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Abstract. A common strategy for constructing multivariate encryption
schemes is to use a central map that is easy to invert over an extension
field, along with a small number of modifications to thwart potential
attacks. In this work we study the effectiveness of these modifications,
by deriving estimates for the number of degree fall polynomials. After
developing the necessary tools, we focus on encryption schemes using the
C∗ and Dobbertin central maps, with the internal perturbation (ip), and
Q+ modifications. For these constructions we are able to accurately pre-
dict the number of degree fall polynomials produced in a Gröbner basis
attack, up to and including degree five for the Dob encryption scheme
and four for C∗. The predictions remain accurate even when fixing vari-
ables. Based on this new theory we design a novel attack on Dob, which
completely recovers the secret key for the parameters suggested by its
designers. Due to the generality of the presented techniques, we also be-
lieve that they are of interest to the analysis of other big field schemes.

1 Introduction

Public key cryptography has played a vital role in securing services on the in-
ternet that we take for granted today. The security of schemes based on integer
factorization and the discrete logarithm problem (DLP) is now well understood,
and the related encryption algorithms have served us well over several decades.

In [32] it was shown that quantum computers can solve both integer factor-
ization and DLP in polynomial time. While large scale quantum computers that
break the actual implementations of secure internet communication are not here
yet, progress is being made in constructing them. This has led the community
for cryptographic research to look for new public key primitives that are based
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on mathematical problems believed to be hard even for quantum computers, so
called post–quantum cryptography.

In 2016 NIST launched a project aimed at standardizing post–quantum pub-
lic key primitives [29]. A call for proposals was made and many candidate schemes
were proposed. The candidates are based on a variety of problems, including the
shortest vector problem for lattices, the problem of decoding a random linear
code, or the problem of solving a system of multivariate quadratic equations over
a finite field (the MQ problem).

The basic idea for big-field encryption schemes based on the MQ problem
is to construct them around a central mapping F (X) defined over a large finite
field Fqd that is easy to invert. By using a vector space isomorphism between
Fqd and Fdq , the mapping F can be masked with secret invertible matrices S and

T from Fd×dq . The public key P of the scheme then essentially consists of the
composition P = T ◦ F ◦ S and the secret key consists of the pair (S, T ). By
choosing F appropriately P can be given as a set of quadratic polynomials in
Fq[x1, . . . , xd]. The first encryption scheme based on the MQ problem, named
C∗, was proposed in [28] and was broken by Patarin in [30]. Since then, several
multivariate encryption schemes have been proposed, for instance [31, 9, 34, 36,
14]. One typically modifies the original C∗ scheme to resist certain attacks, as
in [9, 14, 15], or uses a different central map altogether, e.g., [31, 34]. While some
schemes for digital signatures based on the MQ problem seem to be secure, it has
been much harder to construct encryption schemes that are both efficient and
secure. The papers [22, 45, 37, 33, 1, 24] all present attacks on MQ-based public
key encryption schemes, and as of now we are only aware of a few (e.g. [41]) that
remain unbroken.

In [27] a new kind of central mapping is introduced, which can be used
to construct both encryption and signature schemes. The novel feature of the
central mapping is that it is a polynomial that has a high degree over an extension
field, while still being easy to invert. The encryption variant proposed in [27] is
called Dob and uses two types of modifications to its basic construction.

Our Contribution

The initial part of our work provides a theoretical analysis of (combinations
of) two modifications for multivariate cryptosystems. The Q+–modification was
(to the best of our knowledge) first proposed in [27], while the second, internal
perturbation (ip), has been in use in earlier schemes [18, 14, 15]. More specifically,
we develop tools for computing the dimension of the ideal associated with these
modifications at different degrees, and a theory for how this relates to first fall
polynomials. This in turn provides key insights into the complexity of algebraic
attacks based on Gröbner basis techniques.

As an application, we focus on the Dob encryption scheme proposed in [27],
and C∗ variants using the aforementioned modifications (examples include [14,
15]). In all cases we are able to deduce formulas that predict the exact number
of first fall polynomials for degrees 3 and 4, as well as degree 5 for the Dob en-
cryption scheme. These formulas furthermore capture how the number of degree
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fall polynomials changes as an attacker fixes variables, which also allows for the
analysis of hybrid methods (see e.g. [5]).

Finally, the newfound understanding allows us to develop a novel attack on
the Dob encryption scheme. Through analyzing and manipulating smaller, pro-
jected polynomial systems, we are able to extract and isolate a basis of the secret
modifiers, breaking the scheme. While the details of the attack have only been
worked out for the Dob encryption scheme, we believe the techniques themselves
could also be applied to the C∗ variants, as well as generalised to other central
maps and modifications.

Relation to Previous Work

This paper is based upon [44] from PKC 2021, and its extended version [43]. We
now include numerous changes and improvements over these previous works, but
will limit ourselves to point out the three most significant improvements here.
Firstly, the fundamental theory presented in section 4.1 has been reformulated.
It is now more rigorous, and should be easier to apply in practice. Secondly,
estimates and experiments for variants of C∗ have been included. This also gives
credence to the claim from [44] that the theory can indeed be applied to con-
structions beyond Dob. Thirdly, the new attack presented in [44] crucially relied
on heuristic arguments for solving a certain polynomial system. This is now
bypassed using MinRank techniques, which enables the attacker to recover the
final linear forms of the key. This strengthens the attack by turning it into a
key–recovery attack that is reliant on fewer heuristics, and has a significantly
smaller estimated complexity.

Organisation

The paper is organized as follows. In section 2 we recall the relation between Fd2
and F2d , as well as the necessary background for solving multivariate systems
over F2. In section 4 we develop the general theory that explores the effectiveness
of the modifications Q+ and ip . Section 3 studies the behaviour of Dob and C∗

without modifiers, which will be used in section 5 where formulas predicting the
number of degree fall polynomials for the modified variants are deduced. Exper-
imental data verifying the accuracy of these formulas are presented in section 6.
In section 7 we develop the novel attack on the Dob encryption scheme, using
the information learned from the previous sections. Finally, Section 8 discusses
and concludes the work.

Notation and Definitions

Multivariate big–field encryption schemes are defined using the field Fqn and the
n-dimensional vector space over the base field, Fnq . In practical implementations,
q = 2 is very often used, and we restrict ourselves to only consider this case in
the paper. The polynomial systems we work with will either be over the boolean
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ring B(n) = F2[x1, . . . , xn]/〈x21 + x1, . . . , x
2
n + xn〉, or over the quotient ring

B(n) = F2[x1, . . . , xn]/〈x21, . . . , x2n〉. These polynomial systems will at various
places also be considered as polynomial maps.

Throughout the paper P and F will refer to the modified and unmodified
polynomial systems of a multivariate scheme (see Eq. (4.1)), over B(n). This
scheme will sometimes be particular variants C∗ or Dob; we trust this will be
clear from the context. With the superscript h, Ph (resp. Fh) denotes the system
consisting of the homogeneous quadratic forms of the polynomials in P (resp.
F), over B(n).

Table 1 contains more information on terminology that will be used through-
out the paper. We list it here for easy reference.

Term Meaning

B(n) B(n) = F2[x1, . . . , xn]/〈x21 + x1, . . . , x
2
n + xn〉

B(n) B(n) = F2[x1, . . . , xn]/〈x21, . . . , x2n〉
B(n)ν The set of homogeneous polynomials of degree ν in n variables.
〈R〉 The ideal associated with the set of polynomials R.
〈R〉ν The ν–th degree part of a graded ideal 〈R〉.

dimν(〈R〉) The dimension of 〈R〉ν as an F2–vector space.

Syz(F) The (first) syzygy module of Fh. (See Section 2)

Triv(F) The trivial syzygy module of Fh. (See Section 2)
S(F) S(F) = Syz(F)/Triv(F).
SI(F) I · Syz(F)/I · Triv(F) (see Section 4.1)
ψ,ψ Maps defined in Eq. (2.4) and Lemma 2 respectively.

Q+, qi, t The Q+ modifier, with q1, . . . , qt added quadratic polynomials.
(ip), vi, k The internal perturbation modifier with v1, . . . , vk linear forms.

N
(α,β)
ν Estimate of the number of degree fall polynomials at degree ν.

Table 1: Notation used in the paper

2 Polynomial System Solving

Let P = (p1, . . . , pm) be the public key of a multivariate encryption system, and
y1, . . . , ym a fixed ciphertext. A standard technique used in the cryptanalysis of
multivariate schemes, is to compute a Gröbner basis associated with the ideal
〈pi+ yi〉1≤i≤m (see for example [12] for more information on Gröbner bases). As
we are interested in an encryption system, we can reasonably expect a unique
solution in the Boolean polynomial ring B(n). In this setting the solution can be
read directly from a Gröbner basis of any order. An essential tool for Gröbner
basis computation is the Macaulay matrix, which is defined as follows.

Definition 1. Let P be an (inhomogeneous) polynomial system in B(n), of de-
gree two. An (inhomogeneous) Macaulay matrix of P at degree D, MD(P), is
a matrix with entries in F2, such that:
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1. The columns are indexed by the monomials of degree ≤ D in B(n) according
to a graded monomial order σ.

2. The rows are indexed by the possible combinations xαpi, where 1 ≤ i ≤ n
and xα ∈ B(n) is a monomial of degree ≤ D − 2. The entries in one row
corresponds to the coefficients of the associated polynomial.

Similarly, we define the homogeneous Macaulay matrix of P at degree D,MD(P),
by considering Ph ∈ B(n), only including monomials of degree D in the columns,
and rows associated to combinations xαphi , deg(xα) = D − 2.

Some of the most efficient algorithms for computing Gröbner bases are based on
linear algebra, such as F4 [21]. In the usual setting, this algorithm proceeds in a
step–wise manner; each step has an associated degree, D, where all the polyno-
mial pairs of degree D are reduced simultaneously using linear algebra techniques
on a submatrix of a Macaulay matrix. This step–wise procedure motivates the
definition of the solving degree3, which we define for the inhomogeneous case in
the following. Consider the Macaulay matrixMD(P), w.r.t. a graded monomial
order σ, in its row echelon form. Some of its low-end rows may correspond to
polynomials of degree < D. Suppose there is such a polynomial g, and a mono-
mial h of degree ≤ D − deg(g) such that hg corresponds to a row that is not
in the row space of MD(P). Then a new row hg is concatenated to the matrix
and the process is repeated. Let MatD denote matrix at the termination of this
routine. It is clear that for a sufficiently large D, the rowspace of MatD will
contain a Gröbner basis of 〈P〉 w.r.t. σ.

Definition 2 (Solving Degree). The solving degree, Dsolv, of the polynomial
system P w.r.t. a graded monomial order σ is the smallest integer D such that
the rowspace of MatD contains a Gröbner basis of 〈P〉.

The time complexity for computing a Gröbner basis of P can now be upper
bounded by:

ComplexityGB = O
( (Dsolv∑

i=0

(
n

i

))ω )
, (2.1)

where 2 ≤ ω ≤ 3 denotes the linear algebra constant. Determining Dsolv is in
general difficult, but there is an important class of polynomial systems that is well
understood. Recall that a homogeneous polynomial system, Fh = (fh1 , . . . , f

h
m) ∈

B(n)m, is said to be semi–regular if the following holds; for all 1 ≤ i ≤ m and
any g ∈ B(n) satisfying

gfhi ∈ 〈fh1 , . . . , fhi−1〉 and deg(gfhi ) < Dreg, (2.2)

then g ∈ 〈fh1 , . . . , fhi 〉 (note that fhi is included since we are over F2). Here
Dreg is the degree of regularity as defined in [4], (for i = 1 the ideal generated by

3 There have been different definitions for the solving degree in the literature. Here
we follow the definition of [7] (adapted to the Boolean ring).
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∅ is the 0–ideal). We will also need a weaker version of this definition, where we
say that Fh is D0–semi–regular, if the same condition holds, but for D0 < Dreg

in place of Dreg in Eq. (2.2). An inhomogeneous system F is said to be (D0–
)semi–regular if its upper homogeneous part is. Define the series

Tm,n(z) =
(1 + z)n

(1 + z2)m
. (2.3)

The Hilbert series of B(n)/〈F〉 for a quadratic, semi–regular system F over
B(n), is given by [Tm,n(z)]

+
, where [·]+ means truncation after the first non-

positive coefficient (Corollary 7 in [4]). Moreover, the degree of regularity can
be computed explicitly as the degree of the first non–positive term in this series.
Determining whether a given polynomial system is semi–regular may, in general,
be as hard as computing a Gröbner basis for it. Nevertheless, experiments seem
to suggest that randomly generated polynomial systems behave as semi–regular
sequences with a high probability [4], and the degree of regularity can in practice
be used as the solving degree in Eq. (2.1). We will denote the degree of regularity
for a semi–regular sequence of m polynomials in n variables as Dreg(m,n). On
the other hand, it is well known that many big–field multivariate schemes are
not semi–regular (e.g., [22][9]). In these cases the first fall degree is often used
to estimate the solving degree ([16][45]).

Syzygies and Degree Fall Polynomials. Fix a homogeneous quadratic poly-
nomial system Ph = (ph1 , . . . , p

h
m) ∈ B(n)m, which induces a map:

ψP
h

: B(n)m −→ B(n)
(b1, . . . , bm) 7−→

∑m
i=1 bip

h
i .

(2.4)

In the following we will also simply write ψ for this map whenever the underlying
polynomial system is clear from the context. The kernel of ψ forms the first
syzygy module of Ph. In the following, we will simply refer to this module
as the syzygies of Ph, and denote it Syz(Ph) = Ker(ψ). Moreover, ψ splits
into graded maps ψν−2 : B(n)mν−2 −→ B(n)ν and we define the B(n)–modules
Syz(Ph)ν = Ker(ψν−2), i.e., the ν–th grade of the (first) syzygy module of Ph.
When ν = 4, Syz(Ph)4 will contain the Koszul Syzygies4, which are generated
by (0, ..., 0, phj , 0, ..., 0, p

h
i , 0, ..., 0) where phj is in position i and phi is in position

j, and the field syzygies, which are generated by (0, ..., 0, phi , 0, ..., 0) with phi in
position i. These syzygies correspond to the cancellations phj p

h
i + phi p

h
j = 0 and

(phi )2 = 0. As they are always present, and not dependent of the structure of
Ph, they are known as trivial syzygies. In particular, for a semi-regular system
these are the only types of syzygies that will occur at dimensions strictly smaller
than Dreg. We write Triv(Ph) to denote the module generated by these trivial
syzygies. Being a submodule of Syz(Ph), we write S(Ph) = Syz(Ph)/Triv(Ph)
for the resulting quotient module. Triv(Ph)ν is the ν–th graded component of

4 Here we follow the nomenclature used, for instance, in [25].
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the trivial syzygies, and the aforementioned constructions respect this grading,
in the sense that Triv(Ph)ν ⊆ Syz(Ph)ν , and S(P)ν = Syz(Ph)ν/Triv(Ph)ν (for
an explanation why these syzygies do not yield any useful information when
considered over the affine ring B(n), see [45], p. 6). We now have the tools to
define the first fall degree for a polynomial system P.

Definition 3. The first fall degree associated with the quadratic polynomial sys-
tem P is the natural number

Dff = min{ D ≥ 2 | S(Ph)D 6= 0 }.

The inhomogeneous polynomials (considered over B(n)) that are associated with
S(Ph)Dff will be called first fall polynomials. We will, more generally, refer to

the inhomogeneous polynomials associated with S(Ph) as degree fall polynomi-
als. Note that earlier works that focuses on the first fall degree relies on the
usefulness of degree fall polynomials for computing Gröbner bases. While Dff

is measured by syzygies over B(n), it is implicitly assumed that their inhomoge-
neous counterparts will be non-zero overB(n), and can contribute to the Gröbner
basis computation. Such a degree fall polynomial will in particular correspond
to a polynomial hg, as described in the lead up to Definition 2. Our use of Dff

and first fall polynomials will differ significantly from this use. Indeed, in Section
7 we will see how the modifiers of a big-field scheme can be recovered from the
syzygies over B(n), without any assumption on their impact on Gröbner basis
algorithms.

Representations over base and extension fields For any fixed isomorphism
Fd2 ' F2d , there is a one–to–one correspondence between d polynomials in B(d)

and a univariate polynomial in F2d [X]/〈X2d +X〉 (see 9.2.2.2 in [8] for more de-
tails). For an integer j, let w2(j) denote the number of nonzero coefficients in the
binary expansion of j. For a univariate polynomial H(X), we define maxw2

(H)
as the maximal w2(j) where j is the degree of a term occurring in H.

