
Greco: Fast Zero-Knowledge Proofs for Valid FHE RLWE

Ciphertexts Formation

Enrico Bottazzi

Ethereum Foundation

enrico@pse.dev

Abstract

Fully homomorphic encryption (FHE) allows for evaluating arbitrary functions over en-

crypted data. In Multi-party FHE applications, different parties encrypt their secret data

and submit ciphertexts to a server, which, according to the application logic, performs

homomorphic operations on them. For example, in a secret voting application, the tally

is computed by summing up the ciphertexts encoding the votes. Valid encrypted votes

are of the form E(0) and E(1). A malicious voter could send an invalid encrypted vote

such as E(145127835), which can mess up the whole election. Because of that, users must

prove that the ciphertext they submitted is a valid Ring-Learning with Errors (RLWE)

ciphertext and that the plaintext message they encrypted is a valid vote (for example,

either a 1 or 0). Greco uses zero-knowledge proof to let a user prove that their RLWE

ciphertext is well-formed. Or, in other words, that the encryption operation was performed

correctly. The resulting proof can be, therefore, composed with additional application-

specific logic and subject to public verification in a non-interactive setting. Considering

the secret voting application, one can prove further properties of the message being en-

crypted or even properties about the voter, allowing the application to support anonymous

voting as well. The prover has been implemented using Halo2-lib as a proving system, and

the benchmarks have shown that Greco can already be integrated into user-facing applica-

tions without creating excessive friction for the user. The implementation is available at

https://github.com/privacy-scaling-explorations/greco

1 Introduction

Fully homomorphic encryption (FHE) allows for evaluating arbitrary functions over encrypted

data. One of the most common applications of FHE is confidential outsourcing of computation.

A user can encrypt their data, send it to a server that performs the (intensive) computation, and

return the encrypted result. In this scenario, the user is the only one affected by the outcome

of the computation, so it is not necessary for them to prove that the submitted ciphertext to

the server is properly formed.

However, there are other applications of FHE in which the submitted ciphertexts are coming

from different parties, such as sealed bid auctions, secret voting (namely, the vote is hidden),

or FHE-EVMs [Zam23]. In such applications, a party (or a network of parties) receives the

ciphertexts and performs computation on top of them. The result of this computation is then

decrypted. In these multi-party applications, the result is affecting more than one user. Each

party must prove that they submitted a well-formed ciphertext in these scenarios. Otherwise,

1

https://github.com/privacy-scaling-explorations/greco

the final result might be, unknowingly to the other participants, constructed from invalid data.

Furthermore, key recovery attacks can be mounted if malformed ciphertexts are decrypted,

assuming the resulting decryptions are shared with the attacker.

For example, in a secret voting application, the tally is computed by summing up the en-

crypted votes. Valid encrypted votes are of the form E(0) and E(1). But here’s the trick; since

the votes are encrypted, the application cannot tell the difference between a valid encrypted

vote such as E(1) and an invalid encrypted vote such as E(145127835), which can mess up the

whole election. Because of that, users must prove that (1) the ciphertext they submitted is

a valid ciphertext. This might not be enough for the requirements of the application. Users

should also prove that (2) the plaintext message they encrypted is a valid vote (for example,

either a 1 or 0).

Greco allows users to prove the validity of a FHE Ring-Learning with Errors (RLWE) ci-

phertext. Greco makes use of zero-knowledge proof to let a user prove that their ciphertext is

well-formed. Or, in other words, that the encryption operation was performed correctly. The

resulting proof can be, therefore, composed with additional application-specific logic and subject

to public verification in a non-interactive setting. Considering the secret voting application, one

can prove further properties of the message being encrypted or even properties about the voter,

allowing the application to support anonymous voting as well.

The paper focuses on BFV [Bra12] [FV12] Secret Key Encryption and, eventually, extends

the scheme to Public Key Encryption. Note that all the techniques described in this document

can be easily applied to generate proof of correctness for any FHE scheme based on Ring

Learning with Errors (RLWE) and to other RLWE-based algorithms such as Key Generation

and Public/Secret Key Decryption.

The implementation of the techniques described hereafter is available as an opensource repos-

itory at https://github.com/privacy-scaling-explorations/greco

The logic for the BFV implementation at the core of Greco is based on [KPZ21] and [HPS19].

The techniques employed to generate a proof of ciphertext correctness are inspired on [PLS19].

The main tricks employed when designing Greco are the following:

• Leveraging the Chinese Remainder Theorem to represent big integers coefficients via a set

of single-precision integers of the size of 60 bits and embedding the ring reduction in the

polynomial definition allows avoiding performing non-native arithmetic operations inside

the field Zp in which the elements of the circuit (witness) are defined.

• Constraining polynomial multiplication with a 2-phase challenge circuit design with O(n)

complexity, dramatically reducing the cost of polynomial multiplication constrained with

the direct method O(n2).

The circuit has been implemented using Halo2-lib [Axi23a] as a proving system, and the

results have shown that Greco can already be integrated into user-facing applications without

creating excessive friction for the user. As an example, for parameters logQ = 27 and n = 1024

targeting 128-bits of security according to the Homomorphic Encryption Standard [Alb+22],

the prover time is equal to 685 ms benchmarked on an M2 Laptop. The verification time is

extremely fast, around 3 ms.

