
Digital Signatures for Authenticating Compressed JPEG Images
Simon Erfurth

University of Southern Denmark

Odense, Denmark

simon@serfurth.dk

ABSTRACT
We construct a digital signature scheme for images that allows the

image to be compressed without invalidating the signature. More

specifically, given a JPEG image signed with our signature scheme,

a third party can compress the image using JPEG compression, and,

as long as the quantization tables only include powers of two, derive

a valid signature for the compressed image, without access to the

secret signing key, and without interaction with the signer. Our

scheme is constructed using a standard digital signature scheme

and a hash function as building blocks. This form of signatures that

allow image compression could be useful in mitigating some of the

threats posed by generative AI and fake news, without interfering

with all uses of generative AI.

Taking inspiration from related signature schemes, we define a

notion of unforgeability and prove our construction to be secure.

Additionally, we show that our signatures have size 32.5 kb under

standard parameter choices. Using image quality assessment met-

rics, we show that JPEG compression with parameters as specified

by our scheme, does not result in perceivably reduced visual fidelity,

compared to standard JPEG compression.

CCS CONCEPTS
• Security and privacy → Digital signatures; Social network
security and privacy; • Computing methodologies → Image
compression.

KEYWORDS
digital signatures, JPEG Compression, homomorphic signatures

1 INTRODUCTION
Digital signature schemes are a classical and widely used tool in

modern cryptography (the canonical reference is [11], and [9]

contains some current standards). For standard digital signature

schemes, messages are required to be bit-wise identical towhen they

were signed, in order to be authenticated. For many applications—

for example text—this makes perfect sense, but for others—for ex-

ample images—it can become a limitation. When an image is shared

online, it is very often compressed, typically to save both storage

space and communication bandwidth. In general, compression is

required to not fundamentally change the content of the image.

After compression, it is (typically) not possible to restore the im-

age to be bit-wise identical to the version that was uploaded, so

compression invalidates any standard digital signature that was

associated with the image.
1
In order to allow a signature to still

1
The exemption to this is loss-less compression schemes which allow images to be

restored to be bit-wise identical to their uncompressed versions. For these compression

schemes standard digital signature schemes will work. However, for many use cases

loss-less compression schemes cannot achieve high enough compression ratios, and

thus lossy compression schemes are used.

be valid after compression, we construct a special digital signature

scheme which allows signatures for a JPEG image to be updated

during compression of the image, such that the updated signature

is valid for the compressed image. Crucially, updating a signature

does not require knowledge of the secret key used to generate the

signature, yet the updated signature is still signed with the same

secret key as the original signature. The only requirement for our

signature scheme is that JPEG compression has to be performed

using quantization tables containing only powers of two.

Creating multiple signatures for the image is not sufficient, since

the signer does not know how the image might be compressed by

others. While the signer can control how the image is compressed

on the initial website it is posted on, the image might be shared on

social media and other websites, where the signer does not control

how the image is going to be compressed.

Digital signature schemes for images allowing compression, in

one way or another, have been considered before. However, these

all suffer from one major drawback or another, such as resulting in

compressed images of much lower visual quality [18], only working

for the JPEG2000 standard which was never widely adopted [44],

giving only very weak and unclear notions of unforgeability [23],

or being computationally expensive to compute [10]. In contrast,

our construction avoids all of these drawbacks, at the cost of being

less flexible than some of these schemes.

Technical overview. Our signature scheme is constructed to work

with JPEG compression, since this is a widely used compression

standard, and is used to compress images uploaded to social me-

dia. JPEG compression works by using that human vision is more

sensitive to some features than it is to others. Concretely, JPEG

compression makes use of two specific features: a) Humans are

more sensitive to changes in luminance than to changes in color,

so JPEG compression preserves more information about luminance

than color, and b) the human vision system is less likely to notice

high frequency changes in intensity than low frequency changes

in intensity.
2
Thus, if an image contains both an area with high

frequency changes in luminance and color shades (like grass or

a treetop), and an area with only low frequency changes (like a

blue sky), humans will be much more sensitive to small changes

in the second area than in the first. Hence, JPEG compression will

generally preserve more information about the latter area. This is

done by splitting images into into 8× 8 pixel blocks, which are then

transformed with the discrete cosine transformation (DCT) into a

representation using a basis of discrete cosine waves. Now, as the

lossy step of JPEG compression, all coefficients are divided by a

value from a quantization table and rounded. Generally, coefficients

2
Note that here frequency does not refer to the wavelength of light, but to the frequency
of the intensity of a color/luminance an area of a picture. For example, an area with

no change in color/intensity will have very low frequency and an area with where the

pixels alternate between being black and white will have very high frequency.

https://orcid.org/0000-0001-8862-2856


Simon Erfurth

corresponding to high frequency changes and/or luminosity are

divided by larger values than coefficients corresponding to low

frequency changes and/or color. This results in less information

being lost due to rounding for features humans are sensitive to,

compared to features humans are less sensitive to.

This lossy step is exactly what prevents standard digital signa-

tures from being used for images that will be compressed using

JPEG compression. For our signature scheme, this step is also crucial.

A key observation is that when the value in the quantization table

is a power of two, division and rounding down acts as truncation

of the DCT coefficient. The idea is therefore that when an image is

compressed with a quantization table containing only powers of

two, our signature scheme should still be able to authenticate the

bits that have not been truncated. Thus, we create a signature on

what is essentially the root of a tree of hashes, where each hash

takes as input a combination of hashes from a deeper level of the

tree and bits from the DCT coefficients of the image. Now, if an

image is compressed with a quantization table containing only pow-

ers of two, a signature for the image can be updated to one for the

compressed image, by including a subset of the hashes that were

made using now truncated bits from the image in the signature.

Using that coefficients corresponding to the same DCT basis ele-

ment in different blocks are always cropped by the same amount,

we can create an efficient signature that requires 𝑂 (1) more work

than a regular digital signature, and also result in a signature of

constant size (depending only on the choices of parameters, and

not on the size of the image). A bonus from the construction of the

scheme is that it is fully backwards compatible, in the sense that any

JPEG image viewer can display JPEG images compressed with our

scheme (even if they might not be able to authenticate the signature

for the image). Additionally, our scheme allows repeat compression

and updating of signatures, as long as all used quantization tables

only contain powers of two, and the signature is kept up to date in

each compression.

Application. A use case of our scheme could be for mitigating

to consequences of fake news, and in particular to mitigate the

threat posed by generative AI for images. The consequences of fake

news and misinformation are many, and they pose an increasingly

greater threat to democracy and society. Apart from the immediate

consequences in the form of uncertainty about whether the content

one is looking at is true or not, fake news and misinformation also

lead to an increasing level of distrust in the media [30]. One reason

that the threat is increasing is a fundamental change in how news

are consumed. Rather than being consumed directly from news

media outlets (such as newspapers, TV, and first-party websites),

news is increasingly consumed on social media platforms [29]. This

is an issue, because people tend to be unable to recall which news

brand a story originates from when they are exposed to it on social

media [20]. Since the news media’s image is used as an impor-

tant heuristic when people evaluate the quality of news [37], this

change allows misinformation to spread. Thus, using digital signa-

tures seems like a natural suggestion; doing so could bind stories

shared on social media to the news media that published them,

allowing use of this important heuristic. For images specifically,

the developments and rise of generative AI over the last few years

proves additional cause for concern. With it, everyone can generate

(mostly) realistic looking images of anything and everything they

can imagine. Considering images’ emotional pull and highly persua-

sive influence [3], they are an effective medium for spreading fake

news, and hence the sheer volume of (potentially misinforming)

images that generative AI can create is highly problematic.

A prevalent method for addressing misinformation on social

media involves flagging potential misinformation, employing either

manual or automated detection systems. However, studies have

consistently demonstrated that flagging problematic content may

backfire, exacerbating its adverse impacts [22, 32]. Attempting to

detect and flag all AI generated images is also not an ideal solution.

Not only would it hinder legitimate uses of AI generated images,

but it could also lead to the generative AI models being trained

to not trigger the detection system, as a variation of the widely

used generative adversarial network method for training generative

AI [15]. This would result in essentially an arms race between

models for detecting and models generating images [17].

Digital signatures can be used to complement the prevalent ap-

proach of checking and flagging misinformation. Specifically, if

news media sign the images they post, images can be accompa-

nied by signatures signed by news media when they are shared

on social media, whether by the news media or by other users.

This would provide a guarantee of the provenance of the image

(something that is currently missing), helping people evaluate the

quality of any news story associated with the image. If only news

media meeting a minimum standard of journalistic quality are al-

lowed to sign their pictures, it would also help tell apart quality

journalistic content from potential misinformation [7].Specifically,

the absence of a digital signature for a picture would be the first red

flag, indicating to users that they should be sceptical. For images

produced by generative AI, this approach has some clear advan-

tages over a detection-and-flagging approach. With this approach,

it is not possible to “just” train the generative AI models to not

be detected. Additionally, this approach still allows news media to

use AI generated content for their stories. Images shared on social

media are compressed when uploaded, so for this approach to work,

the signature needs to allow compression of the image. Therefore,

our signature scheme is perfectly suited for this use case.

The idea of mitigating the effects of fake news and misinfor-

mation, by using digital signatures to verify the source of images,

has been considered by others. One example is the Coalition for

Content Provenance and Authenticity (C2PA) [8], which involves

many companies, including Adobe, the BBC, Google, Microsoft,

and Twitter. C2PA focuses on providing a history of an image, i.e.,

which device was used to capture it, how it has been edited and

by whom, etc. However, their approach relies on trusting software

used to edit an image to act honestly. Adding support for compres-

sion, without needing to compute a new signature, could perhaps

increase the versatility of their approach.

Structure. We provide an overview of related work in Section 2,

and Section 3 covers JPEG compression in greater detail. In Sec-

tion 4, we give a generic definition of digital signature schemes

for images allowing compression, define an unforgeability notion

for such schemes (Section 4.2), construct our signature scheme

(Section 4.3), and show that our scheme is secure with respect to

the notion of unforgeability (Section 4.4). Finally, we analyze the



Digital Signatures for Authenticating Compressed JPEG Images

complexity of our scheme (Section 4.5). A visual evaluation of the

JPEG compression used by our scheme is done in Section 5, where

we show that our scheme is almost as good as JPEG compression

without any restrictions. To finish up, in Section 6, we consider

potential optimizations to our scheme, and where further research

could go.

