is
statistically close to the outcome of a Hadamard basis measurement of |φ2〉. By construction, this
is equal to the distribution of the outcome of a standard basis measurement of |φ1〉. Finally, by
Lemma 7.3, applied in the standard basis case, the distribution of a standard outcome of |φ1〉 will
pass the check CheckNTCF(pk0,m0, (m1, . . . ,mn),y0) with probability negligibly close to 1, and the
bit m0 will be distributed close to the distribution obtained by measuring |ψ〉 in the standard basis.

Proof of Theorem 7.2. The theorem follows immediately from Lemma 7.4 and Lemma 7.5.

We now proceed with the proof of correctness for the succinct commitment scheme.

Theorem 7.6. The succinct multi-qubit commitment scheme described in Construction 6.8 satisfies
the correctness property given in Definition 5.5.

Proof. By correctness of the state-preserving succinct argument of knowledge protocol [LMS22],
Ver.Commit in Construction 6.8 accepts with probability 1−negl(λ). The Commit algorithm in that
construction uses Commitss as a black box, which consists of applying the Commit1 procedure to
each qubit of σ under the same public key pk1. Therefore, for the c = 0 case in Definition 5.5,
correctness holds by Theorem 7.2. The c = 1 case follows from the correctness of the state-preserving
argument of knowledge [LMS22].

48

7.2 Binding

In this section we prove the following two theorems.

Theorem 7.7. The non-succinct commitment scheme described in Section 6.2 satisfies the binding
property given in Definition 5.6 (assuming the existence of a NTCF family).

Theorem 7.8. The semi-succinct multi-qubit commitment scheme described in Section 6.2 (Defi-
nition 6.3) satisfies the binding property given in Definition 5.6 if the underlying single qubit com-
mitment scheme is the one from Section 6.1 and the underlying NTCF family is the one from
[BCM+18] and assuming it satisfies the distributional strong adaptive hardcore bit property (see
Definition 4.1).34

To prove the above two theorems we need to prove that both the non-succinct and the semi-
succinct commitment schemes described in Section 6.2 satisfy Equation (11) and Equation (12) of
the binding property (Definition 5.6).

Remark 7.9. We note that Equation (12) only relies on the fact that the underlying NTCF family
is collapsing (as defined in Claim 3.12), whereas Equation (11) relies on the adaptive hardcore
bit property for the non-succinct scheme and on the specific properties of the NTCF family from
[BCM+18] (specifically, the distributional strong adaptive hardcore bit property) for the semi-succinct
scheme.

We start by proving that both the non-succinct and the semi-succinct commitment schemes
satisfy Equation (12). We actually prove a stronger version of Equation (12), stated below.

Lemma 7.10. [Stronger version of Equation (12)] For any QPT algorithm C∗.Commit and quantum
state σ, any purification |ϕ〉 of σ, any QPT algorithms C∗1.Open and C∗2.Open, any b ∈ {0, 1}`, and
any efficient unitaries V1 and V2 there exists a negligible function µ = µ(λ) such that

E
(pk,sk)←Gen(1λ)

(y,|ψ〉)←C∗.Commit(pk,|ϕ〉)

‖U †1U
†
OutCNOTcopy,outUOutU1Vext,1 |ψext〉 − U †2U

†
OutCNOTcopy,outUOutU2Vext,2 |ψext〉 ‖2 ≤

η + ε+ µ

where

• ε = E
(pk,sk)←Gen(1λ)

(y,|ψ〉)←C∗.Commit(pk,|ϕ〉)

‖V1 |ψ〉 − V2 |ψ〉 ‖2.

• η =
∑`

j=1 2
√
δj for

δj , E
(pk,sk)←Gen(1λ)

(y,|ψ〉)←C∗.Commit(pk,|ϕ〉)
(zi,ρ

′
i)←C∗i .Open(ρ,b)

max
i∈{1,2}

Pr[Ver(sk,y, (j, bj), zi,j) = 0 | Ver(sk,y, (k, bk), zi,k) = 1 ∀k ∈ [j − 1]]

where zi = (zi,j)
`
j=1.

34We recall that [BCM+18] satisfies the distributional strong adaptive hardcore bit property under LWE (see
Claim 4.4).

49

• |ψext〉 =
∣∣0`〉

copy
⊗
∣∣0`〉

out
⊗ |b〉basis ⊗ |ψ〉.

• For every i ∈ {1, 2}, Vext,i = Icopy ⊗ Iout ⊗ Ibasis ⊗ Vi.

• For every i ∈ {1, 2}, Ui is the unitary defined by applying C∗i .Open to the registers open and
basis.

• UOut is the unitary defined by first applying the unitary corresponding to Ver(sk,y, ·, ·) to
registers open and basis, and controlled on Ver accepting, applying the unitary corresponding
to Out(sk,y, ·, ·) to registers open and basis, and writing the output on the register out.

• CNOTcopy,out applies a CNOT to registers copy and out (i.e., it copies register out to register
copy).

Moreover, C∗1.Open and C∗2.Open can be QPT given sk1, . . . , skn+1 when opening in the standard
basis and QPT when opening in the Hadamard basis.35 Alternatively, they can be QPT given sk0
when opening in the Hadamard basis and QPT when opening in the standard basis.

Corollary 7.11. For any QPT algorithm C∗.Commit and quantum state σ, any QPT algorithms
C∗1.Open and C∗2.Open, and any b ∈ {0, 1}`,

RealC
∗
1.Open(λ,b,σ)

2(
√
δ0+
√
δ1)≈ RealC

∗
2.Open(λ,b,σ)

where denoting by Ib = {i ∈ [`] : bi = b},

δb = E
(pk,sk)←Gen(1λ)

(y,ρ)←C∗.Commit(pk,σ)
zi←C∗i .Open(ρ,b)

max
i∈{1,2}

Pr
[
Ver

(
sk,y, (Ib, b

|Ib|), zi,Ib

)
= 0
]

where zi,Ib = (zi,j)j∈Ib.
Moreover, C∗1.Open and C∗2.Open can be QPT given sk1, . . . , skn+1 when opening in the standard

basis and QPT when opening in the Hadamard basis.

Proof of Corollary 7.11 Fix any QPT algorithm C∗.Commit and quantum state σ, any algo-
rithms C∗1.Open and C∗2.Open as in the statement of Corollary 7.11, and any basis b. For every
i ∈ {1, 2} we slightly change C∗i .Open to C∗∗i .Open, as follows: C∗∗i .Open(ρ, (j, b)) coherently com-
putes z← C∗i .Open(ρ,b) and outputs zj if Ver(sk,y, (Ib,bIb), z) = 1, and otherwise it outputs ⊥.36

Note that C∗∗i .Open remains a QPT algorithm when opening in the Hadamard basis since Ver does
not use sk when verifying a Hadamard basis opening, whereas it uses sk1, . . . , skn+1 when opening
in the standard basis. Thus C∗∗1 .Open and C∗∗2 .Open satisfy the efficiency conditions of Lemma 7.10.
In addition, note that for every i ∈ {1, 2},

RealC
∗
i .Open(λ,b,σ) ≡ RealC

∗∗
i .Open(λ,b,σ).

35This generalization is needed to obtain Corollary 7.11.
36Note that bIb = b|Ib|

50

where (pk, sk)← Gen(1λ) and (y,ρ)← C∗.Commit(pk,σ). By Lemma 7.10 for any purification |ϕ〉
of σ there exists a negligible function µ such that

E
(pk,sk)←Gen(1λ)

(y,|ψ〉)←C∗.Commit(pk,|ϕ〉)

‖U †1U
†
OutCNOTcopy,outUOutU1 |ψext〉 − U †2U

†
OutCNOTcopy,outUOutU2 |ψext〉 ‖2

≤ η + µ

where Ui is the unitary defined by C∗∗i .Open, and UOut and η are as defined in Lemma 7.10. It
remains to observe that η ≤ 2

√
δ0 + 2

√
δ1, which follows from the the definition of C∗∗i .Open, which

asserts that δj = 0 if there exists k ∈ {1, . . . , j − 1} for which bj = bk.

Proof of Lemma 7.10 We prove this lemma for the semi-succinct variant of the multi-qubit
commitment scheme described in Section 6.2. The proof for the non-succinct variant is identical.
The proof is by induction on `.

Base case: ` = 1. Fix any QPT algorithm C∗.Commit, a quantum state σ, algorithms C∗1.Open
and C∗2.Open, basis b ∈ {0, 1}, and efficient unitaries V1 and V2, as in the lemma statement. Also
fix a purification |ϕ〉 of σ. Suppose for the sake of contradiction that there exists a non-negligible
ξ = ξ(λ) such that

E
(pk,sk)←Gen(1λ)

(y,|ψ〉)←C∗.Commit(pk,|ϕ〉)

‖U †1U
†
OutCNOTcopy,outUOutU1Vext,1 |ψext〉 − U †2U

†
OutCNOTcopy,outUOutU2Vext,2 |ψext〉 ‖2 ≥

η + ε+ ξ

We construct a QPT adversary A that uses the QPT committer C∗.Commit, its purified state |ϕ〉,
and the unitaries U1, U2, V1, V2, UOut to break the collapsing property of the underlying NTCF family
(Definition 3.10). We break the collapsing property as formulated in Remark 3.11. We distinguish
between the case that b = 0 and the case that b = 1.

Case 1: b = 0. The adversary A operates as follows:

1. Advserary: Upon receiving a public key pk0 from the challenger, where (pk0, sk0)← GenNTCF(1λ):

(a) For every i ∈ [n+ 1] generate (pki, ski)← GenNTCF(1λ).

(b) Let pk = (pk0, pk1, . . . , pkn+1).

(c) Compute (y, |ψ〉)← C∗.Commit(pk, |ϕ〉).
(d) Parse y = (y0,y1, . . . ,yn+1)

(e) Let |ψ′〉 = U (|+〉coin ⊗ |ψext〉), where

U = |0〉 〈0|coin ⊗ UOutU1Vext,1 + |1〉 〈1|coin ⊗ UOutU2Vext,2

Recall that UOut first computes Ver which in Item 4d computes m ∈ {0, 1}n+1. UOut

stores in register out the output, which is the first bit of m. We denote by preimage the
registers that store the last n bits of m.

51

(f) Send to the challenger the string y0 and the registers out and preimage of |ψ′〉.
Notice that since b = 0, UOut (as possibly U1 and U2) use only the secret keys (sk1, . . . , skn+1),
which A knows, and thus A can efficiently apply the unitary U to the state |+〉coin⊗|ψext〉.

2. Challenger: Recall that the challenger applies in superposition the algorithm CheckNTCF

to the state it receives w.r.t. public key pk0 and the image string y0, and measures the bit
indicating whether the output of CheckNTCF is 1. If this is not the case it sends ⊥. Otherwise,
it chooses a random bit u← {0, 1} and measures this state if and only if u = 1. It then sends
the resulting state to the adversary.

Note that by the two-to-one nature of the underlying NTCF family, measuring the entire state
is equivalent to measuring only the first qubit of the state, i.e., register out. Thus, we can
assume that the challenger measures only register out if and only if u = 1.

In addition, note that conditioned on the challenger not outputting ⊥, the state is projected
to ΠVer |ψ′〉 (up to normalization), where ΠVer |ψ′〉 is the state |ψ′〉 projected to the challenger
accepting the state. Consider the state CNOTucopy,outΠVer |ψ′〉. Note that this state, with
the copy register excluded, is indistinguishable from the state returned from the challenger
conditioned on choosing the random bit u. Thus we think of the adversary as receiving this
state.

3. Adversary: If the adversary receives ⊥ from the challenger, then it outputs a uniformly
random u′. Note that this occurs with probability at most δ.

Otherwise, the adversary A receives the registers out and preimage from the challenger (either
measured or not, depending on u). The joint state of the adversary and challenger at this
point is CNOTucopy,outΠVer |ψ′〉, where all registers except copy are held by the adversary. The
adversary does the following:

(a) Let
U ′ = |0〉 〈0|Coin ⊗ U

†
1U
†
out + |1〉 〈1|Coin ⊗ U

†
2U
†
out.

(b) Apply U ′ to the adversary’s system, resulting in the joint state

U ′CNOTucopy,outΠVer

∣∣ψ′〉 =

U ′CNOTucopy,outΠVerU |ψext〉 =

(|0〉 〈0|Coin U
†
1U
†
outCNOT

u
copy,outΠVerUoutU1Vext,1 + |1〉 〈1|Coin U

†
2U
†
outCNOT

u
copy,outΠVerUoutU2Vext,2) |ψext〉

(c) Output the measurement of the Coin register in the Hadamard basis, denoted by u′ (i.e.,
u′ = 0 if the measurement is |+〉 and is u′ = 0 if the measurement is |−〉).

Consider the states

U †1U
†
outCNOT

u
copy,outΠVerUoutU1Vext,1 |ψext〉 and U †2U

†
outCNOT

u
copy,outΠVerUoutU2Vext,2 |ψext〉

Note that for u = 0, these states are (2
√
δ + ε)-close in ‖ · ‖2 distance. This follows from the fact

that by Lemma 3.1, together with the assumption that the probability that |ψext〉 opens successfully
is ≥ 1− δ, it holds that for every i ∈ {1, 2}:

E
(pk,sk)←Gen(1λ)

(y,|ψ〉)←C∗.Commit(pk,|ϕ〉)

‖U †i U
†
outΠVerUoutUiVext,i |ψext〉 − U †i U

†
outUoutUiVext,i |ψext〉 ‖2 ≤

√
δ,

52

and from our assumption that

ε = E
(pk,sk)←Gen(1λ)

(y,|ψ〉)←C∗.Commit(pk,|ϕ〉)

‖Vext,1 |ψext〉 − Vext,2 |ψext〉 ‖2.

This implies that there exists a negligible function µ such that

E
(pk,sk)←Gen(1λ)

(y,|ψ〉)←C∗.Commit(pk,|ϕ〉)

‖U †1U
†
OutCNOTcopy,outUOutU1Vext,1 |ψext〉 − U †2U

†
OutCNOTcopy,outUOutU2Vext,2 |ψext〉 ‖2 ≤

2
√
δ + ε+ µ

On the other hand, by our contradiction assumption, for u = 1, these two states are (2
√
δ + ε)-

far. This, together with Claim 7.12 below, implies that A indeed breaks the collapsing property of
the underlying NTCF family.

Claim 7.12. For any two states |ψ0〉 and |ψ1〉 such that ‖|ψ0〉 − |ψ1〉‖ = ε, and for |ϕ〉 = 1√
2
|0〉 |ψ0〉+

1√
2
|1〉 |ψ1〉, it holds that

Pr[H[ϕ]→ 1] =
ε2

4
.

Proof. We calculate

Pr[H[ϕ] 7→ 1] = ‖(〈1| ⊗ I)H |ϕ〉‖2

=

∥∥∥∥(〈1| ⊗ I)

(
1√
2
|+〉 |ψ0〉+

1√
2
|−〉 |ψ1〉

)∥∥∥∥2
=

∥∥∥∥1

2
|ψ0〉 −

1

2
|ψ1〉

∥∥∥∥2
=

1

4
ε2.

