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Abstract

We have investigated both the padding scheme and the applicability of
algebraic attacks to both XHash8 and XHash12. The only vulnerability of
the padding scheme we can find is plausibly applicable only in the multi-rate
setting—for which the authors make no claim—and is safe otherwise.

For algebraic attack relying on the computation and exploitation of a Gröbner
basis, our survey of the literature suggests to base a security argument on the
complexity of the variable elimination step rather than that of the computation
of the Gröbner basis itself. Indeed, it turns out that the latter complexity is hard
to estimate—and is sometimes litteraly non-existent. Focusing on the elimina-
tion step, we propose a generalization of the “FreeLunch” approach which, under
a reasonable conjecture about the behaviour of the degree of polynomial ideals
of dimension 0, is sufficient for us to argue that both XHash8 and XHash12 are
safe against such attacks.

We implemented a simplified version of the generation (and resolution) of
the corresponding set of equations in SAGE, which allowed us to validate our
conjecture at least experimentally, and in fact to show that the lower bound it
provides on the ideal degree is not tight—meaning we are a priori understimating
the security of these permutations against the algebraic attacks we consider.

At this stage, if used as specified, these hash functions seem safe from
Gröbner bases-based algebraic attacks.
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Notations.

� 𝑝 = 264 − 232 + 1 the field size.

� F𝑝 the field with 𝑝 elements. Elements of F𝑞 are called “words”.

� 𝑟 the rate (size of the outer part), expressed in words.

� 𝑐 the capacity (size of the inner part), expressed in words.

� ℓ is the number of inverse power maps applied in each round.

� 𝜋8 the full XHASH8 permutation (ℓ = 8).

� 𝜋12 the full XHASH12 permutation (ℓ = 12).
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1 On the Padding

1.1 Description

In a sponge-based hash function, the usual approach consists in appending a “1” to
the message, and then to add enough zeroes to the result in order to obtain a new
message with a length that is a multiple of the rate 𝑟. This ensures that two distinct
messages will yield two different digests, which would not be the case if only zeroes
were added as 𝑚 and 𝑚||0 would otherwise yield the same hash. However, in this
case, if the initial message is already of a length that is a multiple of 𝑟, then hashing
it requires processing yet another block, meaning one more call to the permutation.
The problem is well known, and has already been discussed e.g. in [Hir16].

The approach used in XHash is similar, in that zeroes are also added to obtain a
message of the correct length, without adding any “1”. As a consequence, in order
to distinguish 𝑚 from 𝑚||0, the internal state of the sponge is initialized differently:
instead of receiving an all-zero state, the first word of the capacity is set to a value
that depends on the congruence modulo 𝑟 of the message length. While this is not
stated in the specification [AKM23], the values used could also depend on the rate
itself in order to ensure domain separation between sponge instances using different
rates. As it is, XHash does not take the rate directly into account.

More formally, the hashing mode of the XHash family operates as follows on a
message 𝑚 = (𝑚0, ...,𝑚𝑡−1) of 𝑡 words of F𝑞.

Initialization. The initial state is initialized as 𝑥 = StateInit(𝑡 mod 𝑟).

Padding. The message is padded with 0 to obtain a message 𝑚′ = (𝑚0, ...,𝑚𝑡−1, 0, ..., 0)
of length 𝑡′ ≥ 𝑡, where the number of 0 is the smallest such that 𝑡′ is a multiple
of 𝑟.

Absorption. For 𝑖 ∈ {0, ..., 𝑡′/𝑟), do 𝑥 = 𝜋
(︀
𝑚′

𝑟𝑖, ...,𝑚
′
𝑟𝑖+𝑟−1, 𝑥𝑟, 𝑥𝑟+1, ..., 𝑥11

)︀
, where

𝜋 is either the XHash8 or XHash12 permutation.

Squeezing. The first 4 words of the outer part are output as the digest.

It is crucial (but easy to ensure) that StateInit has no collision. Below, we assume
that it is indeed collision-free.

1.2 On its Security for a Fixed Rate

While there is no formal proof for the security of this mode at this stage, it is easy
to check that its specifics have no impact on the usual generic attacks.