Our contribution. We give a generic definition for how a digital

signature scheme for images allowing JPEG compression should

work, and a natural definition for what it means for such a scheme to

be unforgeable. We then describe a specific construction, and prove

that (when instantiated using cryptographic secure primitives) it

satisfies the notion of unforgeability. Compared to other schemes

that allows signed images to be compressed, our scheme trades

supporting multiple types of modifications and/or arbitrary JPEG

compression for either being more efficient, having a meaningful

notion of security, or having higher visual fidelity.

2 RELATEDWORK
The observation that JPEG compression can act as truncation of

the DCT coefficients, and that this could be used to construct a

homomorphic digital signature scheme for images, was first made

in [18]. The focus of their work is on developing a signature scheme

that allows cropping, but as an auxiliary result the authors observe

that if every DCT coefficient is truncated by the same amount (in

their work cropped), their signature scheme also allows some JPEG

compression. However, truncating all DCT coefficients by the same

amount results in their scheme not making use of the key idea

behind JPEG compression; namely that the human eye is less likely

to notice high frequency changes in intensity than low frequency

changes. This results in the visual fidelity of images compressed

according to their scheme being lower than the visual fidelity of

images compressed under standard JPEG compression parameters

at similar sizes. Additionally, for JPEG compression to act as trunca-

tion, the quantization table need to consists only of powers of two,

and hence their approach only allows 8 different quantization tables,

leading to their approach being very inflexible, on top of reducing

the visual fidelity. We demonstrate these problems in Section 5.

Homomorphic Digital Signatures. Homomorphic digital signa-

tures have been studied in a number of different contexts, both

for different types of data (images, text, different data structures,

etc.) and for different operations that the signature is homomorphic

with respect to (cropping, redaction, various set operations, etc.).

In the article discussed above [18], their constructed signature can

(depending on specific choices) be homomorphic with respect to im-

age cropping, scaling, or (very restricted) JPEG compression. Other

homomorphic signature schemes for images have been considered,

in particular for the JPEG2000 image standard. For example, [44]

gives an overview of signatures for JPEG2000 images that are ho-

momorphic with respect to extraction of various representations

from single code streams. However, the JPEG2000 image standard

was never widely adopted, and the only web browser supporting

JPEG2000 is Safari [1].

Much more generally, [2] provides a generic definition and con-

struction of homomorphic signatures, which allows deriving a sig-

nature on𝑚′ from a signature on𝑚, as long as 𝑃 (𝑚,𝑚′) = 1 for a

(univariate and closed) predicate 𝑃 . Their definition encompasses

many examples of individual well-studied homomorphic signa-

tures, including arithmetic, quotable, redactable, and transitive sig-

natures [21, 43, 7, 34, 19, 26, 6], but the generic scheme is generally

less efficient than more specialized schemes.

Perceptual Hashing. Another approach that in principle gives

rise to digital signatures allowing image compression, is the use of

perceptual hashing [25] in place of the cryptographic hash func-

tions typically used by digital signature schemes. Conceptually, a

perceptual hash function is a hash function where the hash of an

image only changes if the images is perceivably different enough.

Thus, JPEG compression (to some extent) should not change the

perceptual hash of an image. Combined with a standard digital

signature scheme, a perceptual hash function should therefore cre-

ate a digital signature scheme allowing JPEG compression. The

issue with this approach is that all perceptual hashes known to the

authors have an overlap between having false positives and having

false negatives. That is, all schemes will either accept (randomly)

manipulated images as being authentic with a non-negligible prob-

ability, or they will reject authentic images as being manipulated

with a non-negligible probability [12]. Thus, perceptual hashing

cannot reasonably be used in place of a cryptographic hash in a

digital signature scheme.

Considering JPEG compression specifically, Lin and Chang [23]

created a perceptual hash function with this in mind. They find

relationships between the 8 × 8 pixel blocks in an image that are

somewhat invariant under JPEG compression. However, even this

approach allows a manipulated image to be accepted with non-

negligible probability. Specifically, the authors perform a practical

experiment where they change a random block, and, using various

parameters, find that the probability of a manipulated image being

accepted is between 0.04 and 0.00001 when the image is not com-

pressed, between 0.09 and 0.0002 with a quality factor of 50, and

between 0.2 and 0.02 with a quality factor of 20. That is despite

these attacks assuming that the manipulator had no knowledge of

which blocks were being compared, and made a non-targeted attack

by editing one chosen at random. An attacker with knowledge of

which blocks are being compared could potentially make a targeted

attack with even higher success chance. In contrast, it follows from

the correctness of our scheme, that we have no false negatives, and

from unforgeability that there is only a negligible probability of

false positives.

Cryptographic approaches to mitigating Misinformation through
Images. Using digital signatures to prevent misinformation through

images has also been considered in [4]. In this article, the authors

suggest using standard digital signatures directly on images, and

focus more on the technical considerations for how this could be im-

plemented. One obstacle to using their approach is that in practice,

images are almost always compressed when uploaded online (for

example to social media) and all standard digital signature schemes

require the image to be bit-for-bit identical to the signed image.

In order to fix this shortcoming, their work could be changed to

instead use our digital signature scheme, in which case it considers

the technical details of implementing digital signatures allowing

compression.



Simon Erfurth

In [33], the authors discuss on a more general level how crypto-

graphically proving provenance can be a proactive partial solution

to mitigating misinformation. Based on literature from human-

centered computing and usable security, journalism, and cryptogra-

phy, they consider both advantages and challenges of such a system,

and find properties a system should have.

A different suggestion for using cryptography to prevent mis-

information through images is made in [10]. They suggest using

succinct non-interactive zero-knowledge proofs to verify the meta-

data of an image, and that the image has only been modified in

some claimed ways. More concretely, their suggested solution is to

use a camera that adds metadata to an image when it is taken, and

signs the image and metadata (such a camera was recently released

by Leica in collaboration with the C2PA [24]). When an image is

later edited, the editor also generates a zero knowledge proof of the

following statement: “The prover (i) knows an unedited photo that is
properly signed by a C2PA camera, (ii) the metadata on the unedited
signed photo is the same as the one attached to the public photo, and
(iii) the public photo in the news article is the result of applying the
claimed edits to the unedited photo.” Before an image is displayed, the

zero-knowledge proof is verified, and the image is then displayed

together with its accompanying metadata. While their construction

allows arbitrary compression, and many other operations, their

solution does not appear to be efficient enough to use for images

shared on social media. Generating a proof takes minutes, even on

a modern system, and considering how many images are uploaded

to social media, it would not be feasible to generate proofs for all of

them. Prior to [10], it was suggested in [28] to use zero-knowledge

proofs to authenticate that only permissible transformations has

been made to an image. However, the proving time of their im-

plementation is even longer (around 5 minutes to generate proofs

for 128 × 128 pixel images). In contrast, our construction requires

at most 1025 hash function evaluations and one key generation,

signing, or verification of a standard signature scheme.

3 JPEG COMPRESSION
In order to construct our signature scheme, we need a general

understanding of how JPEG compression works. For each step,

more information can be found in [38], and in the official JPEG

standard [16].

As wementioned in the introduction, the key observation behind

JPEG compression is that humans are much better at noticing some

types of details than others. In particular, humans are less likely to

notice high frequency changes in intensity of both color shades and

luminance, than low frequency changes. Similarly, humans are less

likely to notice changes in color compared to changes in luminance.

JPEG compression uses this to perform lossy compression with-

out sacrificing too much perceived image quality, by preserving

more information about the coefficients for low frequency changes

and about luminance, and less information about high frequency

changes and about color.

The first step of JPEG compression is to convert the image to the

YCbCr color-space,
3
which, later in the process, allows preserving

3
Meaning that instead of representing the image using red, green, and blue channels

(RGB), it is represented as one luminance channel (Y) and two color channels (Cb

and Cr). Mathematically, this is a lossless transformation, but in practice there will of

course be some losses due to rounding errors. For simplicity, we assume that before this

more information about luminance than about color. As an optional

second step, the color channels can be down-sampled either just

along one axis, or along both axes, meaning that the resolution of

one or two dimensions is halved: a mean value of two (or four) pixels

is found, and used for two (or four) pixels. Steps three and four are

applied to each 8×8 block of the image separately (with appropriate

padding when the image dimensions are not multiples of 8). As the

third step, the discrete cosine transformation is applied to the 64

values to transform them into 64 DCT coefficients. Roughly, this

can be thought of as changing each pixel from representing the

intensity of that specific pixel into representing the intensity of a

particular (discrete) cosine function over the entire 8×8 pixels block;
see Figure 1c. This step allows preserving more information for the

low frequency cosine waves that represents low frequency changes

in the image. The fourth step is referred to as quantization and is the

only lossy part of JPEG compression. In this step, each entry of the

8 × 8 pixel block is divided by an entry from the quantization table
and rounded. The quantization table is an 8 × 8 table, consisting
of values in the range 1 to 256. Generally, entries representing low

frequency cosine waves in the block are divided by smaller values

from the quantization table, and entries representing high frequency

changes are divided by larger values. Hence, less information is

lost for low frequency cosine waves due to rounding, i.e., when

the process is reversed by multiplying with the entries from the

quantization table, the coefficients for low frequency cosine waves

generally end up closer to their original value than coefficients for

high frequency cosine waves. By choosing different values for the

quantization table, it is possible to control the trade-off between

how much the file size is reduced and how much the quality of

the image is reduced. Finally, the image is encoded using a lossless

entropy encoding, usually Huffman encoding. A number of tricks

are applied as preprocessing in this step, but for brevity (and since

they are not directly relevant to this work), we will not discuss them,

but refer instead to [16, Section 4.3], and the related standards. To

display an image, each of these steps are reversed in the opposite

order.

To summarize, JPEG compression consists of the following steps,

which we have also illustrated in Figures 1a to 1d.

1. Convert the image from RGB to the YCbCr color-space.

2. Optionally down-sample the color channels (Cb and Cr).

3. For each 8 × 8 pixels block in each channel:

a. Apply the discrete cosine transformation to the block.

b. Quantizise the block, using the quantization table.