Case 2: b = 1. We show how to use the adversary A to break the extended collapsing game (see
Claim 3.13). The adversary A operates as follows:

1. Upon receiving public keys (pk1, . . . , pkn+1) from the challenger, where (pki, ski)← GenNTCF(1λ)
for every i ∈ [n+ 1], do the following:

(a) Generate (pk0, sk0)← GenNTCF(1λ).

(b) Let pk = (pk0, pk1, . . . , pkn+1).

(c) Compute (y, |ψ〉)← C∗.Commit(pk, |ϕ〉).
(d) Parse y = (y0,y1, . . . ,yn+1).

(e) Compute ((0,x0), (1,x1)) = InvertNTCF(sk0,y0).

(f) Let J = {j ∈ {2, . . . , n+ 1} : x0,j−1 ⊕ x1,j−1 = 1} ∪ {1}.

53

(g) As in the b = 0 case, define

U = |0〉 〈0|coin ⊗ UOutU1Vext,1 + |1〉 〈1|coin ⊗ UOutU2Vext,2

and prepare the state |ψ′〉 = U(|+〉coin ⊗ |ψext〉).
Note that since b = 1 it holds that |ψ′〉 can be computed efficiently given sk0

(h) For every j ∈ [J], denote by Xj and Zj the registers in ρ′ corresponding to dj and x′j ,
respectively.

(i) Send J , {yj}j∈J and the registers {Xj ,Zj}j∈J of |ψ′〉.

2. Recall that the challenger applies in superposition the algorithm Check to the state it received
w.r.t. the image strings {yj}j∈J , where the j’th check is w.r.t pkj , and measures the bit
indicating whether the output of Check is 1. If any of the outputs of Check are 0, the challenger
immediately halts and sends ⊥ to the adversary. Otherwise, it chooses a random bit u← {0, 1}
and applies Zu to every Xj register. It then sends the resulting state to the adversary.

3. If the adversary receives ⊥, it returns a uniformly random u′. Otherwise, observe that once the
adversary receives the state from the challenger, it is in possession of all the quantum registers.
At this point, they are, up to normalization, in the state ZuJΠVer,J |ψ′〉, where ZJ =

∏
j∈J ZXj

and ΠVer,J |ψ′〉 is the state |ψ′〉 projected to an accepting state.

It then does the following:

(a) Let
U ′ = |0〉 〈0|Coin ⊗ U

†
1U
†
out + |1〉 〈1|Coin ⊗ U

†
2U
†
out.

(b) Apply U ′ to its registers, resulting in the state

U ′ZuJΠVer,J

∣∣ψ′〉 =(
|0〉 〈0|Coin ⊗ U

†
1U
†
outZ

u
JΠVerUoutU1Vext,1 + |1〉 〈1|Coin ⊗ U

†
2U
†
outZ

u
JΠVerUoutU2Vext,2

)
(|+〉Coin ⊗ |ψext〉)

(c) Output the measurement of the first register of this state in the Hadamard basis, denoted
by u′.

Consider the states

U †1U
†
outZ

u
JΠVerUoutU1Vext,1 |ψext〉 and U †2U

†
outZ

u
JΠVerUoutU2Vext,2 |ψext〉

Note that similarly to the b = 0 case, for u = 0 these states are (2
√
δ + ε)-close in ‖ · ‖2 distance.

On the other hand, by our contradiction assumption, together with Lemma 3.3, for u = 1, these
two states are (2

√
δ + ε)-far in ‖ · ‖2 distance. This together with Claim 7.12, implies that indeed

A breaks the collapsing property of the underlying NTCF family.

Induction step: Suppose that the multi-qubit commitment scheme is sound for ` − 1 and we
prove that it is sound for `. We need to prove that there exists a negligible function µ = µ(λ) such
that

E
(pk,sk)←Gen(1λ)

(y,|ψ〉)←C∗.Commit(pk,|ϕ〉)

‖U †1U
†
OutCNOTcopy,outUOutU1Vext,1 |ψext〉 − U †2U

†
OutCNOTcopy,outUOutU2Vext,2 |ψext〉 ‖2 ≤

η + ε+ µ

54

for η =
∑`

j=1 2
√
δj and ε = E

(pk,sk)←Gen(1λ)
(y,|ψ〉)←C∗.Commit(pk,|ϕ〉)

‖V1 |ψ〉 − V2 |ψ〉 ‖2.

To this end, note that for every i ∈ {1, 2}

U †i U
†
OutCNOTcopy,outUOutUiVext,i |ψext〉 =

U †i U
†
OutCNOTcopy`,out`CNOTcopy[1,`−1],out[1,`−1]

UOutUiVext,i |ψext〉 =

U †i U
†
Out`

CNOTcopy`,out`UOut`UiVext,iV
†
ext,iU

†
i U
†
Out[1,`−1]

CNOTcopy[1,`−1],out[1,`−1]
UOut[1,`−1]

UiVext,i |ψext〉 =

U †i U
†
Out`

CNOTcopy`,out`UOut`Ui U
†
i U
†
Out[1,`−1]

CNOTcopy[1,`−1],out[1,`−1]
UOut[1,`−1]

UiVext,i︸ ︷︷ ︸
V ′i

|ψext〉

For every i ∈ {1, 2}, denote by ∣∣ψ′i〉 = V ′i |ψext〉

By the induction hypothesis, there exists a negligible function µ = µ(λ) such that

E
(pk,sk)←Gen(1λ)

(y,|ψ〉)←C∗.Commit(pk,|ϕ〉)

‖
∣∣ψ′1〉− ∣∣ψ′2〉 ‖2 ≤ η′ + µ

where η′ =
∑`−1

j=1 2
√
δj + ε. Denoting by ε′ = η′, our base case implies that there exists a negligible

function ν = ν(λ) such that

E
(pk,sk)←Gen(1λ)

(y,|ψ〉)←C∗.Commit(pk,|ϕ〉)

‖U †1U
†
Out`

CNOTcopy`,out`Uout`U1V
′
1 |ψext〉 − U †1U

†
Out`

CNOTcopy`,out`Uout`U1V
′
2 |ψext〉 ‖2 ≤

2
√
δ` + η′ + ν

as desired.

We next prove that both the non-succinct and the semi-succinct commitment schemes from
Section 6.2 satisfy Equation (11).

Lemma 7.13. The non-succinct commitment scheme described in Section 6.2 satisfies Equation (11)
from Definition 5.6 assuming the underlying NTCF family has the adaptive hardcore bit property.

Lemma 7.14. The semi-succinct commitment scheme described in Section 6.2 (Definition 6.3)
satisfies Equation (11) from Definition 5.6 assuming the underlying NTCF family is the one from
[BCM+18] and assuming it has the distributional strong adaptive hardcore bit property (which is the
case under LWE).

Proof of Lemmas 7.13 and 7.14 We prove these two lemmas jointly since much of the proof is
identical. In both cases we think of the public and secret keys as being

pk = (pk1, . . . , pk`) and sk = (sk1, . . . , sk`)

55

where in the non-succinct commitment each (pki, ski) ← GenNTCF(1λ) and in the semi-succinct
commitment (pk, sk)← GenNTCF(1λ), and for every i ∈ [`]

ski = sk and pki = pk

Fix any QPT cheating committer C∗.Commit with auxiliary quantum state σ that commits to an
`-qubit state. Denote by

(y,ρ)← C∗.Commit(pk,σ),

where y = (y1, . . . ,y`), each yi = (yi,0,y1, . . . ,yi,n+1) and each yi,j is in Rpkj which is the range
of the NTCF function Eval(pkj , ·). Fix any QPT algorithm C∗.Open. We start by defining the QPT

extractor ExtC
∗.Open(sk,y,ρ). We do so in two steps:

1. First, we define 2` “operational observables” {PXi , PZi}i∈`] such that for every i ∈ [`] and
b ∈ {0, 1},

(pk,y,mideal,i,b) ≡ (pk,y,mi,b)

where (pk, sk)← Gen(1λ, 1`),37 (y,ρ)← C∗.Commit(pk,σ), mideal,i,b is obtained by measuring
ρ in the PXi basis if b = 1 and measuring it in the PZi basis if b = 0, and mi,b is obtained by
computing z← C∗.Open(ρ, b`) and setting mi,b = Out(sk,y, (i, b), zi).

2. We then use these operational observables to extract a state τ . This is done following the
approach of [Mah18, Vid20, BKL+22],

Defining the operational observables {PXi , PZi}i∈[`]. To define these operational observables
formally, we add L = ` ·

(
(n+ 1)2 + 1

)
ancilla registers to ρ, which we initialize to 0. We denote by

ρExt = ρ⊗
∣∣0L〉 〈0L∣∣ ,

where the first ` · (n + 1)2 ancilla registers are denoted by open = (open1, . . . , open`), and these
registers store the output (z1, . . . , z`) generated by Open, where zi ∈ {0, 1}(n+1)2 is stored in openi.
The last ` ancilla registers are denoted by out = (out1, . . . , out`), and these registers store the output
(v1, . . . , v`) generated by Out, where vi ∈ {0, 1} is stored in register outi.

Definition 7.15. For any (sk,y) and any QPT algorithm C∗.Open we define the operational ob-
servables (PXi , PZi)i∈[`] to be

PXi = U †1Out
†
i,1ZoutiOuti,1U1

and
PZi = U †0Out

†
i,0ZoutiOuti,0U0

where for every i ∈ [`] and every b ∈ {0, 1},
• Ub is the unitary corresponding to C∗.Open(·, (b, . . . , b)). The output is recorded in registers
open.

• Outi,b computes Out(sk,y, (i, b), ·) and records the output in the ancilla register outi.

• Zout,i is the Pauli Z operator applied only on the register outi.

We next define the extractor Ext which uses the operational observables {PXi , PZi}i∈[`], defined
above. For the sake of simplicity, we define Ext to operate on pure states. The definition easily
generalizes to mixed states by linearity.

37In the semi-succinct setting (pk, sk)← Gen(1λ).

56

ExtC
∗.Open(sk,y, |ϕ〉) operates as follows:

1. Consider the operational observables {PXi , PZi}i∈[`] corresponding to (sk,y).

2. Prepare the state
1

2`

∑
r,s∈{01}`

|r, s〉Coin ⊗
∣∣∣0`〉

A
⊗ |ϕ〉B .

3. Denote by
Xr = Xr`

` . . . Xr1
1 and Zs = Zs`` . . . Zs11 .

Similarly, denote by
P r
X = P r`X` . . . P

r1
X1

and P s
Z = P s`Z` . . . P

s1
Z1
.

4. Controlled on the values r, s of the Coin register, apply ZsXr to the A register and apply
P r
XP

s
Z to the B register to obtain the state

1

2`

∑
r,s∈{0,1}`

|r, s〉Coin ⊗ ZsXr
∣∣∣0`〉

A
⊗ P r

XP
s
Z |ϕ〉B

5. Apply Hadamard gates H⊗2` to the Coin register in the to obtain the state

1

4`

∑
r,s,r′,s′∈{0,1}`

(−1)r·r
′+s·s′ ∣∣r′, s′〉

Coin
⊗ ZsXr

∣∣∣0`〉
A
⊗ P r

XP
s
Z |ϕ〉B

where

r · r′ =
∑̀
i=1

ri · r′i mod 2 and s · s′ =
∑̀
i=1

si · s′i mod 2.

6. Apply Xs′Zr′ to the A register. Note that

Xs′Zr′ZsXr
∣∣∣0`〉 =

Xs′ZsZr′Xr
∣∣∣0`〉 =

(−1)r·r
′
Xs′ZsXrZr′

∣∣∣0`〉 =

(−1)r·r
′
Xs′ZsXr

∣∣∣0`〉 =

(−1)r·r
′+s·s′ZsXs′Xr

∣∣∣0`〉 =

(−1)r·r
′+s·s′ZsXrXs′

∣∣∣0`〉 =

(−1)r·r
′+s·s′ZsXr

∣∣s′〉 .
Therefore the state obtained is

1

4`

∑
r,s,r′,s′∈{0,1}`

∣∣r′, s′〉
Coin
⊗ ZsXr

∣∣s′〉A ⊗ P r
XP

s
Z |ϕ〉B

57

which is equal to the state(
1
√

2
`
(|0〉+ |1〉)⊗`

)
⊗ 1

(2
√

2)`

∑
r,s,s′∈{0,1}`

∣∣s′〉⊗ ZsXr
∣∣s′〉A ⊗ P r

XP
s
Z |ϕ〉B .

7. Discard the first ` registers to obtain the state

1

(2
√

2)`

∑
r,s,s′∈{0,1}`

∣∣s′〉⊗ ZsXr
∣∣s′〉A ⊗ P r

XP
s
Z |ϕ〉B .

8. Output the state τA,B that is the reduced state of the above on registers A,B.

We next prove that

RealC
∗.Open(λ,b,σ)

10
√
δ
≈ IdealExt,C

∗.Open(λ,b,σ). (21)

To this end, for a given b ∈ {0, 1}`, denote by

I = {i ∈ [`] : bi = 0} and J = {j ∈ [`] : bj = 1},

so that I and J partition [`].
Next we define a new opening algorithm C∗.Open[`]. We first give a “buggy” definition of

C∗.Open[`], and then show how to fix it in Remark 7.16. C∗.Open[`] on input (ρ,b) does the
following:

1. Compute ρ1 = U †0CNOTcopyI ,openIU0[ρ], where openI is the register that contains the openings
{zi}i∈I , and CNOTcopyI ,openI copies the content of this register to a fresh register denoted by
copyI .

2. Measure the registers copyI of ρ1 to obtain {zi}i∈I and denote the resulting state by ρ2.

3. Compute ρ3 = U †1CNOTcopyJ ,openJU1[ρ2], where openJ is the register that contains the open-
ings {zj}j∈J , and CNOTcopyJ ,openJ copies the content of this register to a fresh register denoted
by copyJ .

4. Measure the registers copyJ of ρ3 to obtain {zj}j∈J and denote the resulting state by ρ4.

5. Output ((z1, . . . , z`),ρ4).

Remark 7.16. We remark that as written, C∗.Open[`](ρ,b) may be rejected with high probabil-
ity. The reason is that, while the standard basis openings of C∗.Open[`] and C∗.Open are identical,
C∗.Open[`] can completely fail to open in the Hadamard basis, since after computing the standard
basis openings its state becomes U †0CNOTcopyI ,openIU0[ρ], with the copyI registers measured. This is
a disturbed state and it is no longer clear that computing the Hardamard basis opening on it will
give an accepting opening.

To ensure that C∗.Open[`](ρ,b) is accepted with the same probability as C∗.Open(ρ,b), up to
negligible factors, we need to ensure that the state after computing the standard basis openings
remains undisturbed, or at least that this disturbance is undetected by the algorithms that compute

58

the Hadamard basis opening and verify whether this opening is valid. To achieve this we slightly
modify C∗.Open[`] and allow it to compute the standard basis opening using (sk1, . . . , skn+1). We
note that such opening algorithms are allowed in Corollary 7.11 (which we will later use in our
analysis).