Learnings from previous implementations such as zk-fhe [BN23] and Sunscreen zkp backend

[Sun22] informed many of the design decisions adopted in Greco.

2

https://github.com/privacy-scaling-explorations/greco

2 BFV

BFV is a leveled FHE scheme based on the RLWE problem. A comprehensive and easy-to-digest

introduction to the BFV scheme is available at [Inf21]. This section is focused on the setup of

a BFV scheme in its Residue Number System (RNS) setting and only its secret key encryption

algorithm.

Let Q be the ciphertext modulus and t be the plaintext modulus. Let RQ denote the polyno-

mial ring
ZQ[X]
XN+1

. In practice, we leverage RNS and use the Chinese Remainder Theorem (CRT)

setting Q =
∏
qi where log qi < 61 and the qi factor are pairwise coprime. This modification

was originally suggested by [Baj+17] to make arithmetic operations faster as these no longer

need to work with Big integer arithmetic. Note that Q and t are co-prime. Furthermore, each

qi can be chosen as a prime number to leverage NTT to achieve fast polynomial multiplication.

Using this technique, an integer x ∈ ZQ can be represented by its CRT components {xi = x

mod qi ∈ Zqi}i, and operations on x in ZQ can be implemented by applying the same operations

to each CRT component xi in its own ring Zqi . The secret key encryption of a message M is

defined as:

Ct = (Ct0, Ct1) = ([A · s+ E +K]Q,−A)

Where A ← RQ, s ← χkey, E ← χerror and K = dQ[M]t
t c (as described in section 3.1 of

[KPZ21].

Given that Q and t are co-prime (refer to Appendix A for more information), one can

calculate K directly in RNS using the equality

dQ[M]t
t
c =

Q[M]t − [QM]t
t

= −t−1[QM]t mod qi

We will denote the scalar −t−1 with K0 as the negative integer of the multiplicative inverse

of t mod qi and the polynomial[QM]t with K1.

Therefore,

Cti = (Ct0,i, Ct1,i) = ([Ai · s+ E +K0,iK1]qi ,−Ai)

Where i indicates the i-th CRT decomposition of the ciphertext Ct in the basis qi, operations

in Rq are implemented directly in CRT representation. Note that when working in the RNS

setting, uniform elements A ← RQ are chosen directly in the CRT basis by drawing uniform

values Ai ← Rqi for each i-th CRT decomposition (section 4.3 of [HPS19]).

3 Proof of Valid Ciphertext Formation

3.1 zkSNARK Logic

Generating a proof of valid ciphertext formation of a message polynomial M under the BFV

secret key encryption algorithm requires translating the algorithm into a zkSNARK Circuit.

The zero-knowledge property allows the prover to generate such proof without revealing any

detail related to secret inputs, such as the secret key s or the message M . The snark property

3

allows for fast and succint verification of such proof.m The main challenge that appears when

translating an FHE algorithm into a zkSNARK circuit is the different groups in which the

element of the circuit and the coefficients of the polynomials involved in the FHE scheme live:

• The elements of a circuit are defined in a group G of order p, Zp. All the operations inside

a circuit are performed mod p.

• The coefficients of Ct0,i are defined in the group Zqi . All the polynomial operations are

performed in the ring Rqi , namely modulo the cyclotomic polynomial XN + 1.

The assumption is thatQ =
∏
qi where log qi < 61 and ∀qi, qi << p. This assumption is required

to avoid the coefficients of the polynomial ever overflowing the prime p and potentially pass the

range checks constraints (more on that later) even if when they shouldn’t. The polynomial ring
Zqi

[X]

XN+1
is denoted as Rqi . Any polynomial H ∈ RQ is represented via its CRT components Hi ∈

Rqi . Polynomial multiplications and additions in the ring Zqi [X]/XN + 1 are operations that

are non-native to the prime field of the circuit, therefore these operations are really expensive.

The main trick employed here to alleviate the cost of such operations is to embed the ring

reduction inside the polynomial definition. For example, the modulo reduction of y = z mod n

can be constrained inside the circuit as y = q · n + z with q that can be pre-computed outside

the circuit. Let’s first outline the operation that needs to be verified and therefore translated

into circuit constraints:

Ai · s+ E +K0,iK1 = Ct0,i mod Rqi

Note that no check needs to be performed on the correct formation of Ct1,i since this is equal

to the negative of the public sampled polynomial Ai.

And define

Ai · s+ E +K0,iK1 = ˆCt0,i

Where ˆCt0,i is Ct0,i before the reduction inside the ring Rqi such that

ˆCt0,i = Ct0,i mod Rqi

One can express the equation above mod Zqi as:

ˆCt0,i = Ct0,i −R2,i(X
N + 1) mod Zqi

Where (XN + 1) is the cyclotomic polynomial that defines the ring of the ciphertext space.