4. Encode the image using a lossless entropy encoder.

3.1 DCT Transformation
Step 3a, illustrated in Figure 1c, is a change of basis from using the

standard basis for 8 × 8 matrices to the DCT basis. That is, instead

of using the basis {𝑒𝑖, 𝑗 }𝑖, 𝑗∈{0,...,7} , where

(𝑒𝑖, 𝑗 )𝑝,𝑞 =

{
1 if 𝑖 = 𝑝 and 𝑗 = 𝑞

0 otherwise,

(1)

step, all images are 8 bit RGB images. However, all constructions are easily changed to

work on 10-bit images.



Digital Signatures for Authenticating Compressed JPEG Images

B

G

R

Cr

Cb

Y

Step 1

(a) Transformation from RGB color space to YCbCr color
space.

· · ·
· · ·

· · ·
· · ·

.

.

.
.
.
.

.

.

.
.
.
.

· · ·
· · ·

· · ·
· · ·

.

.

.
.
.
.

.

.

.
.
.
.

· · ·
· · ·

· · ·
· · ·

.

.

.
.
.
.

.

.

.
.
.
.

· · ·
· · ·

· · ·
· · ·

.

.

.
.
.
.

.

.

.
.
.
.

· · ·
· · ·

· · ·
· · ·

.

.

.
.
.
.

.

.

.
.
.
.

· · ·
· · ·

· · ·
· · ·

.

.

.
.
.
.

.

.

.
.
.
.

· · ·
· · ·

· · ·
· · ·

.

.

.
.
.
.

.

.

.
.
.
.

· · ·
· · ·

· · ·
· · ·

.

.

.
.
.
.

.

.

.
.
.
.

· · ·

.

.

.
.
.
.

· · ·

· · ·

.

.

.
.
.
.

· · ·

Step 3

(b) Splitting into 8 × 8 pixel blocks.

Step 3a

(c) Changing to DCT representation, e.g., instead of each pixel
representing its own value, it now represents one of the DCT
basis functions. As illustrated in the figure, this can also be
thought of as a change of basis from the standard basis to the
DCT basis.

815 -15 -10 -2 -2 -3 3 3

-3 2 -9 -4 4 -2 -2 3

0 1 -2 -4 -2 -2 2 -1

-3 -1 -3 3 1 0 3 1

0 -1 2 3 -1 1 -1 1

-5 6 1 -1 4 -1 -1 -3

2 1 2 0 0 7 3 -1

0 1 3 -3 -2 3 1 -5

51 -1 -1 0 0 0 0 0

0 0 -1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Step 3b

(d) Quantizise each block using the quantization table. Ob-
serve how information is preserved for the values correspond-
ing to low-frequency DCT basis elements in the upper left
corner. Values are the luminance values of a random block
from the Lenna test image, quantized using the quantization
table generated with 𝑄 = 50, as discussed in Section 3.2.

Figure 1: Select steps of JPEG compression.

we now use the basis {𝐵𝑖, 𝑗 }𝑖, 𝑗∈{0,...,7} , where

(𝐵𝑖, 𝑗 )𝑝,𝑞 = cos

(
𝜋 (2𝑝 + 1)𝑖

2 · 8

)
· cos

(
𝜋 (2𝑞 + 1) 𝑗

2 · 8

)
(2)

for 𝑝, 𝑞 ∈ {0, . . . , 7}. The resulting discrete cosine functions are

illustrated on the right side of Figure 1c. We stress that what is

stored in the 8 × 8 matrices are the coefficients, 𝑎𝑖, 𝑗 and 𝑎′𝑖, 𝑗 , of the
basis elements, i.e., 𝑎𝑖, 𝑗 ’s and 𝑎

′
𝑖, 𝑗
’s such that the 8 × 8 block can be

expressed as ∑︁
𝑖, 𝑗

𝑎𝑖, 𝑗𝑒𝑖, 𝑗 =
∑︁
𝑖, 𝑗

𝑎′𝑖, 𝑗𝐵𝑖, 𝑗 . (3)

Since both the standard basis and the DCT basis are spanning, this

is a lossless operation (up to rounding). As mentioned, the purpose

of this step is to allow the next step to preserve more information

for low frequency changes, which will generally be represented by

the basis elements where 𝑖 and 𝑗 are small; see Equation (2) and the

right side of Figure 1c.

3.2 Quantization
In Step 3b of the JPEG compression, each value in the 8 × 8 block
of DCT coefficients is quantized by dividing it by a value from a

quantization table and rounding the result. Despite the standard [16]

specifying that the result should be rounded towards the nearest

integer, this appears to not be the case in practise. As an example,

the widely used implementation from The Independent JPEG Group

(IJG) [35] rounds towards 0. When displaying a compressed image,

the value is multiplied with the value from the quantization table

again. Hence, information can be lost in the step. For example,

different values may end up being mapped to the same, see the first

row of Figure 1d.

As mentioned earlier, one of the tricks that JPEG compression

uses is that the human eye is much more sensitive to low frequency

changes. Hence, it will generally be the case that the values in the

quantization table grow as one goes from the upper left corner to

the lower right. Additionally, since the human eye is more sensitive

to luminance than color, different tables are used for the luminance

channel, Y, and for the color channels, Cb and Cr.

However, there are principally no requirements for quantization

tables (apart from them being 8 × 8 tables with values between 1

and 256), and indeed, this is one of the main points where various

programs implementing JPEG compression can differ.
4
However,

one standard approach is to let the quality factor 𝑝 be an integer

with 1 ≤ 𝑝 ≤ 100, fixing the table for quality factor 50 to be 𝑄50,

and then deriving the other tables from 𝑄50. For example, in the

IJG implementation [35],

𝑄50 =



16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99


(4)

4
Section 3 of [36] gives an overview of quantization tables for different purposes.



Simon Erfurth

and for 1 ≤ 𝑝 ≤ 100 we have

𝑄𝑝 =


50

𝑝
𝑄50 if 𝑝 < 50

200 − 2𝑝
100

𝑄50 otherwise.

(5)

Finally, the entries in 𝑄𝑝 are rounded, and it is ensured that every

entry is at least 1 and at most 255. This definition means that

quantization with 𝑄100 does not destroy information (𝑄100 is all

1’s), and as the quality factor decreases, the values in 𝑄𝑝 increase,

so that more detail is lost, but the compression also results in a

smaller file.

4 SIGNATURE CONSTRUCTION
Sections 4.1 and 4.2 contains a generic definition of what a digital

signature scheme for images allowing compression is, and what it

means for it to be unforgeable. From Section 4.3 and onward, we

construct such a signature scheme, show that it is unforgeable, and

analyse its performance.

4.1 Generic Definition
In general, a digital signature scheme for images allowing compres-

sion consists of four efficient algorithms, KeyGen, Sign, Compress,
and Verify. These are essentially the three standard digital signature
algorithms for key generation, signing, and verification, with an

added compression algorithm. The compression algorithm allows

a signature for an image to be updated to a signature for a com-

pressed version of the image, given both the original image, the

signature for the original image, and the compressed image. For

simplicity of further definitions, we make the abstraction that the

compression algorithm also performs the compression. We use 𝜆 to

denote the security parameter. Summarizing, we require that the

four algorithms acts as follows.

• (sk, pk) ← KeyGen(1𝜆) takes as input the security param-

eter 1
𝜆
, and outputs a key pair.

• 𝜎 ← Signsk (𝑖) takes as input a secret key sk and an image

𝑖 . Outputs a signature for 𝑖 that allows compression.

• (𝑖′, 𝜎′) ← Compress(𝑖, 𝜎, 𝑃) takes as input an image 𝑖 , a

signature 𝜎 for 𝑖 , and additional parameters 𝑃 specifying

how compression should be done. In the case where the

compression is JPEG compression, 𝑃 is the quantization

tables. Outputs the compressed image 𝑖′ and a signature 𝜎′

for 𝑖′, that is still signed with the private key that 𝜎 was

signed with. Note that 𝑖 and 𝜎 could have been obtained

from an earlier compression.

• ⊤/⊥ ← Verifypk (𝑖, 𝜎) takes as input a public key pk, an
image 𝑖 , and a signature 𝜎 for 𝑖 . Outputs ⊤ if 𝜎′ is a valid
signature for 𝑖 with respect to pk, and ⊥ otherwise.

A standard notion of correctness should be satisfied, meaning

that a genuine signature should always be accepted.

4.2 Security Notion
Our notion of security takes inspiration from other digital signature

scheme variants allowing some form ofmodification, e.g., redactable

signatures [34, 19], quotable signatures [7], the image signatures

from [18], and generic 𝑃-homomorphic signatures [2]. Essentially,

(pk, sk) ← KeyGen(1𝜆 )
(𝑖∗, 𝑠∗ ) ← ASignsk ( ·) (pk)
// denote the queries that A make to the signing oracle by 𝑖1, 𝑖2, . . . , 𝑖𝑄 ,

// and the answers by 𝜎1, 𝜎2, . . . , 𝜎𝑄 .

if (Verifypk (𝑖∗, 𝑠∗ ) = ⊤) ∧ (∀𝑘 ∈ {1, 2, . . . ,𝑄 } : 𝑖∗ ∉ CSpan(𝑖𝑘 , 𝜎𝑘 ) )
return 1

Figure 2: The Unforgeability experiment. We write ASignsk ( ·)

to indicate that A is given access to an orcale that simply
signs images under sk using Sign.

these notions of security say that the scheme is unforgeable if

no adversary can produce a signature for a message that is not

either a message the signing oracle has provided a signature for,

or the result of performing an “allowed” operation on a message

the signing oracle has provided a signature for. In our case, this

means that the image the adversary outputs cannot be obtained

by performing allowed compression on any of the images queried

to the signing oracle. To make the definition general, we define

an “allowed compression” to be any compression that can be done

by Compress under valid input. For our scheme specifically, the

definition says that no adversary can output a signature for an

image that is not either an image the adversary has queried the

signing oracle for, or the result of compressing one of these images

using quantization tables that consists of only powers of two. We

formally define this in Definition 4.1.