Collision Seach. The best attack consists in absorbing random messages until we
find two that match in the inner part. We can then asborb identical messages
to force an identical content in the rate as well, meaning that the full internal
states are then identical. The complexity is roughly the square root of the space
corresponding to the capacity, and as we can see the specifics of the initialization
have not appeared in the description of this attack.

Preimage. The preimage search also relies on finding a collision in the capacity, except
that we go forward (as in the collision search), and backwards (from the targeted
digest) using that 𝜋 is a permutation. Again, the specifics of the initialization
do not matter.
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1.3 A Potential Issue

In XHash, the rate 𝑟 is fixed. However, should it be allowed to vary, then the current
implementation1 of StateInit could be a problem. Indeed, in this case, StateInit(𝑡
mod 𝑟) is a state of 12 words, namely (𝑡 mod 𝑟, 0, 0, ..., 0). The inner part of the
state consists in the first 12 − 𝑟 words, and the outer part in the last 𝑟 ones.

As a consequence, it is possible to find collisions accross instance of XHash that
use different rates, i.e. in the multi-rate model [GJMG11]. For instance, we can use
the rate/message pairs shown in Table 1, where 0 corresponds to a zero that was
present in the state before the absorption of the message. After the absorption of
each message by its corresponding sponge instance, the states will match.

𝑟 𝑚 𝐶 State after absorption

4 (1, 2, 3, 4) 0 (𝐶, 0, 0, ..., 0, 1, 2, 3, 4)
5 (0, 1, 2, 3, 4) 0 (𝐶, 0, ..., 0, 0, 1, 2, 3, 4)

Table 1: Building multi-rate collisions through the padding.

Possible Mitigations. Avoiding this problem can be done in several ways.

1. Ensure that the rate is not to be changed under any circumstance.

2. Use another formula for the computation of 𝐶 to add a direct dependency in
the rate, e.g. replace 𝐶(𝑡) = 𝑡 mod 𝑟 with 𝐶(𝑟, 𝑡) = 𝑟24 + (𝑡 mod 𝑟). Since
the state size is of 12 words, this prevents collisions.

1https://github.com/0xPolygonMiden/crypto/blob/next/src/hash/rescue/rpx/mod.rs#L178
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2 On Algebraic Attacks

2.1 State-of-the-Art

Arguing security against algebraic attacks is a complicated task as these are not so
well understood at this stage, and the interplay between the “algebraic” part and
more classical techniques can sometimes be used to an attacker’s advantage to lower
the overall complexity of the attack.

By “algebraic” attack, we mean attacks that ultimately culminate with the reso-
lution of a (system of) equation(s), of which the roots need to be found. Univariate
techniques can sometimes be applied, but it does not seem relevant here:

1. the degree of the inverse function is close to the maximum possible, meaning
that the univariate degree in any linear combination of the inputs will very
quickly become unusable; and

2. the field size (𝑝 = 264 − 232 + 1) is not that large, meaning that a univariate
approach would need to be more efficient than a simple brute-force on one word:
a hard task here.

It then leads us to focus on multivariate approaches, i.e. to write a system of
multivariate equations, that we would then need to solve. Using a terminology inspired
by the one introduced in [BBL+24], we can divide these attacks into several steps, as
follows.

SysGen. First, the system of equation needs to be generated. Several heuristics are
available to this end, but all of them have to introduce new variables whenever a
𝑑-th root is used as it is the compositional inverse of these operations that is of a
low degree. This step can further be simplified using techniques from “classical”
symmetric cryptanalysis, typically based on the probablity one propagation of
some affine spaces. This was used to shave off two SPN rounds generically
in [BBLP22], with the conditions that the S-boxes are monomials over the base
field considered,2 and that the cipher/permutation starts with an S-box layer.
Similar tricks were deployed against Griffin and Arion in [BBL+24], but could
not be leveraged against Anemoi.

The system that is generated in the end is not uniquely defined: different gen-
eration strategies will yield different systems. For instance, using affine spaces
to simplify it will remove some equations. Similarly, we can prefer to introduce
new variables and equations in order to get more equations of a lower degree.
The existence of an efficient SysGen procedure is implied by arithmetization-
orientation, but it is not necessarily the approach used in attacks.3

Note that the algorithms used in the next steps are better understood in the
case where the system is expected to have a unique (or just a few) solutions.
This further adds constraints for the SysGen step, but they are easily handled:
the expected number of solutions is easily estimated assuming e.g. that the
hash function behaves like a random function, and the input can be contrained
for instance by forcing it to be in a vector space of the appropriate dimension.