One can further express the equation in Z as:

ˆCt0,i = Ct0,i −R2,i(X
N + 1)−R1,iqi

Since qi << p, the equation stays unchanged in Zp:

ˆCt0,i = Ct0,i −R2,i(X
N + 1)−R1,iqi mod Zp

Or, in its extended form:

Ct0,i = Ai · s+ E +K0,iK1 +R2,i(X
N + 1) +R1,iqi mod Zp

4

Note that the relation is true in Zp, the domain of the elements of the circuit, without having

to perform any further reduction or non-native arithmetic operations. To prove that Ct0,i is

correctly formed, it is needed to prove that the equation above holds. This can be rewritten

using matrices as follows:

[
Ai 1 K0,i (XN + 1) qi

]
×


s

E

K1

R2,i

R1,i

 = Ct0,i

or

Ui × Si = Ct0,i

One naive way to render this relation in a zkSNARK constraint would be to perform the matrix

multiplication inside the circuit and expose the matrix Ui and the resulting ciphertext Ct0,i as

public inputs. This approach involves many multiplications between large-degree polynomials.

In particular, considering two polynomials f and g of degree n, performing the polynomial

multiplications fg = h using the direct method would generate:

• (n+ 1)2 multiplication constraints (refer to Appendix B for more information)

• n2 addition constraints (refer to Appendix B for more information)

A more efficient way to perform the polynomial multiplications inside the circuit would be

to evaluate the polynomials f , g, and h at a random point γ and enforce that f(γ)∗g(γ) = h(γ)

which would be true if fg = h according to Schwartz-Zippel lemma. This would generate:

• n multiplication constraints and n addition constraints to evaluate f(γ)

• n multiplication constraints and n addition constraints to evaluate g(γ)

• 2n multiplication constraints and 2n addition constraints to evaluate f(γ)

With this trick, the complexity of constraining a polynomial multiplication is reduced from

O(n2) to O(n).

The constraint is then reduced to proving that.

[
Ai(γ) 1 K0,i (γN + 1) qi

]
×


s(γ)

E(γ)

K1(γ)

R2,i(γ)

R1,i(γ)

 = Ct0,i(γ)

or

Ui(γ)× Si(γ) = Ct0,i(γ) (1)

The approach of verifying that the polynomial relation holds by evaluating if it holds at γ

was first introduced by [PLS19]. They propose an interactive protocol in which the prover first

5

commits to the secret matrix Si and, after receiving the challenge γ from the verifier, the prover

will then prove that the coefficients of the polynomials of Si are in the expected range and prove

that (1) holds.

In order to make the approach non-interactive, the strategy adopted by Greco is to leverage the

Fiat-Shamir heuristic as follows:

1. Fill the witness table with the secret polynomials of Si during the first phase of proof

generation

2. Extract the commitment of the witness so far and hash it to generate the challenge γ

3. Prove that the coefficients of the polynomials of Si are in the expected range during the

second phase of proof generation

4. Use the challenge γ to prove that (1) holds during the second phase of proof generation

Note that since the polynomials inside the Ui matrix are public, and so is the polynomial

Ct0,i, it is possible to directly pass their evaluations at γ as public input of the circuit to the

second phase. The same does not apply to the polynomials of Si: for those polynomials, their

evaluations at γ need to be constrained inside the circuit. Since the polynomials written inside

the matrix Si are private, it is also necessary to check that their coefficients live in the expected

range. For a thorough analysis of the expected range of the matrix Si polynomial coefficients,

check paragraph 3.3. Proof of valid encryption of a message polynomial M under the BFV

secret key encryption scheme requires incorporating the operations that define the algorithm

inside a ZK SNARK Circuit. This can be done by writing the following constraints:

• The coefficients of the matrix Si live in the expected range.

• Ui(γ)× Si(γ) = Ct0,i(γ)

3.2 Calculating R1,i and R2,i

R1,i and R2,i can be precomputed outside of the circuit as follows:

Since
ˆCt0,i = Ct0,i −R2,i(X

N + 1) mod Zqi

Therefore

R2,i =
Ct0,i − ˆCt0,i

(XN + 1)
mod Zqi

Since deg(XN + 1) = N and deg(ˆCt0,i) = 2(N − 1), therefore deg(R2,i) = 2(N − 1)−N =

N − 2.

Since
ˆCt0,i = Ct0,i −R2,i(X

N + 1)−R1,i

Therefore

R1,i =
Ct0,i − ˆCt0,i −R2,i(X

N + 1)

qi

6

Since deg(ˆCt0,i) = 2(N − 1), the degree of the numerator is 2(N − 1), therefore deg(R1,i) =

2(N − 1).

3.3 Range Checks

The goal here is to define the expected range of the coefficients of the polynomials included

in the matrix Si. Defining the ranges would allow us to write the related constraints. Any

malicious prover that is trying to generate a ciphertext starting from invalid secret polynomials

would not be able to generate a valid proof. In particular, these polynomials are
s

E

K1

R2,i

R1,i


These ranges are:

• s = [−1, 1]

• E = [−B,B]

• K1 = [− t−1
2 , t−12]

• R2,i = [− qi−1
2 , qi−12]

• R1,i = [
−((N+2)· qi−1

2 +B+ t−1
2 ·|K0,i|)

qi
,
(N+2)· qi−1

2 +B+ t−1
2 ·|K0,i|

qi
]

Refer to Appendix C for more information about this range check analysis. Note that when

assigned to the circuit, the coefficients of the polynomial must be in the prime field [0, p).

Negative coefficients −z are assigned as field elements p − z. Let’s take the polynomial E as

an example. The coefficients of E live in the range [−B,B]. This means that when assigned to

the circuit, the coefficients of E must live in the ranges [0, B] or [−B, p). Enforcing the range

check in this manner has the downside of requiring the performance of two range checks and

adding an additional OR constraint to that. A more efficient way to perform such a range check

is to normalize the coefficients such that the coefficients of E must live in the range [0, 2B].