Definition 4.1 (Unforgeability). For a signature scheme

CS = (KeyGen, Sign,Compress,Verify) (6)

allowing image compression, we define the compression span of

Compress on an image 𝐼 with valid signature 𝜎 to be

CSpan(𝐼 , 𝜎) :=
{
𝐼 ′

�� (𝐼 ′, 𝜎′) ← Compress(𝐼 , 𝜎, 𝑃)
}
, (7)

where 𝑃 is valid extra parameters to Compress. That is, CSpan(𝐼 ) is
the set of all images that 𝐼 can be compressed to by Compress. The
signature scheme CS is said to be existentially unforgeable, if for
every probabilistic polynomial time adversary A, the probability

of the experiment in Figure 2 returning 1 is negligible.

4.3 Our construction
Conceptually, our idea builds on the observation that if all the

entries in the quantization table are powers of two, then we can

consider the quantization step as being truncation of the least im-

portant information. This allows us to construct a signature where

one can provide some (small) piece of information that allows a

signature for an image to be verified, even if the image has been

compressed.

To illustrate the idea, we consider an example where we have

just one 8 bit value,𝑏 = 𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0, which we wish to sign in

a way that allows us to truncate a number of (least significant) bits.

This can be done by constructing a chain of hashes as follows. The
first node in the chain is the hash of the least significant bit, 𝐻 (𝑏0).
Any other node is the hash of the concatenation of the previous

node and the next least significant bit, i.e. the second node will be

𝐻 (𝐻 (𝑏0) ∥ 𝑏1). Finally, one signs the last node in the chain (the end



Digital Signatures for Authenticating Compressed JPEG Images

𝑏7 𝑏6 𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0

ℎ
7 =

𝐻 (ℎ
6 ∥

𝑏
7 )

ℎ
6 =

𝐻 (ℎ
5 ∥

𝑏
6 )

ℎ
5 =

𝐻 (ℎ
4 ∥

𝑏
5 )

ℎ
4 =

𝐻 (ℎ
3 ∥

𝑏
4 )

ℎ
3 =

𝐻 (ℎ
2 ∥

𝑏
3 )

ℎ
2 =

𝐻 (ℎ
1 ∥

𝑏
2 )

ℎ
1 =

𝐻 (ℎ
0 ∥

𝑏
1 )

ℎ
0 =

𝐻 (𝑏
0 )

𝑠
=
Sig
sk (ℎ

7 )

Figure 3: The chain of hashes and signature for one byte
𝑏 = 𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0.

node) using a standard digital signature scheme. We illustrate this

in Figure 3.

Now it is possible to truncate out some of the least significant

bits of 𝑏, and, if one instead provides the node of the chain of

hashes corresponding to the most significant of the truncated bits,

the signature for 𝑏 can still be authenticated, since ℎ7 can still be

computed. This is done by calculating the chain of hashes, starting

from the node of the least significant bit that was not truncated,

which can be calculated using the provided value. In Section 4.4 we

show that this still binds the non-truncated bits, in the sense that

these bits cannot be changed without invalidating the signature. We

also argue that for our use case, this signature provides ameaningful

notion of security. Of course, for this example, it would have been

much more space efficient to send the truncated bits instead of a

hash value. However, as we see in Section 4.5, this is not the case

when we consider (larger) images, rather than just single bytes.

Going back to full images, we recall that JPEG compression

works on 8 × 8 pixel blocks, where every block is handled the same

way. In particular, the coefficient for a specific DCT basis element

will be truncated by the same number of bits in every block. Thus,

we only need one chain of hashes for each basis element, regardless

of the size of the image. For any basis element 𝐵𝑖, 𝑗 , the first node

in the chain of hashes is the hash of the concatenation of the least

significant bits of all bytes at location 𝑖, 𝑗 in each of the 8× 8 blocks,
in an arbitrary, but fixed, order. For all other nodes in the chain of

hashes, the node is the hash of the concatenation of the previous

node and the next least significant bits of all bytes at location 𝑖, 𝑗 .

In Figure 4, we illustrate how the chain of hashes is calculated for

the entries corresponding to the first DCT basis element, 𝐵0,0.

For each of the two quantization tables (one for luminance and

one for color), we calculate the chain of hashes for each of the

8 · 8 = 64 DCT basis elements, obtaining 128 end nodes, one for

each basis element in each channel. The end nodes are then hashed

together, in order to get one final hash, ℎ𝑟𝑜𝑜𝑡 , which is signed using

a standard digital signature scheme. This final process is illustrated

on Figure 5.

Now any party can compresses the image while still allowing

the signature to be verified, by performing the compression using a

quantization table with only powers of two in it, and providing the

relevant nodes from the 128 chains of hashes. To be specific, if entry

(𝑖, 𝑗) in the quantization table is 2
𝑘
, the compressing party adds

node ℎ𝑘−1 from the chain of hashes corresponding to 𝐵𝑖, 𝑗 to the

signature (if 𝑘 = 0 no compression is done, and no node is added).

We denote the added nodes as the truncated hashes.
To summarize, our digital signature scheme allowing some JPEG

compression works as follows, where 𝐻 is a cryptographic hash

𝑏0 = 𝑏0
7

𝑏0
6

𝑏0
5

𝑏0
4

𝑏0
3

𝑏0
2

𝑏0
1

𝑏0
0

𝑏1 = 𝑏1
7

𝑏1
6

𝑏1
5

𝑏1
4

𝑏1
3

𝑏1
2

𝑏1
1

𝑏1
0

𝑏2 = 𝑏2
7

𝑏2
6

𝑏2
5

𝑏2
4

𝑏2
3

𝑏2
2

𝑏2
1

𝑏2
0

𝑏3 = 𝑏3
7

𝑏3
6

𝑏3
5

𝑏3
4

𝑏3
3

𝑏3
2

𝑏3
1

𝑏3
0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

ℎ
7 =

𝐻 (ℎ
6 ∥ □)

ℎ
6 =

𝐻 (ℎ
5 ∥ □)

ℎ
5 =

𝐻 (ℎ
4 ∥ □)

ℎ
4 =

𝐻 (ℎ
3 ∥ □)

ℎ
3 =

𝐻 (ℎ
2 ∥ □)

ℎ
2 =

𝐻 (ℎ
1 ∥ □)

ℎ
1 =

𝐻 (ℎ
0 ∥ □)

ℎ
0 =

𝐻 (□)

ℎ
𝐵
0,0

𝑏0 𝑏1

𝑏2 𝑏3

Figure 4: Example illustrating construction of one of the
chains of hashes.

function and DS = (KeyGenDS, SignDS,VerifyDS) is a standard dig-
ital signature scheme.

• KeyGen(1𝜆): Identical to KeyGenDS (1𝜆).
• Signsk (𝑖): Compute the 128 chains of hashes, as described

above, compute the hash of the end nodes to obtain ℎ𝑟𝑜𝑜𝑡 ,

and sign this using SignDS.
• Compress(𝑖, 𝜎, 𝑃): Given an image, a signature for the im-

age, and quantization tables containing only powers of two,

first perform standard JPEG compression, always rounding

down. Then compute the chains of hashes from the origi-

nal image, and extract the 128 truncated hashes. Together

with the signature for the uncompressed image, the trun-

cated hashes form the signature for the compressed image.

Output the compressed image and the signature for the

compressed image. Observe that a compressed image can

be further compressed (using a quantization table with at

least as large powers of two) and the signature updated with

new truncated hashes to be valid for the further compressed

image.

• Verifypk (𝑖, 𝜎): Use the image, and if it is compressed the

truncated hashes, to find ℎ𝑟𝑜𝑜𝑡 , and verify with respect to

the original signature using VerifyDS.



Simon Erfurth

ℎ𝐵0,0
ℎ𝐵0,7

ℎ𝐵6,0
ℎ𝐵6,1

ℎ𝐵7,0
ℎ𝐵7,1

ℎ𝐵7,7

Luminance

ℎ𝑟𝑜𝑜𝑡

ℎ𝐵0,0
ℎ𝐵0,7

ℎ𝐵6,0
ℎ𝐵6,1

ℎ𝐵7,0
ℎ𝐵7,1

ℎ𝐵7,7

Color

Figure 5: The 128 end nodes (64 from the to the luminance channel and 64 from the color channels) are used to calculate ℎ𝑟𝑜𝑜𝑡 .
Then ℎ𝑟𝑜𝑜𝑡 is signed using the standard digital signature scheme, obtaining the digital signature for the uncompressed image.

Note that thismatches the description of digital signature schemes

allowing compression, outlined at the end of Section 4.1.

4.4 Security Analysis
Theorem 4.2 shows that if the primitives used in the scheme con-

structed in Section 4.3 are secure, the scheme is secure in the sense

of Definition 4.1. We show this by arguing that an adversary for

our scheme can be used to construct an adversary for at least one

of the primitives.

Theorem 4.2. Under the assumption that

• 𝐻 comes from a family of cryptographic secure hash func-
tions,

• DS = (KeyGenDS, SignDS,VerifyDS) is an existentially un-
forgeable standard signature scheme,

CS = (KeyGen, Sign,Compress,Verify) constructed as described
above, is an existentially unforgeable signature scheme allowing im-
age compression.

Proof. Assume thatA is a probabilistic polynomial time adver-

sary against the unforgeability of CS, as defined in Definition 4.1.

We show that the probability ofA being successful is negligible. Let

(𝑖∗, 𝑠∗) be the output A, with 𝑠∗ = (SignDSsk (ℎ𝑟𝑜𝑜𝑡 ), {ℎ
𝑖, 𝑗,𝑐

𝑘
}), i.e., 𝑠∗

consists of the standard signature for ℎ𝑟𝑜𝑜𝑡 of 𝑖
∗
, and the (possibly

empty) set of relevant nodes from the chains of hashes, indexed by

𝑖, 𝑗, 𝑐 , where 𝑖, 𝑗 specifies a DCT basis element, and 𝑐 specifies if it

is from the luminance or the color quantization table.

Consider first the case where ℎ𝑟𝑜𝑜𝑡 of 𝑖
∗
(which can be found

using 𝑖∗ and {ℎ𝑖, 𝑗,𝑐
𝑘
}) is different from ℎ𝑟𝑜𝑜𝑡 of each of the 𝑄 im-

ages 𝑖1, . . . , 𝑖𝑄 that were A’s queries to the signing oracle. In this

case, (ℎ𝑟𝑜𝑜𝑡 , 𝑠∗) is a forgery against DS, and since DS is assumed

existentially unforgeable, this can happen with at most negligible

probability 𝜖DS.

