Dynamic Decentralized Functional Encryptions from Pairings
in the Standard Model

Duy Nguyen!0009—0002—7802-9146]

Telecom Paris, Institut Polytechnique de Paris, France
dinh.nguyen@telecom-paris.fr

Abstract. Dynamic Decentralized Functional Encryption (DDFE), introduced by Chotard et
al. (CRYPTO’20), stands as a robust generalization of (Multi-Client) Functional Encryption. It
enables users to dynamically join and contribute private inputs to individually-controlled joint
functions, all without requiring a trusted authority. Agrawal et al. (TCC’21) further extended
this line of research by presenting the first DDFE construction for function-hiding inner prod-
ucts (FH-IP-DDFE) in the random oracle model (ROM).

Recently, Shi et al. (PKC’23) proposed the first Multi-Client Functional Encryption construc-
tion for function-hiding inner products based on standard assumptions without using random
oracles. However, their construction still necessitates a trusted authority, leaving the question
of whether a fully-fledged FH-IP-DDFE can exist in the standard model as an exciting open
problem.

In this work, we provide an affirmative answer to this question by proposing a FH-IP-DDFE con-
struction based on the Symmetric External Diffie-Hellman (SXDH) assumption in the standard
model. Our approach relies on a novel zero-sharing scheme termed as Updatable Pseudorandom
Zero Sharing, which introduces new properties related to updatability in both definition and se-
curity models. We further instantiate this scheme in groups where the Decisional Diffie-Hellman
(DDH) assumption holds.

Moreover, our proposed pseudorandom zero sharing scheme serves as a versatile tool to enhance
the security of pairing-based DDFE constructions for functionalities beyond inner products. As
a concrete example, we present the first DDFE for attribute-weighted sums in the standard
model, complementing the recent ROM-based construction by Agrawal et al. (CRYPTQ’23).

Keywords: dynamic, decentralized, functional encryption, pairing, standard model

1 Introduction

1.1 Dynamic Decentralized Functional Encryption

Functional Encryption. Functional Encryption (FE) is a robust cryptographic paradigm intro-
duced by Sahai and Waters [SWO05, BSW11]. It addresses the all-or-nothing limitations of standard
public-key cryptosystems by offering fine-grained control over access to encrypted data through func-
tional decryption keys. More precisely, each ciphertext ct, encrypts a specific value z, and each
decryption key dk encapsulates a function f. When a receiver uses dky to decrypt ct,, what it can
learn is only the result f(x), and nothing more about x. Depending on a specific choice of functional-
ity class, FE encompasses various advanced encryption schemes, including Identity-Based Encryption
[Sha84,BF01], Attribute-Based Encryption [SW05, GPSWO06], Predicate Encryption [BW07, KSW08],
and more.

Since its introduction, Functional Encryption (FE) has emerged as a dynamic area of research.
One direction in this field involves the construction of FE schemes for general functionalities and
the exploration of their relationships with other cryptographic notions. A variety of elegant works
have been published in this regard [AJ15, BV15]. However, it is worth noting that all known FE
constructions for general functionalities rely on non-standard cryptographic assumptions, such as
indistinguishability obfuscation, single-input FE for circuits, or multilinear maps. Consequently, this
reliance poses challenges in practical implementations.

On another front, Abdallah et al. [ABDP15] addressed the challenge of constructing FE based on
standard assumptions for restricted, yet expressive, classes of functions. In their work, they presented

FE constructions for inner products’ (IP-FE), where each private input is represented as a vector x,
each function is represented by a vector y, and decryption yields « " - y.

Within the realm of practical FE based on standard assumptions for computation over encrypted
data, significant improvements have been made in terms of security [BJK15, ALS16, ALMT20], func-
tionality [BCFG17, AGW20, ACGU20], efficiency [CLT18, TT18, DP19, MKMS22]| and support for

multi-user scenarios [ACFT18, CDG118,CDSG 20, ZLZ*24].

Functional Encryption for Multiple Users. The concepts of Multi-Input Functional Encryption
(MIFE) and Multi-Client Functional Encryption (MCFE) were introduced in [GGGT14, GKL13].
These concepts generalize FE to enable multiple clients to independently contribute their encrypted
individual inputs to the computation of joint functions. Concretely, with the help of possibly a trusted
authority, each slot owner S; receives a private encryption key sk; and encrypts an input x; under
some label ¢ as cty, ¢. By collecting ciphertexts of all slot owners (ct,, ¢); under a same label and a
functional decryption key dk; generated from the authority’s master secret key msk, a receiver can
obtain no more information than f((x;);).

