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Abstract. Side-Channel Attacks target the recovery of key material in cryptographic
implementations by measuring physical quantities such as power consumption during
the execution of a program. Simple Power Attacks consist in deducing secret informa-
tion from a trace using a single or a few samples, as opposed to differential attacks
which require many traces. Software cryptographic implementations now all contain
a data-independent execution path, but often do not consider variations in power
consumption associated to data. In this work, we show that a technique commonly
used to select a value from different possible values in a control-independant way
leads to significant power differences depending on the value selected. This difference
is actually so important that a single sample can be considered for attacking one con-
dition, and no training on other traces is required. We exploit this finding to propose
the first single-trace attack without any knowledge gained on previous executions,
using trace folding. We target the two modular exponentiation implementations
in Libgcrypt, getting respectively 100% and 99.98% of correct bits in average on
30 executions using 2,048-bit exponents. We also use this technique to attack the
scalar multiplication in ECDSA, successfully recovering all secret nonces on 1,000
executions. Finally, the insights we gained from this work allow us to show that
a proposed counter-measure from the litterature for performing the safe loading of
precomputed operands in the context of windowed implementations can be attacked
as well.
Keywords: Simple Power Attack · Modular Exponentiation · ECDSA · Constant-
Time Implementation · Side-Channel Attacks

1 Introduction
Side-Channel Attacks (SCA) target the recovery of key material in cryptographic im-
plementations by measuring physical quantities such as power consumption during the
execution of the program.

There are two major deterministic causes which influence the power consumption:
the instruction executed by a program and the data manipulated by these instructions.
Instructions have a major role in the power dissipated. In fact, looking at a power trace,
it is possible to determine which path of instructions the program has followed, leading
to the so called Simple Power Attacks (SPA). For this reason, sensitive programs such as
cryptographic primitives are now always designed to have an instruction execution trace
which is always the same, and in particular independent from the inputs.

Data, on the other hand, have a slighter effect on power consumption, and exploiting
this power difference often requires to capture a lot of traces and perform differential
attacks known as Differential Power Analysis attacks (DPA) such as the Correlation Power
Analysis attack (CPA). In this article, we show that it is possible to use data power
consumption to perform SPA using single sample values, taking advantage of the variation
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in the Hamming Weight of the data. These attacks allow to recover some secret values
based on a single trace. This article makes three contributions:

• We identified that a common way of implementing constant times cryptographic
algorithms leads to a significant weakness. More precisely, the masking technique
used to assign one of two values to a variable in a control-independant way leads
to significant power differences depending on the chosen value. We additionnally
identified an inherent weakness specific to elliptic curve cryptography, which is due
to the point at infinity.

• We show on two widespread cryptographic implementations how to exploit this
data-related power consumption to perform a SPA: on the modular exponentiation in
Libgcrypt and on a secure elliptic curve implementation for performing a signature.
The attack requires a single trace to recover directly the full secret, without any
training or profiling phase. The only prerequisite is the identification of the loop
performing the computation of the masking technique.

• Using the weaknesses identified in the proposed attacks, we show how to break a
counter-measure proposed by Saito et al. [SIUH22] to safely load a precomputed
operand in a windowed modular exponentiation.

The rest of the article is organized as follows: section 2 describes some background
related to modular exponentiation and its usage in RSA, and to ECDSA. These two
algorithms are used in the following as attack targets. Section 3 presents some works
related to power attacks on cryptographic implementations, and highlights differences
of our work with previous works, especially regarding the attack hypotheses. Section 4
presents our attack on the modular exponentiation, and section 5 our attack on ECDSA.
In section 6, we show that the proposed operand loading process from [SIUH22] does not
prevent the exponent recovery. Finally, section 7 concludes and gives some perspectives
for future works.

2 Background
2.1 Modular Exponentiation
2.1.1 Usage in RSA

Modular exponentiation is a critical operation in a cryptographic context, as it is often
applied to secret data. More precisely, the RSA asymmetric encryption scheme uses
modular exponentiation with the secret key as exponent in two contexts: for deciphering a
message, and for signing a message.

In the textbook RSA scheme, a private key is made of values (p, q, d), a public key is
(e, N): p and q are two large prime numbers and N = pq, d = e−1 mod (p − 1)(q − 1)
where e is a small value and e has to be relatively prime with (p− 1)(q − 1). Signature
and verification of a message m are expressed as:

s = md mod N
m = se mod N

in which s is the signature. RSA is often implemented using the so-called CRT-RSA
scheme for efficiency reasons. In this scheme, the owner of the private key computes:

dp = d mod (p− 1)
dq = d mod (q − 1)
qp = q−1 mod p
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The signing operates as follows:

sp = mdp mod p
sq = mdq mod q

s = (sp − sq).qp.q + sq mod N

We can notice that the secret exponent d is no longer used as exponent; however, recovering
dp and dq from the corresponding exponentiations still allows to recover d: we can then
compute s′

p = mdp mod N , and since we have s = md mod N , we can recover:

p = gcd(s− s′
p, N)

q = N/p

d = e−1 mod (p− 1)(q − 1)

Using the notation a ≡ b mod n for the congurence of a and b modulo n:

Since s = md mod N

we have s ≡ md mod p

∃ k such that s ≡ mdp+k(p−1) mod p

≡ mdp .(m(p−1))k mod p

Euler’s Theorem ≡ mdp .(1)k mod p

≡ mdp mod p

∃ a such that s = mdp + a.p (1)

Similarly s′
p = mdp mod N

s′
p ≡ mdp mod p

∃ b such that s′
p = mdp + b.p (2)

(1)− (2) =⇒ s− s′
p = mdp + a.p−mdp − b.p

s− s′
p = (a− b).p

So (s− s′
p) and N have a common factor p which is their greatest common divisor since

N = pq and p and q are prime numbers.
In Libgcrypt’s RSA implementation, a random protection has been added: a random

number r is generated for each calculation and the expression sp = mdp+r(p−1) mod p
is computed instead of sp = mdp mod p. This does not change the value of sp, but
the exponent of the operation is dp + r(p − 1), which means that the "secret" value we
recover is actually dp + r(p− 1), and the same for dq. However, as detailed in Vergnaud’s
article [Ver20], when we have the full value of dp + r(p − 1), we can use RSA’s own
properties to find p, and the same for q. Even if we only find a part of dp + r(p− 1), we
can still find the complete key using lattice, as described in [MV19] (section 6).