Specifically, C∗.Open[`], rather than placing the output of U0 in the openI registers, which when
measured may disturb the state, we use (sk1, . . . , skn+1) to apply the following post-opening unitary
to each openi register, to ensure that when measured the disturbance will not be noticed. Recall
that openi contains a vector z = (z1, . . . , zn+1) ∈ {0, 1}(n+1)2 where each zj ∈ {0, 1}n+1. The
post-opening unitary does the following:

1. Coherently compute for every j ∈ [n+ 1] the bit mj = zj · (1,x′j,0 ⊕ x′j,1), where x′j,0 and x′j,1
are the two preimages of yi,j that are computed using skj.

2. Let m = (m1, . . . ,mn+1) ∈ {0, 1}n+1.

Note that if z is a successful opening (i.e., it is accepted) then m is a preimage of yi,0,
and whether a preimage is measured or not is undetectable without knowing sk0, due to the
collapsing property of the underlying NTCF family.

3. On an ancila register, compute a super-position over all z′ = (z′1, . . . , z
′
n+1) ∈ {0, 1}(n+1)2

such that for every j ∈ [n+ 1] mj = z′j · (1,x′j,0 ⊕ x′j,1).

4. Swap register openi with the ancila register above, so that now z′ = (z′1, . . . , z
′
n+1) is in register

openi.

Now we can argue that the residual state after computing the standard basis opening seems undis-
turbed for anyone who does not know sk0 due to the collapsing property of the underlying NTCF
family, and computing the Hadamard opening and verification of it does not use sk0 (and is done
publicly given only pk).

Note that since

δ = E
(pk,sk)←Gen(1λ,1`)

(y,ρ)←C∗.Commit(pk,σ)

max
b′∈{b,0,1}

Pr
[
Ver(sk,y,b′,C∗.Open(ρ,b′)) = 0

]
.

it holds that

E
(pk,sk)←Gen(1λ,1`)

(y,ρ)←C∗.Commit(pk,σ)

max
b′∈{b,0,1}

Pr
[
Ver(sk,y,b′,C∗.Open[`](ρ,b

′)) = 0
]
≤ 2δ. (22)

This is the case since the probability that C∗.Open[`](ρ,b) is rejected is bounded by the sum of the
probabilities that C∗.Open(ρ, 0`) is rejected and C∗.Open(ρ, 1`) is rejected.

By Corollary 7.11, we conclude that for every b ∈ {0, 1}`,

RealC
∗.Open[`](λ,b,σ)

6
√
δ
≈ RealC

∗.Open(λ,b,σ) (23)

This implies that to prover Equation (21) it suffices to prove

RealC
∗.Open[`](λ,b,σ)

4
√
δ
≈ IdealExt,C

∗.Open(λ,b,σ) (24)

59

To this end, we first compute the distribution of measurement outcomes on the extracted state.
While in general the input to the extractor is a mixed state ρ, we will perform the calculations
for a general pure state |ϕ〉 instead. The results we obtain will hold for any pure state |ϕ〉. Thus,
they will extend by convexity to the post-commitment state ρ as well, since we can always write
ρ =

∑
k pk |ϕk〉 〈ϕk| for some collection of pure states {|ϕk〉}.

As a first step in the computation, we remark that for every i, j ∈ [`], it holds that PZi and PZj
commute and PXi and PXj commute. This follows from the fact that we defined all the PZi with
respect to the same unitary U0 and defined all the PXi with respect to the same unitary U1. Thus,
for an input state |ϕ〉, the output of the extractor can be written as

1

(2
√

2)`

∑
r,s,s′∈{0,1}`

∣∣s′〉
Coin
⊗ ZsXr

∣∣s′〉A ⊗ P rI
XI
P rJ
XJ
P sJ
ZJ
P sI
ZI
|ϕ〉B .

Measuring the I registers of A in the standard basis. Now, we imagine measuring the I
registers of A in the standard basis; we denote these registers by AI . When we measure them we
obtain an outcome which we will denote aI . The unnormalized post-measurement state is obtained
by applying the projector I ⊗ |aI〉 〈aI |AI to the state, where the factor of identity acts on all
registers other than AI . To calculate what happens, let us examine what happens when we apply
the projector |aI〉 〈aI | to ZsI

I XrI
I |s′I〉. Note that

〈aI |ZsI
I XrI

I

∣∣s′I〉 =∏
i∈I
〈ai|Zsii X

ri
i

∣∣s′i〉 =∏
i∈I
〈ai|Zsii

∣∣s′i ⊕ ri〉 =∏
i∈I
〈ai| (−1)si·ai

∣∣s′i ⊕ ri〉 =∏
i∈I

(−1)si·ai
〈
ai
∣∣s′i ⊕ ri〉 ,

where for every i ∈ I, 〈ai|s′i ⊕ ri〉 is 1 if ai ⊕ ri = s′i, and 0 otherwise. This means that if we
obtain an outcome aI , then we force the s′I register to be aI ⊕ rI . This means that the sum over
s′ collapses to a sum over s′J , since J is the complement of I. Thus, we obtain the unnormalized
post-measurement state

1

(2
√

2)`

∑
r,s∈{0,1}`,s′J∈{0,1}|J|

(−1)sI ·aI |aI ⊕ rI〉CoinI
∣∣s′J〉CoinJ⊗|aI〉AI⊗ZsJ

J XrJ
J

∣∣s′J〉AJ⊗P rI
XI
P rJ
XJ
P sJ
ZJ
P sI
ZI
|ϕ〉B

Note that
1

2|I|

∑
sI∈{0,1}|I|

(−1)sI ·aIP sI
ZI

=
1

2|I|

∏
i∈I

∑
si∈{0,1}

(−1)si·aiP siZi =
∏
i∈I

I + (−1)aiPZi
2

and thus the state we obtain after the projection is equal to

1

2|J | · 2`/2
∑

r∈{0,1}`,sJ ,s′J∈{0,1}|J|
|aI ⊕ rI〉⊗

∣∣s′J〉⊗|aI〉AI⊗ZsJ
J XrJ

J

∣∣s′J〉AJ⊗P rI
XI
P rJ
XJ
P sJ
ZJ

∏
i∈I

(
I + (−1)aiPZi

2

)
|ϕ〉B .

60

Denoting by ΠPZI ,aI
=
∏
i∈I

I+(−1)aiPZi
2 , the above projected state is equal to

|ΨaI 〉 =
1

2|J | · 2`/2
∑

r∈{0,1}`,sJ ,s′J∈{0,1}|J|
|aI ⊕ rI〉CoinI⊗

∣∣s′J〉CoinJ⊗|aI〉AI⊗ZsJ
J XrJ

J

∣∣s′J〉AJ⊗P rI
XI
P rJ
XJ
P sJ
ZJ

ΠPZI ,aI
|ϕ〉B .

(25)
The square norm of this unnormalized state is the probability that the measurement returns

outcome aI . We now calculate this:

Pr[aI] =
1

22|J | · 2`
∑

r∈{0,1}`,s′J∈{0,1}|J|
‖

∑
sJ∈{0,1}|J|

ZsJ
J XrJ

J

∣∣s′J〉AJ ⊗ P rI
XI
P rJ
XJ
P sJ
ZJ

ΠPZI ,aI
|ϕ〉B ‖

2

=
1

22|J | · 2`
∑

r∈{0,1}`,s′J∈{0,1}|J|
‖

∑
sJ∈{0,1}|J|

(−1)sJ ·(s
′
J+rJ)

∣∣s′J + rJ
〉
AJ
⊗ P rI

XI
P rJ
XJ
P sJ
ZJ

ΠPZI ,aI
|ϕ〉B ‖

2

=
1

22|J | · 2`
∑

r∈{0,1}`,s′J∈{0,1}|J|

∑
sJ ,s

′′
J∈{0,1}|J|

(−1)(sJ+s′′J)·(s
′
J+rJ) 〈ϕ|ΠPZI ,aI

P
s′′J
ZJ
P sJ
ZJ

ΠPZI ,aI
|ϕ〉B

=
1

22|J |

∑
s′J∈{0,1}|J|

∑
sJ∈{0,1}|J|

〈ϕ|ΠPZI ,aI
ΠPZI ,aI

|ϕ〉B

= 〈ϕ|ΠPZI ,aI
ΠPZI ,aI

|ϕ〉B . (26)

Thus, we have shown that the outcome distribution from the extracted state is identical to the
outcome distribution from measuring the original state |ϕ〉.

Measuring the J registers of A in the Hadamard basis. Now, we imagine taking the stan-
dard basis post-measurement state |ΨaI 〉, and then further measuring the J registers of A in the
Hadamard basis. We denote these registers by AJ and the outcome by aJ . To obtain the unnormal-
ized post-measurement state after this measurement, we apply the projector H⊗|J | |aJ〉 〈aJ |H⊗|J |
to the J registers of A. Note that

〈aJ |H⊗|J |ZsJ
J XrJ

J

∣∣s′J〉 =∏
j∈J
〈aj |HZ

sj
j X

rj
j

∣∣s′j〉 =

∏
j∈J
〈aj |HZ

sj
j

∣∣s′j ⊕ rj〉 =

∏
j∈J
〈aj |H(−1)sj ·(s

′
j⊕rj)

∣∣s′j ⊕ rj〉 =

∏
j∈J

(−1)sj ·(s
′
j⊕rj)

√
2

〈aj | (|0〉+ (−1)s
′
j⊕rj |1〉) =

1

2|J |/2

∏
j∈J

(−1)(sj⊕aj)·(s
′
j⊕rj) , β

s′J
J

61

Thus we obtain the state

1

2|J | · 2`/2
∑

r∈{0,1}`,sJ ,s′J∈{0,1}|J|
|aI ⊕ rI〉⊗β

s′J
J

∣∣s′J〉⊗|aI〉AI⊗H⊗|J | |aJ〉AJ⊗P rI
XI
P rJ
XJ
P sJ
ZJ

ΠPZI ,aI
|ϕ〉B .

Next, we observe that ∑
s′J

β
s′J
J

∣∣s′J〉 =
1√
2|J |

∑
s′J

(−1)(sJ⊕aJ)·(s
′
J⊕rJ)

∣∣s′J〉 (27)

= (−1)(sJ⊕aJ)·rJH⊗|J | |sJ ⊕ aJ〉 (28)

Thus, applying Equation (28) to simplify the sum over s′J , we can write this as

|ΨaI ,aJ 〉 =
1

2`/22|J |

∑
r∈{0,1}`,sJ∈{0,1}|J|

(−1)(sJ⊕aJ)·rJ |aI ⊕ rI〉CoinI ⊗H
⊗|J | |sJ ⊕ aJ〉CoinJ

⊗ |aI〉AI ⊗H
⊗|J | |aJ〉AJ ⊗ P

rI
XI
P rJ
XJ
P sJ
Zj

ΠPZI ,aI
|ϕ〉B .

Note that
1

2|J |

∑
rJ∈{0,1}|J|

(−1)(sJ⊕aJ)·rJP rJ
XJ

=
∏
j∈J

I + (−1)sj⊕ajPXj
2

.

Let us define

ΠPXj
,sJ⊕aJ =

∏
j∈J

I + (−1)sj⊕ajPXj
2

.

Then we can rewrite |ΨaI ,aJ 〉 as

|ΨaI ,aJ 〉 =
1

2`/2

∑
rI∈{0,1}|I|,sJ∈{0,1}|J|

|aI ⊕ rI〉CoinI ⊗H
⊗|J | |sJ ⊕ aJ〉CoinJ ⊗ |aI〉AI ⊗H

⊗|J | |aJ〉AJ

⊗ P rI
XI

ΠPXJ
,aJ⊕sJP

sJ
ZJ

ΠPZI ,aI
|ϕ〉B .

The square norm of this unnormalized state is the probability that the measurement returns outcome
aJ . We now calculate this:

Pr[aI ,aJ] =
2|I|

2`

∥∥∥∥∥∥
∑

sJ∈{0,1}|J|
H⊗|J | |sJ ⊕ aJ〉CoinJ ⊗ΠPXJ

,aJ⊕sJP
sJ
ZJ

ΠPZI ,aI
|ϕ〉B

∥∥∥∥∥∥
2

=
1

2|J |

∑
sJ∈{0,1}|J|

‖ΠPXj ,aJ⊕sJ
P sJ
ZJ

ΠPZI ,aI
|ϕ〉B ‖

2

= E
sJ∈{0,1}|J|

‖ΠPXj ,aJ⊕sJ
P sJ
ZJ

ΠPZI ,aI
|ϕ〉B ‖

2. (29)

This equation can be interpreted operationally as follows: the probability of obtaining an outcome
(aI ,aJ) by measuring the extracted state is equal to the probability of obtaining this outcome by
the following procedure acting on |ϕ〉:

1. First, measure the observables PZi for every i ∈ I on |ϕ〉, obtaining an outcome aI .

62

2. Next, sample a string sJ ∈ {0, 1}|J | uniformly at random and apply P sJ
ZJ

to the state.

3. Next, measure the observables PXj for every j ∈ J on the state, obtaining an outcome uJ .

4. Set aJ = uJ ⊕ sJ and return (aI ,aJ).

The proof of Equation (24) We first define a new distribution, which we denote by R̂eal
C∗.Open[`]

(λ,b,σ).
This distribution is identical to RealC

∗.Open[`](λ,b,σ) except that it does not run the Ver algo-
rithm (i.e., it does not run Item 2 of the definition of Real in Definition 5.6), and simply sets
m = Out(sk,y,b, z). We note that by Lemma 3.2,

R̂eal
C∗.Open[`]

(λ,b,σ)

√
2δ
≈ RealC

∗.Open[`](λ,b,σ) (30)

where recall 2δ is the probability that Ver rejects C∗.Open[`](λ,b,σ) (see Equation (22)). Therefore
to prove Equation (24) it suffices to prove that

R̂eal
C∗.Open[`]

(λ,b,σ)
2
√
δ
≈ IdealExt,C

∗.Open(λ,b,σ) (31)

To this end, we first claim that

(pk,y,b,mSim,I) ≡ (pk,y,b,m
R̂eal,I

)

where (pk,y,b,mSim,I) is distributed by generating

(pk,y,b,m)← IdealExt,C
∗.Open(λ,b,σ)

and outputting (pk,y,b,mI), and (pk,y,b,m
R̂eal,I

) is distributed by generating

(pk,y,b,m)← R̂eal
C∗.Open[`]

(λ,b,σ)

and outputting (pk,y,b,mI). To see why this is true, recall that Equation (26) implies that for
a given pk,y,b, the outcome mSim,I , which is equal to aI in the notation used in that equation,
is distributed according to the outcome of measuring PZi on the qubits i ∈ I qubits of the post-
commitment state. Moreover, PZi is defined so that it exactly matches the action of R̂eal since both
do not run Ver.