In the multi-client setting, each slot owner is assumed to be an independent client: the security
guarantees that only ciphertexts under a same label can be decrypted together, and the input privacy
of honest clients holds even when a subset of clients is corrupted. In the multi-input setting, all labels
are assumed to be the same, all slot owners are originally assumed to be the same user (yet each input
can be sent independently instead of simultaneously as in single-input FE), and then no corruption
is considered.

Therefore, any MCFE designed for a specific functionality automatically implies a MIFE for
the same functionality by using a fixed label for all encryptions. Conversely, an MIFE designed for
general functions directly implies an MCFE for general functions, as the label can be contained in
every plaintext, and the function can verify that every slot uses the same label. Considering practical
FE schemes in the literature, this equivalence doesn’t hold for restricted classes of functions such as
inner-products.

Since their introduction, the research line on practical MIFE/MCFE constructions has witnessed a
dynamic array of works seeking developments in the aspects of security [CDGT18,LT19,AGT22,SV23],
functionality [CDSG 120, ACGU20, AGT21a, NPP22, ATY23], and in the relation with single-input
FE [ABG19].

Decentralized Multi-Client Functional Encryption. Standard MCFE models often encounter
the key escrow problem, stemming from the reliance on a trusted authority. To address this challenge,
Chotard et al. [CDG 18] introduced the concept of decentralized MCFE (DMCFE). In DMCFE, the
need for a trusted authority is entirely removed, granting each client complete control over their
encrypted data and the generation of functional decryption keys.

In this paradigm, each client is require to join together a one-time interactive setup to acquire
their individual secret key sk;. With this key, each client can generate ciphertexts similar to those
in standard MCFE and decryption key shares dk¢; for a function f agreed upon by all clients. To
decrypt, a receiver must collect decryption key shares from all clients; otherwise, decryption yields
no information. This decentralized approach to key generation eliminates the necessity for a central
authority, thereby enhancing the security model of MCFE.

The development of DMCFE since the introduction of the first scheme for inner products [CDG 18]
has seen significant progress on various aspects. These advancements include expanding functionality,
as seen in constructions for attribute-weighted sums [ATY23]. Efforts to enhance security have led
to DMCFE constructions for function-hiding inner products [AGT21b], for lattice-based assumptions
in the standard model [LT19], and for optimal security notions [NPP23b]. The relations between
DMCFE and other FE notions have been established in these works [ABG19, ABKW19]. Practical
features like verifiability [NPP23a] and robustness [LWG 23| have also been integrated, enhancing
the applicability of DMCFE in various real-world scenarios.

Dynamic Decentralized Functional Encryption. Dynamic Decentralized Functional Encryption
(DDFE), as introduced by Chotard et al. [CDSG*20], extends the concept of DMCFE by preserving
all decentralized features while enabling the join of new clients at various stages during the lifetime
of the system through a non-interactive setup.

! In the literature, there are other synonyms for inner products such as linear functions or weighted sums.

In DDFE, each client in a universe PKC can independently generate a pair of public key pk and
private key skpk. The public key pk will be published on the cloud and updated by other clients in
the system. Compared to DMCFE, the decryption algorithm in DDFE is additionally more flexible,
as it allows a combination between ciphertexts (cty,,)pkeu,, Of clients in any list Uy, C PK, and
decryption keys (dkp,,)pkeuy Of clients in any list Ux C PK.

The first DDFE schemes [CDSG™120] were constructed to support functionalities such as sums,
inner products, and all-or-nothing message encapsulations. As subsequent works, DDFE constructions
for larger classes of functions such as function-hiding inner products and attributed-weighted sums
have been introduced in [AGT21b, ATY23] respectively.

Multi-Party Functional Encryption. In addition to the above notions of functional encryption, there
are other concepts designed for various multi-user settings. These include those supporting dis-
tributed keys, such as Decentralized Attribute Based Encryption with Policy Hiding [MJ18] and
Multi-Authority Functional Encryption [Cha07, LW11, BCFG17], as well as those supporting both
distributed ciphertexts and keys, such as Ad Hoc MIFE [ACF*20]. All these notions fall under the
umbrella of Multi-Party Functional Encryption [AGT21b].

However, in this paper, our focus will be exclusively on DDFE, which stands out as the most gener-
alized notion within Multi-Party Functional Encryption and can support both distributed ciphertexts
and keys.