Lemma 1. Let P (X) be the univariate representation of the public key of a
multivariate scheme, and suppose there exists a polynomial H(X) such that

maxw2(H(X)P (X)) < maxw2(H(X)) + maxw2(P (X)).

Then the multivariate polynomials corresponding to the product H(X)P (X) will
yield degree fall polynomials from (multivariate) degree maxw2

(H) + maxw2
(P )

down to degree maxw2(HP ).

It was mentioned in [22] that the presence of polynomials satisfying the con-
dition in Lemma 1 was the reason for Gröbner basis algorithms to perform
exceptionally well on HFE–systems. Constructing particular polynomials that
satisfy this condition has also been a central component in the security analyzes
found in [16] and [45].
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3 Degree Fall Polynomials in Unmodified Big-Field
Encryption Schemes

There are several ways to construct a central map F : Fd2 → Fd2 to be used in
a big–field scheme. A common approach is to fix an isomorphism φ : Fd2 → F2d

between the vector space over the base field and the extension field, and choose
two random invertible d×d-matrices over F2, called S and T . The mapping F is
then constructed as the composition F = S◦φ−1◦F ◦φ◦T , where F (X) ∈ F2d [X],
maxw2

(F ) = 2, and such that the equation F (X) = Y is easy to solve for any
given Y . In particular, this ensures that F is a system of d quadratic polynomials,
and ciphertexts can easily be decrypted with the knowledge of F and the secret
matrices S and T . Later we will use the notation C = φ−1 ◦F ◦φ to denote only
the multivariate version of the mapping F , so we can also write F = S ◦ C ◦ T .

There are two main ways in the literature to construct F with these proper-
ties:

1. F (X) = Xe, where w2(e) = 2. This is the case for C∗ [28].
2. F (X) =

∑t
i=0 ciX

ei , where w2(ei) ≤ 2 for all i, and each ei is bounded by
a relatively small constant. This is used in HFE [31].

Indeed, both C∗ and HFE have been suggested with the ip–modification, known
as PMI and ipHFE, respectively [14, 18]. These schemes were broken in [24,
20], by specialised attacks recovering the kernel of the linear forms of the ip–
modification. Nevertheless, a later version of the C∗ variant, PMI+ [15], also
added the “+” modification in order to thwart this attack5. We note that ipHFE
and PMI fits into the framework to be presented in Section 4. In the following
we will first analyse C∗ without any modifications. We will also introduce and
analyse the Dobbertin polynomial, which can be seen as a third method for
constructing F (X) and used as a basis for constructing the Dob scheme. In
Section 5 we will then analyze Dob and C∗ when both schemes are enhanced
with modifications.

3.1 The C∗ scheme and its syzygies

The basic C∗ scheme can be seen as a variant of 1., as outlined above. The
central polynomial F (X) used in C∗ is often written as

F (X) = X2θ+1,

for an integer 0 < θ < d, such that gcd(2d−1, 2θ+1) = 1. This monomial is then

easily invertible in F2d [X]/(X2d + X) and has 2-weight 2 so it is realized as d

5 While we are not aware of a comprehensive analysis of PMI+, the following is re-
marked in [10] p. 1026: “...the original parameters of PMI+ are easily broken by a
simple modification of [6] and still larger parameters can be defeated by the new
MinRank techniques developed in [17].” (The citations in the quote are changed to
the enumeration used in this paper).
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quadratic polynomials in B(n). The public key of C∗ consists of these d polyno-
mials, denoted by F , where F = T ◦φ−1 ◦F ◦φ ◦S. In the following analysis we
will also allow for cases where the number of variables in the scheme, n, is lower
than the number of polynomials d which represents that some of the original d
variables have been fixed to 0. Not only does this cover the projection modifier
(see e.g., [9]), but we shall also see cases where fixing variables is beneficial for
an attacker.

From the central mapping F = X2θ+1 it is easy to see that multiplying F

with X and X2θ (of 2-weight 1) will give polynomials of 2-weight 2:

XF = X2θ+2

X2θF = X2θ+1+1

So over B(n) these will correspond to 2d degree-fall polynomials occurring at
degree 3. In addition, the linearisation equations found in [30] can be written as

X2d−θF + X2θF 2d−θ = 0, which yields another set of d degree fall polynomials

at degree 3. Over the ground field, F 2d−θ just represents a linear combination
of the quadratic polynomials corresponding to F (due to 2d−θ having 2-weight

1) and does not increase the degree. In our description here, we have X2d−θF +

X2θF 2d−θ = 0, but in a real attack using a known ciphertext these will lead
to linear polynomials over F2. All these linear polynomials have been found to
be linearly independent for all but a few exceptional cases of θ and d [13]. For
the rest of the paper we assume that we do not encounter one of these cases.
Extensive experiments have shown that the degree fall polynomials found above
then indeed yield 3d linearly independent degree fall polynomials. We therefore
proceed with the assumption

dim3(S(F)) = 3d.

As d of these degree fall polynomials are linear, the complete system of equations
from a given ciphertext gets solved at degree 3, and it is never necessary to go
to higher degrees to break a C∗ scheme without any modifiers.

Even though one never needs to go to higher degrees than 3 to solve an
unmodified C∗ scheme, for modified versions of C∗ it is still interesting to know
dimν(S(F)) for ν > 3. As a start, we can estimate that dim4(S(F)) ≈ 3dn,
since one can take the 3 univariate degree fall polynomials occurring at degree
3, consider them as 3d polynomials over B(n), and multiply each of them with all
the variables x1, . . . , xn that have not been fixed to 0. A naive calculation on the
number of polynomials resulting from this process will count some polynomials
twice, leading to a lower number of independent degree fall polynomials actually
occurring. In [45] these dependencies are explored and the corrected estimate for
dim4(S(F)) is found to be

dim4(S(F)) = (3n− 9)d.

For higher values of ν similar formulas may be found using 3d
(
n
ν−3
)

as a starting
point, but the interplay between the three degree fall polynomials occurring at
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degree 3 becomes more difficult to sort out. However, expressions for higher
degrees might still be found experimentally, or through careful analysis.

3.2 The Dob Encryption Scheme

The Two–Face family, introduced in [27], presents a way to construct a function
F (X) that is different from the two types of central mappings mentioned in the
beginning of this section. Writing Y = F (X), we get the polynomial equation

E1(X,Y ) = Y + F (X) = 0.

When F has the Two–Face property, it can be transformed into a different
polynomial E2(X,Y ) = 0, which has low degree in X and have 2–weight at
most 2 for all exponents in X. The degree of E2 in Y is arbitrary. Given Y ,
it is then easy to compute an X that satisfies E2(X,Y ) = 0, or equivalently,
Y = F (X).

For a concrete instantiation, the authors of [27] suggest the polynomial

F (X) = X2m+1 +X3 +X, (3.1)

where d = 2m−1. Dobbertin showed in [19] that F is a permutation polynomial.
In [27], based on the results of [19], it is further pointed out that

E2(X,Y ) = X9 +X6Y +X5 +X4Y +X3(Y 2m + Y 2) +XY 2 + Y 3 = 0

holds for any pair Y = F (X). Note that F itself has a high degree in X, but
the highest exponent of X found in E2 is 9 and all exponents have 2–weight at
most 2.

The public key F associated with Eq. (3.1) under the composition described
at the beginning of this section is called nude Dob, and was observed in [27] to be
weak. Experiments showed that the associated multivariate system had solving
degree three. Indeed, in Section 3.4 we will show that this is the case for any d.

The (full) Dob encryption scheme is made by extending nude Dob with the
two modifications, Q+ and ip, to be described in Section 4.

3.3 Syzygies of the Unmodified Dob Scheme

The goal of this subsection is to estimate dimν(S(F)), for ν = 3, 4, 5, where
F denotes nude Dob. We start by inspecting F (Eq. (3.1)) over the extension

field F2d [X]/〈X2d + X〉. Note that maxw2
(F ) = 2, and consider the following

polynomials:

G1 = XF = X2m+2 +X4 +X2

G2 = (X2m +X2)F = X2m+1+1 +X2m+1 +X5 +X3.

G1 and G2 are both products of F and a polynomial of 2–weight one, but the
resulting polynomials have maxw2(Gi) = 2. By Lemma 1 they will correspond
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to 2d degree fall polynomials at degree three, down to quadratic polynomials.
We expect that the above degree fall polynomials form all the syzygies at degree
3 and confirmed this assumption by extensive experiments. Hence we assume

dim3(S(F)) = 2d. (3.2)

It was noted in [27] that experiments of nude Dob had a solving degree of three,
though the authors did not provide a proof that this is always the case. The
presence of G1 and G2 ensures that the first fall degree of nude Dob is three.
A complete proof that the solution of nude Dob can always be found by only
considering polynomials of degree three is a little more involved, and is included
in Section 3.4.

Things get more complicated for dimensions ν > 3. While we expect the
two polynomials G1 and G2 to generate a significant part of the syzygies, we
also expect there to be other generators, as well as cancellations to keep track of.
Due to the complexity of fully characterizing the higher degree parts of S(F), we
instead found an expression for its dimension at degrees ν = 4, 5 experimentally.
The experimental setup is further described at the end of this subsection. Note
that the formulas we present in this subsection will all yield numbers that are
multiples of d. This strongly suggests that all the syzygies of the system come
from its extension field structure. These relations could then, in principle, be
written out analytically as was the case for ν = 3. In particular, this makes it
reasonable to expect the formulas to continue to hold for larger values of d (i.e.,
beyond our experimental capabilities).

In the subsequent formulas we will allow the number of variables n to be
smaller than d, as we also did for C∗. For ν = 4, we find the following expression:

dim4(S(F)) = (2n− 1)d, (3.3)

where we note that the term 2nd has been generated by G1 and G2.
For ν = 5, we have

dim5(S(F)) =

(
2

(
n

2

)
− n− 2d− 20

)
d. (3.4)

Once more, some of these terms can be understood from the syzygies of lower
degrees. The contribution from the polynomials G1 and G2 from ν = 3 will now
be the 2

(
n
2

)
d term. The term ‘−d’ from ν = 4 will now cause the ‘−nd’ term. We

do not have any easy explanation for the remaining terms −2d2−20d, but believe
they have to do with inclusion/exclusion when counting the same polynomials
multiple times.

Experimental Setup. The experiments used to test Eq. (3.3) and Eq. (3.4)
have been done as follows. The public polynomials of nude Dob are first gener-
ated, and we consider their upper homogeneous part, Fh, over B(d). dimν(S(F))
is computed as the dimension of the kernel of the homogeneous Macaulay matrix
Mν(Fh), minus dimν(Triv(Fh)). For ν = 4, 5 we tested all odd d, 25 ≤ d ≤ 41,
all matching the values predicted by Eq. (3.3) and Eq. (3.4).
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3.4 Nude Dob is Fully Broken at Degree 3

In [27] it is noted that experiments indicate that nude Dob has a solving degree
3. We will now prove that this is indeed the case. Let c′ denote the ciphertext
of a plaintext m′ ∈ Fd2 encrypted with nude Dob and secret key S, T . We will

first consider the situation over F2d [X]/〈X2d +X〉 and then via the isomorphism
φ transfer it to B(d). To do so we set C := φ ◦ T−1(c′). Let F (X) denote the
central map of nude Dob. Consider F (X) + C = X2m+1 + X3 + X + C then
there exists a unique M with F (M) = 0 and m′ = S−1 ◦φ−1(M). Tedious hand
calculation shows that

C2
(
(1 +X2)(XF )

)2m
+ (C2 +X4)F 2m+1

+X2m+1

(C2F 2 + F 4)

+C2m+2F 2m + C2m+2XF +
(
(X4 +X2)(XF ) + (X2 +X)CF

)2
}

(I)

=
X16 + (C2m+1

+ C2m+2 + C4 + C2)X4

+(C2 + 1)X8 + (C2m+2 + C4)X2 + C2m+3X.

}
(II)

(3.5)

The polynomial (II) is linearized and of degree 16. Thus its zeros form a
subspace of dimension at most 4 and M is one of the zeros as F (M) = 0.
It follows that (II) will correspond to a linear system l1(x1, . . . , xd) = . . . =
ld(x1, . . . , xd) = 0 of rank at least d − 4 over B(d) from which the multivariate
representation of M can be computed. It follows that equation (3.5) holds for
the public key F as well as when modified by S, T , i.e. there exists polynomials
l′1(x1, . . . , xd) = . . . = l′d(x1, . . . , xd) = 0 from which the plaintext m′ can be
easily recovered from c′.

It remains to show that l′1, . . . , l
′
d can be computed from the public key

p1, . . . , pd, using polynomials of degree at most 3. Recall from Section 3.3 that
XF correspond to degree fall polynomials down to degree two in B(d). Each such
polynomial will correspond to a solution ai,j , γi,j , βi, δ ∈ F2, for the equation

(a1,0 + a1,1x1 + . . .+ a1,dxd)p1 + . . .+ (ad,0 + ad,1x1 + . . .+ ad,dxd)pd+∑
γi,jxixj +

∑
βixi + δ = 0

in B(d) (recall that we substitute x2i by xi, i = 1, . . . , d, in this ring). As described
in Section 3.3, we expect the solution space, w.r.t. ai,j , γi,j , βi, and δ, to be of
dimension 2d. Let b1, . . . , b2d be a basis of the degree fall polynomials derived
in this step, i.e., a basis of the partial polynomials

∑
γi,jxixj +

∑
βixi + δ

from this solution space. The only terms in (I) of 2–weight four are generated
from (XF ) and can be substituted by its degree fall polynomials. Equation (3.5)
remains valid by doing so. Consequently, by employing the above degree fall
polynomials, we will find non-trivial solutions a′i,j , β

′
i, δ
′ ∈ F2 for the following

system of equations.

(a′1,0 + a′1,1x1 + . . .+ a′1,dxd)p1 + . . .+ (a′d,0 + a′d,1x1 + . . .+ a′d,dxd)pd+

(a′d+1,0 + a′d+1,1x1 + · · ·+ a′d+1,dxd)b1 + · · ·+ (a′3d,0 + a′3d,1x1 + · · ·+ a′3d,dxd)b2d+

β′1x1 + · · ·+ β′dxd + δ′ = 0.
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In particular, the linear forms can be written l′j =
∑
β′j,ixi + δ′j , where the β′j,i

and δ′j–coefficient will be associated with solutions of this system.
Since all the systems described above only includes polynomials of degree at

most three, finding a plaintext remains practical, even for d = 129. In practice
one can also apply algorithms that can exploit degree fall polynomials, such as
F4. If this is the case, the polynomials associated with XF will be found in the
first step of degree three, and the linear polynomials (II) will be found in the
ensuing step of degree three.

3.5 Equivalent Keys

For multivariate schemes, the secret key is often not unique. Rather, there can
be many equivalent keys associated with the same public key. This is studied by
Wolf and Preneel in [40]. In this subsection we will examine the equivalent keys
of C∗ and nude Dob. This will be particularly useful in Section 7.5, where we will
recover (equivalent) secret transformations S, T by MinRank techniques for the
modified Dob encryption scheme (see [3, 23] for details on the MinRank problem).
The questions arising when trying to recover S, T are how many equivalent keys
one can expect, and whether the recovered triplet (T ′, C′, S′) is sufficient for our
attack.

Recall that C or C′ denotes the multivariate representation of a central map-
ping F or F ′, respectively, with respect to the chosen isomorphism φ for the
setup of the system. The following definition from [40] (which we have general-
ized to include a weaker, homogeneous version) provides the means to address
these questions.

Definition 4. The triplets (T, C, S) and (T ′, C′, S′) are called equivalent if they
yield the same public key, i.e. if T ◦C◦S = T ′◦C′◦S′, where S, S′, T, T ′ are invert-
ible matrices and C, C′ are multivariate representation of the quadratic central
maps F (X), F ′(X). We will also write that (T, C, S)h and (T ′, C′, S′)h are equiv-

alent if their upper homogeneous part is, i.e., if (T ◦ C ◦ S)
h

= (T ′ ◦ C′ ◦ S′)h.