Remark 7.17. We note that the observable PZi was defined with respect to the opening algorithm
C∗.Open and we are considering R̂eal with respect to the opening algorithm C∗.Open[`]. The observ-
able PZi corresponding to C∗.Open, when viewed as a unitary, is different from observable corre-
sponding to C∗.Open[`], denoted by P ′Zi, when viewed as a unitary. In particular, recall that

PZi = U †0Out
†
i,0ZoutiOuti,0U0

whereas
P ′Zi = U †0U

†
postOut

†
i,0ZoutiOuti,0UpostU0,

where Upost is the unitary that does some post-processing to the openi register to ensure that measur-
ing it will not disturb the state in a detectable way. Despite the fact that PZi and P

′
Zi

are different
unitaries, on the subspace where the ancila registers are initialized to |0〉, they are identical operators.
In particular, P ′Zi preserves the subspace where the ancila registers are initialized to |0〉.

63

To avoid cluttering of notation, from now on we denote m
R̂eal,I

and mSim,I by mI . Denote by

ρ′I = ΠPZI
,mI

[ρ]

where ρ is post-commitment state and mI is distributed as mSim,I . We note in the experiment

R̂eal
C∗.Open[`]

(λ,b,σ), the post state after measuring mI is ρ′I . This follows from Remark 7.17. We
prove that

(pk,y,b,mI ,mR̂eal,J
)
2
√
δ
≈ (pk,y,b,mI ,mSim,J) (32)

where m
R̂eal,J

is obtained as follows:

1. Compute zJ ← C∗.Open[`](ρ
′
I , (J,bJ)).

2. For every j ∈ J let m
R̂eal,j

= Out(sk,y, (j, 1), zj)

3. Output m
R̂eal,J

= {m
R̂eal,j

}j∈J .

To describe how mSim,J is obtained, we take the procedure obtained immediately below Equa-
tion (29), and apply the definitions of the operational observable PX , to obtain the following:

1. Sample at random sJ ← {0, 1}|J |.

2. Compute zJ ← C∗.Open[`](P
sJ
ZJ

[ρ′I], (J,bJ)).

3. For every j ∈ J let uj = Out(sk,y, (j, 1), zj).

4. For every j ∈ J let mSim,j = uj ⊕ sj .

5. Output mSim,J = (mSim,j)j∈J .

We prove Equation (32) separately for the non-succinct and the semi-succinct versions. For the non-
succinct version we rely on the adaptive hardcore bit property and for the semi-succinct version we
rely on the distributional strong adaptive hardcore bit property. In both cases, we assume without
loss of generality that Open[`] opens in the Hadamard basis honestly, by measuring the relevant
qubits in the standard basis. For every j ∈ J , we denote by Oj the n+1 registers that are measured
to obtain the opening of the j’th committed qubit in the Hadamard basis.

Proof of Equation (32) in the non-succinct setting. Let ΠVer[ρ
′
I] denote the state ρ′I pro-

jected to
Ver(sk,y, (J, 1|J |),Open(ρ′I , (J, 1

|J |))) = 1.

By Lemma 3.2,

ΠVer[ρ
′
I]

√
δ≡ ρ′I .

Therefore to prove Equation (32) it suffices to prove that

(pk,y,b,mI ,m
∗
Real,J) ≈ (pk,y,b,mI ,m

∗
Sim,J) (33)

where m∗Real,J is distributed as m
R̂eal,J

except that ρ′I is replaced with ΠVer[ρ
′
I]. Similarly, m∗Sim,J

is distributed as mSim,J except that ρ′I is replaced with ΠVer[ρ
′
I].

64

To prove Equation (33) it suffices to prove that

(pk,y,b,mI , {mj,0}j∈J) ≈ (pk,y,b,mI , {mj,1 ⊕ 1}j∈J) (34)

where for every j ∈ J and u ∈ {0, 1},

(zj,u,ρ
′
j,u) = C∗.Open(P uZjΠVer[ρ

′
I], (j, 1)) and mj,u = Out(sk,y, (j, 1), zj,u).

We prove that for every j ∈ J ,(
pk, sk−(j,0),y,b,mI ,mj,0,ρ

′
j,0

)
≈
(
pk, sk−(j,0),y,b,mI ,mj,1 ⊕ 1,ρ′j,1

)
, (35)

where sk−(j,0) denotes all the secret keys except skj,0. Namely,

sk−(j,0) ,
(
sk[`],1, . . . , sk[`],n+1, sk[`]\{j},0

)
.

We next argue that Equation (35) implies Equation (34). To this end, we first notice that PZj and
C∗.Open(·, (j, 1)) only touch the registers corresponding to the j’th committed qubit. This follows
from our assumption that C∗.Open behaves honestly when opening in the Hadamard basis. This in
turn implies that for every u ∈ {0, 1} it holds that ρ′j,u and ΠVer[ρ

′
I] are distributed identically on

the registers that do not correspond to the j’th committed qubit. Thus, Equation (35) implies that(
pk, sk−(j,0),y,b,mI ,mj,0,ΠVer[ρ

′
I]{Oj}j∈J\{j}

)
≈
(
pk, sk−(j,0),y,b,mI ,mj,1 ⊕ 1,ΠVer[ρ

′
I]{Oj}j∈J\{j}

)
.

(36)

We next note that mj,u is a QPT function of ΠVer[ρ
′
I]Oj and skj . This, together with a hybrid

argument implies that indeed Equation (36) implies Equation (34), as desired.
Thus, we focus on proving Equation (35). Fix j ∈ J and consider the mixed state

ρmix,j =
1

2
ΠVer[ρ

′
I] +

1

2
PZjΠVer[ρ

′
I]

Note that this state can be generated efficiently, with probability 1−δ, from ρ given (sk[`],1, . . . , sk[`],n+1).
In addition, note that ρmix,j is identical to the state ΠVer[ρ

′
I] after measuring it in the PZj basis.

Recall that we assume that C∗.Open behaves honestly on the Hadamard basis. Thus, the (n+ 1)2

qubits of this projected state ρmix,j corresponding to the j’th committed qubit are in superposition
over |d1,x′1〉 . . .

∣∣dn+1,x
′
n+1

〉
such that for every i ∈ [n+ 1], yj,i = Eval(pkj,i, di,x

′
i).

Let
(z∗,ρ∗)← C∗.Open (ρmix,j, (j, 1)) .

By the adaptive hardcore bit property (w.r.t. pkj,0), letting m∗ = Out(sk,y, (j, 1), z∗),

(pk, sk−(j,0),y,b,mI ,m
∗,ρ∗) ≈ (pk, sk−(j,0),y,b,mI , U,ρ

∗) (37)

where U is the uniform distribution over {0, 1}. Note that m∗ is a random variable that with
probability 1

2 is distributed identically to mj,0 and with probability 1
2 is distributed identically to

mj,1. We next argue that Equation (37) implies that

(pk, sk−(j,0),y,b,mI ,mj,0,ρ
′
j,0) ≈

(pk, sk−(j,0),y,b,mI ,mj,1 ⊕ 1,ρ′j,1),

65

as desired. To this end, suppose for contradiction that there exists a QPT algorithm A and a
non-negligible ε > 0 such that

Pr
[
A(pk, sk−(j,0),y,b,mI ,mj,1 ⊕ 1,ρ′j,1) = 1

]
−

Pr
[
A(pk, sk−(j,0),y,b,mI ,mj,0,ρ

′
j,0) = 1

]
≥ ε.

Denote by
pu = Pr

[
A(pk, sk−(j,0),y,b,mI ,mj,u,ρ

′
j,u) = 1

]
and denote by

p′1 = Pr
[
A(pk, sk−(j,0),y,b,mI ,mj,1 ⊕ 1,ρ′j,1) = 1

]
Note that

Pr
[
A(pk, sk−(j,0),y,b,mI ,m

∗,ρ∗) = 1
]

=
1

2
p0 +

1

2
p1.

On the other hand

Pr
[
A(pk, sk−(j,0),y,b,mI , U,ρ

′
j,1) = 1

]
=

1

2
p′1 +

1

2
p1,

which by the collapsing property implies that there exists a negligible function µ such that

Pr
[
A(pk, sk−(j,0),y,b,mI , U,ρ

∗) = 1
]

=
1

2
p′1 +

1

2
p1 ± µ

This contradicts Equation (37) since(
1

2
p′1 +

1

2
p1 ± µ

)
−
(

1

2
p0 +

1

2
p1

)
=

1

2
(p′1 − p0)− µ ≥

ε

2
± µ,

which is non-negligible.

The proof of Equation (32) for the semi-succinct version. We prove Equation (32) holds if
the underlying NTCF family satisfies the strong adaptive hardcore bit property (see Definition 3.8)
and the distributional strong adaptive hardcore bit property (Definition 4.1). Let ΠVer[ρ

′
I] denote

the state ρ′I projected to

Ver(sk,y, (J, 0|J |),C∗.Open(ρ′I , (J, 0
|J |))) = 1.38

By Lemma 3.2,

ΠVer[ρ
′
I]

√
δ≡ ρ′I .

Therefore to prove Equation (32) it suffices to prove that

(pk,y,b,mI ,m
∗
Real,J) ≈ (pk,y,b,mI ,m

∗
Sim,J) (38)

where m∗Real,J is distributed as m
R̂eal,J

except that ρ′I is replaced with ΠVer[ρ
′
I]. Similarly, m∗Sim,J

is distributed as mSim,J except that ρ′I is replaced with ΠVer[ρ
′
I].

38Note that this is different from the non-succinct case where we used ΠVer[ρ
′
I] to denote the state ρ′I projected to

Ver(sk,y, (J, 1|J|),C∗Open(ρ′I , (J, 1
|J|))) = 1.

66

We prove Equation (38) via a hybrid argument. Namely, denoting by k = |J |, we prove that for
every α ∈ [k], (

pk,y,b,mI ,m
(α−1)
J

)
≈
(
pk,y,b,mI ,m

(α)
J

)
(39)

where m
(β)
J is distributed exactly as mSim,J accept that rather than choosing sJ ← {0, 1}|J | at

random, we only choose the first β coordinates randomly and the rest we set to zero. Namely, we
choose s1, . . . , sβ ← {0, 1} and set sβ+1 = . . . = sk = 0. Equation (39) implies that(

pk,y,b,mI ,m
(0)
J

)
≈
(
pk,y,b,mI ,m

(k)
J

)
thus proving Equation (34) since(
pk,y,b,mI ,m

(0)
J

)
≡
(
pk,y,b,mI ,m

∗
R̂eal,J

)
and

(
pk,y,b,mI ,m

(k)
J

)
≡
(
pk,y,b,mI ,m

∗
Sim,J

)
.

Fix any α ∈ [k] and we prove Equation (39) for this α. Denote by J = {j1, . . . , jk} ⊆ [`]. For every
s[α−1] = (s1, . . . , sα−1) ∈ {0, 1}α−1 consider the states

ρs[α−1]
=

α−1∏
i=1

P siZji
ΠVer[ρ

′
I] and ρ∗s[α−1]

=
1

2
ρs[α−1]

+
1

2
PZjα [ρs[α−1]

]. (40)

The main ingredient in the proof of Equation (39) is following claim.

Claim 7.18.

(pk,y,b,mI , (xji,0 ⊕ xji,1)i∈[k],d
∗
J\{jα},d

∗
jα · (1,xjα,0 ⊕ xjα,1)) ≈ (41)

(pk,y,b,mI , (xji,0 ⊕ xji,1)i∈[k],d
∗
J\{jα}, U)

where d∗J is distributed by measuring the registers Oj1 , . . . ,Ojk of ρ∗s[α−1]
in the standard basis.

In what follows, we use Claim 7.18 to prove Equation (39) and then we prove Claim 7.18. To
this end, for every u ∈ {0, 1}, denote by

d
(u)
J =

(
d
(u)
j1
, . . . ,d

(u)
jk

)
the values obtained by measuring registers Oj1 , . . . ,Ojk of P (u)

Zjα
[ρs[α−1]

] in the standard basis. For
every i ∈ [k], denote by

m
(u)
ji

= d
(u)
ji
· (1,xji,0 ⊕ xji,0) and m∗ji = d∗ji · (1,xji,0 ⊕ xji,0)

and let
m(u) =

(
m

(u)
j1
, . . . ,m

(u)
jk

)
and m∗ =

(
m∗j1 , . . . ,m

∗
jk

)
.

Fix any QPT adversary A. For every u ∈ {0, 1} denote by

pu = Pr
[
A
(
pk,y,b,mI ,m

(u)
J

)
= 1
]
,

67

and denote by
p′1 = Pr

[
A
(
pk,y,b,mI ,

{
m

(1)
J\{α},m

(1)
α ⊕ 1

})
= 1
]
.

To prove Equation (39) we need to prove that

|p′1 − p0| ≤ negl(λ). (42)

Note that
Pr [A (pk,y,b,mI ,m

∗
J) = 1] =

1

2
p0 +

1

2
p1

which by Claim 7.18 implies that

Pr
[
A
(
pk,y,b,mI ,

{
m∗J\{α}, U

})
= 1
]

=
1

2
p0 +

1

2
p1 ± negl(λ)

In addition note that

Pr
[
A
(
pk,y,b,mI ,

{
m

(1)
J\{α}, U

})
= 1
]

=
1

2
p′1 +

1

2
p1.

It remains to note that (
pk,y,b,mI ,m

∗
J\{α}

)
≡
(
pk,y,b,mI ,m

(1)
J\{α}

)
,

which together with the equation above, implies that Equation (42) indeed holds, thus proving
Equation (39), as desired.

The rest of the proof is dedicated to proving Claim 7.18, which we prove assuming the underlying
NTCF family has the strong adaptive hardcore bit property (see Definition 3.8) and the distributional
strong adaptive hardcore bit property (Definition 4.1).

Proof of Claim 7.18. We start by defining QPT algorithms A and C for the distributional strong
adaptive hardcore bit property.

Algorithm A. It takes as on input pk0 generated by GenNTCF(1λ), and does the following:

1. For every i ∈ [n+ 1] generate (pki, ski)← GenNTCF(1λ).

2. Set pk = (pk0, pk1, . . . , pkn+1).

3. Compute (y,ρ)← C∗.Commit(pk,σ).

4. Use sk1 to generate ρ′I = ΠPZI ,mI
(ρ).

5. Use sk1, . . . , skn+1 to compute ΠVer[ρ
′
I], which is the state ρ′I projected to

Ver
(

(sk1, . . . , skn+1) ,y,
(
J, 0|J |

)
,C∗.Open

(
ρ′I ,
(
J, 0|J |

)))
= 1.

This step fails with probability δ, in which case A outputs ⊥.
6. Use sk1 to compute ρs[α−1]

=
∏α−1
i=1 P

si
Zji

ΠVer[ρ
′
I].

7. Use sk1 to compute ρ∗s[α−1]
= 1

2ρs[α−1]
+ 1

2PZα [ρs[α−1]
].

68

8. Parse y = (y1, . . . ,y`) and parse yjα = (yjα,0,yjα,1, . . . ,yjα,n+1)

9. Measure the PZjα observable of the state ρ∗s[α−1]
to obtain a preimage (b,xjα,b) of yjα,0.

Denote the post-measurement state by ρ∗∗. We assume without loss of generality that
this state includes (pk, (sk1, . . . , skn+1),y,mI).