2.1.2 Implementations

Traditional modular exponentiation implementations follow the algorithm shown in Al-
gorithm 1. In this algorithm, the exponent is traversed bit by bit; when the bit is 0, the
current result is squared, and when it is 1, the current result is squared then multiplied.
Obviously, recovering the sequence of operations, e.g. via a cache attack [YF14, LGS+16]
or power traces, allows to recover the exponent.
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Algorithm 1 Traditional modular exponentiation. Bold variables indicate large integers.
Input: Base c, exponent d = (dk−1...d0)2, modulus N
Output: r = cd mod N

function ModularExponentiation(c, d, N )
r ← 1
for i from k − 1 to 0 do

r ← r × r mod N # Squaring
if di = 1 then

r ← r × c mod N # Multiplication
return r

Algorithm 2 Windowed modular exponentiation. Bold variables indicate large integers.
Input: Base c, exponent d = (dk−1...d0)2, modulus N , window size w
Output: r = cd mod N

function ModularExponentiation(c, d, N , w)
c0 ← 1
for i from 1 to 2w−1 do

ci ← ci−1 × c mod N # Precomputing the 2w−1 first powers in a table
r ← 1
z ← k − 1
while z ≥ 0 do

y ← max(z − w + 1, 0)
u ← (dz...dy)2
for i from 1 to z − y + 1 do

r ← r × r mod N # Squaring
r ← r × cu mod N # Multiplication

return r

To circumvent this problem, recent implementations always perform the multiplication
and store the result in a different variable, choosing at the end of the iteration which result
to keep.

Another approach, which is computationally more efficient consists in precomputing 2w

values of the base at the beginning, and then in traversing the exponent bits by groups
of w, as shown in Algorithm 2. We can see that in this version of the algorithm, the
computations are independant from the exponent value. However, since the cu loaded
depends on it, it is possible to use cache timing information to infer what the possible
values for u are. To avoid this issue, some side-channel resistant implementations load
all the elements cu, keeping as result the result of the load corresponding to the correct
window value.

However, as we will show in section 4, both the multiply always version and the
windowed version making all loads are subject to SPA when keeping or discarding the
result of a useful or useless operation.

2.2 ECDSA
2.2.1 Principle

Elliptic Curve Digital Signature Algorithm (ECDSA) [JMV01] is a public-key digital
signature algorithm that is a variant of DSA. It uses elliptic curve cryptography which
relies on an elliptic curve defined over some finite field of integers Fp, Curve(a, b, p, G, n)
= x3 + ax + b mod p where p is a large prime, G is a base point on the curve that can
generate a subgroup of a large prime-order n.

The public parameters of ECDSA scheme include a description of Curve(a, b, p, G,
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n). The private key d is a random positive integer less than n, the corresponding public
key is set as the point H = d ∗G. The ∗ here is the multiplication between a scalar and a
point of the curve, and d ∗G is defined by doing d times the elliptic curves’s addition of
the point G.

A signature of a message m is Sign(z, d) = (r, s), where z = hash(m) for some hash
function; r = xcoord(P ), where P = k ∗ G with k a random nonce greater than 0 and
less than n generated for each signature; s = k−1(z + dr) mod n where k−1 is the inverse
of k mod n. One can then verify the signature from the public key H by computing
u = s−1z mod n, v = s−1r mod n, and checking whether xcoord(u ∗ G + v ∗ H) = r,
meaning s−1z ∗G + s−1r ∗H mod n = k ∗G.

We can see that once we find any nonce k, we can easily compute the private key
d = r−1(sk − z) mod n.

2.2.2 Implementations

Traditional implementations of ECC’s multiplication rely on traversing the bits of the scalar,
either one by one or using a window of bits for indexing a table containing precomputed
multiples of the base point.

Algorithm 3 Fixed-Window ECC Multiplication. Bold variables indicate large integers,
and variables in capital indicate EC points.

Input: Base Point G, scalar k = (kn−1...k0)2, window size w
Output: Point P = k ∗ G

function ECCMultiplication(G, k, w)
C0 ← O # O represents the point at infinity, neutral element for the addition
for i from 1 to 2w−1 do

C i ← C i−1 + G # Precomputing the first 2w−1 multiples in a table
P ← O
z ← n − 1
while z ≥ 0 do

y ← max(z − w + 1, 0)
u ← (kz...ky)2
for i from 1 to z − y + 1 do

P ← P + P # Computing 2z−y+1 ∗P
P ← P + C u # Computing (2z−y+1 + u) ∗P

return P

Algorithm 3 shows the fixed-window ECC multiplication. As for the modular expo-
nentiation, the lookup can be made constant time and indistiguishable from the loaded
value by loading each element in the precomputed table and using a mask technique to
only keep the correct value.

Yet again, as we will show in section 5, the recombination of all the loaded value can
be efficiently exploited to recover the secret nonce in a single trace without prior training.

3 Related Works and Discussion
Several recent works have targeted the recovery of the secret exponent in RSA and the
recovery of the secret nonce in ECDSA, often limited to the recovery of a part of the secret
bits.

In 2017, Bernstein et al. [BBG+17] proposed an attack to recover the full RSA exponent
of a non constant-time sliding window implementation of modular exponentiation, based
on the fact non constant-time implementations seek to reduce the number of multiplication
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by adjusting the window depending on the location of the zeros. Following this work,
constant-time sliding window exponentiation was proposed.