An Open Problem in DDFE. To the best of our knowledge, practical constructions for DDFE
based on standard assumptions remain limited to the classes of function-hiding inner products (FH-IP)
and function-revealing attribute-weighted sums (AWS), which strictly capture the class of function-
revealing inner products (IP). These functionalities can be described more precisely as follows:

— In DDFE for FH-IP: each client, identified by a public key pk € PK, uses its own correspond-
ing secret key skpk to encrypt its private input zpk as ctg,, ¢, under a public message label
£y and for a public user list U),. Similarly, each client uses skpik to generate a decryption key
for its private vector ypk as dky, ¢, 1, under a public key label /x and for a public user list
Uy . The labels ¢j; and fx impose constraints on which messages and functions can be ag-
gregated together, respectively, while the lists i), and Uk specifies the sets of parties whose
ciphertexts and decryption keys can be combined, respectively. During decryption, the FH-IP
functionality verifies the conditions [Upy = Uk], [({ar,Unrr) is consistent across all ciphertexts]
and [(¢x,Uk) is consistent across all decryption keys]. If these conditions are met, the FH-IP

functionality outputs
-
Z xpk . yPk;

pkeUK

otherwise, it outputs nothing. The function-hiding security ensures that no additional information
on individual @,k and ypk is revealed.

— In DDFE for AWS: each client pk chooses a user list Uy, a label £ to encrypt its AWS in-
puts {zpk;}jen,] Which are private and {xpk;} e[, Which are public. For key generation,
each client pk chooses a set of users Uk and a list of arithmetic branching programs (ABPs)
f = {fok}pkeuy - During decryption, the AWS functionality verifies the conditions [y = Uk],
[(¢,Upr) is consistent across all ciphertexts] and [f is consistent across all decryption keys]. If these
conditions are met, the AWS functionality outputs

.
DD fk(@eks) - Zokyi
PkEU JE[Npi]

otherwise, it outputs nothing. The function-revealing security ensures that no additional infor-
mation on individual {zp ;}je[n,, is revealed.

The constructions for function-revealing inner products, function-hiding inner products, and attribute-

weighted sums are provided in [CDSG'20, AGT21b, ATY23] respectively, representing the current
state of the art in their respective areas?. However, it’s important to highlight that these construc-
tions rely on random oracles for their security proofs.

2 An advantage of the construction for function-revealing inner products is that it can be instantiated in a
pairing-free group, while all FE constructions for function-hiding inner products relies on pairing groups.

On the other hand, in the realm of (Decentralized) MCFE for (function-hiding) inner products,
there exists a series of elegant works [LT19,ABG19,SV23] aimed at enhancing security by eliminating
the use of random oracles and ensuring the security of the respective (Decentralized) MCFE in the
standard model. Therefore, our objective is to contribute to this line of research by addressing the
following question:

Do there exist any DDFE constructions for function-hiding inner products and for attribute-
weighted sums that are secure under standard assumptions in the standard model?

This work provides an affirmative answer to this question for both function classes.

1.2 Owur Contributions

The contributions can be listed as follows:

— Novel Pseudorandom Zero Sharing: We introduce a new concept called Updatable Pseudo-
random Zero Sharing. Compared to standard pseudorandom zero sharing, this notion additionally
offers the following key properties:

1. it enables the local update from a zero share into a new one;

2. its security guarantees the pseudorandomness for the updated shares even if their corre-
sponding non-updated shares are revealed; this security holds against an unbounded subset
of corrupted parties;

3. its updating algorithm can support the bilinear update property, which makes the scheme
friendly with pairing-based constructions;

In addition to the definition and security models, we also provide a concrete instantiation of this
notion in Decisional Diffie-Hellman Assumption (DDH) groups.

— Dynamic Decentralized Functional Encryptions Without RO: Using the Updatable Pseu-
dorandom Zero Sharing scheme in DDH groups as a building block, we provide the first DDFE
constructions for function-hiding inner products and attribute-weighted sums that are secure in
the standard model. The security of these constructions relies on the SXDH assumption in the
selective-symmetric setting. For function-hiding inner products, an incidental trade-off® is that
the ciphertext size per client increases to O(d+n) from O(d), where d is an inner-product dimen-
sion, and n is the size of a user list &/ whose ciphertexts and decryption keys can be combined.
Further comparative details are provided in Figure 1.

1.3 Technical Overview

Random Oracles in Prior Schemes. In the function-hiding (decentralized) multi-client setting,
one of the fundamental security requirements is that only inputs encrypted under a same message label
and only keys generated under a same key label can be decrypted together, otherwise the decryption
should output nothing.