The normalization is constrained inside the circuit by adding B to each coefficient of E. Note

that the range check is secure as long as 2B < p. This normalize operations before performing

the actual range check is constraint to each of the polynomial of Si. In general, for each secret

polynomial, given their upper bound Ub, the relation 2Ub < p must hold in order to avoid any

overflow issue. This is true under the assumption log qi < 61.

3.4 Proving Correctness of k Ciphertexts

In the RNS setting of BFV, each ciphertext Ct defined in the ring RQ is represented using

its CRT components {Ct = Cti mod Rqi}i. Given the assumption that Q =
∏
qi where

log qi < 61, this allows the encryption to be performed more efficiently by performing single-

precision integers arithmetic operations instead of big integers.

In particular, considering the encryption operation, small integers such as noise and key

coefficients are drawn from χerror and χkey as single-precision integers, while uniform elements

7

in a¸Zq are chosen directly in the CRT basis by drawing uniform values ai¸Zqi for all i. All

the operations that are supposed to be performed in Zq are performed in Zqi for each i-th

decomposition.

To prove the correct computation of a ciphertext starting from a message, it is needed to

prove the computation of each of the k ciphertexts Ctqi . There are two ideas that can be

explored here.

3.4.1 Parallel Proof Generation

This means that a proof of correct encryption needs to be generated for each i. The good news

is that these proofs can be generated in parallel. Furthermore, these proofs (for each Zqi) can

eventually be aggregated in a single proof that verifies the encryption for each smaller modulus.

In this way, the user only has to verify a single proof.

Figure 1: Proof aggregation design

When performing the first recursion, it is important to check whether the common polyno-

mials across each i-th encryption circuit are matching. These polynomials are S, E, K1

3.4.2 Proving the correctness of multiple ciphertexts in the same proof

Apparently, this approach seems to be the naive version of approach 1. In reality, there are

some benefits to this approach, too. In the previous approach, the constraints on the common

polynomials S, E, and K1 are enforced within each i-th encryption circuit. These constraints are

the range checks on these polynomials and the evaluation at γ (which will be different for each i-

th circuit) of these polynomials. In the previous approach, there are, therefore, some constraints

duplicated n times over the same polynomials. In this second approach, the correctness of the

n ciphertexts is proven inside a single circuit. In this way, the constraints over S, E, and K1

are applied only once. In practice, the snark is designed as follows:

• Commit the polynomials of each Si matrix during the first phase. Since S, E, K1 are

common to each Si matrix, these are committed only once.

• Extract the commitment of the witness so far and hash it to generate the challenge γ

• Prove that the coefficients of the polynomials of each Si matrix are in the expected range

during the second phase. Here, the range checks on the polynomials S, E, and K1 have

to be performed only once.

8

• Use the challenge γ to prove that (1) holds during the second phase for each i-th cipher-

text. Again, the evaluation of S(γ), E(γ), K1(γ) need to be constrained only once and

then reused across each i-th (1) relation.

Given that k is generally very small, this approach allows us to save some duplicated con-

straints and the overhead given by the recursion approach. On the other side, it sacrifices the

parallelization benefit given by the recursion-based approach.

3.5 Circuit Implementation

The circuit logic is split between phase0 and phase1. The implementation details are based on

the setting described in the paragraph 3.4.2. Note that setting k to 1 would result in a proof of a

single ciphertext. Parameters such as k (the number of ciphertexts), the degree of the cyclotomic

polynomial defining the ring N , the range check bounds and the values of the scalars qis[] and

k0is[] must be defined during key generation and are encoded into the constraining structure

of the circuit since then. This implies that each tuple (n, qis[], t) results in different circuit

artifacts.

3.5.1 Phase 0

In this phase, the polynomials of each matrix Si are assigned to the circuit. Namely:

• polynomials s, e and k1 are assigned to the witness table. This has to be done only once,

as these polynomials are common to each Si matrix

• polynomials r1i and r2i are assigned to the witness table for each Si matrix

Witness values are elements of the finite field mod p. Negative coefficients −z are assigned as

field elements p − z. At the end of phase 0, the witness generated so far is interpolated into a

polynomial and committed by the prover. The hash of this commitment is used as a challenge

and will be used as a source of randomness γ in Phase 1. This feature is made available by

Halo2 Challenge API [Axi23b].

3.5.2 Phase 1

In this phase, the following constraints are enforced:

1. The coefficients of each matrix Si are in the expected range.

2. Ui(γ)× Si(γ) = Ct0,i(γ).

The first step is to assign the polynomials to the circuit.

• Assign evaluations to the circuit: ai(gamma), ct0i(gamma) for each Ui matrix

• Assign cyclo(gamma) to the circuit. This has to be done only once, as the cyclotomic

polynomial is common to each Ui matrix

• Expose ai(gamma), ct0i(gamma) for each Ui matrix

• Expose ‘cyclo(gamma) as public input

9

Since the polynomials cyclo, ai, ct0i are known to the verifier, the evaluation at γ doesn’t

need to be constrained inside the circuit. Instead, this can be safely performed (and verified)

outside the circuit.