Equivalent Keys for C∗. Let Qi denote the matrix representing the linear
mapping X 7→ X2i , i = 0, . . . , d − 1, over Fd2, with respect to the fixed iso-
morphism φ. Similarly, let Λ be the matrix representing the linear mapping
X 7→ λX, λ ∈ F∗2d , with respect to the same basis. It is a routine matter to

show that Qd−iΛ
−(1+2θ) ◦ C ◦ ΛQi = C, where C is the multivariate repre-

sentation of a C∗ scheme using F (X) = X1+2θ . Hence for a given T, S the

triplet
(
TQd−iΛ

−(1+2θ), C, ΛQiS
)

yields an equivalent key. The following Theo-

rem shows that this describes all the equivalent keys when we restrict the central

map to C = X1+2θ , i.e., the equivalent keys of the form T ◦ C ◦ S = T ′ ◦ C ◦ S′.
We use the notation S(λ) for S ∈ Fd×d2 and λ ∈ F2d to mean the element in
F2d resulting from the matrix-vector multiplication between S and the vector
representation of λ.

13



Remark 1. Combining Theorem 4.3 and Lemma 4.5 of [40] yields all equivalent
keys of C∗ for finite fields Fq, where q > 2. Theorem 1 below completes these
results by characterizing the equivalent keys for C∗ with base field F2. Hence
the statement in Theorem 1 holds for C∗ over any binary base field.

Theorem 1. Let C be the multivariate representation in B(d) of the central map

F (X) = X1+2θ ∈ F2d , where 0 < θ < d is an integer satisfying gcd(2d − 1, 2θ +
1) = 1. Furthermore, let S, S′ and T, T ′ be invertible d × d matrices over F2.
Then the following holds for some matrices Qi and Λ as defined above.

1. If T ◦ C ◦ S = T ′ ◦ C ◦ S′ then T ′ = TQd−iΛ
−(1+2θ), S′ = ΛQiS.

Proof. The proof is organised as follows. We will show:

1. If T ◦ C ◦ S = C and S(1) = 1 then T = Qd−i and S = Qi.

2. If T ◦ C ◦ S = C then T = Qd−iΛ
−(1+2θ) and S = ΛQi.

3. If T ◦ C ◦ S = T ′ ◦ C ◦ S′ then T ′ = TQd−iΛ
−(1+2θ), S′ = ΛQiS.

Showing statement 1. is equivalent to consider T ◦ C = C ◦ S−1. Let
∑d−1
i=0 tiX

2i

and
∑d−1
i=0 siX

2i denote the unique linearized polynomials in the quotient ring

F2[X]/〈X2d + X〉 corresponding to T and S−1, respectively. We assume that

2θ < d which is always possible, since otherwise we could consider X1+2d−θ

instead of X1+2θ . Moreover, d 6= 2lθ, l ≥ 1 as otherwise 2θ + 1 divides 2d − 1

and thus x2
θ+1 would not be bijective. The equality T ◦ C = C ◦S−1 can now be

written
d−1∑
i=0

tiX
2i(1+2θ) =

(
d−1∑
i=0

siX
2i

)1+2θ

over F2[X]/〈X2d +X〉. We now show that this is only possible if both linearized

polynomials are of the form X2i , for some i. Expanding the left-hand side, we
have

d−1∑
i=0

tiX
2i(1+2θ) =

d−θ−1∑
i=0

tiX
2i+2i+θ +

θ−1∑
i=0

td−θ+iX
2i+2d−θ+i . (3.6)

The right-hand side can be written as the product(
d−1∑
i=0

siX
2i

)(
d−1∑
i=0

s2
θ

d−θ+iX
2i

)
, (3.7)

where indices are computed modulo d. Without loss of generality, we consider the
case s0 6= 0. The other cases follow in exactly the same way as will become clear

from the proof for this case. In (3.6), only the monomials X1+2θ and X1+2d−θ

are of the form X1+2j , for all 0 ≤ j ≤ d− 1. On the right-hand side the sum

s0X

(
d−1∑
i=0

s2
θ

d−θ+iX
2i

)
+ s2

θ

d−θX

(
d−1∑
i=1

siX
2i

)
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yields all the monomials of this form. Consequently the term s0s
2θ

d−θX
2 has to

vanish. As we consider the case s0 6= 0 it follows that s2
θ

d−θ = 0. Hence only

s0X

(
d−1∑
i=0

s2
θ

d−θ+iX
2i

)

generates monomials of the form X1+2j . In this product all terms have to vanish

except for s1+2θ

0 X1+2θ and s0s
2θ

d−2θX
1+2d−θ since these are the only terms of

this form that exist in (3.6). Thus, apart from s0, only sd−2θ is possibly not
equal to zero. Note that d− 2θ > 0 by assumption. Expanding (3.7) shows that

the right-hand side contains the term sd−2θs
2θ

0 X
2d−2θ+2θ , but the monomial

X2d−2θ+2θ exists on the left-hand side (3.6) only if d = 4θ. This is not a valid
choice of d, as mentioned earlier in the proof. Thus sd−2θ = 0 as well and it

follows that the corresponding linearized polynomial for S−1 is s1+2θ

0 X by our
assumption. As we further require S(1) = S−1(1) = 1 we get s0 = 1 and that
S−1 simply corresponds to X, and consequently T corresponds to X as well. As
stated in the beginning of the proof, the cases si 6= 0, i = 1, . . . , d − 1 follow
exactly in the same way, requiring all other coefficients to be zero.

For statement 2. we now generalize and let S(1) = λ for some non-zero λ,
with the corresponding matrix Λ. Since C is the mapping that raises the input to

the power 1 + 2θ, we have that T ◦C ◦S is equivalent to TΛ1+2θ ◦C ◦Λ−1S. Now

(Λ−1S)(1) = 1, so from statement 1. we know that Λ−1S = Qi and TΛ1+2θ =
Qd−i. This yields the stated expressions for S and T .

For statement 3. we know that T ◦ C ◦ S = T ′ ◦ C ◦ S′ is equivalent to C =

T−1T ′◦C◦S′S−1. From 2. we then get T−1T ′ = Qd−iΛ
−(1+2θ) and S′S−1 = ΛQi,

leading to the stated expressions for T ′ and S′. This ends our proof. ut

Equivalent Keys for Dob. We do not know of a way to prove a similar
statement on the number of equivalent keys for nude Dob, but we strongly believe
that they can only be generated using the maps Qi and Λ described above. This
is also widely believed to hold for the similar HFE scheme, as seen e.g., in [40,
6] (note that we need not consider the “additive sustainer” mentioned in these
works, as we do not allow S and T to be affine).

If we restrict ourselves to cases where the central map F ′(X) has to consist
of the same terms as the original map F (X) from Eq. (3.1), one can show that
the triplet

(
TQd−iΛ

−1, C′, QiS
)

gives an equivalent key for a nude Dob scheme,
where C′ denotes the multivariate representation of the altered Dob mapping
F ′(X) = λ(X2m+1 +X3 +X). We will use this observation in Section 7.5.
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4 Estimating the Number of Degree Fall Polynomials

We start by introducing a general setting, motivated by the Dob and C∗ encryp-
tion schemes. Let F : Fn2 → Fm2 be a system of m quadratic polynomials over
B(n). Furthermore, consider the following two modifiers6:

1. The internal perturbation (ip) modification chooses k linear forms v1, . . . , vk,
and adds a random quadratic polynomial in the vi’s to each polynomial in
F .

2. The Q+ modifier selects t quadratic polynomials q1, . . . , qt, and adds a ran-
dom linear combination of them to each polynomial in F .

Let Hip be the random quadratic polynomials in v1, . . . , vk and HQ+ the random
linear combinations of q1, . . . , qt. A modification of the system F can then be
written as

P : Fn2 −→ Fm2
x 7−→ F(x) +Hip(v1, . . . , vk) +HQ+

(q1, . . . , qt).
(4.1)

Recall that in order to be able to decrypt it is necessary to be able to invert the
central mapping. When modifiers are added to F , it can no longer be readily
inverted algebraically. The polynomials v1, . . . , vk, q1, . . . , qt are considered part
of the secret key and are therefore known to the party doing the decryption,
but their evaluation in the plaintext is unknown to the decryptor. The only way
to do decryption when modifiers are in use is to guess on their values when
evaluated, and remove their effect when inverting F . Each guess will give a
candidate plaintext, which can be checked for correctness. For this reason the
number of modifiers, k and t, must be relatively small as one must expect to try
2k+t−1 inversions on average before the correct decryption is found.

The problem we will be concerned with in this section is the following: given
full knowledge of the degree fall polynomials of the system F , what can we say
about the degree fall polynomials of the system P?

4.1 The Big Picture

Much of the following theory will be presented using ideals and modules. We
start by briefly introducing some notation, as well as recalling a few fundamental
concepts; for more details we refer to [2]. Let I and J be two ideals over a
ring R, and N an R–module. I + J is the usual sum of ideals. We will write
I ∩J = {e | e ∈ I and e ∈ J} to denote the intersection ideal. The product ideal
is written IJ = {lj | l ∈ I and j ∈ J}. Note that IJ is always a subideal of I∩J ,

6 The authors of [27] named these two modifiers ⊕ and “ + ”. Note that in earlier
literature (c.f. [39]), the “ + ” modification refers to a different modification than
what is described in [27], and the⊕modification has been called internal perturbation
(ip). To the best of our knowledge, the “ + ” modification from [27] has not been
used in earlier work. To avoid any confusion, we have chosen to stick with the name
(ip) and use Q+ for [27]’s “+”
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but the other inclusion does not hold in general. I · N will denote the module
generated by the set {la | l ∈ I and a ∈ N}. When I and N are graded, I ·N will
inherit this grading by defining (I ·N)ν as the possible sums of elements {la | l ∈
Iα, a ∈ Nβ and α+β = ν}. We will also write SI(Fh) = I ·Syz(Fh)/I ·Triv(Fh)
(note that SI(Fh) could in general be different to I · S(Fh), where S is the
quotient module defined prior to Definition 3). If G is a polynomial system, we
will write 〈G〉 for the ideal generated by the polynomials of G.

Let Fh and Ph denote the quadratic homogeneous parts of the systems F
and P respectively, and consider them over B(n). For a non-negative integer
α ≤ k, we define V α to be the homogeneous ideal in B(n) that is generated by
all possible combinations of α linear forms from the ip modification, i.e.:

V α = 〈(vi1vi2 · · · viα)h | 1 ≤ i1 < i2 < . . . < iα ≤ k〉. (4.2)

In other words, V α is the product ideal

α︷ ︸︸ ︷
V 1 · V 1 · . . . · V 1. Similarly, for the

quadratic polynomials associated with the Q+ modifier we define Qβ for a pos-
itive integer β ≤ t to be the product ideal:

Qβ = 〈(qi1qi2 · · · qiβ )h | 1 ≤ i1 < i2 < . . . < iβ ≤ t〉. (4.3)

Finally, for 0 ≤ α ≤ k and 0 ≤ β ≤ t, we define the ideal of different combinations
of the modifiers, M (α,β) = (V α +Qβ), along with the boundary cases M (α,0) =
V α, M (0,β) = Qβ and M (0,0) = 〈1〉.

The following result is an important first step to understand how the degree
fall polynomials in F behave when modifiers are introduced to the scheme. Recall

the map ψP
h

: B(n)m −→ B(n) from (2.4), and its associated graded maps
ψν−2 : B(n)mν−2 −→ B(n)ν .

Lemma 2. Let Ph, Fh, and M (2,1) be defined as above, and ψP
h

be as de-
fined in Eq. (2.4), which we will abbreviate with ψ in the sequel. Then for any
homogeneous ideal I ⊆ B(n):

i) 〈ψ
(
I · Syz

(
Fh
))
〉 is a homogeneous subideal of

(
I〈Ph〉

)
∩
(
IM (2,1)

)
.

ii) 〈ψ(I · Triv(Fh))〉 is a homogeneous subideal of IM (2,1)〈Ph〉.
In particular, ψ induces a B(n)–module homomorphism

ψI : SI(Fh) −→
(
IM (2,1)

)/(
IM (2,1)〈Ph〉

)
iii) 〈ψ

(
IM (2,1) · Syz

(
Fh
))
〉 is a homogeneous subideal of IM (2,1)〈Ph〉.

Proof. i) Let fhi , phi denote the polynomials of Fh and Ph respectively. By
construction, we can write phi = fhi +

∑
j ci,jmj , for suitable constants ci,j ∈ F2,

where mj denote the modifiers qhr and (vrvl)
h. Let la be an element of the set

generators of I · Syz(Fh), such that l ∈ I and a ∈ Syz(Fh). We have ψ(la) =
lψ(a), where ψ(a) ∈ 〈Ph〉 by definition of ψ. This shows the first inclusion,
〈ψ
(
I · Syz

(
Fh
))
〉 ⊆

(
I〈Ph〉

)
. Furthermore we see that the fhi –parts of ψ(a) will
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vanish. Hence ψ(a) will be a polynomial generated from the elements of V 2 and
Q1, and the second inclusion, 〈ψ(I · Syz(Fh))〉 ⊆ IM (2,1), also follows.
ii) Let l be a generator of I, and recall from Section 2 that Triv(Fh) is generated
by Koszul– and field syzygies. For a Koszul syzygy the image will be

ψ(l(0, . . . , 0, fhi0 , 0 . . . , 0, f
h
j0 , 0 . . . , 0)) = lfhi0

(∑
j

cj0,jmj

)
+ lfhj0

(∑
j

ci0,jmj

)

= l

(∑
j

cj0,jmj

)(
phi0 + (

∑
j

ci0,jmj)

)
+ l

(∑
j

ci0,jmj

)(
phj0 + (

∑
j

cj0,jmj)

)

= l

(∑
j

cj0,jmj

)
phi0 + l

(∑
j

ci0,jmj

)
phj0 .

The image of a field syzygy can be written as

ψ
(
l
(
0, . . . , 0, fhi0 , 0, . . . , 0

))
= lfhi0p

h
i0 = l

(
phi0 + (

∑
j

ci0,jmj)

)
phi0

= l

(∑
j

ci0,jmj

)
phi0 ,

which shows 〈ψ(I · Triv(Fh))〉 ⊆ I ·M (2,1)〈Ph〉.
For the map ψI , note that

(
IM (2,1)

)/ (
IM (2,1)〈Ph〉

)
is a quotient B(n)–

module, and let π denote the quotient map

π :
(
IM (2,1)

)
−→

(
IM (2,1)

)/(
IM (2,1)〈Ph〉

)
.

For an equivalence class [a] ∈ SI(Fh), the map ψI ([a]) is given by applying

π ◦ ψ to any representative of [a]. This is well–defined due to i) and ii), and ψI

inherits the properties of a B(n)–module homomorphism from ψ and π. Finally,
iii) follows from i), using the ideal IM (2,1). ut

As before, ψI naturally splits into graded maps ψI
ν
, ν ≥ 0, and we will simply

write ψ in cases where I = 〈1〉.
We now focus on how this relates to the encryption schemes we are interested

in. In the previous section we noticed that (unmodified) C∗ and Dob have degree
fall polynomials at degree 3, meaning that Sν(F) is non-trivial for these schemes
when ν ≥ 3. The effect of adding modifiers to the polynomial system can be seen
as mapping Sν(F) under ψ. In general, an element of Syz

(
Fh
)

is not trivial

under ψ, and will thus not correspond to syzygies in Ph. However, consider two
distinct classes [a], [b] ∈ Sν(F) such that ψ

ν
([a]) = ψ

ν
([b]), and fix a pair of

representatives a = (a1, . . . , ad) and b = (b1, . . . , bd) of the classes [a] and [b]
respectively. Then, by Lemma 2 ii) there is a tuple (m1, . . . ,md), with mi ∈
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M (2,1), satisfying

ψ(a1 − b1 +m1, . . . , ad − bd +md) =

d∑
i=1

(ai − bi +mi)pi = 0.

Hence (a1 − b1 + m1, . . . , ad − bd + md) is a syzygy in Ph, which is moreover a
nontrivial syzygy if at least one of the polynomials ai − bi is not an element of
M (2,1).

Lemma 2 contains information on when we can expect such syzygies to occur.
If the dimension of the domain of ψ

ν
exceeds the dimension of its codomain, then

ψ
ν

cannot be injective, and collisions of the form ψ
ν
([a]) = ψ

ν
([b]) are guaran-

teed to occur. Lemma 2 iii) moreover implies that the elements in SM(2,1) (Fh)
should be deducted when counting the dimensions of the domain. Indeed, any

representative of an element [a] ∈ SM(2,1) (Fh) will consist of polynomials ai ∈
M (2,1). This argument of counting dimensions can be made more explicit. In the
previous section we did indeed give concrete estimates for the dimension of the
domain, i.e., dimν(S(Fh)), for certain degrees ν when F is either C∗ or Dob. The

dimensions dimν

(
M (2,1)

)
, dimν

(
M (2,1)〈Ph〉

)
, and dimν

(
SM(2,1) (Fh)) will be

studied in later sections.
As we consider ψI

ν
using I = M (0,0) = 〈1〉 for our first estimate for number

of degree fall polynomials at degree ν, we denote the estimate N
(0,0)
ν :

N (0,0)
ν = dimν(S(Fh))− dimν(M (2,1))

+ dimν

(
M (2,1)〈Ph〉

)
− dimν

(
SM

(2,1) (
Fh
))
.