10. Output (yjα,0, b,xjα,b,ρ
∗∗).

We rename the register Ojα of ρ∗∗ by O1 and rename all the other registers by O2.

Algorithm C. It takes as input the secret vector sk0,pre, corresponding to sk0, and the O2 registers
of ρ∗∗, denoted by ρ∗∗O2

, and does the following:

1. For every i ∈ [k] \ {α} use sk1, . . . , skn+1 to coherently compute a preimage of yi,0 as
follows:

• Coherently compute C∗.Open(ρ∗∗, (ji, 0)).
• Coherently run Ver((sk1, . . . , skn+1),yji , (ji, 0), ·) to to coherently generate a preim-

age.

Note that since the state ΠVer[ρ
′
I] is the state ρ′I projected to the state where C∗.Open

is always accepted when the opening is in the standard basis, we indeed get a coherent
preimage of yji,0 with probability 1.

2. Use sk0,pre to compute (and measure) xji,0 ⊕ xji,1.
Note that this is a deterministic quantity and hence does not disturb the state.

3. Measure all the registers in O2 corresponding to {Oji}i∈[k]\{α} to obtain d∗J\{jα}.

4. Output aux =
(
pk,y,mI , (xji,0 ⊕ xji,1)i∈[k]\{α},d∗J\{jα}

)
.

Denote the residual state by ρ∗∗aux.

To finish the proof of Claim 7.18 it remains to prove that d∗jα satisfies the desired min-entropy
requirement. This is captured in the claim below.

Claim 7.19. With overwhelming probability over aux ← C(sk0,pre,ρ
∗∗
O2

) it holds that for every
d′ ∈ {0, 1}n,

Pr
[
Good(xjα,0,xjα,1,d

∗
jα) = d′

]
= negl(λ).

where d∗jα is obtained by measuring the O1 registers of ρ∗∗aux in the standard basis.

The proof of Claim 7.19 relies on the adaptive hardcore bit property of the underlying NTCF
family. It also makes use the following fact which follows immediately from the definition of PZj .39

Fact 7.20. For every α ∈ [k] and every s[α−1] ∈ {0, 1}α−1, the state ρs[α−1]
and the state ρ∗s[α−1]

can be efficiently constructed from (pk,y,ρ) and sk1.
39Recall that PZj does not check if Ver(sk,y, (j, 0), ·) = 1.

69

Proof of Claim 7.19. Suppose for the sake of contradiction that there is a non-negligible ε = ε(λ)
such that with probability ε over (aux,ρ∗∗aux) ← C(sk0,pre,ρ

∗∗
O2

) it holds that there exists a vector
d′ = d′aux ∈ {0, 1}n such that

Pr
[
Good(xjα,0,xjα,1,d

∗
jα) = d′

]
≥ ε (43)

where d∗jα is obtained by measuring the O1 registers of ρ∗∗aux in the standard basis. Denote the set of
all aux that satisfy Equation (43) by BAD. In the rest of this proof, for the sake of ease of notation,
we denote by

d∗ , d∗jα and (x0,x1) , (xjα,0,xjα,1).

We next denote by
d∗ = (d∗0, d

∗
1, . . . , d

∗
n)

and we argue that there exists a subset

S = {β1, . . . , βm} ⊆ [n] (44)

of size m = n0.1 for which there exists an (all powerful) algorithm B such that for every aux ∈ BAD
and for every i ∈ [m]

Pr
[
B
(
aux,

(
d∗1, . . . , d

∗
j′βi
−1

))
= d∗j′βi

]
≥ 1− 1√

n
(45)

where the probability is over d∗ obtained by measuring the O1 registers of ρ∗∗aux in the standard
basis.

The existence of such a set S follows from Equation (43), since otherwise for every d′,

Pr
[
Good(x0,x1,d

∗) = d′
]
≤
(

1− 1√
n

)n−m
= negl(λ),

contradicting Equation (43).
We construct QPT algorithm A that on input (pk2, . . . , pkn+1) generates with non-negligible

probability images {y∗i }i∈S corresponding to {pki+1}i∈S , preimages {(d∗i ,x∗i)}i∈S , and equations
{zi, zi · (1,xi,0⊕xi,1)}i∈S , such that each zi ∈ GoodInvert(ski,y∗i) and (xi,0,xi,1) = Invert(ski,yi), thus
breaking the adaptive hardcore bit property. Algorithm A(pk2, . . . , pkn+1) does the following:

1. Sample (pk0, sk0), (pk1, sk1)← Gen(1λ).

2. Let pk = (pk0, pk1, pk2, . . . , pkn+1).

3. Generate (y,ρ)← C∗.Commit(pk,σ).

4. Parse y = (y1, . . . ,y`) and parse yjα =
(
y∗0,y

∗
1, . . . ,y

∗
n+1

)
.

5. Compute ((0,x0), (1,x1))← Invert (sk0,y
∗
0).

6. Use sk1 to generate ρ′I = ΠPZI ,mI
(ρ).

7. Use sk1 to compute ρs[α−1]
=
∏α−1
i=1 P

si
Zji

[ρ′I].

8. Use sk1 to compute ρ∗s[α−1]
= 1

2ρs[α−1]
+ 1

2PZα [ρs[α−1]
].

70

9. Measure registers Ojα of ρ∗s[α−1]
in the standard basis to obtain d∗ = (d∗0, d

∗
1, . . . , d

∗
n).

10. For every i ∈ S measure the registers corresponding to x∗i . We note that with probability
1− δ it holds that for every i ∈ S,

y∗i+1 = Eval(pki+1, d
∗
i ,x
∗
i).

Denote the resulting state by ρ′.

11. Compute (z,ρ′′)← C∗.Open(pk, (jα, 0),ρ′).

12. Parse z = (z1, . . . , zn+1) ∈ {0, 1}(n+1)2 .

13. Compute (0,x′1,0), (1,x
′
1,1))← Invert (sk1,y

∗
1).

14. Let γ = z1 · (1,x′1,0 ⊕ x′1,1).

15. Output
{
pki+1,y

∗
i+1, d

∗
i ,x
∗
i , zi+1,xγ,i

}
i∈S .

We next argue that with non-negligible probability it holds that for every i ∈ S:

y∗i+1 = Eval(pki+1, (d
∗
i ,x
∗
i)) ∧ zi+1 · (1,x′i,0 ⊕ x′i,1) = xγ,i ∧ zi+1 ∈ Goodx′i,0,x′i,1 ,

where ((0,x′i,0), (1,x
′
i,1)) = Invert(ski+1,y

∗
i+1), contradicting the adaptive hardcore bit property.

The fact that the underlying C∗.Open algorithm is accepted by Ver with probability ≥ 1 − δ
implies that

Pr
[
∀i ∈ S : y∗i+1 = Eval(pki+1, (d

∗
i ,x
∗
i))
]
≥ 1− δ.

Moreover, if we did not measure {(d∗i ,x∗i)}i∈[n] it would also imply that,

Pr
[
∀i ∈ S : zi+1 · (1,x′i,0 ⊕ x′i,1) = xγ,i ∧ zi+1 ∈ Goodx′i,0,x′i,1

]
≥ 1− δ

By the collapsing property applied to {pki}i∈{2,...,n+1}\{i+1: i∈S}, even if we measured {(d∗i ,x∗i)}i∈[n]\S ,

Pr
[
∀i ∈ S : zi+1 · (1,x′i,0 ⊕ x′i,1) = xγ,i ∧ zi ∈ Goodx′i,0,x′i,1

]
≥ 1− 2δ − negl(λ)

We note however, that by Equation (45), for every i ∈ S measuring (d∗i ,x
∗
i) disturbs the state by

at most n−1/4. Hence

Pr
[
∀i ∈ S : y∗i+1 = Eval(pki+1, (d

∗
i ,x
∗
i)) ∧ zi+1 · (1,x′i,0 ⊕ x′i,1) = xγ,i ∧ zi+1 ∈ Goodx′i,0,x′i,1

]
≥

1− 2δ − n0.1

n1/4
− negl(λ),

contradicting the adaptive hardcore bit property.

71

Remark 7.21. We next argue that relying on some form of the adaptive hardcore bit is necessary.
Specifically, if there exists a QPT algorithm A and a non-negligible function ε = ε(λ) such that

Pr
[
A(pk1, . . . , pkn+1) = (bi,xi,di,mi)

n+1
i=1 : ∀i ∈ [n+ 1] di · (1,xi,0 ⊕ xi,1) = mi

]
≥ ε(λ)

where (xi,0,xi,1) = Invert(ski,Eval(pki, (bi,xi)), then one can use this adversary A to attack the
scheme, as follows:

1. Given (pk0, pk1, . . . , pkn+1), compute

(bi,xi,di,mi)
n+1
i=1 = A(pk1, . . . , pkn+1).

2. Let m = (m1, . . . ,mn+1) and set y0 = Eval(pk0,m).

3. For every i ∈ [n+ 1], set yi = Eval(pki, (bi,xi)).

4. Output (y0,y1, . . . ,yn+1) as the commitment.

5. If asked to open in the Hadamard basis output ((b1,x1), . . . , (bn+1,xn+1)).

6. If asked to open in the Standard basis output (d1, . . . ,dn+1).

The adversary is accepted with probability ε and the openings are distinguishable from a qubit, since
the standard basis opening is deterministic and the Hadamard opening is biased, both in a detectable
way.

7.3 Binding for the Succinct Commitment Scheme

In this section we prove the following theorem.

Theorem 7.22. The succinct multi-qubit commitment scheme described in Section 6.3 satisfies the
binding condition defined in Definition 5.10.

Proof. To prove soundness we need to prove that Equations (14) and (15) hold. To this end, fix
any QPT algorithm C∗.Commit, a quantum state σ, a polynomial ` = `(λ), a QPT prover P ∗ for
Ver.Commit. We start by defining a QPT algorithm C∗ss.Commit for the underlying semi-succinct
commitment scheme. This algorithm is associated with a parameter ε0, and sometime to be explicit,
we denote it by C∗ss.Commitε0 . It takes as input (pk1,σ) and commits to an `-qubit state, as follows:

1. Sample hk← GenH(1λ).

2. Set pk = (pk1, hk).

3. Compute (rt,ρ)← C∗.Commit(pk,σ).

4. Use the state-preservation extractor E (from Definition 6.5) for the NP language L∗ (defined
in Equation (19)) to generate

(TSim,y,ρpost,Sim)← EP ∗,ρ
(

(hk, rt), 1λ, ε0
)

5. If Eval(hk,y) 6= rt then output ⊥.

72

6. Else, output (y,ρpost,Sim).

By Definition 6.5 and Corollary 6.6,

[Pr[EvalH(hk,y) = rt] ≥ 1− δ0 − 2ε0 − negl(λ). (46)

We use this QPT algorithm C∗ss.Commitε0 to prove the soundness of the succinct scheme. We
start with proving Equation (15). To this end, fix a subset J ⊆ [`] and a basis bJ ∈ {0, 1}|J |, and
two QPT algorithms C∗1.Open and C∗2.Open. We need to prove that

RealC
∗.Commit,P ∗,C∗1.Open (λ, (J,bJ),σ)

η
≈ RealC

∗.Commit,P ∗,C∗2.Open (λ, (J,bJ),σ) (47)

where η = O
(√
δ0 + δ

)
, where δ0 is defined in Equation (17) and δ is defined in Equation (16).

We next define two QPT opening algorithms C∗ss,1.Open and C∗ss,2.Open for the underlying semi-
succinct commitment scheme, corresponding to C∗1.Open and C∗2.Open, respectively. For every i ∈
{1, 2}, C∗ss,i.Open(ρpost,Sim,bJ) does the following:40

1. Run (yi,J ,oi, zi,Sim,ρ
′
i,Sim)← C∗i .Open(ρpost,Sim, (J,bJ)).

2. If VerH(hk, rt, J,yi,J ,oi) = 0 then output ⊥.

3. Else, output (zi,Sim,ρ
′
i,Sim).

By Definition 6.5,
(TSim,ρpost,Sim, sk)

ε0≈ (T,ρpost, sk) (48)

which implies that for every i ∈ {1, 2},

Pr[Ver(sk, rt, (J,bJ),yi,J ,oi, zi,Sim) = 0] ≤ δ + ε0. (49)

For every j ∈ J let

mi,Sim,j = Out1(sk1,yj , bj , zi,Sim,j) and mi,j = Out1(sk1,yj , bj , zi,j),

where (zi,ρ
′
i)← C∗i .Open(ρpost, (J,bJ)). Let mi,Sim,J = (mi,Sim,j)j∈J and mi,J = (mi,j)j∈J . Equa-

tion (48) implies that for every i ∈ {1, 2},

(pk, rt, (J,bJ),mi,J)
ε0≈ (pk, rt, (J,bJ),mi,Sim,J). (50)

By the binding of the underlying semi-succinct commitment scheme,

RealC
∗
ss.Commit,C∗ss,1.Open(λ,bJ , σ)

η∗

≈ RealC
∗
ss.Commit,C∗ss,2.Open(λ,bJ , σ). (51)

where η∗ = O(
√
δ∗) is defined in Definition 5.6 and

δ∗ = E
(pk1,sk1)←Gen1(1λ)

(y,ρ)←C∗ss.Commit(pk1,σ)

max
i∈{1,2},

b′∈{b|J|,0,1}

Pr
[
Verss(sk,y,b

′,C∗ss,i.Open(ρ,b′) = 0
]
. (52)

We note that δ∗ ≤ δ0 + 3ε0 + δ+ negl(λ). This follows from Equations (46) and (49), together with
the collision resistance property of the underlying hash family.

40We assume without loss of generality that the state ρpost,Sim includes pk and y.

73

We thus conclude that

RealC
∗.Commit,P ∗,C∗1.Open(λ, (J,bJ),σ) =

(pk, rt, (J,bJ),m1,J)
ε0≈

(pk, rt, (J,bJ),m1,Sim,J)
η∗

≈

(pk, rt, (J,bJ),m2,Sim,J)
ε0≈

(pk, rt, (J,bJ),m2,J) =

RealC
∗.Commit,P ∗,C∗2.Open(λ, (J,bJ),σ),

where the second and forth equations follow from Equation (50) and the third equation follows
Equation (51). Setting ε0 = δ0 we conclude that Equation (15) holds.

It remains to prove Equation (14). To this end, we use the QPT extractor Extss corresponding
to the underlying semi-succinct commitment scheme, as well as the extractor E corresponding to
the underlying state-preserving argument-of-knowledge system, to construct the extractor Ext for
the succinct commitment scheme. ExtP

∗,P ∗Test(sk, rt,ρ, 1d1/εe) does the following:

1. Let C ∈ N be a constant that is larger than the constant from the definition of η in Equa-
tion (11) and in Equation (15). Namely, C is chosen so that in Equation (11) η ≤ C ·

√
δ, and

in Equation (15) η ≤ C ·
√
δ0 + δ.