The second step is to perform the range checks. The coefficients of the private polynomials from

each i-th matrix Si are checked to be in the correct range:

• Range check polynomials s, e, k1. This has to be done only once, as these polynomials

are common to each Si matrix

• Range check polynomials r1i, r2i for each Si matrix

Since negative coefficients −z are assigned as p − z to the circuit, this might result in very

large coefficients. Performing the range check on such large coefficients requires large lookup

tables. To avoid this, the coefficients (both negative and positive) are normalized by adding to

their upper bound Ub to make the resulting coefficient in the range [0, 2Ub], and then the range

check is performed.

The third step is to constrain the evaluation at γ. Contrary to the polynomials cyclo, ai,

ct0i, the polynomials belonging to each Si matrix are not known by the verifier. Therefore,

their evaluation at γ must be constrained inside the circuit.

• Constrain the evaluation of the polynomials s, e, k1 at γ. This has to be done only once,

as these polynomials are common to each Si matrix

• Constrain the evaluation of the polynomials r1i, r2i at γ for each Si matrix

The last step is to enforce the constraint of correct encryption. In other words to prove that

Ui(γ)× Si(γ) = Ct0,i(γ). This can be rewritten as

ct0i = ct0ihat + r1i * qi + r2i * cyclo

where

ct0ihat = ai * s + e + k1 * k0i

This constraint is enforced by proving that LHS(gamma) = RHS(gamma). According to the

Schwartz-Zippel lemma, if this relation between polynomials, when evaluated at a random point,

holds true, then the polynomials are identical with overwhelming probability. Note that qi and

k0i (for each Ui matrix) are constants to the circuit encoded during key generation.

Therefore, the constrain to be enforced for each i-th CRT basis is :

ct0i(gamma) = ai(gamma) * s(gamma) + e(gamma) + k1(gamma) * k0i + r1i(gamma) * qi

+ r2i(gamma) * cyclo(gamma)

10

4 Prover and Verifier Scheme

This section describes the main algorithms of the Greco prover and verifier Scheme.

Greco.KeyGen(λ) = pk, vk

The application developer chooses the parameters for the FHE scheme, given the secu-

rity parameters and the required fhe circuit depths identified by λ. These are the parameters

t, Q, n, σ and B. [Alb+22] provides a good basis for choosing such parameters. In particular, the

document fixes the standard deviation of the Gaussian distribution used for error polynomial

sampling σ ≈ 3.2 and the bound of the distribution B ≈ 19. Hence, only the ring degree n and

the plaintext and ciphertext space moduli t and Q remain to be determined. These parameters

are encoded into the zk circuit to generate the proving key pk and the verification vk. Note

that different applications might have different security and depth requirements. Therefore, the

artifacts pk and vk can not be reused for different applications. The chosen parameters should

be known to everybody.

BFV.SecretKeyGen() = s

The user generates a secret key s, where s is a polynomial sampled from the ternary distri-

bution χkey.

BFV.SecretKeyEncrypt(s,m) = Ct

Sample A and E and outputs the ciphertext

Ct = (Ct0, Ct1) = ([A · s+ E +K0K1]Q,−A)

Where A← RQ, s← χkey, E ← χerror and K0 = −t−1 and K1 = [QM]t.

The user performs the encryption and shares Ct with the verifier.

Greco.Prove(U, S,Ct0, pk) = π, pub

The prover builds the matrices U and S and uses the proving key pk to generate a proof π

that Ct0 is a well-formed ciphertext. The inputs A(γ), Ct0(γ) and γn + 1, incapsulated in the

variable pub, are shared to the public.

Greco.V erify(π, pub, vk) = 1/0

The verifier performs the verification of the cryptographic proof π via the vk. On top of

that, further checks are required on the correctness of the public inputs pub. The verifier should

re-generate γ starting from the proof transcript and evaluate that the evaluation of the public

polynomials Ct0, A and the cyclotomic polynomial xn + 1 at γ matches pub.

11

5 Public Key Encryption Extension

BFV Public Key Encryption is built, similarly to Secret Key Encryption, using RLWE. The

public key is generated as

Pk = (Pk0, Pk1) = ([A · s+ E]Q,−A)

Or, if operating in RNS setting,

Pkqi = (Pk0,qi , Pk1,qi) = ([Ai · s+ E]qi ,−Ai)

Where Ai ← Rqi , S ← χkey, E ← χerror

Encryption is performed as follows:

Ctqi = (Ct0,qi , Ct1,qi) = ([Pk0,qi · U + E0 +Ki]qi , [Pk1,qi · U + E1]qi)

Where U ← χkey and E0, E1 ← χerror.

As you can notice, generating Ct0,qi = [Pk0,qi · U + E0 +Ki]qi resembles the ciphertext Ct0,qi
generated during BFV secret key encryption Ct0,qi = [Ai · s + E + K]qi. The exact same

technique described above by replacing Ai, s and E, with Pk0,qi , U and E0 can be used to prove

the correct formation of Ct0,qi as result of public key BFV encryption. Or using the matrix

notation, this can be expressed as follow:

[
Pk0,qi 1 K0,i (XN + 1) qi

]
×


U

E0

K1

R2,i

R1,i

 = Ct0,i

The range check defined in paragraph 3.3 equally apply for the secret matrix polynomial for

Public Key Encryption.