Thus, a common strategy in constructing (decentralized) MCFE schemes, including those for
(function-hiding) inner products and attribute-weighted sums, is to rely on a (correlated) one-time-
pad technique: the one-time pads should be freshly generated by each pair of message and key labels,
as well as by each client, to independently randomize the information corresponding to each client’s
private pair of input and key object. This strategy is also employed in the constructions of DDFE, as
we will describe below.

Without obscuring the reliance on random oracles for its security, we can simplify the DDFE
scheme for FH-IP in [AGT21b] as follows: leveraging a private use of function-hiding IPFE, each
client pk € U encrypts a private xpi as

Ctok = IPE.Enc(skpk, [QJPk, 0, thJ/U Oh)
3 This trade-off and the selective-symmetric security does not compromise the solution’s completeness regard-

ing the open question posed in [SV23], which queries whether a DDFE for function-hiding inner products
can exist from standard assumptions without relying on random oracles.

Scheme Function Function (Dynamic) Without Assumptions Per-client
Class Hiding Decentralized = ROM CT size
[CDGT18] IP X v X SXDH Ox(d)
[ABG19] IP X v/ 4 IPFE Ox(d-n)
[LT19] IP X v 4 LWE Ox(d)
[CDSG20] IP X v X IPFE + DDH Ox(d)
[ABM*20] P X v X DCR 0x(d)
[AGT21D] IP v v/ X SXDH +FH-IPFE Ox(d)
[SV23] IP 4 X v DLin + FH-IPFE Ox(d)
Our FH-IP DDFE IP v v/ v SXDH +FH-IPFE Ox(d + n)
[ATY23] AWS X v X SXDH Ox(N + k)
+AWSw/IP-FE
Our AWS DDFE AWS X v/ v SXDH Ox(N +n)
+AWSw/IP-FE

Fig.1. Comparison with prior (Decentralized) MCFE schemes. The notation O,(-) indicates that terms
related to the security parameter A\ are hidden. We let d be an inner-product dimension, N be an poly()\)-
unbounded number of AWS inputs, n be an number of clients whose ciphertexts and decryption keys can be
combined, and k be the parameter of the MDDH assumption. For DDFE, all constructions achieve sel-sym-
IND security.

where [hg,, ul1 = H(¢am,U) and H is a hash function onto the group modeled as a random oracle.
The decryption key for a private ypk is generated as

dkpk = IPE.DKGen(skpk, [ypk, 07 Zpk, LK s 0]2)

where zpi ¢, is generated on label {5 by a pseudorandom zero-sharing (PZS) scheme between parties
in U so that Zpkeu Zpk,tx = 0. On one hand, the correctness holds as Zpkeu Zpk 0 Moy = 0 in the
sum of all FH-IPFE decryptions.

On the other hand, via zero slots, and by using hybrids relying on the function-hiding security
of each client’s FH-IPFE in the non-corrupted set H and each key label £k, one can move the term
[Zpk,ex |2 from dkpk to the term [zpk ¢y - Py,)1 ID Ctpk. At this step, one will have

PZS,SXDH

[Zpkafk : hZMJ/f]l ~ pk,U, e LK

where Rp 14,05, ¢ are generated uniformly random for the relation ZpkeH Rokut,enr o = — Zpkeu\H Zpk,Lre*
he,,u- By the admissibility condition, each Rpk /.0, ¢, serves as a correlated one-time pad that ran-

domizes each term mb; . ybpk in the same way it randomizes mo;rk . yopk, where b is the challenge bit
of the security game. It is important to note that for the SXDH assumption to hold, [hs,, 1/]1 must
be a uniformly random group element to all clients, which requires the use of a random oracle.

A more recent FH-IP construction in [SV23] provides another helpful one-time-pad technique to
avoid the reliance on random oracles for the non-decentralized multi-client setting. The construction
can be briefly described as follows: leveraging a private use of function-hiding IPFE, each client ¢ € [n]
encrypts a private x; as

ct; = IPE.Enc(sk;, [24,0, 2i,0,, + @i - fiey s it 5 0])

where z; ¢,, is generated on label £;; by a pseudorandom zero-sharing, the value a; is a random key
shared between client ¢ and the trusted authority, and p;¢,, is a fresh randomness. The decryption
key for a private y; is generated as

dk; = IPE.DKGen(sk;, [y, 0, pe, , —pey @i, 0])

where py, is the same random value in dk; for all 7 € [n]. The correctness holds as } () Zi.er *Prc =0
in the sum of all FH-IPFE decryptions, and the MCFE security holds under the Decisional Linear

assumption in the standard model. Unfortunately, extending this construction to the decentralized
setting appears challenging, as it crucially requires a trusted authority to generate the same random
pey for all FH-IPFE decryption keys.