(4.4)

When N
(0,0)
ν is a positive number, this is the number of degree fall polynomials

we expect to find based on restrictions posed by ψ
ν
. If N

(0,0)
ν is non-positive we

do not expect any degree fall polynomials at degree ν. The benefits of having the
expression in Eq. (4.4) is that the study of the relatively complex polynomial
system Ph can be broken down to studying simpler systems. The dimensions
of M (2,1) can, in particular, be further studied under the assumptions that the
modifiers form a semi–regular system. In addition to being a reasonable assump-
tion as the modifiers are randomly chosen, this is also the ideal situation for the
legitimate user, as this maximizes the dimension of M (2,1). We will now gener-
alise the ideas presented so far, arriving at several expressions that can be used
to estimate the number of degree fall polynomials.

Generalised Estimates of Degree Fall Polynomials. Instead of considering
all the syzygies of Fh, as we did with ψ, we can more generally focus on the maps

ψI , where I = M (α,β), for some α, β ≥ 0. Observe from Lemma 2 ii) that this

decreases both the dimension of the domain and codomain of ψI , and will thus
lead to different degree fall estimates. Indeed, in Section 6 we will see several
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examples where this yields a better estimate than N
(0,0)
ν . Following through with

this idea, we arrive at the following estimate for α, β ≥ 0:

N (α,β)
ν = dimν

(
SM

(α,β)

(Fh)
)
− dimν

(
M (α,β)M (2,1)

)
+ dimν

(
M (α,β)M (2,1)〈Ph〉

)
− dimν

(
SM

(α,β)M(2,1)
(
Fh
))

.
(4.5)

We now have several different estimates for degree fall polynomials, varying
with the choice of α, β. Any of these may be dominating, depending on the
parameters of the scheme. The general estimate at degree ν is then taken to be
their maximum:

Nν = max{0, N (α,β)
ν | 0 ≤ α ≤ k and 0 ≤ β ≤ t}. (4.6)

Note in particular that if Nν = 0, then all our estimates are non–positive, and
we do not expect any degree fall polynomials at this degree.

We conclude this subsection by stressing that the aim of this section has been
to investigate one of the aspects that can lead to a system exhibiting degree fall
polynomials. The estimates presented should not be used without care to derive
arguments about lower bounds on the first fall degree. Nevertheless, we find
that in practice these estimates and their assumptions seem to be reasonable.
With the exception of a slight deviation in only two cases (see Section 5.3), the
estimates lead to formulas that are able to describe all our experiments for the
Dob and C∗ encryption schemes that will be reported in Section 6.

4.2 Dimension of the Modifiers

The estimate given in Equation (4.5) requires knowledge of the dimension of
(products of) the ideals M (α,β). These will in turn depend on the chosen modifi-
cations V α and Qβ . In this section we collect various results, largely based on the
inclusion-exclusion principle, that will be needed to determine these dimensions.
We start with the following elementary properties.

Lemma 3. Consider M (α,β) = (V α+Qβ), and positive integers α0, β0, ν. Then
the following holds:

(i) V α0V α = V α0+α and Qβ0Qβ = Qβ0+β.
(ii) V α0Qβ0 ⊆ V αQβ if α ≤ α0 and β ≤ β0.

(iii) M (α0,β0)M (α,β) = M (α0+α,β0+β) + V α0Qβ + V αQβ0 .
(iv) dimν(M (α,β)) = dimν(Qβ) + dimν(V α)− dimν(Qβ ∩ V α).
(v) dimν(M (α0,β0)M (α,β)) = dimν(M (α0+α,β0+β)) + dimν(V α0Qβ)

+ dimν(V αQβ0)− dimν(M (α0+α,β0+β) ∩ V α0Qβ)

− dimν(M (α0+α,β0+β) ∩ V αQβ0)− dimν(V α0Qβ ∩ V αQβ0)

+ dimν(M (α0+α,β0+β) ∩ V α0Qβ ∩ V αQβ0).
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Proof. Properties (i) – (iv) follow from the appropriate definitions in a straight-
forward manner; we give a brief sketch of property (v) here. From property (iii)
we know that M (α0,β0)M (α,β) can be written as the sum of the three ideals
M (α0+α,β0+β), V α0Qβ and V αQβ0 . We start by summing the dimension of each
of these three ideals individually. Any polynomial belonging to exactly two of
these subideals is now counted twice, which is why we subtract by the combina-
tions intersecting two of these ideals. Lastly, a polynomial belonging to all three
of the subideals will, at this point, have been counted thrice, and then subtracted
thrice. Hence, we add the dimension of intersecting all three subideals. ut

The dimension dimν(V α) can be further inspected using the following result.

Lemma 4. Suppose that v1, . . . , vk are k linearly independent linear forms in
B(n). Then

dimν(V α) =
∑

i≥α,j≥0
i+j=ν

(
k

i

)(
n− k
j

)
(4.7)

holds under the conventions that
(
a
b

)
= 0 if b > a, and

(
a
0

)
= 1.

Proof. As v1, . . . , vk are linearly independent, we can choose n− k linear forms
of B(n), wk+1, . . . , wn, that constitute a change of variables

B(n) ' B′ = F2[v1, . . . , vk, wk+1, . . . wn]/〈v21 , . . . , w2
n〉.

For any monomial γ ∈ B′, we will define degv(γ) as its degree in the v1, . . . , vk-
variables, and degw(γ) as its degree in the variables wk+1, . . . , wn. The elements

of V α of (total) degree ν, is now generated (in B
′

as an F2–vector space) by all
monomials γ such that degv(γ) ≥ α and degv(γ) + degw(γ) = ν. The number
of all such monomials are counted in Eq. (4.7). ut

Lemma 5. Let qh1 , . . . , q
h
t be a D0–semi–regular system of homogeneous quadratic

polynomials over B(n). Then, for any 2 ≤ ν < D0, we have

dimν(Q1) =

(
n

ν

)
− [zν ]Tt,n(z),

where [zν ]Tt,n(z) denotes the coefficient of the monomial zν in the expansion of
the series Tt,n(z), as given in Eq. (2.3).

Proof. By assumption, the series Tt,n(z) coincides with the Hilbert series of
B(n)/Q1, for the terms with degree 2 ≤ ν < D0. From the additive property of
the Hilbert function, we have that dimν(Q1) = dimν(B(n))− [zν ]Tt,n(z), and it
is well–known that dimν(B(n)) =

(
n
ν

)
. ut

While Lemma 5 can be used to find dimν(Q1) for any given n, t, ν, we can also
find closed-form expressions in n and t for small values of ν. In particular, we get
dim3(Q1) = nt, dim4(Q1) =

(
n
2

)
t− (

(
t
2

)
+ t2) and dim5(Q1) =

(
n
3

)
t−n(

(
t
2

)
+ t2),

which will be useful to us in later sections.
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Lemma 6. Suppose that (v1, . . . , vk, q1, . . . , qt) is D0–semi–regular, and con-
sider 1 ≤ α ≤ k and 1 ≤ β ≤ t. Then

(V α ∩Qβ)ν = (V αQβ)ν ,

holds for all ν < D0.

Proof. (Sketch) The product of any pair of ideals is contained in their intersec-
tion. For the other direction, consider a non–trivial element e ∈ (V α ∩ Qβ)ν .
Then, for some polynomials fi, gj , we can write e =

∑
fiq

h
i1
· · · qhiβ ∈ Q

β
ν , and

e =
∑
gj(vj1 · · · vjα)h ∈ V αν , which yields the syzygy∑

fi(q
h
i1 · · · q

h
iβ

) +
∑

gj(vj1 · · · vjα)h = 0.

By assumption, all syzygies of degree < D0 of (v1, . . . , vk, q
h
1 , . . . , q

h
t ) will be

generated by the field and Koszul syzygies of the vi– and qhj –polynomials. It

follows that (after possibly reducing by syzygies generated by only qh1 , . . . , q
h
t )

we have fi ∈ V α. Similarly, we have gj ∈ Qβ . In particular, e ∈ V αQβ . ut

A general characterisation of the ideal V αQβ is trickier. We are content with
discussing some special cases of its dimension, which will be of interest to us.

Example 1 Let 1 ≤ α ≤ k and 1 ≤ β ≤ t.

(a) The generators of V αQβ are of degree α + 2β, hence dimν(V αQβ) = 0 for
all ν < α+ 2β.

Suppose furthermore that (v1, . . . , vk, q1, . . . , qt) is D0–semi–regular.

(b) If D0 > α+2β+1, then dim(α+2β+1)(V
αQβ) =

(
t
β

)
dimα+1(V α). To see this,

note that 〈V αQβ〉α+2β+1 is generated by elements of the form vl1 . . . vlαqc1 . . . qcβxr,
where 1 ≤ l1 < . . . < lα ≤ k, 1 ≤ c1 < . . . < cβ ≤ t and 1 ≤ r ≤ n. The
semi–regularity assumption assures that there will be no cancellations (save
for the ones already accounted for in dimα+1(V α)).

(c) If D0 > α+2β+2, then dim(α+2β+2)(V
αQβ) =

(
t
β

)
dimα+2(V α)−

(
k
α

)[(
t
β

)
t−(

t
β+1

)]
. The reasoning is similar to (b), with the difference that dimα+2(V α)

will now count the polynomials of the form qhc (vl1 . . . vlα)h. There are
(
k
α

)[(
t
β

)
t−(

t
β+1

)]
combinations of these that will reduce to 0 over B(n) (when multiplied

with the combinations qhc1 . . . q
h
cβ

).

5 Degree Fall Polynomials in the C∗ and Dob Schemes
with ip and Q+ Modifiers

In the following we apply the formulas for the number of degree fall polynomials
we have derived, and consider the strength of the C∗ and Dob schemes when
both the ip and Q+ modifiers are in use together. We start by considering the

impact of M (2,1)〈Ph〉 and SM(2,1) (Fh) for the cases we are interested in.
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5.1 IM (2,1)〈Ph〉 and SIM(2,1) (Fh
)

for the C∗ and Dob Central
Maps

We start with I = 〈1〉, noting that in this case M (2,1)〈Ph〉 will have degree at
least 4. Since the polynomials generating M (2,1) are randomly chosen, we do not
expect non-trivial polynomials in the intersection of M (2,1) and 〈Ph〉 at degree
≤ 5. Hence the following estimate.

dimν

(
M (2,1)〈Ph〉

)
=


0, for ν = 3,

d
(
dim2(M (2,1))

)
for ν = 4,

d
(
dim3(M (2,1))

)
for ν = 5.

(5.1)

Multiplying with an ideal I 6= 〈1〉 will increase the smallest degrees of all the in-
volved polynomials. Among the variants we will consider throughout the paper,
we only expect a non–trivial contribution when I = M (1,0) and ν = 5 (see Equa-
tion (A.1), Appendix A), in which case we estimate dim5(M (1,0)M (2,1)〈Ph〉) to
be d

(
dim3(M (1,0)M (2,1))

)
.

For SIM(2,1) (Fh), we note that both the unmodified Dob and C∗ maps have

a first fall degree of 3. Thus the non-trivial elements of M (2,1) · Syz
(
Fh
)

are
expected to be of degree at least 5 (when considered as polynomials under ψ).
For the cases we will be interested in, this term will then only have an impact
for I = 〈1〉, ν = 5, in which case we expect it to be

dim5

(
SM

(2,1) (
Fh
))

= dim2(M (2,1))dim3(S(Fh)). (5.2)

5.2 Degree Fall Polynomials of the C∗ Scheme with Modifiers

Using the formulas from Section 4 we now investigate how well the ip and Q+

modifiers protect C∗ against a Gröbner basis attack. The public key of C∗ with
the ip and Q+ modifiers is constructed as in Equation (4.1) and denoted P.

Recall that dimν(S(Fh)) is found in Section 3.1. When accounting for the
modifiers, we proceed as described in Section 4.2, where in particular expressions
for dimν(V 2) are given in (4.7) and dimν(Q1) are given following Lemma 5. We
will assume that the chosen modifying polynomials {v1, . . . , vk, q1, . . . , qt} form a

(ν + 1)–semi–regular system. The dimensions of IM (2,1)〈Ph〉 and SIM(2,1) (Fh)
is estimated in Section 5.1. Plugging all this into (4.4) for ν = 3 we get

N
(0,0)
3 =

dim3(S(Fh))︷︸︸︷
3d −

dim3(V
2)︷ ︸︸ ︷(

(n− k)

(
k

2

)
+

(
k

3

))
−

dim3(Q
1)︷︸︸︷

nt .
(5.3)
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We now apply (4.4) for ν = 4. As seen in Lemma 3 iv), we also have a non-trivial
term dim4(Q1 ∩ V 2), which we compute using Lemma 6 and Example 1.

N
(0,0)
4 =

dim4(S(Fh))︷ ︸︸ ︷
(3n− 9)d −

dim4(V
2)︷ ︸︸ ︷((

k

2

)(
n− k

2

)
+ (n− k)

(
k

3

)
+

(
k

4

))
−

dim4(Q
1)︷ ︸︸ ︷((

n

2

)
t−

(
t

2

)
− t
)

+

dim4(V
2∩Q1)︷ ︸︸ ︷(
k

2

)
t +

dim4(M
(2,1)〈Ph〉)︷ ︸︸ ︷((

k

2

)
+ t

)
d .

(5.4)

We also give the expression for N
(1,0)
4 as this case will dominate in some of the

experiments in the next section. In this case we would expect dim4(SV 1

(Fh)) =
3kd, but the experiments show that the true expression should be (3k+1)d. The
experiments also show there should be a −

(
t
2

)
in the formula that we can not

account for. The formula for N
(1,0)
4 consistent with all experiments is given as

N
(1,0)
4 =

dim4

(
SV

1
(Fh)

)
︷ ︸︸ ︷
(3k + 1)d −

dim4(V
3)︷ ︸︸ ︷((

k

3

)
(n− k) +

(
k

4

))

−

dim4(Q
1V 1)︷ ︸︸ ︷

t

(
k(n− k) +

(
k

2

))
−

(
t

2

)
.

(5.5)

For the C∗ scheme we stop giving explicit formulas here at degree 4. To get
correct formulas for degree 5, one must first compute dim5(S(Fh)). While it
may be possible to find the closed expression for this via experiments, it is of
less interest since the C∗ encryption scheme is so weak in any case.

5.3 Degree Fall Polynomials of the Dob Scheme with Modifiers

We now turn to the Dob scheme, and use the tools from Section 4 to write

out explicit formulas for (variants of) the estimates N
(α,β)
ν , up to degree 5.

The approach for the formulas is the same as described in Section 5.2, with
the difference that dimν(S(Fh)) is now given according to Section 3.3. The
dimensions that are not covered by combining results discussed so far, will be
commented on separately.

N
(0,0)
3 =

dim3(S(Fh))︷︸︸︷
2d −

dim3(V
2)︷ ︸︸ ︷(

(n− k)

(
k

2

)
+

(
k

3

))
−

dim3(Q
1)︷︸︸︷

nt .
(5.6)
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N
(0,0)
4 =

dim4(S(Fh))︷ ︸︸ ︷
(2n− 1)d −

dim4(Q
1)︷ ︸︸ ︷(

t

(
n

2

)
−

(
t

2

)
− t
)

+

dim4(Q
1∩V 2)︷ ︸︸ ︷

t

(
k

2

)

−

dim4(V
2)︷ ︸︸ ︷((

k

2

)(
n− k

2

)
+

(
k

3

)
(n− k) +

(
k

4

))
+

dim4(M
(2,1)〈Ph〉)︷ ︸︸ ︷

d

((
k

2

)
+ t

)
.

(5.7)

N
(1,0)
4 =

dim4

(
SV

1
(Fh)

)
︷︸︸︷
2kd −

dim4(V
3)︷ ︸︸ ︷((

k

3

)
(n− k) +

(
k

4

))

−

dim4(Q
1V 1)︷ ︸︸ ︷

t

(
k(n− k) +

(
k

2

))
.