2. Set ε0 =
(
ε
8C

)2.
3. Use the state-preservation extractor E (from Definition 6.5) for the NP language L∗ (defined

in Equation (19)) to generate

(TSim,y,ρpost,Sim)← EP ∗,ρ
(

(hk, rt), 1λ, ε0
)

(53)

4. If EvalH(hk,y) 6= rt then set y = ⊥.

5. Use P ∗Test to define C
∗
ss.Open, which is associated with a parameter ε0, and on input (ρpost,Sim, (j, b)),41

operates as follows:42

(a) Denote by Ub the unitary that does the following computation (coherently, using ancilla
registers):
i. Compute the first message of P ∗Test(pk, rt,ρpost,Sim) upon receiving the bit b ∈ {0, 1}

from VTest, to obtain rt′ and a post state ρ′Sim.
ii. Use the state-preservation extractor E (from Definition 6.5) for the NP language L∗

(defined in Equation (19)) to generate

(TSim, z,ρ
′
post,Sim)← EP ∗Test,ρ′Sim

(
(hk, rt′), 1λ, ε0

)
(54)

iii. Denote the ancila registers where z is stored by (open1, . . . , open`).
41We assume without loss of generality that the state ρpost,Sim includes (pk,y, rt).
42C∗ss.Open is defined somewhat analogously to C∗.Open[`] as defined in the proof of Lemmas 7.13 and 7.14.

74

iv. If b = 0 (corresponding to a standard basis measurement), apply a post-processing
unitary to each openi register, to ensure that measuring this register would not
disturb the state in a detectable way. This is done as in Remark 7.16.
Specifically, Denoting sk1 = (sk1,0, sk1,1, . . . , sk1,n+1), the unitary U0 uses (sk1,1, . . . , sk1,n+1)
to apply the following post-processing unitary to each openi register, to ensure that
when measured the disturbance will not be noticed to a QPT algorithm which is not
given (sk1,1, . . . , sk1,n+1). Recall that openi contains a vector z = (z1, . . . , zn+1) ∈
{0, 1}(n+1)2 where each zj ∈ {0, 1}n+1. The post-processing unitary does the follow-
ing:
A. Coherently compute for every j ∈ [n+ 1] the bit mj = zj · (1,x′j,0 ⊕ x′j,1), where

x′j,0 and x′j,1 are the two preimages of yi,j that are computed using skj .
B. Let m = (m1, . . . ,mn+1) ∈ {0, 1}n+1. Note that if z is a successful opening (i.e.,

it is accepted) then m is a preimage of yi,0, and whether a preimage is measured
or not is undetectable without knowing sk0, due to the collapsing property of
the underlying NTCF family.

C. On an ancila register, compute a super-position over all z′ = (z′1, . . . , z
′
n+1) ∈

{0, 1}(n+1)2 such that for every j ∈ [n+ 1] mj = z′j · (1,x′j,0 ⊕ x′j,1).
D. Swap register openi with the ancila register above, so that now z′ = (z′1, . . . , z

′
n+1)

is in register openi.

(b) Compute ρ′ = U †bCNOTopenj ,copyjUb[ρpost,Sim]

(c) Measure register copyj in the standard basis to obtain zj .

(d) Output zj .

So far, we defined C∗ss.Open on a single coordinate (j, b). We define C∗ss.Open on a set of
coordinates (J,bJ) to first apply C∗ss.Open on all the coordinates j ∈ J such that bj = 0 (in
order) and then apply it on all the coordinates j ∈ J such that bj = 1 (in order).43

6. Output τA,B ← Ext
C∗ss.Open
ss (sk,y,ρpost,Sim).

We need to argue that for every QPT algorithm C∗.Open,

RealC
∗.Commit,P ∗,C∗.Open(λ, (J,bJ),σ)

ζ
≈ IdealExt,C

∗.Commit,P ∗,P ∗Test(λ, (J,bJ),σ, ε), (55)

for
ζ = O

(√
δ0 + δ′0 + δ

)
+ ε.

To this end, we rely on the binding property of the underlying semi-succinct scheme (and in par-
ticular Equation (11)), which implies that

RealC
∗
ss.Commit,C∗ss.Open(λ, (J,bJ),σ)

η∗

≈ IdealExtss,C
∗
ss.Commit,C∗ss.Open(λ, (J,bJ),σ) (56)

43This ordering is done for simplicity, as it allows us to rely on the analysis of C∗.Open[`] in the proof of Lemmas 7.13
and 7.14. In particular, we do not need to rely on the fact that measuring the Hadamard basis opening is not detectable
when opening, and verifying the opening, in the standard basis.

75

where η∗ ≤ C ·
√
δ∗ and

δ∗ = E
(pk,sk)←Gen(1λ)

(y,ρ)←C∗ss.Commit(pk,σ)

max
b′∈{bJ ,0|J|,1|J|}

Pr
[
Verss(sk,y, (J,b

′),C∗ss.Open(ρ,b′)) = 0
]
. (57)

By the definition of C∗ss.Open, and as explained in Remark 7.16 (and similarly to Equation (22)),

δ∗ ≤ ε∗0 + ε∗1 + negl(λ) (58)

where
ε∗b = Pr

[
Verss(sk1,y, (J, b

|J |), zb) = 0
]
,

and where y is distributed as in Equation (53), and zb is distributed as in Equation (54) when
computed coherently by Ub. We next argue that

ε∗0 + ε∗1 ≤ Pr[y = ⊥] + Pr[z0 = ⊥] + Pr[z1 = ⊥] + 2δ′0 + 8ε0 + negl(λ). (59)

The reason Equation (59) holds is that after extracting y the residual state is ε0-indistinguishable
from the state obtained without extraction. After further extracting zb the residual state is 2ε0-
indistinguishable from the state obtained without extraction. By Definition 6.5 and Corollary 6.6,
this implies that the probability that in the third argument-of-knowledge, the extractor outputs a
valid witness (y, zb), corresponding to the instance (sk1, hk, rt, rt

′, b), is at most 2ε0 + δ′0,b + 2ε0 =
δ′0,b + 4ε0, up to negligible factors, where δ′0,b is the probability that P ∗Test is rejected given that the
fist message sent by VTest is b ∈ {0, 1}. This, together with the collision resistance property of the
underlying hash family, and with the fact that δ′0,0 + δ′0,1 = 2δ′0, implies that Equation (59) indeed
holds.

Note that
Pr[y = ⊥] ≤ δ0 + 2ε0 + negl(λ) (60)

This follows from the following calculation:

Pr[y = ⊥] =

Pr[y = ⊥ ∧ TSim is rejecting] + Pr[y = ⊥ ∧ TSim is accepting] ≤
Pr[TSim is rejecting] + Pr[y = ⊥ ∧ TSim ∧ is accepting] ≤
δ0 + ε0 + ε0 + negl(λ)

where the latter equation follows from the definition of δ0 and from Definition 6.5. Similarly,

Pr[zb = ⊥] ≤ δ′0,b + 3ε0 + negl(λ) (61)

This follows from the following calculation:

Pr[zb = ⊥] =

Pr[zb = ⊥ ∧ TSim is rejecting] + Pr[zb = ⊥ ∧ TSim is accepting] ≤
Pr[TSim is rejecting] + Pr[zb = ⊥ ∧ TSim is accepting] ≤
δ′0,b + 2ε0 + ε0 + negl(λ)

76

This, together with Equations (58) and (59), implies that

δ∗ ≤ (δ0 + 2ε0) + (2δ′0 + 6ε0) + 2δ′0 + 8ε0 = δ0 + 4δ′0 + 16ε0.

We conclude that
η∗ ≤ O(

√
δ0 + δ′0) + C ·

√
16ε0 ≤ O(

√
δ0 + δ′0) +

ε

2
.

In order to use Equation (56), with η∗ as above, we define

Succ-IdealExtss,C
∗
ss.Commitε0 ,C

∗
ss.Open(λ, (J,bJ),σ)

to be the distribution obtained by sampling

(pk1,y, (J,bJ),m)← IdealExtss,C
∗
ss.Commitε0 ,C

∗
ss.Open(λ, (J,bJ),σ),

sampling hk← GenH(1λ), computing rt = EvalH(hk,y), and outputing

((pk1, hk), rt, (J,bJ),mJ).

Similarly, we define
Succ-RealC

∗
ss.Commit,C∗ss.Open(λ, (J,bJ),σ)

to be the distribution obtained by sampling

(pk1,y, (J,bJ),m)← RealExtss,C
∗
ss.Commitε0 ,C

∗
ss.Open(λ, (J,bJ),σ),

sampling hk← GenH(1λ), computing rt = EvalH(hk,y), and outputting

((pk1, hk), rt, (J,bJ),mJ).

Note that by the definition of the extractor Ext it holds that

IdealExt,C
∗.Commit,P ∗,P ∗Test(λ, (J,bJ),σ, ε) ≡ Succ-IdealExtss,C

∗
ss.Commitε0 ,C

∗
ss.Open(λ, (J,bJ),σ).

This is the case since
IdealExt,C

∗.Commit,P ∗,P ∗Test(λ, (J,bJ),σ, ε)

extracts the state
τA,B ← Ext

C∗ss.Open
ss (sk,y,ρpost,Sim),

where (y,ρpost,Sim)← C∗ss.Commitε0(pk1,σ).

Therefore, to prove Equation (55) it suffices to prove that

RealC
∗.Commit,P ∗,C∗.Open(λ, (J,bJ),σ)

ζ∗

≈ Succ-RealC
∗
ss.Commit,C∗ss.Open(λ, (J,bJ),σ), (62)

where ζ∗ = O(
√
δ0 + δ′o + δ) + ε

2 .

To this end, we use P ∗Test to define a QPT algorithm C∗∗.Open. We mention that C∗∗.Open bears
similarity to C∗ss.Open (defined in Item 5 of the definition of Ext), with the difference being that the
latter was defined for the semi-succinct commitment, whereas C∗∗.Open is defined for the succinct
commitment. In particular, recall that for the succinct commitment, an opening to the j’th qubit
consists of a tuple (yj ,oj , zj). C∗∗.Open uses P ∗Test to generate this opening as follows:

77

1. Use the state-preservation extractor E (from Definition 6.5) for the NP language L∗ (defined
in Equation (19)) to generate

(TSim,y,ρpost,Sim)← EP ∗Test,ρ
(

(hk, rt), 1λ, ε0
)
.

Let (yj ,oj) = OpenH(hk,y, j).

2. Let Ub be the unitary as defined in the definition of the extractor Ext above.

3. Compute ρ′ = U †bCNOTopenj ,copyjUb[ρpostSim].

4. Measure register copyj in the standard basis to obtain zj .

5. Output (yj ,oj , zj).

Claim 7.23.

RealC
∗.Commit,P ∗,C∗.Open(λ, (J,bJ),σ)

ζ1≈ RealC
∗.Commit,P ∗,C∗∗.Open(λ, (J,bJ),σ)

where ζ1 = O
(√

δ0 + δ′0 + δ
)

+ ε
2 .

We note that Claim 7.23 completes the proof of Equation (62) since by the definition of C∗∗.Open
and C∗ss.Open

RealC
∗.Commit,P ∗,C∗∗.Open(λ, (J,bJ),σ) ≡ Succ-RealC

∗
ss.Commitε0 ,C

∗
ss.Open(λ, (J,bJ),σ).

Proof of Claim 7.23. Equation (15) (which we proved above) implies that it suffices to prove
the following:

Pr[Ver(sk, rt, (J, bJ), (yJ ,oJ , zJ)) = 0] ≤ O(δ0 + δ′0) +
(ε

2C

)2
+ negl(λ) (63)

where (yJ ,oJ , zJ) = C∗∗.Open(ρpost, (J,bJ)) and where C ∈ N is defined in Item 1 of the definition
of Ext. We first note that by Definition 6.5 and Corollary 6.6,

Pr[VerH(hk, rt, J,yJ ,oJ) = 0] ≤ δ0 + 2ε0 + negl(λ). (64)

Moreover, the residual state, denoted by ρpost,Sim satisfies that

(ρpost,Sim, sk)
ε0≈ (ρpost, sk) (65)

which implies that P ∗Test(pk, rt,ρpost,Sim), upon receiving b ∈ {0, 1} from VTest is rejected with prob-
ability at most δ′0,b + ε0 + negl(λ). By Definition 6.5 and Corollary 6.6, this implies that the tuple
(TSim, zb,ρ

′
post,Sim) generated in Equation (54) satisfies that

Pr
[
EvalH(hk, zb) 6= rt′b

]
≤ δ′0,b + 3ε0 + negl(λ).

By the union bound, we conclude that for every b ∈ {0, 1},

Pr
[
EvalH(hk,y) 6= rt ∨ EvalH(hk, zb) 6= rt′b

]
≤ δ0 + δ′0,b + 5ε0 + negl(λ). (66)

78

By Definition 6.5, for every b ∈ {0, 1} it holds that the state ρ′post,Sim, generated in Equation (54)
as part of Ub, is ε0-indistinguishable from the state of P ∗Test(pk, rt,ρpost,Sim, b) after executing the
first state-preserving argument-of-knowledge. This, together with Equation (65), implies that the
state ρ′post,Sim is 2ε0-indistinguishable from the state of P ∗Test(pk, rt,ρpost) after executing the first
state-preserving argument-of-knowledge. Since P ∗Test(pk, rt,ρpost, b) is accepted in both its state-
preserving argument-of-knowledge protocols with probability at least 1 − δ′0,b, it holds that it is
accepted in the second state-preserving argument-of-knowledge protocol (w.r.t. the language L∗∗)
when it starts with the state ρ′post,Sim with probability at least 1 − δ′0,b − 2ε0. This, together with
Definition 6.5 and Corollary 6.6, implies that

Pr
[
((sk1, hk, rt, rt

′, b), (y, z)) ∈ RL∗∗
]
≥ 1− δ′0,b − 4ε0,

which together with Equation (66) and the collision resistant property of the underlying hash family
implies that

Pr[Ver(sk, rt, (J, bJ), (yJ ,oJ , zJ)) = 0] ≤ O(δ0 + δ′0) + 9ε0 + negl(λ)

Thus it remains to note that 9ε0 ≤
(
ε
2C

)2, as desired.

8 Applications

8.1 Succinct Interactive Arguments for QMA

In this section we construct a succinct interactive argument for QMA. To this end, we construct a
semi-succinct interactive argument for QMA, where only the verifier’s messages are short but the
messages from the prover may be long. We then rely on a black-box transformation from [BKL+22]
which shows a generic transformation for converting any semi-succinct interactive argument for
QMA into a fully succinct one.

Ingredients Our semi-succinct interactive argument consists of the following three ingredients:

• A pseudorandom generator PRG : {0, 1}λ → {0, 1}`, where ` = `(λ) is a polynomial specified
in Lemma 8.1 below.

• A semi-succinct (qubit-by-qubit) commitment scheme (Gen,Commit,Open,Ver,Out), as de-
fined in Section 5 and constructed in Section 6.

• The information-theoretic QMA verification protocol of Fitzsimons, Hajdušek, and Mori-
mae [FHM18]. As in [BKL+22], we use an “instance-independent” version due to [ACGH20]
and assume the soundness gap is 1−negl(λ), where the latter can can be achieved by standard
QMA amplification.