GröbFind. Once a system is obtained, it is necessary first to endow it with a struc-
ture that will allow us to work with it. This in particular allows us to do the

2In contrast to what is done in XHash, where monomials are applied over both F𝑝 and F3
𝑝.

3In fact, our encoding for XHash12 will be basically the STARK one, while the one for XHash8
is significantly different.
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polynomial arithmetic we need, e.g. to reduce large degree polynomials modulo
lower degree ones. The equations we have obtained define an ideal: since we in-
vestigate their common roots, any linear combination will also have these roots.
An ideal of polynomials has a Gröbner basis, a particular set of polynomials
that essentially allow us to properly define a reduction modulo this ideal.

A Gröbner basis is defined for a given monomial ordering. Several of these are
well known. In particular, a Gröbner basis in lexicographic order can greatly
simplify the next steps. On the other hand, the complexity of finding a Gröbner
basis is highly dependent on said ordering. In general, in order to obtain a basis
e.g. in grevlex order given any ideal, we need to use either F4 or F5 [Fau99,
Fau02]. Unfortunately, efficient open source implementations are hard to find.

VarElim. Once a Gröbner basis is known, we use its structure to extract a univari-
ate polynomial in one of the variables. This extraction step is usually done by
reordering the Gröbner basis, i.e. by obtaining a Gröbner basis for a different
monomial order, one that is suitable for this purpose. It is usually the lexi-
cographic one. This change of order can be done using the FGLM [FGLM93]
algorithm, whose complexity is precisely known as it boils down to linear poly-
nomial arithmetic. It depends on a quantity called the degree of the ideal (𝐷𝐼),
and corresponds to the number of roots the system has in the algebraic closure
of the field considered. This number is much, much higher than the number of
solutions in the field itself (typically 0, 1 or 2).

More custom approaches are sometimes possible; for instance, the authors
of [BBL+24] introduced the combination of MatMul and PolyDet: the idea is to
bypass the cost of a full FGLM run by focusing on a single variable that is of
particular interest in their case.

UniSolve. By design, we expect a solution to exist. Thus, once a univariate equation
is extracted, we solve it using well known techniques to get a first root of the
system. We then substitute its value in the other equations, and deduce an
assignment for all the variables. This works provided that the equations have
the correct structure, but this is the case for an output of FGLM (under some
reasonable assumptions that have been found to hold in practice when attacking
AOPs).

2.2 Constructing a Security Claim Against Root Finding

What would happen if we tried to build a security claim against rootfinding attacks
against each of the steps described above?

SysGen. As we establised during the discussion above, heuristics exist to lower the
complexity of this step, however, it is also possible to mitigate them using appropriate
counter-measures (such as starting with a linear diffusion layer). Furthermore, as this
step cannot be avoided, it could make sense to base a security claim on the complexity
of this step. However, this complexity is hard to estimate, and (as shown in [BBL+24])
tends to be much lower than other steps of the attack. Besides, running for instance
a preimage search multiple times for different preimages would lead to systems that
are essentially identical, except for some constants in the very last equations. As a
consequence, the cost of this step could be ammortized over several attacks.

In the end, we claim that relying on this step for a security bound would not lead
to meaningful results.
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GröbFind. Experimental results often indicated that this step was the longest in the
attack against an AOP, which lead the authors of several primitives to follow those of
Rescue [AAB+20], and base their security claims using an estimate of the complexity
of F4 or F5 (e.g. Griffin [GHR+23], Anemoi [BBC+23] and Arion [RST23]).

While there is no reason to challenge these experimental results, such claims are
now unfortunately falling short. Indeed, it turns out that it is possible to find mono-
mial orderings such that the system obtained during the SysGen step is immediately a
Gröbner basis. To the best of our knowledge, this was first put forward to investigate
the AES [BPW06], and then adapted to the cryptanalysis of AOPs by two indepen-
dent teams investigating different algorithms: the authors of [BBL+24] described the
“freelunch” approach, which they applied to Anemoi, Arion, XHash8 and in particu-
lar Griffin; while Steiner very recently put forward papers presenting such orderings
for Poseidon [Ste24b] and Rescue [Ste24a].