(5.8)

Recall that at degree 5 we expect the dimension of SM(2,1) (Fh) to be non-
trivial, and given by Equation (5.2).

N
(0,0)
5 =

dim5(S(Fh))︷ ︸︸ ︷(
2

(
n

2

)
− n− 2d− 20

)
d−

dim5(Q
1)︷ ︸︸ ︷(

t

(
n

3

)
− n

(
t

2

)
− tn

)

−

dim5(V
2)︷ ︸︸ ︷((

k

2

)(
n− k

3

)
+

(
k

3

)(
n− k

2

)
+

(
k

4

)
(n− k) +

(
k

5

))

+

dim5(Q
1∩V 2)︷ ︸︸ ︷

t

((
k

2

)
(n− k) +

(
k

3

))

+

dim5(M(2,1)〈Ph〉)︷ ︸︸ ︷
d

(
nt+

((
k

2

)
(n− k) +

(
k

3

)))
−

dim5

(
SM

(2,1)
(Fh)

)
︷ ︸︸ ︷
2d

(
t+

(
k

2

))
.

(5.9)

It is a bit more involved to derive N
(1,1)
5 and N

(2,1)
5 , and we will refer to

Appendix A for more details. It would also appear that our assumptions are
slightly off for these two estimates, as our experiments consistently yield 4d
more degree fall polynomials than we are able to explain (see Remark 3 for more
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details). We present here the experimentally adjusted versions:

N
(1,1)
5 = d

(
k(2n− k − 2) + t(2 + k) +

(
k

3

)
+ 4

)
−

(
t

2

)
n−

(
k

3

)(
n− k

2

)

−

(
k

5

)
−

(
k

4

)
(n− k)− t

(
k

(
n− k

2

)
+

(
k

2

)
(n− k)− kt

)
.

(5.10)

N
(2,1)
5 = 2d

((
k

2

)
+ t+ 2

)
−
((

k

4

)
(n− k) +

(
k

5

))

− t
((

k

2

)
(n− k) +

(
k

3

))
−

(
t

2

)
n.

(5.11)

We stop giving further explicit formulas for the number of degree fall poly-
nomials occurring at various degrees when modifiers are taken into account. For
degree 6 and higher, the terms in (4.4) will be less simple, complicating matters
further. However, we hope that we have demonstrated that it is possible to get
accurate estimates of the number of degree fall polynomials in various big-field
constructions, even when modifications suggested in the literature are in use.
By breaking the counting problem into smaller parts and treating each part
separately, accurate (but complicated) formulas can be derived and explained.

Note on EFLASH. In [45] the cipher EFLASH [9], an encryption scheme using
C∗ with the minus and projection modifiers, was broken using similar techniques
as described here. In particular, formulas were derived that predicts the number
of degree fall polynomials for degrees ν = 3, 4, for this construction. We note that
removing a small number of public polynomials (i.e., the minus modification)
behaves very similarly to the Q+ modifier. It follows that the formulas in [45]
can easily be derived from the framework presented in Section 4 (see Section 4.1
in [42] for more details). While a thorough examination of the minus modifier
is beyond the scope of this work, we believe this observation strongly suggests
that the framework introduced in Section 4 can be expanded to include other
modifiers.

6 Experimental Results on Degree Fall Polynomials

In the previous section we developed the theory on how to estimate the number
of first fall polynomials, ending up with several formulas. This section is focused
on the accuracy of these formulas, and how they can be used by an attacker. Note
that since we are interested in the unique structure of the encryption schemes,
we will always assume that ‘generic’ degree fall polynomials do not interfere.
More specifically, when inspecting a system of d polynomials in n variables at
degree ν, we assume that d and n is chosen such that Dreg(d, n) > ν.
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6.1 Fixing Variables

The formulas separate d, the size of the field extension, and n, the number of
variables. While the Dob and C∗ encryption schemes uses d = n, an attacker can
easily create an overdetermined system with n < d by fixing some variables. This
approach, known as the hybrid method, can be viewed as a trade–off between
exhaustive search and Gröbner basis techniques, and its benefits are well–known
for semi–regular sequences [5]. From Eqs. (5.3) to (5.11), we find that for the
relevant choices of parameters (d, t, k), a greater difference between n and d can
increase the number of degree fall polynomials. This means that a hybrid method
will have a more intricate effect on the Dob and C∗ systems, than what we would
expect from random systems. To a certain extent, an attacker can “tune” the
number of degree fall polynomials, by choosing the amount of variables to fix.
Of course, if the intent is to find a solution of the polynomial system through a
Gröbner basis, this comes at the added cost of solving the system 2r times, where
r is the number of fixed variables, but in Section 7 we will present a different
attack that circumvents this exponential factor.

Finally, one could ask whether it is reasonable to expect Eqs. (5.3) to (5.11) to
be accurate after fixing a certain number of variables. It is, for instance, possible
that different degree fall polynomials will cancel out, as certain variables are
fixed. However, this has not occurred in the experiments we have performed (see
Section 6.3), where the formulas remain precise as n is varied.

6.2 Using the Degree Fall Formulas

We briefly recall how the formulas found in Section 5 relate to the public poly-
nomials of a C∗ or Dob encryption scheme. Let P be the polynomial system
associated with a Dob or C∗ scheme of fixed parameters (d, n, t, k) (where n is
as described in Section 6.1). We expect the non–trivial dimension (i.e., the di-
mension of the part that is not generated by Triv(Fh)) of the kernel ofMν(Ph)

to be given by the maximum of the formulas N
(α,β)
ν , for ν = 3, 4, 5.

If a step–wise algorithm such as F4 is used, we expect the formulas to predict
the number of degree falls polynomials, but only at the first fall degree. Suppose,
for instance, that N3 = 0, but N4 > 0. Then this algorithm runs a second step
at degree 4, using the newly found degree fall polynomials. This means that
there are effectively more available polynomials in the system when (if) a step
of degree 5 is performed, and in this case we do not expect the formulas we have
for N5 to be accurate.

Note in particular that if all the formulas we have are non–positive, an at-
tacker is likely required to go up to step degree ≥ 6 in order to observe first fall
polynomials.
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6.3 Experimental Results

We have run a number of experiments with the Dob and C∗ systems of varying
parameters (d, n, t, k). A subset7 of them is presented in Table 2 and Table 3.
Gröbner bases of the systems were found using the F4 algorithm implemented in
the computational algebra system Magma. The script used for the experiments
is available at [26].

In Table 2 and Table 3 we use the following notation. ‘Dff ’ is the experi-
mentally found first fall degree. ‘N (predicted)’ is the number of first fall poly-
nomials as predicted by the equations in Section 5. ‘N (Magma)’ is the number
of first fall polynomials read from the verbose output of Magma, written as
‘degree : {# of degree fall polynomials at this degree}’.

The solving degree Dsolv (Definition 2) was found experimentally by Magma.
In the instances where the algorithm did not run to completion due to memory
constraints, we give Dsolv as ≥ Z, where Z is the degree of the step where
termination occurred. The degree of regularity for semi–regular systems of the
same size, Dreg(d, n), is also given. ‘Step Degrees’ lists the degrees of the steps
that are being performed by F4 up until linear relations are found. Once a
sufficient number of linear relations are found, Magma restarts F4 with the
original system, as well as these linear relations. This restart typically needs a
few rounds before the entire basis is found, but its impact on the running time
of the algorithm is negligible, which is why we have chosen to exclude it when
listing the step degrees. For convenience, the step where first fall polynomials
are found is marked in blue and the most time consuming step is marked in red.
The color purple is used to mark the steps where these two coincide.

Table 2: Number of degree fall polynomials for C∗ with ip and Q+ modifiers
d n t k θ Dff N N Dsolv Step

(Q+) (ip) (predicted) (Magma) (Dreg(d, n)) Degrees

35 30 1 3 13 4 N
(0,0)
4 : 1464, N

(1,0)
4 : 204 3:1464 4 (6) 2,3,4,4

45 42 2 4 13 4 N
(0,0)
4 : −453, N

(1,0)
4 : 115 3:115 5 (7) 2,3,4,4,4,5

45 42 1 5 13 4 N
(0,0)
4 : −2125, N

(1,0)
4 : 150 3:150 5 (7) 2,3,4,4,5

65 40 2 4 11 4 N
(0,0)
4 : 2265, N

(1,0)
4 : 335 3:2265 4 (6) 2,3,4,4

65 40 2 6 11 4 N
(0,0)
4 : −2317, N

(1,0)
4 : 101 3:101 5 (6) 2,3,4,4,5,4

65 40 1 6 11 4 N
(0,0)
4 : −1619, N

(1,0)
4 : 321 3:321 5 (6) 2,3,4,4,4,5

65 40 3 5 11 4 N
(0,0)
4 : −549, N

(1,0)
4 : 127 3:127 5 (6) 2,3,4,4,5

77 41 4 5 17 4 N
(0,0)
4 : −39, N

(1,0)
4 : 101 3:101 5 (6) 2,3,4,4,4,5

136 60 0 6 24 4 N
(0,0)
4 : 2736, N

(1,0)
4 : 1353 3:2736 4 (6) 2,3,4,4

7 Table 3 is just a small sample of the experiments we have run for the Dob encryption
scheme. More experiments, covering a total of four pages, is available in Appendix
G of [43], all of which are consistent with the formulas presented in Section 5.3.
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Table 3: Number of degree fall polynomials for Dob with ip and Q+

modifiers.
d n t k Dff N N Dsolv Step

(Q+) (ip) (predicted) (Magma) (Dreg(d, n)) Degrees

53 53 0 0 3 N
(0,0)
3 : 106 2:106 3 (9) 2,3,3

53 53 0 3 4 N
(0,0)
4 : 1999 3:1999 4 (9) 2,3,4,4

53 53 3 0 4 N
(0,0)
4 : 1596 3:1596 4 (9) 2,3,4,4

59 29 0 7 4 N
(1,0)
4 : 21 3:21 5 (5) 2,3,4,4,5

37 25 2 3 4 N
(0,0)
4 : 692 3:692 4 (5) 2,3,4,4

31 29 0 8 5 N
(1,1)
5 : 478 4:478 5 (6) 2,3,4,5,5,5

31 30 0 8 5 N
(2,1)
5 : 264 4:264 5 (6) 2,3,4,5,5,5,4

39 37 1 7 5 N
(2,1)
5 : 136 4:136 ≥ 6 (7) 2,3,4,5,5,5,6...

57 38 4 6 5 N
(1,1)
5 : 2086 4:2086 ≥ 6 (6) 2,3,4,5,5,6. . .

57 37 4 6 5 N
(1,1)
5 : 2847 4:2847 5 (6) 2,3,4,5,5

129 50 6 6 5 N
(0,0)
5 : 64024 4:64024 ≥ 5 (6) 2,3,4,5,5...

A first observation is that in all experiments we find that ‘N (predicted)’
matches ‘N (Magma)’. We also find that fixing variables affects the cross–over

point between the formulas N
(α,β)
ν , as for instance seen in the rows 6 and 7 of

Table 3. We note that N
(0,0)
ν tend to be dominant when n� d, and that N

(2,1)
5

in Table 3 only seems to have an impact when k is large and t is small. For the
majority of cases we observe that Dff = Dsolv or Dsolv + 1, but one should be
careful in drawing any conclusions from this, seeing that our experiments are in
practice limited to computations of D < 6. The relation between n and Dsolv is
also noteworthy. For instance, in row 9 of Table 3 we have d = 57 and n = 38;
Dff is 5, but Dsolv ≥ 6. In row 10 we fix one more variable, n = 37 (while
keeping everything else as before), and find Dsolv = 5.

In Table 2 we have put emphasis on examples where N
(1,0)
4 dominates, to

show the terms in (5.5) we can not explain are consistently present. One of the
exception is the last row, where d = 136 and k = 6 was suggested parameters in
[14] (the same choice of parameters, along with the “+” modifier, is suggested for
80–bit security in [15]). The experiment in the last row of Table 3, d = 129, t =
k = 6, is suggested for 80–bit security in [27]. Thus, our formulas are also exact
for parameters suggested for use in practice.

Impact on Known Attacks. The solving degree of big field schemes are often
estimated using the first fall degree. In cases where Dsolv > Dff , we observed
instances where it is beneficial for an attacker to fix (a few) variables in order to
lower the Dsolv for each guess. Without a better understanding of Dsolv and how
it is affected by fixing variables, it seems that the approximation Dff ≈ Dsolv

is conservative, yet reasonable, when estimating the complexity of direct/hybrid
attacks against big-field encryption systems.
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Another attack that may greatly benefit from the detailed formulas for degree
fall polynomials obtained here is an adapted version of the distinguishing attack
that was proposed for HFEv- (Section 5 in [17]). An attacker fixes random linear
forms, and distinguishes between the cases where (some of) the fixed linear forms
are in the span of (v1, . . . , vk), and when none of them are, by the use of Gröbner
basis techniques. Indeed, if one of the fixed linear forms are in this span, the
number of degree fall polynomials will be the same as for a system with k − 1
ip linear forms. Hence, a distinguisher based on the formulas presented here will
work even without a drop in first fall degree, making the attack more versatile.

The deeper understanding for how the modifiers work allows for an even
more efficient attack. We present it in the next section for the Dob encryption
scheme.

7 A New Attack on the Dob Encryption Scheme

In the previous two sections we have studied how degree fall polynomials can
occur in the Dob scheme, and have verified the accuracy of our resulting formulas
through experiments. In this section we will show how all these insights can
be combined into a novel attack. In Section 7.1, we shall see that adding an
extra polynomial to the system can leak information about the modification
polynomials. We will use this information to retrieve (linear combinations of) the
secret ip linear forms and the homogeneous quadratic part of theQ+ modification
in Sections 7.2 and 7.3. The remaining linear parts of Q+ as well as an equivalent
description for the underlying nude Dob scheme is described in Section 7.5 and
Section 7.6. This results in an equivalent key, which allows an attacker to decrypt
just as easily as the legitimate user. Experiments on toy examples are described
in Section 7.7, and we finally discuss the complexity of the attack in Section 7.8.

7.1 Adding an Extra Polynomial

In Section 4.1 we discussed how products of the modifiers and public polynomials
affect the number of degree fall polynomials, through M (2,1)〈Ph〉. One would also
expect a similar effect to take place when adding a random polynomial to the
system.

Consider a set of parameters for the Dob scheme, where the number of first

fall polynomials is determined by N
(0,0)
ν , for some ν > 3. Again we denote by P

be the public key of this scheme, and consider a randomly chosen homogeneous
polynomial pR of degree ν − 2. As it is unlikely that the randomly chosen pR
has any distinct interference with P, we expect (〈pR〉∩M (2,1))ν to be generated
by the t possible combinations pRq

h
i , and

(
k
2

)
different combinations pR(vjvl)

h.
Furthermore, the non-zero elements of ψ(Syz(Fh)) have degree at least 3 so we
expect that 〈ψ(Syz(Fh))〉ν ∩ 〈pR〉ν = ∅, since 〈pR〉ν is generated by multiplying
pR only with quadratic polynomials.
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From these considerations, we estimate the number of degree fall polynomials
for the system {P, pR} at degree ν to be:

Nν({P, pR}) = N (0,0)
ν (P) + t+

(
k

2

)
. (7.1)

We ran a few experiments that confirm this intuition, the details are given in
Table 4. First, we confirmed that the number of degree fall polynomials of P were

indeed given by N
(0,0)
ν (P), before applying Magma’s implementation of the F4

algorithm on the system {P, pR}. Recall also our convention that
(
0
2

)
=
(
1
2

)
= 0

when applying Eq. (7.1).