For the other case, let 𝑖 denote the image queried to the signing

oracle such thatℎ𝑟𝑜𝑜𝑡 of 𝑖 is the same asℎ𝑟𝑜𝑜𝑡 of 𝑖
∗
. In the following,

we will use
ˆℎ to indicate that a hash is generated from 𝑖 , and just ℎ

for values generated from 𝑖∗. With this notation, we are considering

the case where
ˆℎ𝑟𝑜𝑜𝑡 = ℎ𝑟𝑜𝑜𝑡 . We now compare each of the 128

hash values (end nodes) that were used to generate
ˆℎ𝑟𝑜𝑜𝑡 and ℎ𝑟𝑜𝑜𝑡 .

That is, for 𝑖, 𝑗 ∈ {0, . . . , 7} and 𝑐 ∈ {Y,Cb/Cr}, we compare
ˆℎ
𝑖, 𝑗,𝑐

𝐵𝑖,𝑗

and ℎ
𝑖, 𝑗,𝑐

𝐵𝑖,𝑗
. If

ˆℎ
𝑖, 𝑗,𝑐

𝐵𝑖,𝑗
and ℎ

𝑖, 𝑗,𝑐

𝐵𝑖,𝑗
differ in at least one location 𝑖, 𝑗, 𝑐 , we

have found a collision for 𝐻 .

If
ˆℎ
𝑖, 𝑗,𝑐

𝐵𝑖,𝑗
and ℎ

𝑖, 𝑗,𝑐

𝐵𝑖,𝑗
are the same at every location, we now go one

step further down, and look at each chain of hashes. That is, for

each location 𝑖, 𝑗, 𝑐 , we consider now ˆℎ𝑘 andℎ𝑘 for 𝑘 ∈ {0, . . . , 7} (as
illustrated on Figure 4). There must be at least one location 𝑖, 𝑗, 𝑐, 𝑘

where the bits from the image used to calculate
ˆℎ𝑘 are different

from the bits from 𝑖∗ used to generate ℎ𝑘 . To see this, observe that if
not, one could obtain 𝑖∗ from 𝑖 by compressing 𝑖 with suitable values

in the quantization tables (the values being the ones that truncate

the chains of hashes for 𝑖 to the length of the chains of hashes for

𝑖∗, possibly 1 if no compression was performed). If
ˆℎ𝑘 = ℎ𝑘 , this is

clearly a collision for 𝐻 . On the other hand, if
ˆℎ𝑘 ≠ ℎ𝑘 , consider

instead
ˆℎ𝑘+1 and ℎ𝑘+1. If ˆℎ𝑘+1 = ℎ𝑘+1, we have instead found a

collision here, since

𝐻 ( ˆℎ𝑘 ∥ · · · ) = ˆℎ𝑘+1 = ℎ𝑘+1 = 𝐻 (ℎ𝑘 ∥ · · · ), (8)

where · · · indicates that the relevant bits from the images are in-

serted. Alternatively, we have
ˆℎ𝑘+1 ≠ ℎ𝑘+1, in which case and

continue on to consider the next nodes in the chain. Since the end

nodes of the chains are the same, i.e.,
ˆℎ𝐵𝑖,𝑗

= ℎ𝐵𝑖,𝑗
, we are guaran-

teed that the nodes will eventually be the same, and hence we are

guaranteed that we find a collision for 𝐻 . In all cases where we did

not find a signature forgery, we have instead found a collision for𝐻 .

Since 𝐻 is assumed to come from a family of cryptographic secure



Digital Signatures for Authenticating Compressed JPEG Images

hash functions, this happens with at most negligible probability

𝜖𝐻 .

It follows that the probability of A being successful is at most

𝜖DS + 𝜖𝐻 , which is negligible. □

4.5 Performance Analysis
From the construction of our signature scheme, it is immediate that

the signature size is bounded by a constant, depending only on

the size of the output of the hash function used and the size of the

underlying standard digital signature scheme, see Corollary 4.3. For

a hash function with a 256 bit output (for example, the widely used

SHA3-256), the scheme has a signature size of at most 128 · 256 =
32, 768 bits or 4 kB on top of the standard digital signature. Section 6

includes suggestions for making the signature smaller.

Corollary 4.3. If 𝐻 is a hash function with output size |𝐻 | and
DS is a standard digital signature scheme with signature size |𝑆 |, the
scheme CS constructed as described above, has signature size |𝑆 | for
uncompressed images and signature size

128 · |𝐻 | + |𝑆 | (9)

for compressed images.

Proof. For an uncompressed image, the signature for the image

consists of the standard digital signature forℎ𝑟𝑜𝑜𝑡 . For a compressed

image, the signature consists of the standard digital signature for

ℎ𝑟𝑜𝑜𝑡 and (at most) one node from each of the 128 chains of hashes,

see Figure 5. □

In terms of computation requirements, it follows from the con-

struction of the signature scheme that key generation, signing, and

verification require one key generation, signing, or verification

from the standard digital signature scheme. Additionally, for sign-

ing, compression, and verification, it is necessary to compute ℎ𝑟𝑜𝑜𝑡 .

Doing so requires computing each of the 128 chains of hashes, each

of which requires computing (up to) 8 hashes, plus a final hash to

obtain ℎ𝑟𝑜𝑜𝑡 . When the image is compressed, verification requires

computing fewer than 8 hashes per chain. In total, computing ℎ𝑟𝑜𝑜𝑡
therefore requires up to

128 · 8 + 1 = 1025 (10)

hash function evaluations. Table 1 summarizes the performance

of our scheme, in terms of the size of the signature before and

after compression, and computation required by each of the four

algorithms.

To provide some context, Figure 6 shows the ratio between the

size of an image signed with our signature and the size of an image

that is not signed, and also the ratio between the size of an image

signed with our signature and directly signing it with a standard

digital signature (and hence having to provide the entire image,

all the time). For this comparison we consider an image size of

2 megabytes, a hash function with 256 bit output and a standard

digital signature scheme with signature size 512 bits. These param-

eters correspond to using our scheme with SHA3-256 and EdDSA

using the Ed25519 curve, both of which are currently thought to be

secure, and widely used [13, 9]. Choosing these parameters result

in a signature size of 128 · 256+ 512 = 33, 280 bits, or 32.5 kb, for our

scheme. Figure 6 illustrates that, for these parameters, using our

Table 1: Upper bounds on the performance of our construc-
tion of a signature scheme allowing image compression, as-
suming it is constructed with a hash function with output
size |𝐻 | and a standard digital signature scheme DS with sig-
nature size |𝑆 |.

Computation Time Signature Size
Key generation Same as KeyGenDS —

Signing 1025 hashes and |𝑆 |
time of SignDS

Compression 1025 hashes 128|𝐻 | + |𝑆 |
Verification 1025 hashes and —

time of VerifyDS

signature scheme adds just under 4% overhead when images are

compressed down to 5% of their original size. Replacing EdDSAwith

a post-quantum signature scheme (and thus making our scheme

post-quantum secure), increases the overhead of our scheme, but

does not fundamentally change the figure. For example, using the

post-quantum signature scheme Dilithium in the form suggested

by NIST [27], changes the signature size to be between 2420 and

4595 bytes, rather than 512 bits. Even in the 4595 bytes case, the

overhead is only just over 8%, when images are compressed down

to 5% of their original size. In this case, our scheme has signature

size 128 · 256 + 36, 760 = 69, 528 bits, or just under 8.5 kB. Finally,

Figure 6 also illustrates that, rather obviously, our scheme performs

drastically better than just signing the hash of the image directly,

since in this case the entire image has to be provided to verify the

signature, and thus no compression can be done.

5 VISUAL EVALUATION
An essential question to ask about a construction that modifies how

JPEG compression is performed is how it impacts the image quality.

In order to evaluate this, we used the IJG implementation [35] with

both the standard quantization tables and quantization tables that

contained only powers of two (as in our construction and [18]). For

any fixed image, we chose the quantization tables with powers of

two to be the tables giving the size closest to the size obtained with

standard quantization tables. For our construction, we found the

tables in the following way. First, a function 𝑟 rounding a value

𝑣 to either the closest smaller or the closest larger power of two

is defined. Rather than just rounding 𝑣 to the closest value, the

function takes an additional parameter 𝑞 ∈ [0, 1], which defines

where the cutoff between rounding down and rounding up is. The

function is defined as:

𝑟 (𝑣, 𝑞) =
{
2
⌈log(𝑣) ⌉

if 𝑣 > (1 + 𝑞) · 2⌊log 𝑣⌋

2
⌊log 𝑣⌋

otherwise.

(11)

This allows us to tweak 𝑞 in order to get the size of the image

compressed with the generated quantization table as close to the

size of the image compressed with the standard quantization tables

as possible. For a given quality factor 𝑝 (and hence a pair of standard

quantization tables), we perform a binary search to find the value

of 𝑞 that gives the closest compressed image size. As an example,

using the image in Figure 7a and quality factor 𝑝 = 50, we obtain



Simon Erfurth

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Compression ratio

Si
ze

ra
ti
o

Compared to standard signature

Compared to no signature

Using a post-quantum signature

Figure 6: Relative size of an image and signature from our
scheme (image size + provided nodes + standard signature)
compared to not signing the image at all (image size) in
dashed blue and compared to using a standard digital signa-
ture scheme (uncompressed image size + standard signature)
in solid green. Additionally, relative size compared to not
using a signature, when our scheme uses a post-quantum
signature in dotted red. For this comparison, we consider
an image with an uncompressed size of 2megabytes, a hash
function with output size 256 bits, a standard digital signa-
ture scheme with signature size 512 bits, and a post-quantum
digital signature scheme with signature size 36760 bits.

the following luminance quantization table from the luminance

quantization table in Equation (4):

𝑄 =



16 8 8 16 16 32 64 64

8 8 16 16 32 64 64 64

16 16 16 16 32 64 64 64

16 16 16 32 64 64 64 64

16 16 32 64 64 128 128 64

16 32 64 64 64 128 128 64

64 64 64 64 128 128 128 128

64 64 64 128 128 128 128 128


. (12)

Having found the different quantization tables, we compress the

image with both the standard quantization tables, with our modified

quantization tables, and with quantization tables consisting of only

one power of two, i.e., giving images that visually match the ones

obtained by the approach suggested in [18]. For [18], we manually

found the power of two resulting in a compressed image of size

closest to the standard quantization tables.