VarElim. The complexity of FGLM is well known and “stable”: while the com-
plexity of GröbFind can only be upperbounded (while we would need a lower bound
anyway), that of FGLM is tight. Furthermore, even though the technique presented
in [BBL+24] is more efficient than FGLM, its complexity has a similar structure.
Variants of FGLM exist that can be applied e.g. to sparser systems. The applicabil-
ity of these variants is not so clear, but their complexity also depends on the same
quantity: the ideal degree 𝐷𝐼 .

We will thus base our security argument on the complexity of this step.

UniSolve. The complexity of this step is tightly known, and is negligible compared
to all the other steps considered here. It cannot serve as the basis for a security claim.

2.3 Modeling XHash

In what follows, letters 𝑥, 𝑦 denote variables in F𝑝, and Greek letters denote multi-
variate polynomials of F𝑝. The inner operations of XHash are denoted with upper
case Latin letters.

General Approach. For both instances of XHash, we use a similar approach. In
order to ensure that the system is expected to have a single solutions (or at most a
few), we need to restrict the input to a vector space of dimension 𝑟, 𝑟 being the rate.
The simplest approach consists simply in starting with variables 𝑥0, ..., 𝑥𝑟−1 for the
input of the permutation, setting the others to 0.

Then we construct polynomial constraints ensuring that the internal state at the
output of the permutation is indeed the image of the initial state after the relevant
operations. Passing through low degree operations is easy as we simply need to
directly update the polynomials by composing them with said operations. For the
(partial) layer of 7th root, we proceed differently: we introduce variables 𝑦𝑖𝑗 just after
each 7-th roots, 𝑖 being the round index and 𝑗 the word index.

First Round. For the first round, we simply need to encode that the inputs of each
7th root are obtained by applying two MDS layers and a layer of small monomials
(along with the appropriate round constants). We deduce 12 equations (resp. 8) for
XHash12 (resp. XHash8) of the following shape:

(𝑦1𝑗 )7 = 𝐶1 + 𝐿𝑗 (𝑆 (𝐿 (𝐶0 + 𝑥⃗))) = 𝛼𝑗(𝑥) .
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In order to look for solutions of the CICO problem—or indeed for preimages, we need
to fix the capacity words to 0. To this end, we consider that 𝑥⃗ = (𝑥0, ..., 𝑥𝑟−1, 0, ..., 0).

Middle Rounds. We get equations of the following types for the middle rounds of
XHash12:

(𝑦𝑖+1
𝑗 )7 = 𝐶𝑖 + 𝐿𝑗

(︀
𝑆
(︀
𝐿
(︀
𝐶𝑖 + 𝑇 (𝑦𝑖)

)︀)︀)︀
= 𝜇𝑖

𝑗(𝑦
𝑖) . (1)

Since the layer of small S-boxes (𝑆) and the layer of big S-boxes (𝑇 ) are both of
degree 7, and since the MDS layer 𝐿 ensures that all outputs depend on all inputs,
we have that 𝜇𝑖 is always of degree 72 = 49.

For XHash8, the situation is similar except that we introduce fewer such variables
(only 8 per rounds), and that the polynomial constraints take as input the variables
from all the previous rounds, not only the immediate predecessor. It complicates
writing a closed formula for these constraints, but they can be generated recursively
starting from the first one with a computer program that updates the expression of
the polynomials corresponding to the “identity” boxes in the high degree layer and
keeps those in memory. We then get equations of the form

(𝑦𝑖+1
𝑗 )7 = 𝜇𝑖

𝑗(𝑦
𝑖, 𝑦𝑖−1, ..., 𝑦1, 𝑥) , (2)

which are obtained by applying 𝜇𝑖 to a vector whose 𝑗-th coordinate is 𝑦𝑖𝑗 if there is a

7-th root at that position, and 𝜇𝑖−1
𝑗 (𝑦𝑖−1, ..., 𝑥) otherwise. As for 𝜇𝑖, the polynomials

𝜇𝑖 are of degree 49 in 𝑦𝑖. However, their degree in the previous variables is higher
since each of those went through operations of degree 49 during each round.