On top of that, further checks need to performed on Ct1,qi specifically that:

• E1 lives in the expected range

• [Pk1,qi · U + E1]qi = Ct1,qi

To prove this, we adapt the technique described above as follow:

[
Pk1,qi 1 (XN + 1) qi

]
×


U

E1

P2,i

P1,i

 = Ct0,i

The calculation of P2,i and P1,i and of the required ranges of the secret polynomials is left as

an exercise to the reader.

12

6 Composability with Application-Specific Logic

In the example of a secret voting application, the user must prove that (1) the ciphertext they

submitted is a valid ciphertext. (2) the plaintext they encrypted is a valid vote (for example,

either a 1 or 0). Up until now, the discussion has only concerned the first type of proof. From

a theoretical level, the circuit can be extended to prove any arbitrary statement related to

the message M . From a practical point of view, integrating Greco inside an application doesn’t

necessarily force the integrator to modify the logic of the circuit. Instead, the circuit defining the

application-specific requirements of the M can be treated as a separate component, independent

from Greco.

The flow for the secret voting application can be as follows:

• Voter produces a proof π1 thatM satisfies is either a 1 or 0 that outputsH = hash(M, salt).

• Voter produces a proof π2 of correct encryption of the message using Greco circuit. On

top of that, the circuit also outputs H = hash(M, salt).

• Verifier would check that:

– π1 verifies

– π2 verifies

– The public output of π1 matches the public output of π2

Note that the circuit underlying the generation of π2 can be written in any language or prover

framework available.

7 Benchmarks

All the benchmarks were run on an M2 Macbook Pro with 12 cores and 32GB of RAM. All the

benchmarks can be reproduced from the open source code provided. The key benches extracted

relate to the setup (pk and vk generation), proof generation and proof verification phases. The

parameters have been chosen targeting 128-bit security level for different values of ‘n‘. For more

information on parameters choise, please refer to [Alb+22]

n log qi k VK Gen Time PK Gen Time Proof Gen Time Proof Ver Time

1024 27 1 376.95s 82.86ms 685.51ms 3.66ms

2048 53 1 771.24ms 186.79ms 1.39s 3.74ms

4096 55 2 2.16s 579.86ms 3.47s 5.02 ms

8192 55 4 5.05s 1.82s 8.98s 4.18ms

16384 54 8 17.59s 7.10s 29.43s 6.97ms

32768 59 15 64.95s 29.33s 102.15s 14.06ms

Table 1: Greco performance benchmarks for different security parameters.

The setup time seems to grow linearly with n as it roughly doubles everytime n doubles. Proof

Generation shows a sublinear growth when compared to the growth of n.

The main cost center of the proof generation in terms of contraints is dominated by the

Range Checks. In particular, analyzing the number of constraints when n is set to 4096 the

13

distribution is described in Figure 2. The second most expensive operation is the Evaluation at

Gamma Constraint followed by the Phase 0 polynomial assignement. Both grow linearly with n.

The constraints required to enforce Phase 1 assignment and Correct Encryption are irrelavant

to the overall cost model. Such data can be reproduced by running the Generate Parameters

python script available made available through the open source repository.

Figure 2: Constraints distribution

8 Conclusions

In this write-up, we have detailed the design and implementation of the Greco prover system,

showcasing its utility in verifying the correct formation of Fully Homomorphic Encryption (FHE)

ciphertexts. The importance of such system is paramount in multi-party applications such as

voting. In such application, Greco can be composed with application-specific circuits that

require to prove additional properties on the message being encryption or on the author of

such encryption. The benchmarks provide a practical reference for its deployment in real-world

scenarios. In order to increase the prover performance, proof systems capable of supporting

larger lookup tables such as [a1623], may further speed up the range checks constraints, which

are the larger cost center of Greco. A further step is to adapt the techniques decribed above

to other FHE schemes, such as CKKS or TFHE/FHEW. In particular, in CKKS, the message

needs to be encoded using FFT, which is not trivial to prove.

9 Acknowledgements

I thank Yuriko Nishijima for the work on the original library [BN23] that inspired Greco. I

thank Janmajaya Mall for suggesting leveraging CRT to decompose the ciphertext and coming

up with the core matrix definition of the constraint enforced by Greco. I thank Xiang Xie for

pointing out a flaw in how the benchmarks were designed.

14

References

[a1623] a16z. lasso. 2023. url: https://github.com/a16z/jolt.

[Alb+22] Martin Albrecht et al. “Homomorphic encryption standard”. In: 2022. doi: 10.1007/

978-3-030-77287-1_2.

[Axi23a] Axiom. halo2-lib. 2023. url: https://github.com/axiom-crypto/halo2-lib.

[Axi23b] Axiom. Overview of the Halo2 Challenge API and Random Linear Combinations

(RLC) Comment. 2023. url: https://hackmd.io/@axiom/SJw3p-qX3.

[Baj+17] Jean Claude Bajard et al. “A Full RNS Variant of FV Like Somewhat Homomorphic

Encryption Schemes”. In: vol. 10532 LNCS. 2017. doi: 10.1007/978-3-319-69453-

5_23.

[BN23] Enrico Bottazzi and Yuriko Nishijima. zk-fhe. 2023. url: https://github.com/

enricobottazzi/zk-fhe.

[Bra12] Zvika Brakerski. “Fully homomorphic encryption without modulus switching from

classical GapSVP”. In: vol. 7417 LNCS. 2012. doi: 10.1007/978-3-642-32009-

5_50.