Purely ocular evaluation by the author and colleagues could not

reliably tell the compressed images apart, see Figure 7. In order to

evaluate the similarity of the produced images, we instead use the

following four similarity measures to compare compressions of all

the images in [31] to the uncompressed reference images.

(a) (b)

(c) (d)

Figure 7: An image from the TID2008 database [31]. In 7a
uncompressed, in 7b compressed using the default 𝑄50 quan-
tization tables, in 7c using the approach suggested in [18],
and in 7d using our approach.

• MultiScale Structural SIMilarity (MS-SSIM): Image qual-

ity assessment measure intended to match the human per-

ception by moving from a pixel comparison to a structure

comparison [39].

• Feature SIMilarity (FSIM): Image quality assessment mea-

sure intended to match the human perception by using that

humans understand pictures mainly by their low-level fea-

tures. Newer and claimed (by its authors) to be closer to

human perception than MS-SSIM [42]. FSIMc is the color

variant of FSIM.

• Mean Squared Error (MSE): Classical distance measure

not matching the human perception. Found by calculating

the mean squared distance between pixels in the images

being compared, i.e., when comparing images 𝐼1 and 𝐼2,

both of size𝑀 × 𝑁 , we have

MSE(𝐼1, 𝐼2) =
1

𝑀 · 𝑁
∑︁

1≤𝑚≤𝑀
1≤𝑛≤𝑁

(𝐼1 (𝑚,𝑛) − 𝐼2 (𝑚,𝑛))2 . (13)

• Peak Signal Noise Ratio (PSNR): Classical distance mea-

sure not matching the human perception. Derived from the

MSE, and taking into account the maximal dynamic range

of the image. In the same setting as above, and with 𝑅 being

the maximal dynamic range of 𝐼1 and 𝐼2 (so 255 for 8-bit

images), we have

PSNR(𝐼1, 𝐼2) = 10 · log
10

(
𝑅2

MSE(I1, I2)

)
. (14)

The procedure described above was implemented in a Matlab

script, with calls to the IJG compression implementation [35]. Func-

tions for calculating MS-SSIM, MSE, and PSNR are provided by



Digital Signatures for Authenticating Compressed JPEG Images

Table 2: Average results for compressions of the test images
from [31] compared to the uncompressed images. We started
from 3 different quality factors for the unmodified compres-
sion (25, 50, and 80), and for each of these we derived the
quantization table with only powers of two giving the closest
size. For the approach suggested in [18], we include both the
closest smaller and the closest larger variant (the value in
the quantization tables is indicated in parentheses).

Size MS-SSIM FSIMc MSE PSNR

Q
F
2
5

Our tables 16.0 kB 0.960 0.978 77.526 29.749

Unmodified 15.1 kB 0.959 0.978 78.900 29.655

[18] (64) 10.4 kB 0.914 0.936 109.016 28.021

[18] (32) 20.5 kB 0.961 0.976 46.071 31.706

Q
F
5
0

Our tables 25.4 kB 0.979 0.991 45.831 32.008

Unmodified 24.4 kB 0.979 0.991 45.910 31.988

[18] (32) 20.5 kB 0.961 0.976 46.071 31.706

[18] (16) 36.5 kB 0.983 0.992 18.451 35.605

Q
F
8
0

Our tables 43.9 kB 0.990 0.997 20.256 35.402

Unmodified 43.4 kB 0.991 0.997 20.432 35.364

[18] (16) 36.5 kB 0.983 0.992 18.451 35.605

[18] (8) 60.4 kB 0.993 0.997 7.532 39.439

Matlab as multissim, imse, and psnr. A Matlab script for calcu-

lating FSIM was published as auxiliary material for the article [42,

41]. Our full code and additional material such as the reference im-

ages and compressed variants can be found on author’s homepage
5
.

In Table 2, we consider different quality factors (𝑝 = 25, 𝑝 = 50,

and 𝑝 = 80, as described in Section 3.2), and compare the average

of the images compressed with the standard quantization table

with the compressed image obtain from our scheme, and with two

images compressed with quantization tables with just one power

of two in all entries, as suggest in [18]. We include two images

compressed as suggested in [18], since this approach allows so little

granularity in the quantization tables that it is often hard to get the

compressed size even close to the images compressed with the stan-

dard quantization tables. This also demonstrates one of the major

issues with the approach suggested in [18]; it only allows 8 different

quantization tables, leading to very low granularity. Additionally,

as can be seen in Table 2, even when we choose the quantization ta-

bles to be the ones resulting in a substantially larger file, the FSIMc

score is comparable. Presumably, this is due to all entries in the

quantization table having the same value. Thus, this approach does

not use the human bias towards noticing low frequency changes.

Comparing the results of the unmodified compression and our

compression, Table 2 shows that we can get very close to the

the same size and image quality assessment scores (MS-SSIM and

FSIMc). In fact, our compression obtain the same FSIMc score as the

unmodified, and the MS-SSIM is 0.001 better in one case, and 0.001

worse in one case. This implies that the visual degradation of using

our compression is comparable to visual degradation from using

the default scheme. The MSE and PSNR values are also similar, but

the differences are slightly larger.

5
https://serfurth.dk/research/archive/

(a) (b)

(c) (d)

Figure 8: Other standard test images we compared the un-
modified JPEG compression, our compression, and the [18]
compression on. Figure 8a is a test image from [5], Figure 8b
is a test image from [31], and Figures 8c and 8d are test im-
ages from [40]. Test results can be found in Appendix A, but
all show essentially the same results.

We also tested the Lenna test image and images from [5] and

[40]. Results can be found in Appendix A, and examples of images

in Figure 8. All tests showed essentially the same results.

6 FUTUREWORK
This paper extends the theory of digital signatures for images that

still allow some form of compression. We present and analyze the

first digital signature scheme that is first and foremost designed

with the goal of allowing this. Additionally, we have suggested

applications where this type of digital signatures could help in a

small way towards solving some major societal issues. For these

issues, additional work investigating if they would actually help

users in a real setting would be a natural next step.

So far, our procedure for generating quantization tables for our

compression, has been to fix an image compressed with standard

quantization tables, and then finding the tables giving our com-

pressed image size as close to first image as possible. This method

is rather inefficient, because it requires many JPEG compressions,

among other reasons. Instead of this inefficient method, we suggest

defining a new set of standard quantization tables and a function

for deriving quantization tables for different quality factors, similar

to how it is currently done, but with the new standard and derived

https://serfurth.dk/research/archive/


Simon Erfurth

tables consisting of only powers of two. These new standard quan-

tization tables should be chosen to preserve the most image quality

over a large set of different images and different quality factors,

evaluated using both real-life tests with users and image quality

assessment measures like the ones used in Section 5.

One optimization that could be made to our construction itself, is

that chains of hashes that are always truncated by the same number

of bits could be combined into one, so that only one hash needs to

be provided in the signature for the compressed image. As an exam-

ple, we refer back to the standard luminance quantization table in

Equation (4), in which we see that the table has 14 in entries (1, 2),
(2, 0), and (3, 0), and hence the chains of hashes corresponding

to these entries will always be truncated by the same amount in

our construction. If new quantization tables containing only pow-

ers of two are standardized, this optimization would be particular

effective, since these tables would necessarily have many identi-

cal values. Finally, an efficient prototype should be implemented,

and the efficiency of the prototype evaluated and compared to, for

example, state of the art of zero-knowledge based approaches [10].

A ADDITIONAL VISUAL TESTS
Tables 3 to 8 contains results comparing our compression, com-

pression done with unmodified tables, and compression done with

quantization tables giving the same result as [18]. We test the Lenna

test image and images from [5], [31], and [40]. All test essentially

show the same results as Table 2. For each image, we started from

3 different quality factors for the unmodified compression, and for

each of these we derived the quantization table with only powers

of two giving the closest size. For the approach suggested in [18],

we include both the closest smaller and the closest larger variant

(the value in the quantization tables is indicated in parentheses).

Table 3: Compressions of the Lenna test image compared to
the uncompressed image. We started from quality factors
25, 50, and 80. While the Lenna test image is perhaps the
most widely used test image, it is considered problematic by
some [14], and hence we do not display it.

Size MS-SSIM FSIMc MSE PSNR

Q
F
2
5

Our tables 16.2 kB 0.945 0.981 56.287 30.627

Unmodified 16.0 kB 0.946 0.981 54.794 30.743

[18] (64) 10.0 kB 0.899 0.938 87.190 28.726

[18] (32) 18.8 kB 0.947 0.975 46.244 31.480

Q
F
5
0

Our tables 26.1 kB 0.967 0.992 38.510 32.275

Unmodified 26.1 kB 0.967 0.992 37.919 32.342

[18] (32) 18.7 kB 0.947 0.975 46.244 31.480

[18] (16) 37.1 kB 0.971 0.991 26.696 33.866

Q
F
8
0

Our tables 48.4 kB 0.980 0.997 25.708 34.030

Unmodified 48.4 kB 0.980 0.997 25.467 34.071

[18] (16) 37.1 kB 0.971 0.991 26.696 33.866

[18] (8) 77.1 kB 0.985 0.997 16.528 35.949

Table 4: Compressions of the pillar test image [5] (Figure 8a)
compared to the uncompressed image. We started from qual-
ity factors 10, 20, and 50.

Size MS-SSIM FSIMc MSE PSNR

Q
F
1
0

Our tables 99.7 kB 0.938 0.987 30.192 33.332

Unmodified 99.5 kB 0.929 0.987 37.320 32.411

[18] (128) 68.3 kB 0.869 0.963 85.001 28.837

[18] (64) 99.8 kB 0.938 0.991 30.168 33.335

Q
F
2
0

Our tables 160.4 kB 0.973 0.997 12.069 37.314

Unmodified 157.2 kB 0.966 0.997 14.471 36.526

[18] (64) 99.8 kB 0.938 0.991 30.168 33.335

[18] (32) 162.7 kB 0.973 0.998 11.798 37.413

Q
F
5
0

Our tables 309.4 kB 0.991 0.999 4.179 41.920

Unmodified 281.9 kB 0.989 0.999 4.628 41.477

[18] (8) 435.1 kB 0.995 1.000 2.030 45.056

[18] (16) 266.9 kB 0.988 0.999 4.779 41.338

Table 5: Compressions of just one test image from the
TID2008 database [31] (Figure 7) compared to the uncom-
pressed image. We started from quality factors 25, 50, and 80.