In 2019, Weissbart et al. [WPB19] presented an attack of ECDSA using different
techniques of various accuracy for recovering the secret nonce. The full secret recovery is
achieved with a Convolutional Neural Network (CNN), which must be trained with around
500 traces for the complete recovery. This work has been extended in 2020 [WCPB20] in
which two different implementations of the scalar multiplication are studied: a baseline
using power consumption, and a protected implementation using electromagnetic emission
(EM). While the authors manage to break the baseline implementation with a single trace,
they make use of a CNN trained with 6400 labeled traces, while not being able to explain
the cause of the leakage.

In 2020, Lee et al. [LH20a] consider the detection of dummy operations as a multi-
label classification problem and propose a deep learning method based on CNN to solve
it, using power measures. They target an AES software implementation with dummy
loads countermeasure, and show that their method performs well compared to their
previously proposed method [LH20b]. However, their multi-label CNN is designed for
attacking this specific AES implementation, and the applicability to other cryptographic
implementations is unclear. Also using deep learning, Lei et al. presented a profiling
attack based on VGGNet, a small and deep neural network, performed on a smart-card
CRT-RSA implementation, using security countermeasures including masking and time
jittering [LLQ+20]. An ad-hoc method is applied to extract samples points from traces to
perform an effective deep learning profiling attack.

Finally, two works are closely related to the contributions we make in this article.
First, Monjur et al. describe an attack on ECDSA using a fixed window via EM mea-
sures [MYW+21]. The principle of their attack is similar to ours, but they target the copy
and result of an exclusive-or of the masked data, which is less discriminant than the mask
computation we propose, and therefore need to consider several samples. Their attack
thus needs a profiling comprising a dozen traces, while giving some incorrect bits.

Second, Saito et al. propose a single-trace[SIUH22] attack on the GnuMP implemen-
tation of the exponentiation in RSA based on EM measures. They use a deep-learning
technique to detect dummy loads, but the approach requires a significant training phase
(more than 61 millions traces mentioned in the article), while not giving much insight on the
reason of the leakage. A counter-measure is presented in the article, which we think does
not prevent the exponent recovery. We will explain how to attack this counter-measure in
section 6.

In contrary to most of these works which rely on profiling and learning techniques,
the attack we present in this article does not need any specific training. The base idea is
very simple, and consists in comparing the power consumption of the two different cases
in the recombination phase in constant time implementations. As it turns out, the mask
computation, which only depends on data, is sufficient to distinguish clearly the condition
using a single power measure, even though the attack was carried out on a cheap device
limited to a single sample per cycle.

4 Attacking RSA Modular Exponentiation with a SPA
This section presents our Simple Power Analysis attack on modular exponentiation. The
attack targets the recovery of the exponent bits, either bit by bit for the traditional version,
or slice by slice for the windowed version. Note that we are not interested here in the
recovery of the exponent should any error occur, and such algorithms have already been
proposed, e.g. in [SIUH22]. Besides, the attack has a very high precision and typically
produce no error.

We target implementations of the Libgcrypt library (v.1.10.3 released on the 14th
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November 2023), compiled for Arm v7 and executed on an Arm Cortex-M4 integrated
on a STM32F3 board. The board used is the ChipWhispererPro board from NewAE,
measuring 4 samples per cycle for short traces, and one sample per cycle using streaming
mode for long traces [OC14].

4.1 Characterisation: Conditional Assignment using Masking
A common way to perform a conditional assignment is to use the so-called “masking”
technique, consisting in having two words: one containing only '0' bits, and one containing
only '1' bits, depending on the condition. A way to achieve this is presented in algorithm 4.
It uses the fact that in this implementation, a large integer is represented as an array of
limbs, each limb being encoded on a machine word – 32 bits in our case.

Algorithm 4 Control-independant conditional assignment using masking, used for example
in Libgcrypt. Bold variables indicate large integers.

1: function SetCond(v, u, c) ▷ if c = 0 v remains unchanged, else v gets u
2: msk0 ← wzero − c ▷ wzero is a word containing only '0' bits
3: msk1 ← c − wone ▷ wone is a word containing the value 1 (0b0...01)
4: for i from 0 to nlimbs − 1 do ▷ nlimbs is the number of limbs
5: vi ← (msk0 & ui) | (msk1 & vi) ▷ vi and ui are the ith limbs of v and u

We first tried to determine whether the computation of msk0 and msk1 leads to signifi-
cant power consumption differences depending on the value of c. For this characterisation,
we used the implementation of the SetCond function of the library. Extracting only the
masks computation lines 2 and 3 (and not the recombination line 4), we captured 1000
traces with a random value for the condition c.

50 60 70 80

0.05

0.1

0.15

0.2

Figure 1: Power consumption of a part of the SetCond function in Libgcrypt with 4
samples per cycle. Blue curves correspond to a condition value of 0, while red curves
correspond to a condition value of 1.

The results of the captures are shown in Figure 1. On this figure, recorded traces with
a condition value of 0 are displayed in blue, while recorded traces with a condition value
of 1 are displayed in red. We can clearly see that there are some sample points for which
the power consumption distributions for the two values of c are disjoint. Thus, measuring
the power consumption at one of these this sample points only allows to determine the
value of c, using a simple threshold to discriminate.
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4.2 Attacking the full exponentiation
We used the two versions of the modular exponentation present in the Libgcrypt library:
the traditional version based on the traversal of the exponent bits, and the second one using
a sliding window. In the traditional version, for each bit of the exponent, the condition
passed to the SetCond function is the bit value, as shown in Algorithm 5.

Algorithm 5 Simplified iteration of the main loop of the traditional exponentiation
function in Libgcrypt. Bold variables indicate large integers.