Lemma 8.1 ([FHM18, ACGH20, BKL+22]). For all languages L = (Lyes,Lno) ∈ QMA there
exists a polynomial k(λ), a function `(λ) that is polynomial in the time T (λ) required to verify
instances of size λ, a QPT algorithm PFHM, and a PPT algorithm VFHM such that the following
holds.

79

– PFHM(x, |ψ〉) → |π〉: on input an instance x ∈ {0, 1}λ and a quantum state |ψ〉, PFHM

outputs an `(λ)-qubit state |π〉.
– Completeness. For all x ∈ Lyes and |φ〉 ∈ RL(x) it holds that for a random h ←
{0, 1}`(λ)

Pr
[
VFHM(x,v) = acc : |π〉 ← PFHM

(
x, |φ〉⊗k(λ)

)]
≥ 1− negl(λ)

where v is the result of measuring |π〉 in basis h.
– Soundness. For all x ∈ Lno and all `-qubit states |π∗〉 it holds that for a random

h← {0, 1}`(λ),
Pr[VFHM(x,v∗) = acc] ≤ negl(λ)

where v∗ is the result of measuring |π∗〉 in basis h.

The semi-succinct interactive argument for QMA In the following protocol P and V are
given an instance x and P is given k copies of the QMA witness |ψ〉.

V → P : Generate (pk, sk)← Gen(1λ), and send pk.

P → V :

1. Compute |π〉 = PFHM

(
x, |ψ〉⊗k

)
.

2. Compute (y,ρ)← Commit(pk, |π〉).
Denote by ` the number of qubits in |π〉, and denote by y = (y1, . . . ,y`), where yi is a
commitment to the i’th qubit of σ.

3. Send y.

V → P : Send a random bit b ∈ {0, 1}.

If b = 0:44

1. V → P : Send a random bit h← {0, 1}.
2. P → V : Send z← Open(ρ, h`).
3. V → P : Compute v = Ver(sk,y, h`, z) and accept if v = 1 and otherwise, reject.

If b = 1:

1. V → P : Send a random seed s← {0, 1}λ.
2. P → V : Compute b = PRG(s) ∈ {0, 1}` and send the openings (z1, . . . , z`)← Open(ρ,b).
3. V does the following:

(a) Compute b = PRG(s).
(b) For every i ∈ [`] compute ui = Ver(sk,yi, bi, zi) and vi = Out(sk,yi, bi, zi).
(c) If there exists i ∈ [`] such that ui = 0 then reject.
(d) Else, accept if and only if VFHM would accept (x, (b1, . . . , b`), (v1, . . . , v`)).

Theorem 8.2. The above scheme is a semi-succinct interactive argument for QMA.
44This should be thought of as a “test round.”

80

Proof of Theorem 8.2. The completeness property is straightforward and hence we focus on
proving the binding property. Fix a QMA promise problem L = (Lyes,Lno). Fix P ∗, an input x∗

and an auxiliary state σ, such that P ∗(x∗,σ) is accepted with probability 1 − δ, for δ ≤ 1
λ2
.

We argue that it must be the case that x∗ /∈ Lno. To this end, we use P ∗ to construct P ∗FHM

that is accepted with high probability in the protocol (PFHM, VFHM) on input x∗. The algorithm
P ∗FHM(x∗,σ) proceeds as follows:

1. Generate (pk, sk)← Gen(1λ).

2. Generate (y,ρ)← P ∗(pk,x∗,σ).

3. Use the extractor Ext from the binding property of the commitment scheme to extract a state
τ ← ExtP

∗
(sk,y,ρ)

4. Send τ .

We next argue that VFHM accepts τ with high probability on a random basis. To this end, it suffices
to argue that it accepts τ with high probability on a pseudorandom basis, since otherwise one can
distinguish a pseudorandom string from a truly random one, thus breaking the underlying PRG.
Denote by

Good = {s ∈ {0, 1}λ : P ∗ is accepted w.p. ≥ 1− λδ when V sends s}

Note that
p , Pr[s ∈ Good] ≥ 1− 2

λ
(67)

which follows from the following Markov argument:

1− 2δ ≤ Pr[P ∗ is accepted | b = 1] =

Pr[P ∗ is accepted | b = 1 ∧ s ∈ Good] · Pr[s ∈ Good | b = 1]+

Pr[P ∗ is accepted | b = 1 ∧ s /∈ Good] · Pr[s /∈ Good | b = 1] ≤
p+ (1− λδ)(1− p) =

1− λδ(1− p)

which implies that −2δ ≤ −λδ(1− p) and in turn that λ(1− p) ≤ 2, thus implying Equation (67).
By the binding property of the underlying commitment scheme, for any basis b = PRG(s) such that
s ∈ Good, it holds that

(pk,y,b,mReal)
O(
√
λδ)
≈ (pk,y,b,mIdeal)

where mIdeal is the result of measuring τ ← ExtP
∗
(sk,y,ρ) in basis b, and mReal is the output

corresponding to the opening of P ∗. The fact that the measurements mReal are accepted by VFHM

with probability ≥ 1−λδ (for any basis PRG(s) such that s ∈ Good) implies that mIdeal is accepted
by VFHM with probability ≥ 1−λδ−O(

√
λδ) (for any such basis). This, together with Equation (67)

81

implies that τ is accepted by VFHM on a pseudorandom basis with probability

Pr[VFHM accepts τ on basis PRG(s)] ≥
Pr[VFHM accepts τ on basis PRG(s) | s ∈ Good] · Pr[s ∈ Good] ≥

Pr[VFHM accepts τ on basis PRG(s) | s ∈ Good] ·
(

1− 2

λ

)
≥(

1− λδ −O(
√
λδ)
)
·
(

1− 2

λ

)
This, together with Lemma 8.1 and our assumption that δ ≤ 1

λ2
, implies that x∗ /∈ LNo, as desired.

8.2 Succinct Interactive Arguments from X/Z Quantum PCPs

In this section we show how to convert any X/Z quantum PCP for a language L into an succinct
interactive argument (P, V) for L. As in Section 8.1 we construct a semi-succinct interactive argu-
ment, and then use the black-box transformation from [BKL+22] to convert it into a fully succinct
one.

Ingredients Our semi-succinct interactive argument consists of the following ingredients.

• A semi-succinct (qubit-by-qubit) commitment scheme (Gen,Commit,Open,Ver,Out), as de-
fined in Section 5 and constructed in Section 6.

• An X/Z quantum PCP for the language L, with verifier VQPCP.

The semi-succinct interactive argument for L In the following protocol (P, V) are given an
instance x and P is also given an X/Z quantum PCP |π〉.

V → P : Generate (pk, sk)← Gen(1λ), and send pk.

P → V : Compute (y,ρ)← Commit(pk, |π〉) and send y

Denote by ` the number of qubits in |π〉, and denote by y = (y1, . . . ,y`), where yi is a
commitment to the i’th qubit of σ.

V → P : Send a random bit b ∈ {0, 1}.

If b = 0:45

1. V → P : Send a random bit h← {0, 1}.
2. P → V : Send z← Open(ρ, h`).

3. V → P : Compute v = Ver(sk,y, h`, z) and accept if v = 1 and otherwise, reject.

If b = 1:

1. V → P : Send a sample (i1, . . . , ic, b1, . . . , bc)← VQPCP(x, 1λ).
45This should be thought of as a “test round.”

82

2. P → V : Send the openings (z1, . . . , zc)← Open(ρ, (i1, b1), . . . , (ic, bc)).
3. V does the following:

(a) For every j ∈ [c] compute vj = Ver(sk,yij , bj , zj) and uj = Out(sk,yij , bj , zj).
(b) If there exists j ∈ [c] such that vj = 0 then reject.
(c) Else, accept if and only if VQPCP would accept (x, (i1, . . . , ic), (b1, . . . , b`), (u1, . . . , uc)).

Theorem 8.3. The above scheme is a semi-succinct interactive argument for L.

Proof of Theorem 8.3. The completeness property is straightforward and hence we focus on
proving the binding property. Fix a QPT cheating prover P ∗, an input x∗ and an auxiliary state
σ, such that P ∗(x∗,σ) is accepted with probability 1 − δ, for δ ≤ 1

λ2
. We use P ∗ to extract an

X/Z quantum PCP π for x∗ ∈ L that is accepted with high probability, thus implying that indeed
x∗ ∈ L as desired. This is done as follows:

1. Generate (pk, sk)← Gen(1λ).

2. Generate (y,ρ)← P ∗(pk,x∗,σ).

3. Use the extractor Ext from the binding property of the commitment scheme to extract a state
π ← ExtP

∗
(sk,y,ρ)

4. Output π.

The fact that P ∗ is accepted with probability 1 − δ implies that for every h ∈ {0, 1} it opens in
an accepted way on h` with probability at least 1 − 4δ. Denote by Good the event that VQPCP

samples (i1, . . . , ic, b1, . . . , bc) such that P ∗ is accepted with probability ≥ 1 − λδ when V sends
(i1, . . . , ic, b1, . . . , bc). Note that

p , Pr[Good] ≥ 1− 2

λ
(68)

which follows from the following Markov argument:

1− 2δ ≤ Pr[P ∗ is accepted | b = 1] =

Pr[P ∗ is accepted | b = 1 ∧ Good] · Pr[Good | b = 1]+

Pr[P ∗ is accepted | b = 1 ∧ ¬Good] · Pr[¬Good | b = 1] ≤
p+ (1− λδ)(1− p) =

1− λδ(1− p)

which implies that −2δ ≤ −λδ(1 − p) and in turn that λ(1 − p) ≤ 2, thus implying Equa-
tion (68). In what follows we say that (i1, . . . , ic, b1, . . . , bc) ∈ Good if P ∗ is accepted when V
sends (i1, . . . , ic, b1, . . . , bc) with probability ≥ 1 − λδ. By the binding property of the underlying
commitment scheme, for any (i1, . . . , ic, b1, . . . , bc) ∈ Good, it holds that

(pk,y, (i1, . . . , ic, b1, . . . , bc),mReal)
O(
√
λδ)
≈ (pk,y, (i1, . . . , ic, b1, . . . , bc),mIdeal)

where mIdeal is the result of measuring π ← ExtP
∗
(sk,y,ρ) in locations (i1, . . . , ic) and basis

(b1, . . . , bc), and mReal is the output corresponding to the opening of P ∗. The fact that the measure-
ments mReal are accepted by VQPCP with probability ≥ 1−λδ (for any (i1, . . . , ic, b1, . . . , bc) ∈ Good)

83

implies that mIdeal is accepted by VQPCP with probability ≥ 1− λδ −O(
√
λδ) (for any such basis).

This, together with Equation (68) implies that

Pr[VQPCP accepts π] ≥
Pr[VQPCP accepts π | Good] · Pr[Good] ≥

Pr[VQPCP accepts π | Good] ·
(

1− 2

λ

)
≥(

1− λδ −O(
√
λδ)
)
·
(

1− 2

λ

)
This, together with our assumption that δ ≤ 1

λ2
, implies that indeed π is an X/Z PCP that is

accepted with high probability, and thus x ∈ L, as desired.

9 Acknowledgements

Yael Kalai is supported by DARPA under Agreement No. HR00112020023. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the United States Government or DARPA. Agi Villanyi
was supported by a Doc Bedard fellowship from the Laboratory for Physical Sciences through the
Center for Quantum Engineering. Sam Gunn is supported by a Google PhD Fellowship and the U.S.
Department of Energy, Office of Science, National Quantum Information Science Research Centers,
Quantum Systems Accelerator.

84

References

[ACGH20] Gorjan Alagic, Andrew M. Childs, Alex B. Grilo, and Shih-Han Hung. Non-interactive
classical verification of quantum computation. pages 153–180, 2020. 79

[BBCM93] Bob Blakley, G. R. Blakley, Agnes Hui Chan, and James L. Massey. Threshold schemes
with disenrollment. pages 540–548, 1993. 18

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci., 37(2):156–189, 1988. 3

[BCM+18] Zvika Brakerski, Paul F. Christiano, Urmila Mahadev, Umesh V. Vazirani, and Thomas
Vidick. A cryptographic test of quantumness and certifiable randomness from a single
quantum device. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages
320–331. IEEE Computer Society, 2018. 7, 9, 10, 17, 18, 24, 25, 27, 29, 49, 55, 89, 91

[BKL+22] James Bartusek, Yael Tauman Kalai, Alex Lombardi, Fermi Ma, Giulio Malavolta,
Vinod Vaikuntanathan, Thomas Vidick, and Lisa Yang. Succinct classical verification
of quantum computation, 2022. 3, 5, 7, 10, 11, 12, 13, 14, 19, 24, 31, 56, 79, 82, 87, 88

[BKNY23] James Bartusek, Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Obfuscation
of pseudo-deterministic quantum circuits. Cryptology ePrint Archive, Paper 2023/252,
2023. https://eprint.iacr.org/2023/252. 11

[CCY20] Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. Classical verification of quantum
computations with efficient verifier. pages 181–206, 2020. 10

[CDv88] David Chaum, Ivan Damgård, and Jeroen van de Graaf. Multiparty computations
ensuring privacy of each party’s input and correctness of the result. pages 87–119, 1988.
3

[CMSZ21] Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. Post-quantum suc-
cinct arguments: Breaking the quantum rewinding barrier. Cryptology ePrint Archive,
Paper 2021/334, 2021. https://eprint.iacr.org/2021/334. 5, 18, 23

[FHM18] Joseph F. Fitzsimons, Michal Hajdusek, and Tomoyuki Morimae. Post hoc verification
of quantum computation. Phys. Rev. Lett., 120:040501, Jan 2018. 20, 79

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. pages 186–194, 1987. 3

[GJMZ22] Sam Gunn, Nathan Ju, Fermi Ma, and Mark Zhandry. Commitments to quantum states.
Cryptology ePrint Archive, Paper 2022/1358, 2022. https://eprint.iacr.org/2022/
1358. 3, 6, 11

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design (extended abstract). pages
174–187, 1986. 3

85

https://eprint.iacr.org/2023/252
https://eprint.iacr.org/2021/334
https://eprint.iacr.org/2022/1358
https://eprint.iacr.org/2022/1358

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. pages 218–229, 1987. 3

[KLVY22] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Lisa Yang. Quantum advantage
from any non-local game, 2022. 11

[LMS22] Alex Lombardi, Fermi Ma, and Nicholas Spooner. Post-quantum zero knowledge, revis-
ited or: How to do quantum rewinding undetectably. In 63rd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 -
November 3, 2022, pages 851–859. IEEE, 2022. 5, 19, 43, 44, 48

[Mah18] Urmila Mahadev. Classical homomorphic encryption for quantum circuits. In Mikkel
Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 332–338. IEEE Computer Society,
2018. 3, 7, 10, 11, 12, 13, 15, 20, 24, 31, 33, 39, 47, 56, 87

[Mer87] Ralph C Merkle. A digital signature based on a conventional encryption function. In
Conference on the theory and application of cryptographic techniques, pages 369–378.
Springer, 1987. 3

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function. pages
369–378, 1988. 23

[Mic94] Silvio Micali. CS proofs (extended abstracts). pages 436–453, 1994. 3

[MNZ24] Tony Metger, Anand Natarajan, and Tina Zhang. Succinct arguments for QMA from
standard assumptions via compiled nonlocal games. 2024. To appear. 11

[MP11] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. IACR Cryptol. ePrint Arch., page 501, 2011. 27

[Unr16] Dominique Unruh. Collapse-binding quantum commitments without random oracles.
pages 166–195, 2016. 23, 26

[Vid20] Thomas Vidick. Interactions with quantum devices (course), 2020. http://users.cms.
caltech.edu/~vidick/teaching/fsmp/fsmp.pdf. 9, 11, 13, 56

[VZ21] Thomas Vidick and Tina Zhang. Classical proofs of quantum knowledge. In Anne Can-
teaut and François-Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT
2021 - 40th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part II, volume
12697 of Lecture Notes in Computer Science, pages 630–660. Springer, 2021. 18

[Wil11] Mark Wilde. From Classical to Quantum Shannon Theory. 2011. arXiv:1106.1445v8.
22

86

http://users.cms.caltech.edu/~vidick/teaching/fsmp/fsmp.pdf
http://users.cms.caltech.edu/~vidick/teaching/fsmp/fsmp.pdf

A Weak commitments to Quantum States (WCQ)

In this section, we recall the Measurement Protocol from Mahadev [Mah18], which was formalized
by [BKL+22]. We refer to such a protocol as a weak commitment to quantum states (WCQ) protocol,
and define it formally below.