Size MS-SSIM FSIMc MSE PSNR

Q
F
2
5

Our tables 15.7 kB 0.976 0.983 46.963 31.413

Unmodified 14.3 kB 0.974 0.983 50.496 31.098

[18] (64) 9.3 kB 0.940 0.945 90.789 28.550

[18] (32) 17.2 kB 0.975 0.979 35.967 32.572

Q
F
5
0

Our tables 24.3 kB 0.989 0.993 27.010 33.816

Unmodified 22.4 kB 0.987 0.993 28.489 33.584

[18] (32) 17.2 kB 0.975 0.979 35.967 32.572

[18] (16) 29.8 kB 0.990 0.993 14.219 36.602

Q
F
8
0

Our tables 38.5 kB 0.994 0.998 12.963 37.004

Unmodified 38.0 kB 0.994 0.998 13.124 36.950

[18] (16) 29.7 kB 0.990 0.993 14.219 36.602

[18] (8) 47.5 kB 0.996 0.998 5.916 40.410



Digital Signatures for Authenticating Compressed JPEG Images

Table 6: Compressions of just one test image from the
TID2008 database [31] (Figure 8b) compared to the uncom-
pressed image. We started from quality factors 25, 50, and 80.

Size MS-SSIM FSIMc MSE PSNR

Q
F
2
5

Our tables 13.8 kB 0.971 0.981 49.564 31.179

Unmodified 12.6 kB 0.969 0.981 51.834 30.985

[18] (64) 8.1 kB 0.924 0.935 82.781 28.951

[18] (32) 15.2 kB 0.967 0.976 34.697 32.728

Q
F
5
0

Our tables 20.2 kB 0.984 0.992 30.678 33.263

Unmodified 20.1 kB 0.984 0.992 29.983 33.362

[18] (32) 15.2 kB 0.967 0.976 34.697 32.728

[18] (16) 27.3 kB 0.985 0.992 14.785 36.433

Q
F
8
0

Our tables 36.2 kB 0.993 0.998 13.908 36.698

Unmodified 35.8 kB 0.993 0.998 13.982 36.675

[18] (16) 27.3 kB 0.985 0.992 14.785 36.433

[18] (8) 47.7 kB 0.993 0.997 6.479 40.016

Table 7: Compressions of test image from [40] (Figure 8c)
compared to the uncompressed image. We started from qual-
ity factors 25, 50, and 80.

Size MS-SSIM FSIMc MSE PSNR

Q
F
2
5

Our tables 32.6 kB 0.932 0.975 284.226 23.594

Unmodified 32.5 kB 0.934 0.975 278.961 23.675

[18] (64) 26.6 kB 0.897 0.938 302.342 23.326

[18] (32) 57.9 kB 0.950 0.976 159.081 26.115

Q
F
5
0

Our tables 54.3 kB 0.958 0.988 200.370 25.112

Unmodified 54.2 kB 0.959 0.988 199.167 25.139

[18] (64) 26.6 kB 0.897 0.938 302.342 23.326

[18] (32) 57.9 kB 0.950 0.976 159.081 26.115

Q
F
8
0

Our tables 99.0 kB 0.977 0.995 121.037 27.302

Unmodified 98.8 kB 0.977 0.995 120.239 27.330

[18] (32) 57.9 kB 0.950 0.976 159.081 26.115

[18] (16) 110.6 kB 0.977 0.992 84.196 28.878

Table 8: Compressions of test image from [40] (Figure 8d)
compared to the uncompressed image. We started from qual-
ity factors 25, 50, and 80.

Size MS-SSIM FSIMc MSE PSNR

Q
F
2
5

Our tables 17.8 kB 0.936 0.979 83.316 28.924

Unmodified 17.7 kB 0.937 0.979 81.872 28.999

[18] (64) 11.7 kB 0.893 0.938 108.072 27.794

[18] (32) 22.2 kB 0.941 0.974 61.652 30.231

Q
F
5
0

Our tables 29.1 kB 0.959 0.991 58.628 30.450

Unmodified 29.0 kB 0.959 0.991 56.692 30.596

[18] (32) 22.2 kB 0.941 0.974 61.652 30.231

[18] (16) 48.5 kB 0.967 0.990 39.224 32.195

Q
F
8
0

Our tables 54.6 kB 0.976 0.997 39.005 32.220

Unmodified 54.2 kB 0.976 0.997 39.503 32.164

[18] (16) 48.5 kB 0.967 0.990 39.224 32.195

[18] (8) 98.1 kB 0.983 0.997 25.347 34.091

REFERENCES
[1] Adobe. 2023. JPEG2000 files. https://www.adobe.com/creativecloud/file-types

/image/raster/jpeg-2000-file.html. (Dec. 6, 2023).

[2] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat,

and Brent Waters. 2015. Computing on authenticated data. Journal of Cryptol-
ogy, 28, 2, 351–395. doi: 10.1007/S00145-014-9182-0.

[3] Adam L. Alter and Daniel M. Oppenheimer. 2009. Uniting the tribes of fluency

to form a metacognitive nation. Personality and Social Psychology Review, 13, 3,
219–235. doi: 10.1177/1088868309341564.

[4] Edward L. Amoruso, Stephen P. Johnson, Raghu Nandan Avula, and Cliff C.

Zou. 2022. A web infrastructure for certifying multimedia news content for

fake news defense. In IEEE Symposium on Computers and Communications -
ISCC 2022. IEEE, 1–7. doi: 10.1109/ISCC55528.2022.9912787.

[5] Nicola Asuni and Andrea Giachetti. 2013. TESTIMAGES: A large data archive

for display and algorithm testing. Journal of Graphics Tools, 17, 4, 113–125. doi:
10.1080/2165347X.2015.1024298.

[6] Mihir Bellare and Gregory Neven. 2002. Transitive signatures based on factor-

ing and RSA. In Advances in Cryptology - ASIACRYPT 2002 (LNCS). Vol. 2501.
Springer, 397–414. doi: 10.1007/3-540-36178-2\_25.

[7] Joan Boyar, Simon Erfurth, Kim S. Larsen, and Ruben Niederhagen. 2023.

Quotable signatures for authenticating shared quotes. In Conference on Cryp-
tology and Information Security in Latin America - LATINCRYPT 2023 (LNCS).
Vol. 14168. Springer, 273–292. doi: 10.1007/978-3-031-44469-2\_14.

[8] C2PA. 2023. Coalition for content provenance and authenticity (C2PA). https:

//c2pa.org/. (Dec. 1, 2023).

[9] Lily Chen, Dustin Moody, Andrew Regenscheid, and Angela Robinson. 2023.

Digital Signature Standard (DSS). Federal Inf. Process. Stds. (NIST FIPS). Na-

tional Institute of Standards and Technology, Gaithersburg, MD, USA. doi:

10.6028/NIST.FIPS.186-5.

[10] Trisha Datta and Dan Boneh. 2023. Using ZK proofs to fight disinformation.

https://medium.com/@boneh/using-zk-proofs-to-fight-disinformation-17e

7d57fe52f. (Nov. 28, 2023).

[11] Whitfield Diffie and Martin E. Hellman. 1976. New directions in cryptography.

IEEE Transactions on Information Theory, 22, 6, 644–654. doi: 10.1109/TIT.1976
.1055638.

[12] Ling Du, Anthony T. S. Ho, and Runmin Cong. 2020. Perceptual hashing for

image authentication: A survey. Signal Processing: Image Communication, 81,
115713. doi: 10.1016/J.IMAGE.2019.115713.

[13] Morris J. Dworkin. 2015. SHA-3 Standard: Permutation-BasedHash and Extendable-

Output Functions. Federal Inf. Process. Stds. (NIST FIPS). National Institute of

Standards and Technology, Gaithersburg, MD, USA. doi: 10.6028/NIST.FIPS.202.

[14] Finch. 2024. Losing lena: removing one image to make millions of women feel

welcome. https://www.prnewswire.com/news-releases/losing-lena-removin

g-one-image-to-make-millions-of-women-feel-welcome-300960513.html.

(Mar. 25, 2024).

[15] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2020. Generative

adversarial networks. Communications of the ACM, 63, 11, 139–144. doi: 10.114

5/3422622.

[16] International Telecommunication Union. 1992. T.81 – Digital Compression

and Coding of Continuous-Tone Still Images – Requirements and Guidelines.

https://www.w3.org/Graphics/JPEG/itu-t81.pdf. (1992).

[17] Magnus Stenaa Jensen. 2024. Detecting AI-manipulated content is a challenging

arms race. https://www.dtu.dk/english/news/all-news/detecting-ai-manipulat

ed-content-is-a-challenging-arms-race?id=f7be2a68-b6c4-4e39-bd21-66500

09d287b. (Mar. 25, 2024).

[18] Rob Johnson, Leif Walsh, and Michael Lamb. 2011. Homomorphic signatures

for digital photographs. In Financial Cryptography and Data Security - FC 2011
(LNCS). Vol. 7035. Springer, 141–157. doi: 10.1007/978-3-642-27576-0\_12.

[19] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David A. Wagner.

2002. Homomorphic signature schemes. In Topics in Cryptology - CT-RSA 2002
(LNCS). Vol. 2271. Springer, 244–262. doi: 10.1007/3-540-45760-7\_17.

[20] Antonis Kalogeropoulos, Richard Fletcher, and Rasmus Kleis Nielsen. 2018.

News brand attribution in distributed environments: do people know where

they get their news? New Media & Society, 21, 3, 583–601. doi: 10.1177/146144
481880.

[21] Maxwell N. Krohn, Michael J. Freedman, and David Mazières. 2004. On-the-fly

verification of rateless erasure codes for efficient content distribution. In IEEE
Symposium on Security and Privacy - S&P 2004. IEEE Computer Society, 226–

240. doi: 10.1109/SECPRI.2004.1301326.