Final Rounds. For the final round, we do not introduce any new variable. However,
we add one equation per word whose value needs to be set to a specific value. Essen-
tially, we get several affine combinations of the image under the big S-box of the 𝑦𝑟𝑗
and (for XHash8) some complex polynomials in all the previous variables which we
denote 𝜔𝑖.

Bypassing Rounds. A natural attack angle at this stage is to try and simplify the
system using the knowledge of its structure, a trick usually achieved by carefully
tracking the propagation of some affine spaces. This was applied with some success to
several SPNs in [BBLP22], and even more so against both Griffin and Arion [BBL+24]
due to the specifics of their non-linear layer—in particular, the fact that the non-linear
layer of Griffin is affine over large affine spaces.

However, we could not find such heuristics here. In the first round, the first MDS
layer restricts the control needed to apply the technique from [BBLP22]. The fact that
the non-linear layer is of very high degree everywhere4 then prevents the applicability
of the technique from [BBL+24]. The monomial-based non-linear layer could have
potentially lead to the existence of chains of subspaces, as in [BCP23], but the dense
and structure-less round constants are an effective counter-measure against it.

Furthermore, the use of the monomial over F3
𝑝 in the big S-box layer makes it

complicated to play with the algebraic representation of several rounds by tightly
interweaving its 3 input variables.

Overall, while the threat from “free” rounds might a priori be pressing due to
the low total number of rounds, it seems like the built-in countermeasures make such
threats impractical.

4Except for XHash8, where some inverse monomials are not applied, but this is of no consequence
here.
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2.4 A Specific Monomial Ordering

In the end, we have two types of variables: the 𝑥𝑗 , that correspond to the input,
and the 𝑦𝑖𝑗 , that are grouped in layers corresponding to the round at which they are
introduced. We order them using a weighted grevlex order, whereby variables 𝑥𝑗 have
weight 1, and a variable 𝑦𝑖𝑗 (introduced during round 𝑖) has weight 𝛼2𝑖.

Our system of equations is of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = (𝑦00)7 − 𝛼0 (𝑥⃗)

...

0 = (𝑦0ℓ−1)7 − 𝛼11 (𝑥⃗)

0 = (𝑦10)7 − 𝜇0
(︁
𝑥⃗, 𝑦0

)︁
...

0 = (𝑦𝑁𝑟

ℓ−1)7 − 𝜇0
(︁
𝑥⃗, 𝑦0, ..., ⃗𝑦𝑁𝑟−1

)︁
0 = 𝜔0

(︁
𝑥⃗, 𝑦0, ..., ⃗𝑦𝑁𝑟

)︁
...

0 = 𝜔4

(︁
𝑥⃗, 𝑦0, ..., ⃗𝑦𝑁𝑟

)︁
,

(3)

where ℓ = 8 for XHash8 and ℓ = 12 for XHash12.
By construction, our custom ordering ensures that the leading monomials in all

the starting and middle equations are different variables (namely, all the 𝑦𝑖𝑗). For
XHash8, in the case where we only try to force one 0 in the input and in the output,
this is exactly a FreeLunch system: the leading monomial in the last equation is of

the form 𝑥
49(𝑟+1)
0 , meaning that it is yet another variable, and that the whole system

is a Gröbner basis out-of-the-box.
Unfortunately, it is not the case for XHash12, or when the number of attacked

output blocks (and thus the number of variables in 𝑥⃗) is at least equal to 2. Still, we
do have that the leading monomials in all but the final equations are pairwise distinct.

On XHash12. In XHash12, the input variables do not play a specific role since
the inverse monomial layers are full. Indeed, we lose the ability to force the input
variables to play a specific role in the last round, and thus cannot have the 𝑥𝑗 be the
only variables in the leading monomials in any equation.

We thus considered alternative strategies to build the system of equations for
XHash12, and in particular to build the weights so that they decrease with the number

of rounds, thus forcing the 𝑥𝑖 to be the leading terms in the first round, the 𝑦𝑖 to be
the leading terms in the second round, etc. However, the inner workings of the round
function prevented us from going further: it is “easy” to force 𝑦𝑑 to be the leading
term of an equation of the form 𝑦𝑑 − 𝑃 ( ⃗𝑦, 𝑥), but much more complicated to pick
a specific variable intervening in the rather dense polynomial 𝑃 , and have it be the
only variable in the leading monomial of such an equation.