Definition A.1 (Weak Commitment to Quantum States (WCQ)). An `-qubit WCQ protocol is
specified by the five algorithms (GenW,CommitW,OpenW,TestW,OutW):

1. GenW is a PPT algorithm that takes as input the security parameter λ (in unary) and a string
h ∈ {0, 1}`, and outputs a pair (pk, sk) ← GenW(1λ, h), where pk is referred to as the public
key and sk is referred to as the secret key.

2. CommitW is a QPT algorithm that takes as input a public key pk and a quantum state σ
and outputs a pair (y,ρ)← CommitW(pk,σ), where y is a classical string, referred to as the
commitment string, and ρ is a quantum state.

3. OpenW is a QPT algorithm that takes as input a bit c ∈ {0, 1} and a quantum state ρ and
outputs a classical string z ← OpenW(ρ, c), referred to as the opening string.

4. TestW is a polynomial time algorithm that takes as input a public key pk and a pair (y, z),
where y is a commitment string and z is an opening string, and it outputs {acc, rej} ←
TestW(pk, (y, z)).

5. OutW is a polynomial time algorithm that takes as input a secret key sk and a pair (y, z),
where y is a commitment string and z is an opening string, and it outputs a classical string
m ∈ {0, 1}`.

The commitment protocol associated with the tuple (GenW,CommitW,OpenW,TestW,OutW) is a
two party protocol between a QPT committer C which takes as input a quantum state σ, and a BPP
verifier V which takes as input a classical string h ∈ {0, 1}`. Both parties also take as input the
unary security parameter λ. The protocol consists of two phases COMMIT and OPEN, proceeding
as follows:

• COMMIT phase:

1. [C← V]: V samples (pk, sk)← GenW(1λ, h) and sends the public key pk to C.
2. [C → V]: C computes (y,ρ) ← CommitW(pk,σ) and sends the commitment string y to

the verifier.

• OPEN phase:

1. [C← V]: V samples a random challenge bit c← {0, 1} and sends ct to C.
2. [C→ V]: C sends z ← OpenW(ρ, c) to V.
3. If c = 0, V outputs {acc, rej} ← TestW(pk, y, z). If c = 1, V outputs m← OutW(sk, y, z).

A WCQ protocol acts over registers P,Y,Z,W where P contains the public component of the
output of GenW, Y contains the output of CommitW, Z contains the output of OpenW, and W are
additional work registers. Additionally, the commitment protocol satisfies the following properties
for correctness and binding.

87

Definition A.2 (WCQ correctness). Let RealW(1λ,σ, h) be the distribution resulting from run-
ning (pk, sk) ← GenW(1λ, h), (y,ρ) ← CommitW(pk,σ), z ← OpenW(ρ, 1), and outputting m ←
OutW(sk, y, z). Let σ(h) denote the distribution resulting from measuring each qubit i of a quantum
state σ in the basis specified by hi for i ∈ [`]. A WCQ protocol is correct if, for all `-qubit quantum
states σ and for every h ∈ {0, 1}`, the following two properties are satisfied:

1. (Test Round Completeness):

Pr

 (pk, sk)← GenW(1λ, h);

acc← TestW(pk, y, z) : (y,ρ)← CommitW(pk,σ);

z ← OpenW(ρ, 0)]

 = 1− negl(λ) (69)

2. (Measurement Round Completeness):
(pk, sk)← GenW(1λ, h);

m← OutW(sk, y, z) : (y,ρ)← CommitW(pk,σ);

z ← OpenW(ρ, 1)

 ≈c σ(h) (70)

Definition A.3 (WCQ Binding). [BKL+22] A WCQ protocol is binding if there exists a PPT clas-
sical algorithm SimGen and a QPT oracle machine WExt such that, for any cheating QPT committer
C∗ with quantum state σ that satisfies that for every h ∈ {0, 1}`:

Pr

 (pk, sk)← GenW(1λ, h);

acc← TestW(pk, y, z) : (y,ρ)← C∗.CommitW(pk,σ);

z ← C∗.OpenW(ρ, 0)]

 = 1− negl(λ), (71)

it holds that for every h ∈ {0, 1}`,

SimC∗(1λ, h) ≈c RealWC∗(1λ, h)

where

• SimC∗(1λ, h) is the output distribution of the following procedure:

1. Sample (pk, sk)← SimGen(1λ).
2. Execute the commitment round to obtain (y,ρ)← C∗.CommitW(σ).
3. Execute τ ←WExtC

∗
(pk, sk, y,ρ).

4. Measure τ in the basis specified by h, where hi = 0 corresponds to the standard basis and
hi = 1 corresponds to the Hadamard, and output these measurement values.

• RealWC∗(1λ, h) is the output distribution of the following procedure:

1. Sample (pk, sk)← GenW(1λ, h).
2. Emulate the commitment round to obtain (y,ρ)← C∗.CommitW(σ).
3. Emulate the opening phase round corresponding to c = 1 to obtain z ← C∗.OpenW(ρ, 1).
4. Compute m← OutW(sk, y, z) and output m.

88

B Proof of Lemma 4.5

To show our modified version of Lemma 4.6 of [BCM+18], it suffices to show a version of their
Lemma 4.9 modified to handle two arbitrary binary strings d′1,d′2. Once this has been shown, the
remaining argument proceeds unchanged. In this section will only present our modified version of
Lemma 4.9 and its proof.

First, let us recall some basic properties of the discrete Fourier transform. Define the qth root
of unity

ωq = e2πi/q.

The “standard Fourier identity” is that ∑
x∈Zq

ωxq = 0.

For a function f : Z`q × Z2 → C, the Fourier transform f̂ is defined by

f̂(x, y) =
∑
v,z

ωv·x
q (−1)y·zf(v, z).

With this normalization, we have the following version of Plancherel’s theorem:√
2q`‖f‖2 = ‖f̂‖2.

Now, in the context of Lemma 4.9 of [BCM+18], we are given a random matrix C ∈ Z`×nq , and
arbitrary distinct nonzero binary vectors d′1,d′2 ∈ {0, 1}n. Define

g(v, z1, z2) = Pr
s∈{0,1}n

[v = Cs, z1 = d′1 · s, z2 = d′2 · s].

Then, to prove the Lemma, it suffices to show that with high probability over the choice of the
matrix C, the probability distribution whose density is g is close to the uniform distribution over
the space Z`q×Z2×Z2. Specifically, denoting by U the uniform distribution and denoting by D the
Total Variation Distance, we wish to show that

D(g, U) ≤ q`/2 · 2−n/40.

To do so, we relate the TVD distance to the L2 norm of the difference g − U :

D(g, U) =
1

2
‖g − U‖1

≤ 1

2

√
2q`‖g − U‖2

=
1

2
‖ĝ − Û‖2,

where the second line follows from Cauchy-Schwarz. Note that for any probability density g over
Z`q × Z2 × Z2, we have that ĝ(0`, 0, 0) = 1. This is because

f̂(0`, 0, 0) =
∑

v,z1,z2

g(v, z1, z2) = 1.

89

Moreover, for the uniform density U , we further have Û(x, y1, y2) = 0 for all (x, y1, y2) 6= (0`, 0, 0).
This follows by the standard Fourier identity.

Thus, we get

1

2
‖ĝ − Û‖2 =

1

2

√ ∑
x,y1,y2

|ĝ(x, y1, y2)− Û(x, y1, y2)|2

=
1

2

√ ∑
(x,y1,y2)6=(0`,0)

|ĝ(x, y1, y2)|2.

To bound this sum, we will now calculate ĝ, using the identities (−1)yz = (eπi)yz = e(2πi/2)·yz

to simplify the resulting sums.

ĝ(x, y1, y2) =
∑

v,z1,z2

ωv·x
q (−1)y1z1+y2z2g(v, z1, z2)

=
∑

v,z1,z2

e2πi·(v·x/q+(y1z1+y2z2)/2)g(v, y1, y2)

=
∑

v,z1,z2

e2πi·(2v·x+q(y1z1+y2z2))/2qg(v, z1, z2)

=
∑

v,z1,z2

ω
2v·x+q(y1z1+y2z2)
2q g(v, z1, z2)

= E
s∈{0,1}n

∑
v,z1,z2

ω
2v·x+q(y1z1+y2z2)
2q 1[v = Cs, z1 = d′1 · s, z2 = d′2]

= E
s∈{0,1}n

ω
2x·(Cs)+q((y1d′1+y2d

′
2)·s)

2q .

Define w = 2CTx+ q(y1d
′
1 + y2d

′
2) so that wT s is equal to the exponent in the last line above.

Then

ĝ(x, y1, y2) = E
s∈{0,1}n

ωwT s
2q .

Our goal is to show that ĝ, with the (0`, 0, 0) entry deleted, is small in 2-norm. We are going to
do this by bounding the entries individually.

Case 1: (x, y) = (0`, 1). In this case, we have

ĝ(0`, y1, y2) = E
s∈{0,1}n

ω
q(y1(d′1)

T+y2(d′2)
T)s

2q

= E
s∈{0,1}n

(−1)(y1(d
′
1)
T+y2(d′2)

T)s

= 0,

where in the last line we used the fact that at least one of y1, y2 is nonzero, and that d′1 6= d′2, to
say that y1d′1 + y2d

′
2 is a nonzero binary vector.

90

Case 2: x 6= 0`. In this case, we will use the fact that C is a random matrix. Specifically, in
Lemma 4.8 of [BCM+18] it is shown that with probability 1− q` · 2−n/8, C is moderate. To define
this, we start by defining a moderate scalar : for x ∈ Zq, let its centered representative be its unique
representative in (−q/2, q/2]. Then we say x is moderate if its centered representative lies in the
range [−3q/8,−q/8)∪ (q/8, 3q/8]. This is true for a uniformly random x ∈ Zq with probability 1/2.
A moderate vector is one for which at least 1/4 of the entries are moderate: for a uniformly random
vector in Znq , the chance that it is moderate is exponentially close to 1, by a Chernoff bound. A
moderate matrix is one for which every nonzero vector in the row span is moderate.

Now, observe: ∣∣∣∣ E
s∈{0,1}

ωsxq

∣∣∣∣ =

∣∣∣∣12(ω0
q + ωxq)

∣∣∣∣
=

∣∣∣∣12(ω−x/2q + ωx/2q)

∣∣∣∣
= | cos(πx/q)|.

Thus, if x is moderate, then |x/q| ∈ (1/8, 3/8], and | cos(πx/q)| ≤ | cos(π/8)|. So for any moderate
vector r ∈ Znq , it holds that ∣∣∣∣ E

s∈{0,1}n
ωr·s
q

∣∣∣∣ ≤ | cos(π/8)|n/4.

We will need a slightly refined version of this. Let r be a moderate scalar ∈ Zq, and e1, e2 ∈ {0, 1}
be arbitrary. Then

2r+q(e1+e2) ∈ [−3q/4,−q/4)∪[q/4, 3q/4)∪[q+q/4, q+3/q4)∪(q/4, 3q/4]∪(q+q/4, q+3q/4]∪(2q+q/4, 2q+3/q4].

Thus,
|(2r + q(e1 + e2))/q| ∈ [1/4, 3/4] (mod 1).

Therefore, ∣∣∣∣ E
s∈{0,1}

ω
(2r+qe)s
2q

∣∣∣∣ =

∣∣∣∣cos

(
π

2q
(2r + qe)

)∣∣∣∣ ≤ | cos(π/8)|.

Thus, if r is moderate and e1, e2 are arbitrary binary vectors, then by the same reasoning∣∣∣∣ E
s∈{0,1}n

ω
(2r+q(e1+e2))·s
2q

∣∣∣∣ ≤ | cos(π/8)|n/4.

Now, to finish the argument, let’s return to ĝ. For any x 6= 0`, since C is moderate, we know
xTC is a moderate vector. Thus, we have

ĝ(x, y1, y2) = E
s∈{0,1}n

ω
2(xTC)s+q(y1(d′1·s)+y2(d′2·s))
2q

Now setting r = xTC and e1,2 = y1,2d
′
1,2, we conclude that

|ĝ(x, y1, y2)| ≤ | cos(π/8)|n/4.

91

So in the end we get

D(g, U) ≤ 1

2

√ ∑
(x,y1,y2) 6=(0`,0,0)

|ĝ(x, y1, y2)|2

≤ 1

2

√∑
x 6=0`

∑
(y1,y2)∈{0,1}2

| cos(π/8)|n/2

=
1

2

√
4(q` − 1)| cos(π/8)|n/2

≤ q`/2 · 2−n/40

This is the desired bound.

92

	Introduction
	The Definition
	The Construction
	Applications
	Related Works

	Technical Overview
	Mahadev's measurement protocol
	Our Single-Qubit Commitment Scheme
	Succinct commitments
	Applications

	Preliminaries
	Quantum information facts
	Hash Family with Local Opening
	Noisy Trapdoor Claw-Free Functions

	The Distributional Strong Adaptive Hardcore Bit Property
	Classical Commitments to Quantum States
	Syntax
	Syntax for Succinct Commitments

	Properties
	Correctness
	Binding

	Constructions
	Construction for Single Qubit States
	Construction of Commmitments for Multi-Qubit States
	Construction of Succinct Multi-Qubit Commitments
	Construction

	Analysis of the Multi-Qubit Commitment Schemes from sec:constructions
	Correctness
	Binding
	Binding for the Succinct Commitment Scheme

	Applications
	Succinct Interactive Arguments for QMA
	Succinct Interactive Arguments from X/Z Quantum PCPs

	Acknowledgements
	Weak commitments to Quantum States (WCQ)
	Proof of lemma:zviketal