Table 4: First fall polynomials of Dob encryption
schemes with an added, randomly chosen poly-
nomial pR.
d n deg(pR) t k Dff N N

(Q+) (ip) (predicted) (Magma)

31 29 2 2 2 4 N4 : 705 3:705

45 30 2 6 0 4 N4 : 342 3:342

75 39 3 6 6 5 N5 : 4695 4:4695

39 37 3 6 0 5 N5 : 9036 4:9036

With all this in mind, assume for the moment that d = n, and consider a
homogeneous Macaulay matrix of {Ph, pR} at degree ν, Mν({Ph, pR}). Any
element in the (left) kernel of this matrix corresponds to a syzygy:

hRpR +

d∑
i=1

hip
h
i = 0, (7.2)

for some homogeneous polynomials hi ∈ B(d)ν−2, 1 ≤ i ≤ d, and hR ∈ B(d)2.
In the following we will focus only on the polynomials hR in this expression,
and knowing the order of the polynomials in Mν({Ph, pR}) allows us to easily
extract only the hR polynomials from the kernel. From the discussion above, we
expect that the only way pR contributes to these kernel elements is through the
trivial syzygies, i.e. multiplications with phi or pR, and through multiplying with
the generators of M (2,1). It follows that any polynomial hR, from Eq. (7.2), will
be in the span of8

H := {ph1 , . . . , phd , pR, qh1 , . . . , qht , (v1v2)h, . . . , (vk−1vk)h}. (7.3)

8 If pR has degree ≥ 3, then the syzygy p2R+pR = 0 will be of degree > ν. In this case
pR will not be among the generators of H. This matters little, as pR will be removed
in the degree 2 case anyway in Section 7.4.
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Hence, given more than |H| = d+t+
(
k
2

)
+1 linearly independent kernel elements

ofMν({Ph, pR}), a set of generators of Span(H) can likely be found. In the next
subsection we will generalise this observation to the case where we fix a number
of variables to 0, making n smaller than d.

7.2 Gluing Polynomials

Let Wη denote a non-empty subset of r variables, i.e. Wη = {xiη,1 , . . . , xiη,r} for
integers 1 ≤ iη,1 < . . . < iη,r ≤ d. For n = d − r, there is a natural projection
map associated to Wη, namely πWη

: B(d) → B(d)/Wη ' B(n), that sets the
variables in Wη to 0. For any polynomial system R over B(d), we write πWη (R)
to mean the system consisting of all polynomials in R under πWη .

Suppose now that the number of first fall polynomials of a Dob system

πWη (Ph) is given by N
(0,0)
ν , after fixing the r variables in Wη to 0. Following a

similar line of reasoning as in Section 7.1, we find that πWη
(hR) from a kernel

element of the Macaulay matrix associated with πWη
({Ph, pR}) will no longer

be in the span of H, but rather lie in the span of πWη
(H). To ease notation, we

will write Hη = πWη (H).
We show in the following that we can recover a basis for H by defining

ρ different variable sets W1, . . . ,Wρ, and finding generators for the associated
polynomial sets H1, . . . ,Hρ. The idea is that each Hi reveals a piece of the
picture of the full H, and we will see that these pieces are partially overlapping.
By aligning the overlapping parts we can “glue” all the pieces together to reveal
the full picture, which in our case is a basis for the space spanned by the full H
where no variables have been set to 0.

Let W̃η := {x1, . . . , xd} \Wη denote the complement of Wη, and note that
Hη only contains information about the set of quadratic monomials where both

variables in the monomial are in W̃η. Denote the set of monomials not eliminated
by Wη as

A(Wη) := {xixj | xi, xj ∈ W̃η}.

In order to guarantee that the family H1, . . . ,Hρ can give complete information
about H we need to ensure that for any choice of 1 ≤ i < j ≤ d, we have
xixj ∈ A(Wη) for at least one 1 ≤ η ≤ ρ.

In practice, d will be determined by the chosen Dob parameters, but the
attacker is free to chose the size and construction of the sets Wη himself. There
are a few trade-offs when it comes to choosing the size r of the variable sets Wη.
On the one hand, we want r to be big, giving small n compared to d, so we get
many degree fall polynomials inMν for a low degree ν. On the other hand, r can
not be so big that πWη (Ph) becomes so degenerate that we get more syzygies
than the ones coming from H. For instance, we expect this to be the case if
r is chosen such that dreg(πWη

(Ph)) ≤ ν (see Eq. (2.3)). This degeneration is
possible to check since we know that the dimension of the basis for Hη that

we recover from Mν(πWη
({Ph, pR})) should have dimension d + t +

(
k
2

)
+ 1. If

we get a different number, r must be decreased. As will become clear below,
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r can also not be so big that the W̃η become too small. Essentially, we need
A(Wη1) ∩ A(Wη2) > |H| for different η1 and η2. From our experience with the
Dob system, these condition are easy to fulfill, and there is a rather large span
of suitable r-values we can choose.

Apart from setting the largest possible r, there is the question of how to
actually construct the sets W1, . . . ,Wρ in the most efficient way. In order not
to do more gluing than necessary, we want ρ to be as small as possible for a
given r. For the gluing operation that follows, there is the requirement that
every quadratic monomial in B(d)2 must be included in at least one A(Wη).
This naturally leads to the following problem:

Definition 5 (The quadratic (r, d)–Covering Problem). For integers 1 <
r < d− 1, find the smallest number ρ of variable sets, each of size r, such that

A(W1) ∪ . . . ∪A(Wρ) = {xixj | 1 ≤ i < j ≤ d}.

In Appendix B we present a constructive solution to this problem, which
provides a good upper bound for ρ that is sufficient for our case. The upper
bound is given by the following lemma

Lemma 7. The quadratic (r,d)–Covering Problem is upper bounded by

ρ ≤
(⌈ d
b(d−r)/2c

⌉
2

)
.

Gluing. We are now ready to explain how the gluing process works. Assume
that we have defined W1, . . . ,Wρ such that dim(Hi) = d + t +

(
k
2

)
+ 1 for 1 ≤

i ≤ ρ and ∪ρi=1A(Wi) = {xixj |1 ≤ i < j ≤ d}. Let Hi be the part of the
kernel of Mν(πWi

({Ph, pR})) that forms a basis for Hi, i.e. Hi is a matrix
with d+ t+

(
k
2

)
+ 1 linearly independent rows and

(
d
2

)
columns representing all

monomials in B(d)2. As attackers we can generate and store all matrices Hi for
i = 1, . . . , ρ. Recall also that each Hi contains information on the monomials
appearing in A(Wi).

We now explain in detail how we can glue together H1 and H2, to make a
new matrix H1,2 that reveals the monomials in A(W1) ∪ A(W2) appearing in a
basis for H. First split the quadratic monomials in B(d)2 into four disjoint sets
U1,2, U1,2, U1,2 and U1,2 as follows:

– U1,2 = {monomials set to 0 by both W1 and W2}.
– U1,2 = {monomials set to 0 by W2, but not by W1}.
– U1,2 = {monomials set to 0 by W1, but not by W2}.
– U1,2 = {monomials not set to 0 by either W1 or W2}.

Sort the monomials in B(d)2 according to these sets, and create the matrix H1
2

containing the rows of both H1 and H2:

H1
2 =

U1,2 U1,2 U1,2 U1,2( )H1 0 ∗ 0 ∗

H2 0 0 ∗ ∗
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A zero indicates all coefficients in this part of the matrix are 0 because these
monomials have been eliminated by setting all variables in W1 or W2 to zero.
A ∗ indicates that the coefficients in that part of the matrix have not been lost
due to fixing variables in W1 and W2 to zero.

For a matrix H and a set of monomials U , let H|U denote the submatrix
of H restricted to columns indexed by monomials in U , and let [H] denote the
F2-space spanned by H. Both H1 and H2 are projections of a basis for the space
spanned by the polynomials in H. Since none of the monomials in U1,2 have
been set to zero by either W1 or W2 we expect that [H1|U1,2

] = [H2|U1,2
]. This

fact comes with the caveat that r was chosen small enough such that the ranks
of H1|U1,2

and H2|U1,2
are both d+ t+

(
k
2

)
+ 1. This can be checked during the

attack, and if it fails the attacker just reduces r. Referring back to the overall
idea of gluing, these two bases for the same space are the overlapping parts of
the pieces given by H1 and H2.

Let Z be a basis for the kernel of H1
2 |U1,2

, with kernel elements written as

z = (z1, z2) such that zH1
2 = z1H1+z2H2. We know that dim(Z) = d+t+

(
k
2

)
+1

since H1|U1,2
and H2|U1,2

are bases for the same space. Finally, create the matrix
H1,2 by computing the following rows for each element (z1, z2) ∈ Z and adding
them as rows to H1,2:

(0 z1H1|U1,2
z2H2|U1,2

z1H1|U1,2
)

The matrix H1,2 is then a projected basis for H, where only monomials that get
eliminated by both W1 and W2 are missing. In the comparison with pieces of a
picture, the two pieces given by H1 and H2 have now been glued together along
their overlapping part U1,2 to form one larger piece H1,2. The general gluing of
two matrices like this is given in Algorithm 1.

Algorithm 1 Glue(H1, H2, U1, U2, U3, U4)

Require: Matrices H1 and H2 plus four disjoint sets U1, U2, U3, U4 of column indices,
such that [H1|U4 ] = [H2|U4 ], H1|U1∪U3 = 0, and H2|U1∪U2 = 0.

Ensure: Matrix H1,2 where [H1,2|U4 ] = [H1|U4 ] = [H2|U4 ],
[H1,2|U2 ] = [H1|U2 ], and [H1,2|U3 ] = [H2|U3 ].

H1
2 ←

(
H1

H2

)
Z ← ker(H1

2 )
H1,2 ← ∅
for (z1, z2) ∈ Z do

Add (0 z1H1|U2 z2H2|U3 z1H1|U4) as row in H1,2

end for
Return H1,2.

To glue the next piece H3 onto H1,2, we proceed by dividing the set of
quadratic monomials into the following four disjoint sets:
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– U1,2,3 = {monomials set to 0 by W1,W2, and W3}.
– U1,2,3 = {monomials set to 0 by W3, but not by both W1 and W2}.
– U1,2,3 = {monomials set to 0 by both W1 and W2, but not by W3}.
– U1,2,3 = {monomials not set to 0 by both W1 and W2, and not set to 0 by
W3}.

Then we call Algorithm 1 to compute H1,2,3:

H1,2,3 = Glue(H1,2, H3, U1,2,3, U1,2,3, U1,2,3, U1,2,3).

Note that we can expect |U1,2,3| > |U1,2|, as U1,2,3 contains all monomials from
the three sets U1,2, U1,2, and U1,2 that are not set to zero by W3. So the require-

ment that the ranks of H1,2 and H3 are d+ t+
(
k
2

)
+ 1 in the overlapping part

we glue along is more likely to be satisfied the more pieces are already glued.
We continue like this, re-dividing the set of all monomials in B(d)2 into four

disjoint subsets and recursively computing

H1,...,i = Glue(H1,...,i−1, Hi, U1,...,i, U1,...,i−1,i, U1,...,i−1,i, U1,...,i−1,i),

for i = 2, . . . , ρ. When we glue the last time, the set U1,...,ρ will be empty since
the sets W1, . . . ,Wρ have been constructed such that there is at least one Wη

that does not set xixj to zero, for all pairs (i, j). So there is no monomial that
gets set to zero by all of W1, . . . ,Wρ. This means that H1,...,ρ will show the
complete picture, namely a basis for the full, unprojected, H.

7.3 Retrieving the Linear Forms from ip

The rows of H1,...,ρ give a set of generators (polynomials) for the space spanned
by H. These polynomials will in general form a different basis than the polyno-
mials given as H, so we will label them G. The next goal is to recover the k linear
forms that are generators for 〈v1, . . . , vk〉. In order to simplify our arguments we
will assume k ≥ 5. The cases 2 ≤ k ≤ 4 will be discussed in Remark 2.

Consider the kernel of the homogeneous Macaulay matrix M3(G). From the
definition of H (Eq. (7.3)), we find that the space spanned by H (and G) con-
tains all the homogeneous nude Dob–polynomials fh1 , . . . , f

h
d , as well as all the

combinations (vivj)
h, 1 ≤ i < j ≤ k. Note that vi(vivj)

h = 0, and vj(vivj)
h = 0

in B(d). Hence each polynomial (vivj)
h generates two syzygies of degree 3 in

this ring. The nude Dob–polynomials will also generate the 2d kernel elements
associated with the degree fall polynomials discussed in Section 3.3. We would
like to separate these two types of kernel elements. To this end, we construct
a smaller system, G′, by removing three polynomials from G that are in the
span of {ph1 , . . . , phd}. It is easy to find three such polynomials to remove, since
{ph1 , . . . , phd} are fully known. We noted in Section 5.2 that removing a small
number of s public polynomials has similar behaviour to applying Q+ with

s = t. Eq. (5.3) then yields N
(0,0)
3 = 2d − 3d, and hence that there will be no

contribution to the kernel of M3(G′) from the nude Dob polynomials.
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On the other hand, some of the kernel elements generated by combinations
of the (vivj)

h–elements can still be observed for G′ at degree 3. More specifically,
suppose G′ was created from G by removing ph1 , p

h
2 and ph3 . Then Span(G′) may

not necessarily contain (v1vj)
h itself, for any 2 ≤ j ≤ k, but it will contain the

combination (v1vj)
h + b1,jp

h
1 + b2,jp

h
2 + b3,jp

h
3 , for some b1,j , b2,j , b3,j ∈ F2. By

considering these equations for j = 2, . . . , k, we see it is possible to eliminate the
terms containing ph1 , p

h
2 and ph3 by adding together appropriate polynomials on

the form (v1vj)
h+b1,jp

h
1 +b2,jp

h
2 +b3,jp

h
3 . Here we use the assumption that k ≥ 5.

We therefore find that Span(G′) will contain a polynomial z1 =
∑k
j=2 aj(v1vj)

h,
where a2, . . . , ak ∈ F2 are not all 0. The polynomial v1z1 will subsequently
be reduced to 0 over B(d). Similarly, we are guaranteed to find polynomials
z2, . . . , zk which can be given as sums of pure (vivj)

h-polynomials, which will be
reduced to zero when multiplied with v2, . . . , vk, respectively.

We expect that these are the only contributors to the kernel of G′ and
that they only become 0 when multiplied with their corresponding vi. The
attacker can compute the kernel of M3(G′), and write each of the kernel ele-
ments as

∑
ligi = 0, where gi ∈ G′, and each li is a known linear combina-

tion of {x1, . . . , xd}. We know that zi =
∑
di,jgj , for some unknown di,j ∈

F2, and therefore we also know that all the known li-polynomials must lie in
Span({v1, . . . , vk}). It follows that an attacker can retrieve a basis v∗1 , . . . , v

∗
k of

〈v1, . . . , vk〉, by choosing k linearly independent polynomials among these li’s.

Remark 2. In the text above, we remove 3 polynomials from G, and assumed
k ≥ 5 in order to guarantee the existence of the polynomials zi.

When k = 4, we know we will have the polynomials (v1vj)
h+b1,jp

h
1 +b2,jp

h
2 +

b3,jp
h
3 in Span(G′), for j = 2, 3, 4 and some random values bi,j ∈ F2. If the 3× 3

matrix  b1,2 b2,2 b3,2
b1,3 b2,3 b3,3
b1,4 b2,4 b3,4


has full rank, it is not possible to find a polynomial in Span(G′) that is a non-
trivial sum of pure (v1vj)

h-terms, and hence not possible to create z1 as described
above. Likewise, z2, z3, z4 will not exist in Span(G′) if their corresponding 3× 3
matrices have full rank. However, the number of 3 × 3 matrices over F2 with
rank 3 is only 168 out of the 512 possible matrices. So the probability that all
four matrices concerning z1, z2, z3, z4 have full rank is only (168/512)4 ≈ 0.0116.
In other words, just following the procedure given for k ≥ 5 will also succeed in
finding at least one kernel element for k = 4 with probability greater than 98.8%.
Finding a single kernel element is enough to recover all of {v∗1 , v∗2 , v∗3 , v∗4}, since
the space spanned by them is only of dimension 4. From one kernel element we
get at least d+ t+

(
4
2

)
−3 linear combinations in Span({v1, v2, v3, v4}), making it

likely that a basis can be found. In the unlikely case that this fails, the attacker
can always remove a different set of three polynomials instead of ph1 , p

h
2 , p

h
3 and

try the whole procedure again.
If k = 2, 3 the attacker can try finding non-trivial elements in the kernel

of M3(G′) by removing different sets of three polynomials from {ph1 , . . . , phd}.
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Even for k = 2 the attacker will succeed in finding the single kernel element
generated by (v1v2)h with more than 95% probability after 23 tries. Moreover,
for k ≤ 3 we have

(
k
2

)
≤ k, so we can alternatively just treat the unknown

(vivj)
h-polynomials as belonging to the polynomials in Q+ in this case. That is,

for k = 2, 3 we can just as well assume we have t+ k polynomials in Q+ and no
ip modifier. We conclude that an attacker will not have any problems recovering
a basis for 〈v1, . . . , vk〉 in the cases k ≤ 4.