It is also important to note that the generic transformation from single-input FE to decentralized
MCFE for function-revealing inner products in [ABG19] cannot be extended to the function-hiding
setting, as the transformation necessitates each client to know the entire joint inner-product function.

Updatable Pseudorandom Zero-Sharing. In Section 3, we provide a definition and security
models for the new notion of Updatable Pseudorandom Zero-Sharing (UZS). The formalization will
be useful for the black-box use in DDFE schemes and any potential improvements.

We provide a brief overview of our DDH-based construction in Figure 2, which will serve as a
new one-time-pad technique leading to the security in the standard model for pairing-based DDFE
constructions. When compared to the pseudorandom zero-sharing schemes in earlier works [BIK*17,
ABG19], it’s notable that zero shares in our scheme are DDH group elements that sum up to the
group identity, instead of scalars.

Algorithm Return

SetUp(A) a group G and pseudorandom functions (PRF, PRF’).
KeyGen() sk; = (ki,j = kj,i)je[n]\[i] for each party P;.
SeedGen(ski,EM) seedi,gM = ([(71)i<jPRFkM (eM)])jE[n}

TokGen(sk;, £x) token; ¢, = (PRFy, | (€x))jeln)-
SeedUpt(seed; ¢, , token; ¢,) seed; ¢, (1e,c = ([(—1)*</PRFy, ; (¢ar) - PRF%, , (¢x)])jerm)-
ShareEval(seed; ¢) sharei ¢ =3)\s[Ci.j.e] Where seed; ¢ = ([cije])jemni-

Fig. 2. Construction for UZS in DDH groups between n parties

We demonstrate how the scheme achieves correctness and security using matrix representation:

— The matrix [Ay,,] (see Figure 3) serves as a seeding matrix, with each i-th row representing
seed; ¢,,. This seeding matrix adopts an anti-symmetric form: A, ;) = 0 for all i € [n] and

Agy) = —Aey iy for all (4,5 € [n],i # 7).

0 —PRFk, o (€nr) -+ —PRFy,, (b)) —> seediey, = ([Aey,,)] iemiy
PRsz,l (ZM) 0 te _PRsz,n (EM) —> seeda ¢, = ([AZMY(QJ)DJ'QHJ\{?}

[AZM} =
PRFk, . ((ar) PRFy, o (0ar) - 0 —> seedn ry, = ([Aeys (n.i)])iemiiny

Fig. 3. Seeding matrix [Ag,,] € G"*".

— The matrix By, (see Figure 4) serves as an updating matrix, with each i-th row represent-
ing token; ¢, . This updating matrix adopts a symmetric form: By, ;) = 0 for all 4 € [n] and
Byy (i) = Buy (5,0 for all (i,5 € [n],i # j).

— The matrix [Cy,,|¢.] (see Figure 5) serves as an updated seeding matrix, with each i-th row
representing seed; ;¢ - This updated matrix results from a Hadamard product between [Ay,,]
and By, , which preserves the anti-symmetric form from [A,,,].

In both cases, when ¢ = ¢5; or ¢ = £||¢k, each share; , computes the sum of all entries on the
i-th row of an antisymmetric matrix. Therefore, Ziew share; ; computes the sum of all entries in the
matrix, resulting in the group identity [0]. This implies the correctness of the scheme.

At a high level, the standard security of a pseudorandom zero-sharing scheme guarantees that
when the adversary corrupts a subset of parties (up to n — 2 out of n) and computes their shares

0 PRF;CL2 (f}() cee PRF;an (EK) tokenl,gK = (BZK,(I,j))je[n]
PRF;QY1 (EK) 0 s PRF;ﬂz,n (EK) tokenMK = (BgKy(Q’j))je[n]
By, =
PRF},, . (€x) PRFy . ((x) - 0 tokeny ;e = (Beg (n.5))ieln]

Fig. 4. Updating matrix By,, € Zp*".

on its own, the shares of the remaining honest users are computationally indistinguishable from
the (correlated) random distribution. Our scheme satisfies this standard security while additionally
providing indistinguishability from a random distributtion for the updated shares: for a fixed set of
corrupted users, even when the adversary has access to the seeding matrix [Ay,,] and thereby has
access to all the shares of the honest users on ¢, indistinguishability still holds for the updated
honest users’ shares in [Cy,,)¢,]. Notably, the Hadamard product maintains the integrity of the
honest entries from [Ay,,] and By, to [Cy,, e,]-

By the DDH assumption, we have [PRFy,, (€a)PRF}, (£x)] = RF ;) (ar]|fx) for each honest
pair (4,7) (see Figure 5), which implies that the honest shares in [Cy,, ||,] are indepedently random
from those in [Ay,,]. Moreover, by using the Multi-DDH assumption, which tightly reduces to the
DDH assumption using the random-self reducibility, the indistinguisability of the honest updated
shares on (¢;/]|¢x) holds for a polynomial number of labels ¢, given a label {x.