▷ rp contains the current result
1: xp ← rp × rp ▷ Squaring
2: xp, rp ← rp, xp ▷ Swapping rp and xp
3: xp ← rp × b ▷ Multiplication
4: rp ← SetCond(rp, xp, ei) ▷ Keeping correct result depending on exponent bit

Algorithm 6 Simplified iteration of the main internal loop of the sliding window expo-
nentiation function in Libgcrypt, loading all precomputed values. Bold variables indicate
large integers.

1: rp ← result; ▷ rp contains the current result
2: for i from j to 0 do ▷ j is the number of squares
3: for k from 0 to (2w−1 − 1) do ▷ w = 5 is the window size
4: u ← precomp[k] ▷ precomp[k] contains base2×k+1 [pointer copy]
5: SetCond(w, u, k = e0) ▷ w ← precomp[e0] if k = e0, e0 being the slice
6: value derived from the window value
7: SetCond(w, rp, i ̸= 0) ▷ w ← rp if i ̸= 0, w ← precomp[e0] if i = 0
8: xp ← MulMod(rp, w, mp) ▷ Square if i ̸= 0, Multiply if i = 0,
9: mp is the modulus

10: rp ← xp

The implementation for the windowed version is shown in Algorithm 6. In order to
minimize the number of multiplications, the considered slice value for the exponent is not
directly the window value: the implementation first discards the trailing zeros and processes
them in the next iteration. Then, the trailing 1 is removed for the index computation:
the obtained slice value e0 is thus comprised between 0 and 15, and is used for indexing
the precomp table which contains only odd powers between 1 and 31 (i.e. precomp[e0] =
base2×e0+1). In order to implement constant time, all elements in the table precomp are
loaded using iteration variable k, and using as condition for the SetCond function that k
equals e0.

As an example, if the window value is 101002, the two trailing zeros are first removed,
giving 1012. Then, the slice value e0 is obtained by removing the trailing 1, i.e. e0 = 102
= 2. The function thus copies precomp[2] = base2×2+1 = base1012 into w, ignoring other
loaded values.

Attacks on both the traditional and the windowed versions comprise the following parts:
1) Locating the Regions of Interest (ROI) corresponding to where the SetCond function
is called; 2) Determining the Points of Interest (POI) from these ROI; 3) Determining the
operations from the power consumption at the POI; 4) Reconstructing the key from the
sequence of operations.

4.3 Locating the Regions of Interest
The ROI correspond to where the SetCond function is called. Examples of such ROI
for the windowed version are shown in Figure 2. For this version, each ROI contains 17
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(a) SetCond function call with
a slice value of 3

(b) SetCond function call with
a slice value of 10

(c) SetCond function call with
a slice value of 14

Figure 2: Power consumption for the windowed version where the function SetCond is
called, for three different slice values

sections, and each section contains a POI. The first 16 sections represent the calls to
the SetCond function in the loop and the last one represents the call to the SetCond
function outside of the loop (lines 3-7 in Algorithm 6). As for the traditional version, ROI
contain only one section since they comprise a single call to the SetCond function.

Algorithm 7 Finding all ROI in the trace using a pattern
1: function FindROI(pattern, trace)
2: roi ← [ ]
3: for i from 0 to (nb_samples − len(pattern) − 1) do
4: diff ← 0
5: for j from 0 to (len(pattern) − 1) do
6: diff ← diff + abs(pattern[j] − trace[i + j])
7: if (diff < threshold) then
8: roi.append(i)
9: return roi

For both versions, the offsets between two consecutive ROI are not the same, as
some operations depend on the data values. For the windowed version, it is due to the
different number of limbs and the way Libgcrypt cuts the exponent into slices during the
computation; while for the traditional version, it is due to some possible required memory
allocations depending on the already allocated variable sizes.

In order to locate the different ROI, we use a very simple approach which consists
in using one ROI as a power pattern for finding the others. Locating all ROI is then
achieved by simply computing, for each subtrace of the same size, the sum of the absolute
difference between the subtrace and the pattern, and keeping the ROI if this difference
is below some threshold, as illustrated in Algorithm 7. The threshold value is typically
obtained empirically: we can manually find a few ROI in the trace, compute this difference
and define a threshold. This threshold needs to be larger than the maximum difference
observed and smaller than the difference for the other non-ROI subtraces. Finding such
a threshold is not complicated since the difference between the results of a ROI and a
non-ROI subtrace is very significant. Besides, if we miss some ROI due to the threshold
being too low, we can deduce the location of these ROI from the number of cycles between
neighbouring ROI we found: if this number is significantly higher than usual, it means
that some ROI have been missed, and we can then adapt the threshold consequently.
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4.4 Locating the Points of Interest

Focusing on Figure 2, we can observe that for the windowed version, the section for which
the iteration number is equal to the slice value (condition k = e0 in Algorithm 6) has a
different power profile compared to the other, the top part being slightly higher. However,
this difference, related to the reading of the precomputed elements, is harder to use than
the difference related to the masks’ computation that happens at the beginning of each
section. This is why we decided to focus on the latter and to use these samples points as
POI as they are the most obvious and stable ones.

Since we have only one trace, the approach we use is to “fold” the trace, by overlaying
all the ROI found in it. By doing so, the sample points at which the masks’ computation
occur will exhibit two sets of traces clearly separated, depending on the condition value.

Figure 3 illustrates the overlayed ROI for both versions. In this figure, we notice that
two possible areas can be chosen, corresponding to the computation of msk0 and msk1,
represented by squared dotted areas. In order to determine the threshold for each POI in
the traditional version, we compute the greatest power difference for all ordered power
measures at the corresponding sample, and take the middle of the two corresponding
samples, as illustrated in Algorithm 8. As each ROI contains a single POI at the same
position, locating all the POI is straightforward.