The attacker has now recovered the quadratic part of the secret modifiers,
but lacks any information about the linear part from the Q+ modifier. A natural
way to decrypt might now be to guess the values of v∗1 , . . . , v

∗
k, q
∗
1 , . . . , q

∗
t when

evaluated in the plaintext, and try to solve the resulting system by Gröbner
basis computation. A heuristic analysis of this strategy can be found in sections
6.4 and 6.5 in [43]. While this is a great improvement over a straightforward
Gröbner basis attack on the Dob encryption system, the presence of the linear
forms fromQ+ increases the complexity compared to nude Dob. This is especially
true for larger t. In the following subsections we suggest a stronger version of
the attack that recovers an equivalent key for the Dob encryption schemes. The
total complexity is also greatly reduced when compared to the approach of [43].

7.4 Retrieving the Quadratic Forms of F

Next, we want to recover a system of d homogeneous quadratic polynomials F ′,
such that Span(F ′) = Span(Fh). This is a non–trivial step, even with all the
information recovered so far, since it is not a priori clear how the polynomials
(v∗i v

∗
j )h and q∗l have been added to the nude Dob polynomials.

Recall from the previous subsection that the kernel of M3(G) will be gener-
ated by the 2d degree fall polynomials from nude Dob, as well as the combina-
tions (vivj)

h. If we are able to separate these effects, we can learn combinations
of the nude Dob polynomials from the first set of generators. To this end, we
start by fixing a change of variables, such that the first k variables correspond to
the linear combinations v∗1 , . . . , v

∗
k. More precisely, fix a linear, invertible map-

ping L∗ sending the variables x1, . . . , xd to x∗1, . . . , x
∗
d, with the property that

v∗i (x1, . . . , xd) 7→ x∗i , for 1 ≤ i ≤ k. Apart from the restriction that L∗ must be
invertible and linear combinations v∗i must be mapped to the single variables x∗i ,
the rest of L∗ can be chosen arbitrarily.

We define G∗ to be the polynomial system G under this change of variables,
i.e., the system consisting of the polynomials

g∗i = gi(x
∗
1, . . . , x

∗
d) = gi ◦ L∗(x1, . . . , xd), for 1 ≤ i ≤ d+ t+

(
k

2

)
+ 1.

Note that fixing one of the first k variables x∗i to zero amounts to a projection
along v∗i = 0. It follows that fixing all but one of the k first x∗i variables is suffi-
cient to ensure that all combinations (vivj)

∗ will vanish. For each 1 ≤ i ≤ k, we
define the variable set Wi = {x∗1, . . . , x∗i−1, x∗i+1, . . . , x

∗
k}, i.e., the set containing
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the k first x∗–variables, with the exception of x∗i . By construction of G, and due
to the remark outlined above, the projected system πWi

(G∗), for 1 ≤ i ≤ k, will
only contain d+ 1 + t linearly independent polynomials. By a slight abuse of no-
tation we will let πWi (G∗) denote any fixed basis for these linearly independent
polynomials.

Without the influence of the (v∗i v
∗
j )h polynomials, the matrixM3 (πW1

(G∗))
will now have a kernel of size 2d, caused by the projected nude Dob polynomials.
Each such kernel element can be written as

x∗1

(
d+1+t∑
i=1

a1,iπW1 (g∗i )

)
+ . . .+ x∗d

(
d+1+t∑
i=1

ad,iπW1
(g∗i )

)
= 0, (7.4)

for constants aj,i ∈ F2. Recall that fi denotes a nude Dob polynomial, and write
f∗i = fhi ◦ L∗(x1, . . . , xd). Since the kernel elements come from the nude Dob

polynomials, each combination
(∑d+1+t

i=1 aj,iπW1
(g∗i )

)
in Eq. (7.4) will lie in the

span of {πW1
(f∗1 ) , . . . , πW1

(f∗d )}. It follows that an attacker is able to recover
a basis for Span({πW1

(f∗1 ) , . . . , πW1
(f∗d )}), from the kernel of M3 (πW1

(G∗)).
This procedure is repeated for the variable sets Wi, 1 ≤ i ≤ k, and the resulting
bases are glued together using the procedure described in Section 7.2.

One drawback of using the variable sets Wi is that the gluing procedure does
not give information about the monomials x∗i x

∗
j , 1 ≤ i, j ≤ k. Indeed, at this

point we have recovered d polynomials of the form

zi = h∗i (x
∗
k+1, . . . , x

∗
d) + u∗i (x

∗
k+1, . . . , x

∗
d)s
∗
i (x
∗
1, . . . , x

∗
k) +

∑
1≤l<j≤k

yil,jx
∗
l x
∗
j ,

where h∗i is a known quadratic polynomial, u∗i and s∗i are known linear polyno-
mials, but the yil,j ’s are unknown constants in F2. The polynomials z1, . . . , zd will

only form a basis for Span({f∗1 , . . . , f∗d }) if the yil,j ’s are chosen correctly. We will
once more rely on the fact that the degree fall polynomials from nude Dob will
yield distinguishable polynomials. Indeed, there will now be 2d combinations

d∑
r=1

d∑
i=1

ar,sx
∗
rzi =

d∑
r=1

∑
1≤l<j≤k

x∗l x
∗
jx
∗
r

(
d∑
i=1

ar,iy
i
l,j + cl,j,r

)
+ {Quadratic terms in the x∗–variables},

(7.5)

where ar,s and cl,j,r are constants in F2 (cl,j,r is in turn determined by the con-
tribution of the ar,s’s and the u∗i s

∗
i part of the various zi’s). Said differently,

all monomials of degree 3 (in the x∗–variables) contains at least 2 variables in
{x∗1, . . . , x∗k}. These 2d combinations can easily be found by constructing the ma-
trix M3({z1, . . . , zd}), remove the columns associated with the aforementioned
monomials, and find a basis for the resulting kernel. In particular, this recovers
the constants ar,s and cl,j,r in Eq. (7.5). Since each of the cubic terms will cancel
out for the correct choice of yil,j–variables, we can set up linear equations of the

form
∑d
i=1 ar,iy

i
l,j + cl,j,r = 0. There are 2d equations of the form in (7.5), each
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having
(
k
2

)
(d−k) +

(
k
3

)
cubic terms, which gives a total of 2d

((
k
2

)
(d− k) +

(
k
3

))
linear equations. As there are only d

(
k
2

)
y–variables, we expect a unique solu-

tion for this system. Once a basis for Span({f∗1 , . . . , f∗d }) is recovered, we can
transform it back to the original variable basis using (L∗)−1, which yields Fb, a
basis for Span(Fh). We want to use this to fix another basis F ′ for Span(Fh),
a quadratic map H ′ip : Fk2 → Fd2 and a linear map H ′Q+

: Ft2 → Fd2, such that the
equality of the form

Ph = F ′ +H ′ip(v
∗
1 , . . . , v

∗
k) +H ′Q+

(q∗1 , . . . , q
∗
t ), (7.6)

holds. Recall that at this point in the attack, q∗1 , . . . , q
∗
t may still depend on the

random polynomial pR (if pR is quadratic). We remove this dependency by going
through the possible tuples (e1, . . . , et) ∈ Ft2 until each polynomial in Ph can
be written as a linear combination of the polynomials in Fb, the combinations
(v∗i v

∗
j )h, and q∗1 + e1pR, . . . , q

∗
t + etpR, that yields a valid choice of F ′, H ′ip and

H ′Q+
. Since 2t is small for the Dob scheme, and each step is checked by linear

algebra, recovering the description in Eq. (7.6) is fast. From here on, we will write
q∗1 , . . . , q

∗
t to mean the polynomials where the effect of pR has been removed.

7.5 Retrieving Equivalent Matrices for S and T

The attacker has now recovered a system of homogeneous quadratic polynomials
F ′, with the knowledge that T b ◦ F ′ = (T ◦ C ◦ S)h = Fh, for some invertible
linear map T b. We now want to use rank techniques in order to recover matrices
for S′ and T ′ such that the triplets (T, C, S)h and (T ′, C′, S′)h are equivalent, in
the sense of Definition 4. Moreover, defining Fh as Fh = X2m+1 + X3, C′ will
be the multivariate representation of a univariate polynomial F ′(X), such that
F ′(X) = λFh(X) for some λ ∈ F2d .

To this end, we will closely follow the analysis of the HFE system by Bettale,
Faugère and Perret [6], and we refer to this work for much of the underlying
details. As a consequence, the following subsection will only provide a brief
overview of the theory, as well as a discussion of the parts where a rank attack on
the Dobbertin system differs from that of a HFE system. To avoid confusion with
other notation used throughout the paper, we will write all matrices introduced
in this subsection in boldface.

Consider the basis X =
(
X,X2, . . . , X2d−1

)
, and let A be any d× d matrix

over F2d representing the quadratic form of F = X2m+1+X3+X, i.e., Fh(X) =

XAX>. We then define the symmetric matrix associated to Fh, to be
(
Fh
)∗0

=
A + A>, which will be the d× d matrix given by:{

1, for entries (1, 2), (1,m+ 1), (2, 1), (m+ 1, 1)

0, otherwise.
(7.7)

In a similar manner, we define
(
Fh
)∗i

to be the symmetric matrix associated

with
(
Fh(X)

)2i
. This can be seen as the matrix described in (7.7), where all
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entries are shifted i places to the right and i places down (wrapping around when

necessary). In particular, all matrices
(
Fh
)∗i

will have rank 2 for 0 ≤ i ≤ d− 1.
Let f ′1, . . . , f

′
d be the homogeneous quadratic system F ′, that was recovered in

section 7.4. We similarly consider the associated symmetric matrices, over the
multivariate basis x = (x1, . . . , xd), as any d × d matrix Bi over F2, satisfying
f ′i = xBix

>. Moreover, we write (f ′i)
∗

= Bi + B>i .
Let M be an invertible d × d matrix over F2d , that is associated with the

fixed vector basis of F2d over F2 (see Proposition 2 in [6]), and write W = SM.
Moreover, define U =

(
(T b)−1T−1M

)
⊗Id, where Id is the d×d identity matrix,

⊗ is the Kronecker product, and T b the invertible matrix such that Fh = T b◦F ′.
In particular, U is an invertible d2 × d2 matrix over F2d such that the following
equation holds:(

(f ′1)
∗ | · · · | (f ′d)

∗)
U =

(
W
(
Fh
)∗0

W>| · · · |W
(
Fh
)∗d−1

W>
)
, (7.8)

where | denotes horizontal concatenation (this follows from the same arguments
leading up to Equation (3) in [6], using TT b in place of the matrix T). Since W

is invertible, it follows that W
(
Fh
)∗i

W> will have rank 2 for 0 ≤ i ≤ d − 1,
and an attacker can now learn information about the secret matrix U by solving
a MinRank problem of rank 2 using the known matrices (f ′i)

∗
, 0 ≤ i ≤ d − 1.

More specifically, we wish to find a tuple (z1, . . . , zd) ∈ Fd2d , such that the matrix∑d
i=1 zi (f ′i)

∗
has rank 2. Efficient methods for solving this problem include the

minors modelling [23], and support minors modelling [3]. Due to the equivalent
keys predicted in section 3.5, we expect many different solutions to the MinRank
problem. As is common practice for HFE (see e.g. Section 5 of [6]), we suggest
fixing z1 = 1, and solve for the remaining zi’s. Once a solution to the MinRank
problem has been found, we let it form the first column of a matrix T′−1M ∈
Fd×d
2d

, and construct the remaining columns by iterative Frobenius transforms, as
described in Proposition 3 of [6]. We expect this matrix T is part of an equivalent
key for the Dob system, and write (T′, C′,S′)h for a triplet that is equivalent to
(T, C, S)h. We also write W′ = S′M, and F ′(X) for the univariate polynomial
associated with C′. Let T′−1M[i] denote the i–th column of T′−1M. Then(

(f ′1)
∗ | · · · | (f ′d)

∗) (
T′−1M[i]⊗ Id

)
= W′ (F′)

∗i
W′>,

follows from Eq. (7.8), and the definition of equivalent triplets. Moreover, the
attacker can in particular easily compute

K = Ker
((

(f ′1)
∗ | · · · | (f ′d)

∗) (
T′−1M[1]⊗ Id

))
= Ker

(
W′ (F′)

∗0
)
, (7.9)

where we let K be the matrix of a fixed basis for the left kernel Ker. Since (F′)
∗0

has rank 2, K is a (d − 2) × d matrix over F2d . From Eq. (7.9) it also follows

that KW′ = Ker
(

(F′)
∗0
)

. Recall from section 3.5 that we now expect the

equivalent central map to be of the form F ′(X) = γFh(X), for some γ ∈ F2d .
Upon inspection of (7.7), we then note that there are two restrictions on the
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columns of KW′. Firstly, column 1 is zero and secondly, column 2 is equal to
column m + 1. The same restrictions are generalised to the kernel of (F′)

∗i
,

by shifting the entries i places to the right (with wrap–around). In the same
manner as Lemma 7 in [6], K is related to these latter kernels through Frobenius
transforms9, in the sense that

Frobi(K)W′ = Ker
(

(F′)
∗i
)
, for 0 ≤ i ≤ d− 1, (7.10)

where Frobi(K) raises all the entries in K to the power 2i. If we treat each entry
of W′ as a variable, we find that the restrictions on the columns, applied to the
various Frobi(K)W′ 0 ≤ i ≤ d − 1 from Eq. (7.10), yields a total of 2d(d − 2)
linear equations in the d2 W′–variables. In addition, any column of W′ is equal
to applying the Frobenius to each entry of the previous column (Proposition 3
in [6]). In our experiments, we find that these conditions are sufficient to recover
a unique W′, and hence also S′.

7.6 Retrieving the Linear Forms of the Key

Up until this point of the attack, we have been focusing on the homogeneous
quadratic parts of the key. We are now in a position to address the question of
recovering the linear parts as well. We will approach this through finding the
linear parts of the maps H ′ip, H

′
Q+

and F ′, from Eq. (7.6).

Let L′ denote the d linear forms satisfying F = T b ◦ (F ′ + L′). Recall that
the central map we have recovered for F ′, will have a univariate polynomial on
the form γFh(X), for some non zero γ ∈ F2d . Hence, we have

F ′ + L′ = T ′ ◦ φ−1 ◦
(
λ(X2m+1 +X3 +X)

)
◦ φ ◦ S′,

where T ′ and S′ are the linear maps associated with the matrices T′ and S′

recovered in the previous subsection. Since the monomials X2m+1 and X3 only
depend on the known homogeneous quadratic F ′ we can, using Eq. (7.6), find λ
as the coefficient of these two terms in the univariate polynomial

φ ◦ T ′−1 ◦
(
Ph −H ′ip(v∗1 , . . . , v∗k)−H ′Q+(q∗1 , . . . , q

∗
t )
)
◦ S′−1 ◦ φ−1. (7.11)

We remark that the action of φ◦ (·)◦φ−1, i.e. lifting the multivariate polynomial
system to a univariate polynomial over the extension field, can easily be done
by an interpolation step once the multivariate polynomials in the middle of
(7.11) have been computed. Indeed, since the potentially non–zero terms of the

9 Eq. (7.10) can be derived by adapting the proof of Lemma 7 in [6] to the case of
the Dobbertin permutation. Indeed, to adapt this proof we need only check that the

entries of Ker
(

(F′)
∗0
)

can be chosen in F2, and that the kernel of (F′)
∗i

can be

obtained by shifting the columns of Ker
(

(F′)
∗0
)
i places to the right. This follows

from our recent discussion in the text.
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resulting univariate polynomial will only be the d linear monomials on the form
X2i , as well as X2m+1 and X3, we need only consider d+ 2 data points. These
data points are constructed through evaluation of the multivariate system, and
then mapped to the extension field by φ. The interpolation itself now reduces to
solving a linear system of d+ 2 variables and equations over F2d .