[Corrrlien] = [Aey © Bey] DDH holds for
non-corrupted
R pair {(4, j) biz2 2
0 - PRFk (ZM)PRF,’- . ([I(’) e —RF n (KM| f}()
[1,2 k1,2] [(1,n) ‘ } PRE keys
[PRF&, , (€ar)PRFy, | (€x)] 0 -+ —[PRFy, , ((ar)PRF}, (€x)] {k2ibicing.ive
are corrupted
(RF (1) (€ [)] [PRF, o (€ar)PRFy (k)] -+ 0

!

PRF keys {ki2}ic(n],iz2
are corrupted

Fig. 5. Indistinguishabilities for entries in the updated seeding matrix [C,, ¢,], where RF denotes a random
function. For simplicity, we assume that only user Ps is corrupted by the adversary.

A concrete construction for the dynamic setting is provided in Section 3.3, which relies on a non-
interactive key exchange protocol NIKE, a pseudorandom function PRF and the DDH assumption. Its
security for a restricted setting of one-time-update and static corruption is provided in Theorem 1.

From UZS to FH-IP-DDFE Without RO. For each client pk € U, the encryption of x,x under
(U, £yr) and the generation of decryption key for yp« under (U, £) can be briefly described as follows:

ctpk = IPE.Enc(y2a+ i gy ([T, 0%, picar a5 0]1);

dkpk = IPE.DKGen(lgde’Skpk)([ypk, Od, bpk,u,£K70]2)
Here, d is an inner-product dimension, [@pk /.0,]1 = seedpkzr,e and bpk 11,0, = tokenpk e, are gen-
erated using the UZS scheme. We note that for each user list I, every client pk € U uses skyk to

pseudorandomly initialize a function-hiding IPE for inner products of length (2d + |U/]). This is de-
termined by the size (|| — 1) of the UZS seeds and tokens. The correctness of the scheme holds

since

T T
IPE.Dec(y2atiui g, (Ctoks dKpk) = T - Ypk + ok r,en, * Opk it 05
_ T
= Ty Ypk +Sharepk e, 10k

by the bilinear-update property of the UZS scheme.

The security of the scheme holds in the symmetric and selective setting, under the one-key-per-
label restriction. To obtain this indistinguishability, we use a sequence of hybrid games (see Figure 6):
by each key label £x, we replace y® with y° in every honest decryption key under ¢z . Eventually,
we change z° to 2° in every honest encryption under all message labels to completely eliminate the
challenge bit b. This strategy is closely similar to those used in the earlier works [AGT21b, SV23],
with the exception of where the security of UZS applies in Gj,_, and Gj_ 4 in Figure 7.

During these steps, we rely on update indistinguishability to replace each honest updated share
[@pk 11,04, 11 With a correlated random value Rpk 14,¢,, ¢, and vice versa. The simulation succeeds because
a UZS adversary can ask the oracle for an honest seed seedpk ¢y, 11 = [@pk,u,¢2,]1, and does not need
the updating tokenpi ¢, 11 = bpk,is,0,c S bpkus,e, is removed from the decryption key under fx in this
game. A more formal reduction for this transition is provided in Lemma 8.

Game iEnc iKeyGen Assumption

Go (@, 0%, apiur ey, 0) (Yp> 0%, Dokt ¢, 0)

Ga1 (TD, Tres Apktd e, 0) (Y%, 0%, bo it , 0) IND of IPE

e < L

Go1og same as in (04, ygk, o, 0/, » 0) explained

Ik € Ok Go1 Oy > Uk in Figure 7
(ygku Odv bkt ek 5 0)

Gs (0%, 22, Qpkut,00,, 0) (0%, Yo, bokua, s, 0) IND of IPE

Fig. 6. Sequence of hybrids for transition from G2 to Gz in Theorem 2. All changes are made within iEnc and
iDKGen algorithms for the replies of complete encryption and decryption key generation oracles respectively.
The set of queried key labels in Q is assumed to be ordered.