[FV12] Junfeng Fan and Frederik Vercauteren. “Somewhat Practical Fully Homomorphic

Encryption”. In: Proceedings of the 15th international conference on Practice and

Theory in Public Key Cryptography (2012).

[HPS19] Shai Halevi, Yuriy Polyakov, and Victor Shoup. “An Improved RNS Variant of the

BFV Homomorphic Encryption Scheme”. In: vol. 11405 LNCS. 2019. doi: 10.1007/

978-3-030-12612-4_5.

[Inf21] Inferati. Introduction to the BFV encryption scheme. 2021. url: https://www.

inferati.com/blog/fhe-schemes-bfv.

[KPZ21] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. “Revisiting Homomorphic En-

cryption Schemes for Finite Fields”. In: vol. 13092 LNCS. 2021. doi: 10.1007/978-

3-030-92078-4_21.

[PLS19] Rafael del Pino, Vadim Lyubashevsky, and Gregor Seiler. “Short Discrete Log Proofs

for FHE and Ring-LWE Ciphertexts”. In: vol. 11442 LNCS. 2019. doi: 10.1007/978-

3-030-17253-4_12.

[Sun22] Sunscreen. sunscreen. 2022. url: https://github.com/Sunscreen-tech/Sunscreen.

[Zam23] Zama. fhEVM Whitepaper. 2023. url: https://github.com/zama- ai/fhevm/

blob/main/fhevm-whitepaper.pdf.

A Appendix

The fact that Q and t are co-prime guarantees that the multiplicative inverse of t modulo

Q exists. If Q and t are co-prime, it means their greatest common divisor (GCD) is 1, i.e.,

gcd(Q, t) = 1. The existence of the multiplicative inverse of t mod Q can be understood using

Bezout’s Identity, which states that for two integers a and b for which gcd(a, b) = d, then there

exists integers such that ax+ by = d. In this case Qx+ ty = 1, ty = 1−Qx, ty = 1 mod Q. y

in this case is the multiplicative inverse of t modulo Q and this guarantees its existance. The

15

https://github.com/a16z/jolt
https://doi.org/10.1007/978-3-030-77287-1_2
https://doi.org/10.1007/978-3-030-77287-1_2
https://github.com/axiom-crypto/halo2-lib
https://hackmd.io/@axiom/SJw3p-qX3
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://github.com/enricobottazzi/zk-fhe
https://github.com/enricobottazzi/zk-fhe
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/978-3-030-12612-4_5
https://www.inferati.com/blog/fhe-schemes-bfv
https://www.inferati.com/blog/fhe-schemes-bfv
https://doi.org/10.1007/978-3-030-92078-4_21
https://doi.org/10.1007/978-3-030-92078-4_21
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-030-17253-4_12
https://github.com/Sunscreen-tech/Sunscreen
https://github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf
https://github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf

fact that Q and t are co-prime guarantees that the division has a remainder. That remainder is

actually equal to [QM]t. In this way, we can cancel out the dc notation.

B Appendix

Let’s consider the multiplication of two polynomials F (x) ∗G(x) = H(x). F and G are polyno-

mial of equal degree n. While polynomial H will have degree 2n

F (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

G(x) = bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0

H(x) = cnx
2n + cn−1x

2n−1 + · · ·+ c1x+ c0

The coefficients of H are calculate as follows: ck =
∑

i+j=k ai · bjThe sum is taken over all

the pairs ai and bj such that the sum of the indexes is equal to k. For values of k such that

k < n the number of pairs (i, j) such that i + j = k increseas as k increases. This is intuitive

because there are more ways to partition a number into two non-negative integers as the number

increases. In particular for k = 0 there’s gonna be 1 pair (= 1 multiplication and 0 additions),

while for k = n − 1, there’s gonna be n pairs (= n multiplications and n − 1 additions). At

k = n there’s the maximum number of pairs (i, j) such that i + j = k. Specifically, there are

n + 1 pairs that satisfy this condition. In particular for k = n there’s gonna be n + 1 pairs (=

n+1 multiplications and n additions). For values of k such that k > n the number of pairs (i, j)

such that i + j = k decreases as k increases. This is because the maximum value that i and j

can take is n. So the number of pairs starts to decrease. Think of k = 2n; in that case, there’s

only one pair, which is (i = n, j = n). In particular for k = n+ 1, there’s gonna be n pairs (= n

multiplications and n− 1 additions) and for k = 2n there’s gonna be 1 pair (= 1 multiplication

and 0 additions)

In total there’s gonna be 2 ∗ (
∑n−1

i=0 i + 1) + (n + 1) multiplications and 2 ∗ (
∑n−1

i=0 i) + n

additions. When simplified 2∗ n(n+1)
2 +(n+1) = (n+1)2 multiplications and 2∗ n(n−1)

2 +n = n2

additions

C Appendix

• R2,i = [− qi−1
2 , qi−12] since the operation is performed mod Zqi

• Ai = [− qi−1
2 , qi−12]

• S = [−1, 1]

• deg(Ai) = N − 1.

• deg(S) = N − 1.

• AiS = [−N · qi−12 , N · qi−12].