In the end, we use the same encoding for XHash12 as we do for XHash8, and in
fact we can build both using the same program.
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3 Arguing Security Against Gröbner-based Algebraic At-
tacks

3.1 Towards a Pencil/Paper Argument

Unfortunately, at this stage, we do not know of a way to construct a Gröbner basis for
free out of either permutation in the case where several words need to be controlled.
However, under a reasonable conjecture, we can derive sufficient bounds. To describe
this conjecture, we first need the following definition.

Definition 1 (𝑏-Almost Basal) We call 𝑏-almost basal (𝑏-AB) a system of 𝑛 poly-
nomials 𝑃𝑖 in variables (𝑥0, ..., 𝑥𝑛−1), where 𝑏 > 0 is an integer, when the following
properties hold:

� Non-degenerate: the ideal spanned by these polynomials is of dimension 0;

� Basal part: there exists a monomial order such that the leading term of 𝑃𝑖,
𝑖 < 𝑏, is the monomial 𝑥𝑑𝑖

𝑖 for some integer 𝑑𝑖 > 0.

Such a system is represented in Figure 1.

The idea of this notion is to describe a set of multivariate polynomials which is
“partially” a Gröbner basis. Indeed, it is sufficient for polynomials to form a Gröbner
basis that the leading term in each 𝑃𝑖 is of the form 𝑥𝑑𝑖

𝑖 . In a 𝑏-AB system, the first
𝑏 polynomials have this shape. In fact, an 𝑛-AB system is a Gröbner basis.

𝑥𝑑0
0 − 𝑃 ′

0(𝑥0, ..., 𝑥𝑛−1)

𝑥𝑑1
1 − 𝑃 ′

1(𝑥0, ..., 𝑥𝑛−1)

...

𝑥
𝑑𝑏−1

𝑏−1 − 𝑃 ′
𝑏−1(𝑥0, ..., 𝑥𝑛−1)

𝑃𝑏(𝑥0, ..., 𝑥𝑛−1)

𝑃𝑏+1(𝑥0, ..., 𝑥𝑛−1)

...

𝑃𝑛−1(𝑥0, ..., 𝑥𝑛−1)

𝑏-AB system

basal part

Figure 1: The structure of an 𝑏-AB system, where 𝑃𝑖(𝑥) = 𝑥𝑑𝑖
𝑖 − 𝑃 ′(𝑥).

Using this notion, we are ready to state the following conjecture.

Conjecture 1 (Monotonous Ideal Degree Conjecture (MIDC)) For a 𝑏-AB

system, the degree 𝐷𝐼 of the ideal is lower bounded by 𝐷𝐼 ≥
∏︀𝑏−1

𝑖=0 𝑑𝑖.

The intuition behind this conjecture is simple: the ideal degree corresponds to the
number of solutions the system has in the algebraic closure of the underlying field,
and this conjecture postulates that this number does not decrease when we take into
account the last equations. That is where the term “monotonous” comes from: we
assume that the ideal degree increases or stay constant but does not decrease when we
consider more equations. To put it differently, this conjecture posits that the actual
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Gröbner basis of the system contains the basal part, and that the last equations (those
not in the basal part) do not decrease the ideal degree.

This conjecture is obviously true when 𝑏 = 𝑛: in this case, the system is a Gröbner
basis, and the number of monomials “under the staircase” is indeed

∏︀𝑛−1
𝑖=0 𝑑𝑖.

According to our experiments, for a simplified XHash, this conjecture holds. In
fact, in our experiments, we do have that 𝐷𝐼 =

∏︀𝑛−1
𝑖=0 𝑑𝑖, even though the last poly-

nomials have identical leading terms. In that case the last equations participate as if
they had different leading terms. Still, we deem it safer at this stage to only take the
basal part into account when making a security claim.

On the Security of XHash. Applying our attack strategy against one word in
XHash8, i.e. solving a CICO instance with one 0 in the input and one in the output,
we simply obtain a FreeLunch [BBL+24] system. It is a particular case of an 𝑛-AB
system.