From UZS to AWS-DDFE Without RO. To construct DDFE for attribute-weighted sums,
we follow the framework that leverages the use of single-input FE for attribute-weighted sums with
function-hiding inner products, denote by AWIPE, in [ATY23]. For each client pk € U, the encryption
of an AWS input (Zpk j, Zpk,j)je[n,] under (U, £yr) and the generation of decryption key for a list of
arithmetic branching programs (fok)pkeus can be briefly described as follows:

Ctok = AWIPE.Enc i gy ((Zpk,js Zpk,j)je[Npd [Bpk a0, 0J1);
ip SKp

dkpk = AWIPE'DKGen(li‘;M,skpk)(fpk’ [aka,{’gf,O]Q)

where (¢ is a label describing (fok)pkers and 1!3‘ indicates that the inner-product dimension is set up

to be |U|. The correctness of the scheme holds since

T
AWIPE'DeC(li‘;’”,skpk)(Ctpk’ dkpk) = Z fpk(q:pm) Zpk,j + akaMQ . bkaj{’gM
je[Npk]

.
= > fok(®@prs) Zpks + shareprses jen
je[Npk]

by the bilinear-update property of the UZS scheme.
In contrast to FH-IP-DDFE, we use UZS seeds [apku,¢,]2 in decryption-key generation and use
UZS tokens by 14,0, in encryption. The reason is that in the security proof, we replace the challenge

Game Adjustment Assumption

G, = Gaiey see Figure 6

iEnc:
(2, T, Akt 0015 Do va,0yy * Dokttt + ﬂ"prk “Yni)
Gl 1 iKeyGen: IND of IPE
T < lx: (Odyygk:bpk,u,ekv())
e =L (04,0704 1)

EIK > Uk (ygka 0d7 bpk,b{,Z’K) O)

iEnc:
b .0 R bT b
(®pks Tpks @pk,, s s Lokt 0nr i + T pk * Ypi)
G, 2 where IND of UZS

_ T
Zka'Hﬂl/{ Rokut,ens i = — Zpkecmu Qs eny Bokut g

iKeyGen: same as in G, ;

iEnc:
b .0 R ol 0
(wpka ks Apk,U Lo Lopk,U pg b5 T T pk ypk)
Gl 3 where Statistics

_ T
ZpkEHﬂM Rokut,eps e = — Zpkecmu Apk,Ud 6y Dok e

iKeyGen: same as in G7, ;

iEnc:
* b .0 T ol 0
GZKA (wpkv Lk Apk,U,epr s DpkUd 00 ° bPkJ/f«,ZK +x pk * ypk) IND of UZS

iKeyGen: same as in G7,_ ;

G, +1:= Ga.1.ex+1 see Figure 6 IND of IPE

Fig. 7. Sequence of hybrids for each transition from Go.1.¢; t0 Ga.1.¢,+1 in Figure 6. We denote by (¢x +1)
the subsequent key label of /i in the set Qg of decryption key queries.

10

bit on messages by each pair of user set and label (U, £,s), therefore message labels £y, are treated
as updating labels, while key labels £ are treated as seeding labels. Further details can be found in
Section 5.

2 Preliminaries

2.1 Notations

Given any n € N, we denote by [n] the set of integers {1, ...,n}. Given any set A, £(.A) will denote the
set of finite lists of elements of A, and S(A) will denote the set of finite subsets of .A. While both lists
and sets are ordered by default, lists may contain repeated elements. We denote by |.A| the cardinal
of any finite set A. For any vector a € A", we denote by a; the i-th component of a. Similarly, for
any matrix A € A™*", we denote by A; ; the component at the position (7, j) of A.

We also use the following notation for condition-based function-selecting functions

out + fo(inp) if con = 0;

[fo/ /1]%" (inp) = {

out « fi(inp) ifcon=1.

2.2 Prime Order Group.

Let GGen be a prime-order group generator, a probabilistic polynomial time (PPT) algorithm that
on input the security parameter 1* returns a description G = (G, p, P) of an additive cyclic group G
of order p for a 2\-bit prime p, whose generator is P. For a € Z,, define [a] = aP € G as the implicit
representation of a in G.

From a random element [a] € G, it is computationally hard to compute the value a (the discrete
logarithm problem). Given [a], [b] € G and a scalar = € Z,,, one can efficiently compute [az] € G and
[a+b] = [a] + [b] € G.

Definition 1 (Decisional Diffie-Hellman Assumption). The Decisional Diffie-Hellman As-
sumption states that, for every PPT adversary A, there exists a negligible function negl(-) such that
for all A € N,

b {0,1},G < GGen(1*)

AdVDDH(.A) = |P A(Q,Db) =b — % S negl()\).

a,r,s & ZLp,dy = ar,dy = s
Dy, = ([a], [r], [dy])
Definition 2 (m-Multi DDH Assumption [CDG"18]). For all A € N and for every PPT
adversary A running within time t, then
b <& {0,1},G & GGen(1?)
$; 1
Advopon(A) == [P |A@G, D) =b | X Y525 < G Vje[m] 1
Dy = (X, (Y;, CDH(X, Yj))iL1)
D, = (Xv (ifja Z]);nzl)

[\)

is bounded by Advppu(A,t + 4m X ig), where tg is the time for an exponentiation in G.