That’s true because of the following. Let’s consider the multiplication of two polynomials

F (x) ∗G(x) = H(x). F and G are polynomial of equal degree n. Assume that the coefficients

of F and G are in the range [0, Q)

16

F (x) = anx
n + an−1x

n−1 + ...+ a1x+ a0

G(x) = bnx
n + bn−1x

n−1 + ...+ b1x+ b0

H(x) = cnx
2n + cn−1x

2n−1 + ...+ c1x+ c0

The coefficients of H are calculate as follows: ck =
∑

i+j=k ai · bj . The sum is taken over all

the pairs ai and bj such that the sum of the indexes is equal to k. Now, let’s determine which

ck will have the most elements in its sum.

• For values of k such that k < n the number of pairs (i, j) such that i+ j = k increseas as

k increases. This is intuitive because there are more ways to partition a number into two

non-negative integers as the number increases.

• For values of k such that k > n the number of pairs (i, j) such that i+ j = k decreases as

k increases. This is because the maximum value that i and j can take is n. So the number

of pairs starts to decrease. Think of k = 2n, in that case there’s only one pair which is

(i = n, j = n)

• At k = n there’s the maximum number of pairs (i, j) such that i + j = k. Specifically,

there are n+ 1 pairs that satisfy this condition.

Given the case in which Ai = [− qi−1
2 , qi−12], S = [−1, 1], deg(Ai) = N−1 and deg(S) = N−1.

When performing the polynomial multiplication, let’s consider the case in which the co-

efficients of Ai are all (qi − 1)/2 and the coefficients of Si are all 1, cn =
∑n−1

j=0 aj ∗ sn−j ,
max(cn) = qi−1

2 · 1 ·N and min(cn) = qi−1
2 · −1 ·N

Therefore:

• E = [−B,B]

• AiS + E = [−(N · qi−12 +B), N · qi−12 +B]

• K1 = [− t−1
2 , t−12]

• K0,i = −(t−1 mod qi). Note: this is a (negative) scalar, not a polynomial

• K0,iK1 = Ki = [− t−1
2 · |K0,i|, t−12 · |K0,i|]

• AiS + E +Ki = ˆCt0,i = [−(N · qi−12 +B + t−1
2 · |K0,i|), N · qi−12 +B + t−1

2 · |K0,i|]

• deg(ˆCt0,i) = 2N − 2.

• Ct0,i = [− qi−1
2 , qi−12]

• R2,i = [− qi−1
2 , qi−12]

• R2,i(X
N + 1) = [− qi−1

2 , qi−12]

That’s true because of the following polynomial multiplication:

• R2,i = [−(qi − 1)/2, (qi − 1)/2].

• deg(XN + 1) = N

17

• deg(R2,i) = 2(N − 1)−N = N − 2

• deg(R2,i ∗ (XN + 1)) = 2N − 2

When performing the polynomial multiplication, let’s consider the case in which the coeffi-

cients of R2,i are all (qi − 1)/2, and let’s define the polynomial (XN + 1) as f .

The results of the multiplication between any coefficient of R2,i with the leading coefficient

of f (=1) will contribute to the summation of the resulting polynomial coefficients of degree

from 2N − 2 when the leading coefficient of R2,i is multiplied with the leading coefficient of f ,

to N , when the constant term of R2,i is multiplied with the leading coefficient of f .

The results of the multiplication between any coefficient of R2,i with the constant term of

f (=1) will contribute to the summation of the resulting polynomial coefficients of degree from

N − 2 when the leading coefficient of R2,i is multiplied with the constant term of f , to 0, when

the constant term of R2,i is multiplied with constant term of f .

Given that all the other coefficients of f are equal to 0, the multiplication between the

coefficients of R2,i and these coefficients of f won’t contribute to the summation of any of the

resulting polynomial coefficients.

We also note that the results of the multiplication between any coefficient of R2,i with the

leading coefficient of f and the results of the multiplication between any coefficient of R2,i with

the constant term of f (=1) won’t ever be added together in the summation to calculate one of

the resulting polynomial coefficients.

Therefore, it can be concluded that the range of the resulting polynomial is the same as the

range of the R2,i polynomial.

• Ct0,i − ˆCt0,i = [−((N + 1) · qi−12 +B + t−1
2 · |K0,i|), (N + 1) · qi−12 +B + t−1

2 · |K0,i|]

• Ct0,i− ˆCt0,i−R2,i(X
N+1) = [−((N+2)· qi−12 +B+ t−1

2 ·|K0,i|), (N+2)· qi−12 +B+ t−1
2 ·|K0,i|]

• R1,i =
Ct0,i− ˆCt0,i−R2,i(X

N+1)
qi

= [
−((N+2)· qi−1

2 +B+ t−1
2 ·|K0,i|)

qi
,
(N+2)· qi−1

2 +B+ t−1
2 ·|K0,i|

qi
]

18

	Introduction
	BFV
	Proof of Valid Ciphertext Formation
	zkSNARK Logic
	Calculating R1, i and R2, i
	Range Checks
	Proving Correctness of k Ciphertexts
	Parallel Proof Generation
	Proving the correctness of multiple ciphertexts in the same proof

	Circuit Implementation
	Phase 0
	Phase 1

	Prover and Verifier Scheme
	Public Key Encryption Extension
	Composability with Application-Specific Logic
	Benchmarks
	Conclusions
	Acknowledgements
	Appendix
	Appendix
	Appendix