For the windowed version, overlaying the ROI yields 17 distinct POI, and a threshold
can be computed for each. Actually, as long as the size of the base remains the same,
no matter how the exponent changes, the location of the different POI inside the ROI
will remain the same. In fact, the width of the sections inside a ROI first increase – as
shown in Figure 2 – because when the result of the precomputed power is smaller than
the modulus, Libgcrypt encodes it only on the required number of limbs. Therefore, the
copy time changes according to this number. In our case, we sign a hash from the hash224
function, which is 224-bit long i.e. 7 limbs. Even when the condition is 0, if the value
is not really copied, the number of iterations still depends on the number of limbs as
shown lines 4-5 in Algorithm 4. The loaded precomputed results grows until reaching the
modulus size, after what it remains the same size. Thus, the POI are always located at
the same position in a ROI for a given base size, and their location can easily be found.
Indeed, each section of a ROI has two parts: one containing the mask generation and one
containing the reading of the limbs. In our case, we can observe that the part containing
the mask generation takes 89 cycles while the reading takes 13 cycles per limb. Using
these values, we can easily calculate the location of all POI in each ROI as long as we
know one POI location of one ROI from the trace.

Locating the POI automatically could alternatively be done by looking for the sample
in each section of the ROI for which the greatest power difference for all ordered power
measures is maximum. However, it still requires to identify the section, therefore bringing
little advantage.

Algorithm 8 Finding the POI threshold
1: function FindPOIThresholds(pm_list) ▷ A list of power measures
2: opm ← sort(pm_list) ▷ Ordered power measures
3: power_diff ← [(opm[i + 1] - opm[i]) for i in range(len(opm) - 1)]
4: idx ← argmax(power_diff) ▷ Index of the maximum value
5: threshold ← opm[idx] + (power_diff[idx] / 2)
6: return threshold
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Figure 3: Power consumption at the POI corresponding to the mask computation in the
SetCond function for one trace and for both versions. For the windowed version, the
displayed POI are those corresponding to the first of the 17 sections. Traces in orange
correspond to a condition of 1, while traces in green correspond to a condition of 0. Dashed
areas indicate where the masks are computed.

Algorithm 9 Recovering the sequence of squares and multiplications from the POI
1: function RecoverOperations(poi, trace) ▷ Returns the sequence of operations
2: j ← 0
3: e0_list ← [ ] ▷ List of exponent slice values
4: nb_squares ← [ ] ▷ nb_squares[i] is the number of squares preceding the ith multiply
5: for i from 0 to len(poi) − 1 do
6: if trace[poi[i][16]] > threshold16 then ▷ Multiply detected
7: for k from 0 to 15 do ▷ precomp[k]
8: if trace[poi[i][k]] < thresholdk then ▷ k is equal to e0
9: e0_list.append(k) ▷ k contains the exponent slice value

10: nb_squares.append(j) ▷ j squares
11: j ← 0
12: break
13: else
14: j ← j + 1
15: return e0_list, nb_squares

4.5 Determining the operations from the POI

For the windowed version, each ROI contains 17 POI, corresponding to the 17 calls to the
SetCond function, as shown in Algorithm 6. The last POI indicates if the operation is
a Square (i ̸= 0) or a Multiply (i = 0). Therefore, the recovery shown in Algorithm 9
starts by checking the power value at this POI in order to determine the operation (line
6). If the operation is a Multiply, we then check each of the first 16 POI, until we find the
section for which the condition is true, meaning that the section number is equal to the
exponent slice value (line 8). We then store this slice value and the corresponding number
of preceding squares.

For the traditional version, the recovery of the sequence of operations is trivial, as each
POI directly gives the operation (Square or Multiply) depending on the condition value,
which is directly the exponent bit value.
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Algorithm 10 Exponent recovery from the sequence of operations
1: function RecoverExp(e0_list, nb_squares)
2: exp ← [1]
3: for i from 0 to (len(e0_list) - 1) do
4: exp.extend([0] × nb_squares[i]) ▷ Concatenate nb_squares[i] '0' to the right
5: b ← bin(2 × e0_list[i] + 1) ▷ Binary representation
6: for j from 0 to (len(b) - 1) do
7: exp[len(exp) - 1 - j] ← b[len(b) - 1 - j]
8: return exp

4.6 Reconstructing the secret exponent
The reconstruction of the full secret exponent for the windowed version is shown in
Algorithm 10, which traverses the list of exponent slice values and first concatenates the
corresponding number of '0' bits (line 4), which is equal to the number of squares, and
then adds the exponent value 2 × e0_list[i] + 1 (lines 5-7). As an example for the
first iteration, if e0_list[0] = 3 and nb_squares[0] = 5, we first have exp = (1)2, then we
concatenate 5 '0' bits to the right (exp = (100000)2), finally the exponent value (2 × 3 +
1) = 7 = (111)2 is added (exp = (100111)2).

4.7 Experimental Results
In this section, we show how using the power consumption of the mask computation,
we can recover very accurately the full exponent with a single trace without any prior
knowledge from other traces. For a given target, the only required preliminary step is to
identify one ROI in the trace, which can be more or less time-consuming depending on
the attack hypotheses – specifically whether the code can be modified or not. For these
experiments, we thus suppose that for each trace, we have located manually one ROI, and
then we use it as a pattern for the detection of all the other ROI. In practice however, the
detection of this ROI of each trace was done using a common pattern in order to speedup
the process, since the ROI shape does not change much between two different traces.

The attack achieved in this section comprises the following parts for each trace: 1) Select
one ROI as pattern; 2) Locate all ROI using the pattern; 3) Overlay all ROI found in
the trace, in order to obtain the folded trace; 4) For the traditional (resp. windowed)
version, locate in the folded trace (resp. in each section of the folded trace), a sample
point for which all trace portions split very clearly into two sets, and use it as POI as
shown in Figure 3; determine the POI thresholds; 5) Recover the operations from the
power consumption at the POI, and the exponent from the operations.