[22] Stephan Lewandowsky, Ullrich K. H. Ecker, ColleenM. Seifert, Norbert Schwarz,

and John Cook. 2012. Misinformation and its correction: continued influence

and successful debiasing. Psychological Science in the Public Interest, 13, 3, 106–
131. doi: 10.1177/1529100612451018.

[23] Ching-Yung Lin and Shih-Fu Chang. 2001. A robust image authentication

method distinguishing JPEG compression from malicious manipulation. IEEE

https://www.adobe.com/creativecloud/file-types/image/raster/jpeg-2000-file.html
https://www.adobe.com/creativecloud/file-types/image/raster/jpeg-2000-file.html
https://doi.org/10.1007/S00145-014-9182-0
https://doi.org/10.1177/1088868309341564
https://doi.org/10.1109/ISCC55528.2022.9912787
https://doi.org/10.1080/2165347X.2015.1024298
https://doi.org/10.1007/3-540-36178-2\_25
https://doi.org/10.1007/978-3-031-44469-2\_14
https://c2pa.org/
https://c2pa.org/
https://doi.org/10.6028/NIST.FIPS.186-5
https://medium.com/@boneh/using-zk-proofs-to-fight-disinformation-17e7d57fe52f
https://medium.com/@boneh/using-zk-proofs-to-fight-disinformation-17e7d57fe52f
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1016/J.IMAGE.2019.115713
https://doi.org/10.6028/NIST.FIPS.202
https://www.prnewswire.com/news-releases/losing-lena-removing-one-image-to-make-millions-of-women-feel-welcome-300960513.html
https://www.prnewswire.com/news-releases/losing-lena-removing-one-image-to-make-millions-of-women-feel-welcome-300960513.html
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
https://www.w3.org/Graphics/JPEG/itu-t81.pdf
https://www.dtu.dk/english/news/all-news/detecting-ai-manipulated-content-is-a-challenging-arms-race?id=f7be2a68-b6c4-4e39-bd21-6650009d287b
https://www.dtu.dk/english/news/all-news/detecting-ai-manipulated-content-is-a-challenging-arms-race?id=f7be2a68-b6c4-4e39-bd21-6650009d287b
https://www.dtu.dk/english/news/all-news/detecting-ai-manipulated-content-is-a-challenging-arms-race?id=f7be2a68-b6c4-4e39-bd21-6650009d287b
https://doi.org/10.1007/978-3-642-27576-0\_12
https://doi.org/10.1007/3-540-45760-7\_17
https://doi.org/10.1177/146144481880
https://doi.org/10.1177/146144481880
https://doi.org/10.1109/SECPRI.2004.1301326
https://doi.org/10.1177/1529100612451018


Simon Erfurth

Transactions on Circuits and Systems for Video Technology - (TCSVT), 11, 2,
153–168. doi: 10.1109/76.905982.

[24] Santiago Lyon. 2023. Leica launches world’s first camera with content creden-

tials. https://contentauthenticity.org/blog/leica-launches-worlds-first-camer

a-with-content-credentials. (Nov. 28, 2023).

[25] David Marr and Ellen Hildreth. 1980. Theory of edge detection. Proceedings of
the Royal Society B, 207, 1167, 187–217. doi: 10.1098/rspb.1980.0020.

[26] Silvio Micali and Ronald L. Rivest. 2002. Transitive signature schemes. In

Topics in Cryptology - CT-RSA 2002 (LNCS). Vol. 2271. Springer, 236–243. doi:
10.1007/3-540-45760-7\_16.

[27] National Institute of Standards and Technology. 2023. Module-Lattice-Based

Digital Signature Standard. Federal Inf. Process. Stds. (NIST FIPS). National

Institute of Standards and Technology, Gaithersburg, MD, USA. doi: 10.6028

/NIST.FIPS.204.ipd.

[28] Assa Naveh and Eran Tromer. 2016. Photoproof: Cryptographic image au-

thentication for any set of permissible transformations. In IEEE Symposium
on Security and Privacy - S&P 2016. IEEE Computer Society, 255–271. doi:

10.1109/SP.2016.23.

[29] Nic Newman, Richard Fletcher, Antonis Kalogeropoulos, and Rasmus Kleis

Nielsen. 2019. Reuters Institute Digital News Report 2019. Tech. rep. Reuters

Institute for the Study of Journalism. https://www.digitalnewsreport.org/surve

y/2019/.

[30] Katherine Ognyanova, David Lazer, Ronald E. Robertson, and Christo Wilson.

2020. Misinformation in action: fake news exposure is linked to lower trust in

media, higher trust in government when your side is in power. Misinformation
Review, 1, 4. doi: 10.37016/mr-2020-024.

[31] Nikolay Ponomarenko, Vladimir Lukin, Alexander Zelensky, Karen Egiazarian,

Marco Carli, and Federica Battisti. 2009. TID2008 — A database for evaluation of

full-reference visual quality assessment metrics. Advances of Modern Radioelec-
tronics, 10, 4, 30–45. https://www.ponomarenko.info/papers/mre2009tid.pdf.

[32] Leonie Schaewitz and Nicole C. Krämer. 2020. Combating disinformation:

effects of timing and correction format on factual knowledge and personal

beliefs. InMultidisciplinary International Symposium on Disinformation in Open
Online Media - MISDOOM 2020 (LNCS). Vol. 12259. Springer, 233–245. doi:

10.1007/978-3-030-61841-4\_16.

[33] Emily Sidnam-Mauch, Bernat Ivancsics, Ayana Monroe, Eve Washington, Errol

Francis II, Kelly Caine, Joseph Bonneau, and Susan E. McGregor. 2022. Usable

cryptographic provenance: A proactive complement to fact-checking for miti-

gating misinformation. In AAAI Conference on Web and Social Media - ICWSM
2022. doi: 10.36190/2022.55.

[34] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. 2001. Content extraction

signatures. In Information Security and Cryptology - ICISC 2001 (LNCS). Vol. 2288.
Springer, 285–304. doi: 10.1007/3-540-45861-1\_22.

[35] The Independent JPEG Group (IJG). 2022. JPEG Standard Reference Imple-

mentation (version 9e). https://jpegclub.org/reference/reference- sources/.

(2022).

[36] Milan Tuba and Nebojsa Bacanin. 2014. JPEG quantization tables selection by

the firefly algorithm. In Conference on Multimedia Computing and Systems -
ICMCS 2014. IEEE, 153–158. doi: 10.1109/ICMCS.2014.6911315.

[37] Juliane Urban andWolfgang Schweiger. 2014. News quality from the recipients’

perspective. Journalism Studies, 15, 6, 821–840. doi: 10.1080/1461670X.2013.85
6670.

[38] Gregory K. Wallace. 1991. The JPEG still picture compression standard. Com-
munications of the ACM, 34, 4, 30–44. doi: 10.1145/103085.103089.

[39] Zhou Wang, Eero P. Simoncelli, and Alan C. Bovik. 2003. Multiscale structural

similarity for image quality assessment. In IEEE Asilomar Conference on Signals,
Systems and Computers. Vol. 2. IEEE, 1398–1402. doi: 10.1109/ACSSC.2003.129
2216.

[40] Allan Weber. 2024. The USC-SIPI image database. https://sipi.usc.edu/database

/database.php?. (Apr. 4, 2024).

[41] Lin Zhang, Lei Zhang, XuanqinMou, and David Zhang. 2011. Feature SIMilarity

index for IQA. https://web.comp.polyu.edu.hk/cslzhang/IQA/FSIM/FSIM.htm.

(2011).

[42] Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang. 2011. FSIM: A feature

similarity index for image quality assessment. IEEE Trans. Image Process., 20, 8,
2378–2386. doi: 10.1109/TIP.2011.2109730.

[43] Fang Zhao, Ton Kalker, Muriel Médard, and Keesook J. Han. 2007. Signatures for

content distribution with network coding. In IEEE Symposium on Information
Theory - ISIT 2007. IEEE, 556–560. doi: 10.1109/ISIT.2007.4557283.

[44] Bin Benjamin Zhu, Mitchell D. Swanson, and Shipeng Li. 2004. Encryption and

authentication for scalable multimedia: current state of the art and challenges.

Internet Multimedia Management Systems V, 5601, 157–170. doi: 10.1117/12.571
869.

https://doi.org/10.1109/76.905982
https://contentauthenticity.org/blog/leica-launches-worlds-first-camera-with-content-credentials
https://contentauthenticity.org/blog/leica-launches-worlds-first-camera-with-content-credentials
https://doi.org/10.1098/rspb.1980.0020
https://doi.org/10.1007/3-540-45760-7\_16
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.1109/SP.2016.23
https://www.digitalnewsreport.org/survey/2019/
https://www.digitalnewsreport.org/survey/2019/
https://doi.org/10.37016/mr-2020-024
https://www.ponomarenko.info/papers/mre2009tid.pdf
https://doi.org/10.1007/978-3-030-61841-4\_16
https://doi.org/10.36190/2022.55
https://doi.org/10.1007/3-540-45861-1\_22
https://jpegclub.org/reference/reference-sources/
https://doi.org/10.1109/ICMCS.2014.6911315
https://doi.org/10.1080/1461670X.2013.856670
https://doi.org/10.1080/1461670X.2013.856670
https://doi.org/10.1145/103085.103089
https://doi.org/10.1109/ACSSC.2003.1292216
https://doi.org/10.1109/ACSSC.2003.1292216
https://sipi.usc.edu/database/database.php?
https://sipi.usc.edu/database/database.php?
https://web.comp.polyu.edu.hk/cslzhang/IQA/FSIM/FSIM.htm
https://doi.org/10.1109/TIP.2011.2109730
https://doi.org/10.1109/ISIT.2007.4557283
https://doi.org/10.1117/12.571869
https://doi.org/10.1117/12.571869

	Abstract
	1 Introduction
	2 Related Work
	3 JPEG Compression
	3.1 DCT Transformation
	3.2 Quantization

	4 Signature Construction
	4.1 Generic Definition
	4.2 Security Notion
	4.3 Our construction
	4.4 Security Analysis
	4.5 Performance Analysis

	5 Visual Evaluation
	6 Future Work
	A Additional Visual Tests