The remaining linear part is now generated by t+ k linear forms; the known
v∗1 , . . . , v

∗
k, as well as the unknown l∗1, . . . , l

∗
t , which are the linear parts belonging

to q∗1 , . . . , q
∗
t . Once λ has been found, we can set up the following equality(

H ′ip
)l

(v∗1 , . . . , v
∗
k) +H∗Q+

(l∗1 , . . . , l
∗
t ) = P −H ′ip(v∗1 , . . . , v∗k)−H ′Q+

(q∗1 , . . . , q
∗
t )

− T ′ ◦ φ−1 ◦
(
λ(X2m+1 +X3 +X)

)
◦ φ ◦ S′,

(7.12)

where
(
H ′ip
)l

is an unknown linear map Fk2 → Fd2. Note that l∗1, . . . , l
∗
t are mixed

using the linear map H∗Q+
that was found in Section 7.4. The right hand side

of Eq. (7.12) are d known linear forms in the x–variables. On the left hand side

the unknown map
(
H∗ip
)l

can be described using dk constants in F2. While the
map H ′Q+

is known, the unknown linear forms l∗1, . . . , l
∗
t can be described using

dt constants in F2. Since the coefficient of each of the xi–terms on the right hand
side yields a constraint on these constants, Eq. (7.12) can be used to set up a
system of d(t + k) variables in d2 linear equations. Despite having d > t + k

in the Dob encryption scheme, we did not get a unique solution for
(
H∗ip
)l

and
l∗1, . . . , l

∗
t in the experiments we have run. This matters little for the attack, as

the attacker can simply fix any of the valid solutions of this system.

An Equivalent Dob Key The attacker has now recovered a description for
the Dob scheme that allows to decrypt as efficiently as the legitimate user, which
is

P = F ′ + L′ +
(
H ′ip +

(
H ′ip
)l)

(v∗1 , . . . , v
∗
k) +H ′Q+

(q∗1 + l∗1, . . . , q
∗
t + l∗t ).

For an intercepted ciphertext, the attacker goes through the possible values for
v∗1 , v

∗
k, q
∗
1 +l∗1, . . . , q

∗
t +l∗t , and inverts F ′+L′ as described in Section 3.2 (adapted

to λF (X)).

7.7 Practical Verification of the Attack

We implemented and tested the attack in the computational algebra system
Magma for the two toy examples outlined below. The implementation uses
Magma’s standard kernel method for finding the kernel of the Macaulay matri-
ces described in Section 7.2, and solves the MinRank problem using the minors
modelling with Magma’s F4. The implementation is available at [26].

Example 2 In the first toy example we consider an instance of the Dob encryp-
tion scheme with d = 45, t = 1 and k = 4. When fixing 15 variables, n = 30,
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we find that no degree fall polynomials at degree 3, and at degree 4 we have

N4 = N
(0,0)
4 = 487, as predicted by Eq. (5.7). When adding a randomly chosen

homogeneous quadratic polynomial pR to this system, we got 494 degree fall poly-
nomials at degree 4, as predicted in Eq. (7.1). For simplicity, we used the three
disjoint sets: W1 = {x1, . . . , x15}, W2 = {x16, . . . , x30} and W3 = {x31, . . . , x45},
to perform the gluing step detailed in Section 7.2.

We ran and verified the entirety of the attack as described in sections 7.1 –
7.6 for this case, and indeed found a working equivalent key.

Example 3 In the second toy example we used parameters d = 63, t = 1
and k = 4. Fixing 21 variables, we find no degree fall polynomials at degree

3, and N4 = N
(0,0)
4 = 445 degree fall polynomials at degree 4. Adding a random

quadratic polynomial yields 452 degree fall polynomials at degree 4, as predicted in
Eq. (7.1). As in Example 2, we divide into three equal sets: W1 = {x1, . . . , x21},
W2 = {x22, . . . , x42} and W3 = {x43, . . . , x63}.

For this instance we ran the steps described in sections 7.1 – 7.3, successfully
finding the homogeneous quadratic polynomial q∗1 , as well as the linear forms
v∗1 , . . . , v

∗
4 . However, we ran out of memory (≈ 256 GB) when attempting to

solve the MinRank problem described in Section 7.5.

7.8 Attack Complexity

We now analyze the complexity of performing the attack described in this sec-
tion. Suppose an attacker fixes d − n variables in order to find ρ polynomial
systems H1, . . . ,Hρ from the kernel elements of Macualay matrices of degree
D0 ≥ 3. The gluing operations, determining the linear forms v∗1 , . . . , v

∗
k, and

the quadratic forms q∗1 , . . . , q
∗
t only involve Macaulay matrices of degree at most

three, and will hence be comparatively cheap. This is also the case when re-
covering Fh, as described in Section 7.4. We assume that solving the MinRank
problem described in Section 7.5 is comparable to solving a MinRank problem
from an HFE system with extension field degree d and rank 2. Section 7 of [6]
estimates the complexity of solving this problem using Minors Modelling to be

O
(

(
∑3
i=0

(
d
i

)
)ω
)

, where 2 ≤ ω ≤ 3 is the linear algebra constant. The remainder

of the attack described in sections 7.5 and 7.6 only involves solving linear equa-
tions systems whose complexities are negligible when compared to the previous
steps.

We thus expect the complexity of the entire attack to be dominated by re-
covering generators for the polynomial systems Hi. While the optimal choice of
attack parameters may depend on the parameters of the Dob encryption scheme,
as a rule of thumb it seems best to first minimizeD0, then n, and lastly ρ. In prac-
tice, minimizing n involves choosing the smallest n such that Dreg(d, n) > D0,
for a fixed d. Kernel elements of the resulting sparse, homogeneous Macaulay
matrix can be found using a variant of the Wiedemann algorithm [38] (see also
[11] for an implementation of a version adapted to the XL algorithm). Section
VI of [38] shows that one kernel vector can be retrieved after three iterations
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with probability > 0.7, and as a simplification we estimate the complexity of
finding a sufficient number of kernel elements of the ρ Macaulay matrices, and
hence also the total attack complexity, as

ρ
3

0.7

(
t+

(
k

2

))(
n

D0

)2(
n

2

)
. (7.13)

We discuss in greater detail how to estimate the attack complexity in the case of
the 80–bit secure parameter set proposed in Section 2.4 of [27], in the following.

Security of the Suggested Parameters. Let d = 129, and t = k = 6 for the
Dob encryption scheme. Using equations (2.3) and (5.7) we find that it is not

possible to choose an n such that N
(0,0)
4 is positive, and Dreg(129, n) > 4. For

degree 5, we find that n = 50 is the smallest number such that N
(0,0)
5 is positive,

and Dreg(129, 50) > 5. Indeed, for this choice of parameters, we get:

N
(0,0)
5 = 64024,

which is exactly the number of degree fall polynomials observed in the last row
of Table 3. For this choice of parameters, ρ is upper bounded by 15, due to
Lemma 7. In this case we can do even better, and use ρ = 11, as described in
Appendix B. By the estimate given in (7.13) we find that the attack requires
about 262 operations.

8 Conclusions

We have presented an analysis of the effectiveness the Q+ and ip modifications
against algebraic attacks on big–field encryption schemes. The theory was ap-
plied to the C∗ and Dob encryption schemes, along with a novel attack on the
Dob construction. A natural question to ask is whether it is possible to find
parameters for an efficient and secure version of the Dob encryption scheme.
We have seen that the modifications of the Dob encryption scheme is not as
effective as initially hoped in hiding the degree fall polynomials of nude Dob.
Furthermore, an attacker has a lot of flexibility in fixing variables, and gluing
together polynomials that reveals information about the secret modifications.
Even if secure parameters could be found for degree five, there is always the
question of how the number of degree fall polynomials grows for larger degrees,
i.e., determining Nν for ν > 5. For these reasons it seems likely that a significant
increase to t, k, and/or d is needed, which would in turn have a large negative
impact on decryption time and/or public key size.

Due to the similarities between the C∗ and Dobbertin central map, our new
attack can likely be generalized to variants of C∗ using a combination of the ip
and Q+ modifier. The C∗ central map yields an even higher number of degree
fall polynomials than the Dobbertin polynomial, making these variants likely
less secure than the Dob encryption scheme. This is noteworthy, as ip has been
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discussed in the literature as a possible tool to secure the basic C∗ scheme.
Adding the “plus” modifier, as in PMI+, only gives more degree fall polynomials
and likely enhances the attack in this work. This is best seen in Eq. (7.1), where
adding the single random polynomial pR increases the number of degree fall
polynomials by t+

(
k
2

)
compared to not adding pR. We also noted at the end of

Section 5.2, that the attack on another C∗ encryption variant, EFLASH, can be
understood using the framework presented in this paper. In conclusion we believe
it will be very hard to find big-field multivariate encryption schemes that are
both efficient and secure.

On the other hand, the analysis presented in this work may not prove much
of a threat to the security of multivariate signature schemes, where the minus
modifier can remove a large number of the public key. For instance, in [27] a ver-
sion of the Dob signature scheme is suggested using d = 257, and removing 129
polynomials for 128–bit security. While we have noted that the minus modifier
behaves similarly to Q+, it seems unlikely that our techniques will be successful
when such a large number of modifications are in place, even when degrees > 5
are taken into account. It should be noted that signature schemes cannot rely
on the minus modifier alone, as shown in [35]. Indeed, the Dob signature scheme
is likely vulnerable to a version of this attack.

There are several directions where the ideas presented here may inspire future
work. Firstly, the modifications are treated as ideals, whose dimensions can be
examined. If different types of modifications, such as minus and vinegar, can be
rigorously included in this framework, it could lead to a deeper understanding of
the security of an even larger subclass of big–field schemes. Secondly, the attack
introduces new tools for the cryptanalysis of multivariate schemes. The gluing
technique allows an attacker to collect useful information after fixing a number of
variables. As there is no need for correct guesses, the exponential factor usually
associated with hybrid methods is avoided. Furthermore, the technique does not
rely on heuristic assumptions on the relation between the first fall and solving
degrees. It would be interesting to see if the gluing technique can be used in
other attacks.

In light of this, we believe that security analyses of big–field multivariate
schemes ought not only focus on the first fall degree directly, but also how this
degree changes when fixing variables. Cryptographers wishing to design encryp-
tion schemes by adding limited modification to an otherwise weak polynomial
system should be particularly aware of the effect presented in this work.
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A Formulas for Dob Degree Fall Polynomials at ν = 5

N
(1,1)
5 : Let us start by examining (SM(1,1)

(Fh))5. The polynomials involving
the quadratic polynomials from Q+, namely the qhi , are easy to classify as they
would only appear as products with the 2d degree fall polynomials at ν = 3
(from Section 3.3). The elements containing the ip linear forms are slightly more
involved. At first glance, the ν = 3 syzygies will generate 2d · dim2(V 1), but we
also need to take into consideration the cancellations appearing at ν = 4 (which
sums up to the −d term in Eq. (3.3)). Assuming that none of these cancellations
can be factorized by a linear form in Span(v1, . . . , vk) (which is highly likely
when n� k), we will need to subtract kd to account for these cancellations.

Turning our attention to the modifiers, we can combine (v) and (ii) from
Lemma 3, to get

dim5(M (2,1)M (1,1)) = dim5(M (3,2)) + dim5(V 1Q1)− dim5(M (3,2) ∩ V 1Q1).
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Expecting that (Q2 ∩ V 3)5 is empty, and using Lemma 3 (iv), we can further
rewrite this as

dim5(M (2,1)M (1,1)) = dim5(Q2) + dim5(V 3) + dim5(V 1Q1)

− dim5(Q2 ∩ V 1Q1)− dim5(V 3 ∩ V 1Q1).

Example 1 1 covers dim5(V 1Q1), and we will deal with the intersections through
ad hoc arguments. We expect 〈Q2 ∩ V 1Q1〉5 to be generated by the the pos-
sible combinations qiqjvl, so we estimate its dimension to be k

(
t
2

)
. Similarly,

〈V 3 ∩ V 1Q1〉5 is expected to be generated by the combinations vivjvrql, and its

dimension is expected to be t
(
k
3

)
.

Lastly, we examine M (1,1)M (2,1)〈Ph〉. At degree 5 the only possible combi-
nations are vivjvrpl, and viqjpl. All this information sums up to the following:

(
N

(1,1)
5

)′
=

dim5(SM
(1,1)

(Fh))︷ ︸︸ ︷
d

(
2k(n− k) + 2

(
k

2

)
+ 2t− k

)
−

dim5(Q
2)︷ ︸︸ ︷(

t

2

)
n

−

dim5(V
3)︷ ︸︸ ︷((

k

3

)(
n− k

2

)
+

(
k

4

)
(n− k) +

(
k

5

))

−

dim5(Q
1V 1)︷ ︸︸ ︷

t

(
k

(
n− k

2

)
+

(
k

2

)
(n− k) +

(
k

3

))
+ k

(
t2 −

(
t

2

))

+

dim5(Q
2∩V 1Q1)︷ ︸︸ ︷(
t

2

)
k +

dim5(V
3∩V 1Q1)︷ ︸︸ ︷(
k

3

)
t

+

dim5(M(1,1)M(2,1)〈Ph〉)︷ ︸︸ ︷
d

(
kt+

(
k

3

))
.

(A.1)

Remark 3. We have run tests for dim5(SM(1,1)

(Fh)), dim5(M (1,1)M (2,1)) and
dim5(M (1,1)M (2,1)〈Ph〉), and separately they agree with what we have counted

above. However, when running tests for (N
(1,1)
5 )′ as a whole, we find that the

theoretical formula presented in Eq. (A.1) consistently undershoots the number
of degree fall polynomials by 4d. Hence there is some interplay between the
separate parts making up the formula that we do not yet understand. For this
reason, we adjust Eq. (5.10) in the main part of the text by this value, i.e.,

N
(1,1)
5 =

(
N

(1,1)
5

)′
+ 4d.

N
(2,1)
5 : The degree five part of SM(2,1)

(Fh) is given by Equation (5.2). An
application of Lemma 3 (iv) and (v) leads to

dim5(M (2,1)M (2,1)) = dim5(V 4) + dim5(Q2) + dim5(V 2Q1).
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Example 1 (b) is used to compute dim5(V 2Q1), and we furthermore expect no
polynomials of degree five in M (2,1)M (2,1)〈Ph〉. All this sums up to the following
estimate:

(
N

(2,1)
5

)′
=

dim5(SM
(2,1)

(Fh))︷ ︸︸ ︷
2d

((
k

2

)
+ t

)
−

dim5(V
4)︷ ︸︸ ︷((

k

4

)
(n− k) +

(
k

5

))

−

dim5(Q
1V 2)︷ ︸︸ ︷

t

((
k

2

)
(n− k) +

(
k

3

))
−

dim5(Q
2)︷ ︸︸ ︷(

t

2

)
n .

(A.2)

Similarly to what was discussed in Remark 3, we also find that the theoretically

predicted
(
N

(2,1)
5

)′
is off by 4d in experiments. Hence, we adjust for this in

Eq. (5.11) by setting N
(2,1)
5 =

(
N

(2,1)
5

)′
+ 4d.

B Proof of Lemma 7

By a slight abuse of notation we will consider W̃η to include integers, by listing
the index of the variables it contains. Recall the (r, d) covering problem, which

can be stated as follows: for given d and r < d−1, find ρ subsets W̃η ⊂ {1, . . . , d}
of size d − r, such that for any pair (i, j) where 1 ≤ i < j ≤ d, {i, j} ⊂ W̃η for
at least one η.

Proof (of Lemma 7). Let s = b(d − r)/2c. We divide {1, . . . , d} into blocks of
size s:

Cb = {(b− 1)s+ 1, . . . , bs}, for 1 ≤ b ≤ bd/sc

.

Let the sets W̃η for 1 ≤ η ≤
(bd/sc

2

)
be defined as the union of Ca and Cb,

for all choices of 1 ≤ a < b ≤ bd/sc. In the case d − r is odd, we also add one

arbitrary extra number to each set to make sure that each W̃η contains exactly
d− r numbers.

Any {i, j} ⊂ {1, . . . , sbd/sc} will then be contained in at least one W̃η. If

both i and j belong to the same block Cb, then all W̃η involving Cb will contain

{i, j}. If i ∈ Ca and j ∈ Cb for a 6= b, then the set W̃η = Ca ∪ Cb will contain

{i, j}. Hence the
(bd/sc

2

)
sets constructed will cover all pairs from {1, . . . , sbd/sc}.

If s divides d we are done. Otherwise, to cover all pairs of numbers in
{1, . . . , d} it is sufficient to create bd/sc new W̃ -sets consisting of
{sbd/sc+ 1, . . . , d} ∪ Cb ∪ {s− (d− sbd/sc) extra numbers},
where 1 ≤ b ≤ bd/sc, and the extra numbers are arbitrary. The total number of

sets will then be
(dd/se

2

)
, and replacing s with b(d− r)/2c we get Lemma 7.
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For the particular case d = 129, r = 79 (which is used in Section 7.8) we get
ρ ≤ 15. Doing the exercise in practice we find that ρ = 11 is sufficient to solve
the problem by extending the block C5 to cover all numbers 101, . . . , 129, and
modifying slightly the sets involving C5.
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