The attack presented only uses basic knowledge on the traces. However, by making
a more detailed analysis, it is possible to improve the attack execution time. For the
windowed version, using a 2,048-bit exponent, the full exponentiation takes around 530
millions cycles. Taking as pattern a complete ROI, detecting all the ROI approximately
takes two hours. Obviously, the shorter the pattern, the shorter the time required to find
all ROI, and we do not necessarily need to use the entire ROI as a pattern if we can find a
part of the ROI which is sufficiently different from other parts of the trace. We have thus
found two good pattern choices: a 277-sample pattern corresponding to the first section
of a ROI, and a 50-sample pattern corresponding to the mask computation part of the
16th section. However, the shorter the pattern, the more sensitive it is to variations in
data. Therefore, we need two versions for short patterns, one for each condition value, for
matching reliably both cases. In this setup, a ROI is detected when any pattern matches.
On the other hand, as mentioned earlier, even though the number of cycles between two
consecutive ROI vary, it is comprised in a given range. As a consequence, we can skip a
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certain number of samples directly after finding a ROI.

Table 1: Attack results for both the traditional and windowed versions, using 2,048-bit
exponents

Version Traces Total Pattern Pattern Missed Time/ Using Incorrect
bits samples versions bits trace as POI bits

Traditional 30 61,440 30 2 0 0.6 s msk0 14
msk1 0

Windowed 30 61,440
13711 1 0 5992 s

msk1 0227 2 5 77 s
50 2 7 11 s

Experiments were made on 30 traces using 2048-bit exponents for each version. We
used as POI both the computation of msk0 and msk1 for the traditional version, but
only the computation of msk1 for the windowed version, as the computation of msk0
is not so clear in the last section. Thus in total, with patterns of different lengths, we
obtain 4×30 independent ROI recoveries and 3×30 independent bits recoveries. The
results are presented in Table 1. For the traditional version, no bits are missed with
the 30-sample pattern corresponding to the ROI, and all bit values are correctly found
using the computation of msk1, while only 14 bits (in 11 different traces) are incorrectly
recovered using the computation of msk0. For the windowed version, no bits were missed
with a pattern corresponding to a complete ROI (13,711 samples), 5 bits (in 5 different
traces) were missed with the 227-sample pattern and 7 bits (in 7 different traces) were
missed with the 50-sample pattern. In any case, no incorrect bit value is recovered from a
POI, showing the high accuracy of this attack. Besides, the selected short patterns and
the skip operation allow to greatly reduce the attack time for the windowed version, from
almost two hours for the full pattern without the skip operation, to respectively 77s and
11s.

These results underly the fact that securing the exponentiation against side-channel
attacks, even simple ones, is a challenging task. They suggest that it is hopeless to
secure the exponentiation with techniques based on constant time or code tricks, but that
counter-measures should instead focus on mathematical aspects, or include randomness.

4.8 Limitations
The two hypotheses required for the attack to work are the following: 1) all the ROI
should overlay; 2) the power consumption for the mask computation should be significantly
different depending on the condition value. While we do not know if these hypotheses will
hold for any architecture, it is likely that they should be true often: the first one because
the compiled code should follow the source code structure, which does not contain any
conditional branch inside the ROI; the second one because the mask computation will
always produce a different number of bit flips on the data path depending on the condition
value, these bit-flips constituting the most important part in power consumption.

Regarding obtained errors, an example of incorrect bit detection for the traditional
version is shown in Figure 4a. We noticed that the incorrect bits always appear in the first
three bits of each trace. We can see in Figure 4a that for these three bits, the power is
shifted above the others – a phenomenon we already noticed when looking for the ROI.
After investigation, it appears that it is because in these iterations, the modulus is not
done due to the result size. Therefore, as the preceding operations differ from the rest,
they have a different influence on the power consumption from the rest on the SetCond
function call. While it is possible to determine a specific threshold for these iterations, we
consider that it involves too much knowledge on the trace. Plus, since there are only three
of them, it is easy to manually confirm their values.
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(b) Missed ROI (red) compared to other ROI for the
50-sample pattern for the windowed version

Figure 4: Examples of errors encountered by the attack

We also investigated the missed ROI for the windowed version and noticed that they
all occurred at the end of the trace. For these ROI, a small part of the trace seems shifted,
leading to a higher difference with the pattern, as illustrated in Figure 4b. While we did
not manage to understand the cause of this difference, its impact on the attack remains
limited and as we mentioned earlier, all the missed ROI are easy to locate.

Finally, in order to be more robust in the recovered bit values, a slightly more complex
approach could be used, considering for example two or more consecutive power values
and compute their difference in order to deduce the shape of the correct curve. However,
as these cases remained very rare, we did not consider the need to take them into account.

5 Attacking ECDSA with a SPA
5.1 Characterisation and Setup
For ECDSA, we used the bearssl library [Por23], which includes some counter measures
against side-channel attacks. It is compiled with gcc 10.2.1 using optimisation level O2,
and using the curve p256m31. The ECC multiplication in this library is constant time and
uses a fixed 4-bit window over the scalar value, performing the loads of all the values in the
table (external loop over i), and keeping only the correct value using a masking technique,
as shown in algorithm 11. Each value is a point of the curve (which is the multiplication
of G by a scalar between 1 and 15), encoded as several 32-bit limbs in order to store the
256-bit coordinates: 9 limbs for the x coordinate and 9 limbs for the y coordinate1. The
internal loop over j reads and masks these 18 limbs.

We recorded traces consisting of the 64 iterations, each iteration processing 4 bits
of the scalar value. Such a trace requires approximately 6,000,000 processor cycles to
complete. As for RSA, we recorded the samples using the ChipWhisperer Pro device, with
a STM32F3 target board comprising a Arm Cortex-M4. The number of cycles and samples
in a trace imposes here again to use the capture device in streaming mode, which limits
the number of samples to a single sample per cycle.