Under the MIDA, the ideal degree corresponding to an attack on 𝑤 words is lower
bounded by the complexity of attacking 1 word. Indeed, when 𝑤 > 1, the first
equations still form a basal part of the polynomial system, and only the last 𝑤 − 1
equations are not basal. As a consequence, we get a bound on 𝐷𝐼 which corresponds
to its value in the 𝑤 = 1 case, namely 𝐷𝐼 ≥ 𝑑ℓ𝑁𝑟 .

For XHash8, even ignoring the presence of the first equation with leading term 𝑥0

among the final equations, we get that 𝐷𝐼 ≥ 𝑑3×8 ≈ 267. Adding the equation in 𝑥0,
which also satisfies the criteria to be part of the basal part, we get 𝐷𝐼 ≥ 𝑑3×8×𝑑3×2 ≈
284. As a consequence, in order for Gröbner-based algebraic attacks to be a threat
against XHash8, we would need two things:

1. that the bound for 𝐷𝐼 is tight (experiments indicate that it is not), and

2. an FGLM-like algorithm with a complexity strictly sub-quadratic in 𝐷𝐼—in
fact, a complexity proportional to 𝐷1.5

𝐼 would give a complexity around 2126 in
this case: barely an attack.

For XHash12, we get a bound of 𝐷𝐼 ≥ 𝑑3×12 ≈ 2101, which is even higher—and thus
safer.

At this stage, we expect neither the bounds to be tight nor such an algorithm to
exist. Thus, we claim that XHash8 is safe against Gröbner-based algebraic attack.

3.2 Experimental Results

It is easy to design (and implement) a system of equation corresponding to an attack
against a greatly simplified XHash8, differing from the real one in the following ways.

� Use 𝑥 ↦→ 𝑥3 as a small S-box,

� Use a lower value for 𝑝 (namely, 𝑝 = 216−17) such that 𝑥 ↦→ 𝑥3 is a permutation,

� Decrease the number of branches, and consider different patterns for the appli-
cation of the cubic roots.

� resize the big S-box to operate on F2
𝑝 rather than F3

𝑝; and allow its replacement
by a simple (full) layer of branch-wide monomials (to better understand the
impact of big S-boxes).

The attached Python script does just that. We call ℓ the number of cubic roots
applied in parallel in each round (so that ℓ = 8 for XHash8 for instance), and 𝑤 the
number both of 𝑥𝑖 and of final equations.5

5We need these to be equal to maintain an ideal of dimension 0.
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Confirming the MIDC. Running experiments on a small number of rounds, we have
found that the Monotonous Ideal Degree Conjecture held. In fact, a stronger result
seems to hold in the case of XHash8: In this case, the ideal degree seems equal to

𝑑ℓ𝑟⏟ ⏞ 
𝑦𝑖

× 𝑑𝑘×2𝑟⏟  ⏞  
𝑥𝑗

,

which is 𝑑(𝑘−1)2𝑟 times bigger than the bound given by the conjecture.

On the Impact of 𝑇 . The much denser 𝑇 operation (operating over F3
𝑝) does not

influence the degree of the ideal. In that sense, it a priori does not provide more
resistance against algebraic attacks than a simpler layer of monomials applied on
each branch.

However, in practice, it does imply some important properties. First, its greater
density means that all the polynomials have an observably higher Hamming weight—a
property which gets stronger as the exponent increases. This means that the equa-
tions are hard to generate and to manipulate, and that targeting the (elimination of)
specific terms is likely to be much more complicated. More importantly, making the
polynomials denser is important to prevent algorithm targetting sparse systems to
become applicable.

Furthermore, by operating on several words at once, it prevents an attacker from
singling out any of them. Being able to do this is important to select which variables
to pick as the leading monomials, or to find heuristics to bypass rounds for free. As a
consequence, we consider that these layers offer a significant security increase, albeit
not one that is directly visible in the ideal degree.

Comparing XHash8 and XHash12. Unsurprisingly, computing the actual value of
𝐷𝐼 takes a lot longer for a simplified XHash with a full layer of cubic roots. Intuitively,
this makes sense: in this case, the polynomials obtained are further from being a
Gröbner basis, and thus SAGE needs to work harder to obtain one in order to compute
this quantity.
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