1A point coordinate is encoded on 9 32-bit words, using 30 bits for the first 8 words, and 16 bits for
the last
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Algorithm 11 Pseudo-code of the LookupGwin function in the bearssl library
▷ idx contains the window value of the scalar bits
▷ Gwin[i][j] contains word j of (i+1)∗G
▷ EQ(x, y) returns 1 if x = y, 0 otherwise

1: function LookupGwin(idx) ▷ returns idx∗G
2: P ← 0
3: for i from 0 to 14 do
4: mask ← -EQ(idx, i + 1)
5: for j from 0 to 17 do
6: P[j] ← mask & Gwin[i][j]
7: return P

5.2 Attacking the masked loads
We first targeted the loads in the precomputed values table, and more specifically the
computation of the mask. We manually located in the trace the power corresponding to the
LookupGwin function calls, which constitutes our ROI. Since all the ROI are separated
with a constant number of samples, the identification of the 64 ROI is straightforward. In
Figure 5, we can clearly see that there are 15 sections on each subfigure (again separated
by a fixed number of samples), while zooming in reveals that each section containing 18
smaller sections. These are exactly the for i and for j loops in LookupGwin.

We can already observe in Figure 5 that when the 4-bit value is equal to i + 1 (mask =
-1), the power consumption of the whole iteration is significantly different. This is because
the program actually keeps the precomputed value only in this case, and thus the result of
the bitwise AND operation will have a average Hamming Weight value of 15, instead of 0.

(a) Window value = 1 (b) Window value = 3 (c) Window value = 12

Figure 5: Power consumption of one LookupGwin function call for different window
values.

However, as in the case of the exponentiation, the power consumption difference resulting
from mask computation is way clearer. By overlaying different ROI, we can observe a
sample at the beginning of each section (for i iteration) whose value highly depends on
the condition value. This sample in each section, that we use as POI, corresponds to the
operation: mask ← -EQ(idx, i + 1).

Figure 6 illustrates the power consumption for all overlayed ROI, at the samples
corresponding to the mask computation. In this figure, the top curves correspond to POI
in the first section: the dark blue curves when the condition is true which means the
window value is 1; the dark orange curves when the condition is false and the window
value is different from 0; and the dark green curves when the condition is false and the
window value is 0, meaning the condition will be false for all other sections. It is somewhat
surprising to see that some sample points allow to discriminate very clearly between a 0
and a non-zero window value; yet regardless, we did not use this information in our attack,
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Figure 6: Power consumption associated to the mask computation in ECDSA. The different
colors indicate different sections and condition values.

focusing only on the condition result at each iteration. The bottom curves correspond to
sections 1 to 14 (from the second to the 15th): the blue curves when the condition is true,
i.e. when the iteration matches the window value, the pink curves when the condition is
false but has already been true in one of the previous sections of current ROI, the orange
curves when the condition is false and has not yet been true in one of the previous sections
of current ROI, and the green curves (mixed with the orange ones) correspond to false
conditions when the window value is 0, because no condition of any section in this ROI
will be true when the value is 0.

From this figure, we can observe that the power consumption in the first section is
significantly different from the other sections, for which the measures all coincide. Therefore,
we decided to use two thresholds (determined with the technique described in Algorithm 8):
one for the first section and one for the others. As the number of iterations is only 64, this
allows to have a threshold even for window values which are never reached. As for the
window value 1, if it is never reached, all curves at the POI will overlay and the assumption
must be made that this value is never obtained.

Algorithm 12 ECDSA Digits recovery using the power measures
1: function BitsRecovery(trace, poi)
2: cons1 = [ ], cons2 = [ ], secret = ''
3: for j from 0 to 63 do
4: cons1.append(trace[poi[j][0]])
5: for i from 1 to 14 do
6: cons2.append(trace[poi[j][i]])
7: threshold2 = find_threshold(cons2)
8: threshold1 = find_threshold(cons1)
9: for j from 0 to 63 do

10: if cons1[j] > threshold1 then
11: secret += '1'
12: else
13: cons_j = cons2[j × 14 : (j + 1) × 14] ▷ Sublist with the POI of the jth ROI only
14: if max(cons_j) > threshold2 - ε then
15: secret += str(cons_j.argmax(cons_j) + 2) ▷ hex character encoding 4 bits
16: else
17: secret += '0'
18: return secret

Putting apart the first iteration, we thus decided to look whether one of the measure
at the POI was greater than the threshold: if not, the value 0 is deduced, otherwise, the
window value taken is the index corresponding to the maximum of the observed values
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(Algorithm 12). Finally, since the discrimination using the threshold must only be done
between a 0 value and a non-0 value (sets of blue and light green/light orange curves), the
threshold can optionally be adapted for the attack to be more robust. In practice, we used
an ε value of 0.01, from the observations made in Figure 6.

We captured 1,000 traces and ran the attack on each of these traces: on the 1,000 × 64
window values, we recovered correctly all the scalar bits of the nonce k, using Algorithm 12.
These results are summarized in table 2.

Table 2: Results for the ECDSA attack for 1,000 traces.

Nb. Traces Nb. of Nb. of Percentage of Percentage of
digits secret nonces recovered digits recovered secret nonces

1,000 64,000 1,000 100% 100%

5.3 Attacking the 0 values
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Figure 7: Power consumption for the reads and writes of machine words representing a
point of the curve. Red curves indicate the point at infinity, while blue curves indicate
another point. The purple line indicates the sample used for the attack.

As seen in section 2.2, the considered implementation iteratively loads precomputed
values from a table. Each value consists of several limbs in order to reconstruct the 256-bit
coordinates. Due to the nature of the algorithm, when the window value is 0, the result
of its multiplication with the base point is the point at infinity, encoded as limbs with
value 0 only. Thus, when loading and writing iteratively all of the words of the resulting
point, the Hamming Weight of each word will be 0, while it will be 15 on average for
other points. This difference in Hamming Weight is actually sufficient to identify when
the point at infinity is used. This can actually lead to an attack, since the knowledge of
the “zero” values in k on a few traces is sufficient to recover the secret [GRV17, HGS01].
Note that this attack is independent from the masking technique, and targets the copy of
the resulting point at the end of the LookupGwin function.

Here again, by overlaying the ROI corresponding to the copy, two sets of traces appear
clearly, as shown in Figure 7. This figure shows that there is a clear difference in power
consumption between a window value of 0 (red curves) and a window value different from
0 (blue curves), due to the difference in Hamming Weights.

Once again, we achieved this attack without the knowledge of previous executions, and
the thresholds were determined using only the trace itself. We captured 1000 traces and
for each trace and each iteration, we guessed if the loaded point was the point at infinity
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Table 3: Results for the ECDSA attack consisting in determining the 0 values.

Number of Number of Number of 0 digits Number of non-0 digits Attack
traces digits incorrectly found incorrectly found Accuracy
1,000 64,000 1 0 99.998%

or not based on the power consumption of the selected sample. Similarly to the previous
attack, for traces containing no zeros, we used a criteria on the found maximum difference
in the ordered power values, and concluded that all windowed values were different from 0.
The results, summarized in table 3 show that all digits were correctly identified as zero or
non-zero except one.

6 Attacking a Counter-Measure from the Litterature
In their 2022 article, Saito et al. [SIUH22] propose the solution recalled in Algorithm 13
to safely load the window value, using two random masks. They conclude that it will
mitigate the two vulnerabilities exploited in their proposed attack.

Algorithm 13 Proposed Operand Loading Process from [SIUH22]
Inputs: Precomputed table (c0, c1, ..., c2w−1), window size w, window value b
Output: Multiplication operand s = cb

1: function LoadOperand((c0, c1, ..., c2w−1), w, b)
2: rvalue ← GenerateRandoml() ▷ Generate a l-bit random mask
3: s ← c0 ⊕ c1 ⊕ ... ⊕ c2w−1 ⊕ rvalue
4: rorder ← GenerateRandomw() ▷ Generate a w-bit random mask
5: bmasked ← b ⊕ rorder

6: for i from 0 to 2w−1 do
7: mask ← MakeBitMask(i, bmasked) ▷ MakeBitMask returns 1...1 if i = bmasked, else 0
8: s ← s ⊕ (ci⊕rorder & ¬ mask | rvalue & mask)
9: return s

Using the experience acquired with our previous attacks, we show how the exponent
value can still be recovered. The attack works by identifying two distincts iterations: the
iteration it0 for which i = bmasked, and the iteration it1 for which i ⊕ rorder = 0. We
thus have it0 = bmasked and it1 = rorder. Using the fact that bmasked = b ⊕ rorder, we
have b = it0 ⊕ it1.
Identifying i = bmasked. As we have seen in sections 4 and 5, determining the value of a
condition when the latter is used to create a word with only zeros or ones can be done very
accurately. Therefore, the MakeBitMask function is very likely to exhibit this iteration.
Identifying i ⊕ rorder = 0. In this iteration, the element loaded in the precomputed
table is c0 = 1. As we have seen in section 4, in Libgcrypt the precomputed element are
encoded on the minimum required number of limbs. Hence in this case, it is sufficient to
count the number of iteration during the copy. However, the counter-measure suggests
that all precomputed elements are stored on the same number of limbs (64 limbs for 2,048
bits). However, as we have seen in section 5, it is possible to identify precisely when words
containing the value 0 are loaded as opposed to words containing roughly 15 or 16 bits
with the value 1. In this case, we can then simply count the number of words with value 0
loaded during the copy: the maximum will be reached for c0. Note that this also works
with a sliding window when the first element is c1 which is the base c and is a hash with
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Table 4
Number of traces # Matches for both # Correct deduced

deduced values of rorder values for rorder

1000 239 232
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ues
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Figure 8: Power consumption for the 16 iterations of the micro-benchmarks. The red curve
corresponds to the iteration for which i ⊕ rorder = 0, the green curve for which i ⊕ rorder
= 15

a smaller size, as it is the case in section 4; in our case, the number of "0 words" would
then be 64 - 7 = 57.

Finally, in case the first element is c1 and the size of c is the same as the modulus,
this technique cannot be employed. However, although less accurate, it is possible to look
directly at the computation i ⊕ rorder and hope that the Hamming Weight of the result
gives enough information: it should be minimal with good probability. The found iteration
can also be combined with the found iteration for which i ⊕ rorder = 2w−1 (yielding
maximal power), in order to strengthen the confidence in the result: if the two deduced
values for rorder do not match, we discard the result for this window value.

We designed a micro-benchmark to evaluate the feasability of this technique using
a 4-bit random and made the computation i ⊕ rorder for 16 iterations, looking for the
maximum and minimum power values, deducing the values of rorder and checking their
match. We report the results in table 4, which shows the practicability of this approach,
considering the least favorable hypotheses: even for this very simple heuristic, out of 1,000
traces, we had a match in 239 cases, 232 of which led to a correct value for rorder.

Finally, Figure 8 shows different cases for which the deduced rorder values match and
do not match: they match when the curve corresponding to i ⊕ rorder = 0 (red curve) has
the maximum power consumption, and when the curve corresponding to rorder = 15 (green
curve) has the minimum power consumption. Even when the values do not match, we
observe that the red and green curves are close to the top and bottom curves respectively.

7 Conclusion
In this article, we showed that power differences associated to variations in data values can
be exploited for practical Simple Power Attacks. In particular, we showed that the masking
technique often used in constant time implementations to keep one among two possible
values leaks its condition in a way that a single sample allows to recover it without error.
We illustrated this attacks on the two implementations of the modular exponentiation in
Libgcrypt and on the scalar ECC multiplication of the bearssl library. We additionnally
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showed that the load of memory words containing either the value 0 or a random value
can be clearly identified and also used as an attack vector. Finally, we explained how a
proposed counter-measure from the litterature for performing secure loads of precomputed
values can be attacked. Future work includes the applicability of the proposed attack
concepts to other cryptographic domains, as well as designing secure implementations
taking into account the presented findings.
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