2.3 Pairing Group.

Let PGGen be a pairing group generator, a PPT algorithm that on input the security parameter 1
returns a description PG = (G1, G2, Gr, p, P1, P, €) of asymmetric pairing groups where Gy, Go, Gt
are additive cyclic groups of order p for a 2\-bit prime p, P; and P, are generators of G; and Go,
respectively, and e : G; x Go — Gr is an efficiently computable (non-degenerate) bilinear group
elements. For s € {1,2,T} and a € Z,, we define [a]; = aPs € G5 as the implicit representation of a

in G, and then for any 0 < B < £, we define G 2P = {la] € Gs : a € [-B, B]}. Given [a]1, [b]2,

one can efficiently compute [ab]r using the pairing e.
Definition 3 (Symmetric eXternal Diffie-Hellman Assumption). The Symmetric eXternal

Diffie-Hellman (SXDH) Assumption states that, in a pairing group PG & PGen(1%), the DDH as-
sumption holds in both G1 and G.

11

2.4 Arithmetic Branching Programs

Definition 4 (Arithmetic Branching Programs (ABPs) [IW14,AGW20,ATY23]). An arith-
metic branching program f : Z3° — Zy, is defined by a prime p, a directed acyclic graph (V, E), two

special vertices vg,v1 € V, and a labeling function o : E —

FAffine “aphere FANe consists of all affine

functions g : Z;° — Z,. The size of f is the number of vertices |V|. Given an input x € Zy° to the
ABP, we can assign a Z, element to edge e € E by o(e)(x). Let P be the set of all paths from vg
to vi. Fach element in P can be represented by a subset of E. The output of the ABP on input x is
defined as Y picp [locp o(e)(x). We can extend the definition of ABPs for functions f : Z,° — Zp*

by evaluating each output in a coordinate-wise manner and denote such a function class by FASP

no,n1”

There exists a linear-time algorithm that converts any boolean formula, boolean branching pro-

gram or arithmetic formula to an arithmetic branching program with a constant blow-up in the
representation size, so ABPs can be considered as a stronger computational model than the others.

2.5 Dynamic Decentralized Functional Encryption

Definition 5 (Dynamic Decentralized Functional Encryption). A dynamic decentralized
functional encryption scheme over a set of public keys PK for functionality F: L(PK x K) x L(PK x
M) — {0,1}* consists of five algorithms:

SetUp(1*): On input a parameter 1, it generates and outputs public parameters pp. Those pa-
rameters are implicit arguments to all the other algorithms.

KeyGen(): It generates and outputs a party’s public key pk € P and the corresponding secret key
Skpk.

Enc(skpk, m): On input a party’s secret key skyk, a value m € M to encrypt, it outputs a ciphertext
Ctpk,m -

DKGen(skpk, k): On input a party’s secret key skok, a key space object k, it outputs a functional
decryption key dkp 1.

Dec((dkpk, k) pkettx » (Ctpk,my Jpketias) - On input a finite list of functional decryption keys (dKpk i,)pketts »
a finite list of ciphertexts (Ctok m,,)pketin, Where Upn,Ux € L(PK) are the lists of senders and
receivers respectively, it outputs a value y € {0, 1}*.

Correctness. For all parameters A € N, all polynomial size lists Un;,Ux € L(PK) of public keys
issued by KeyGen(), (pk, kpk)pkeux € L(PK x K) and (pk, mpk)pkeun, € L(PK x M), it holds that

Pr [Dec((dkpkk‘pk)pkeuw (Ctpkampk)pkEMJW) = F((pk, kpk)pkeum (Pkampk)pkeuM)] =1,

where the probability is taken over pp < SetUp(X), dkpk ,, < DKGen(skyk, ko), for all pk € Uy, and
Ctpk,my. <= ENc(skpk, mpk) for all pk € Upy.

In this work, we assume that each user is identified by a public key pk, which it can generate on

its own with the (unique) associated secret key, using KeyGen. Anyone can thus dynamically join the
system, by publishing its public key.

Remark 1 (Empty lists). As in [CDSG120], we denote by e the empty list in £L(PK x K), indicating
that there is no key required. Furthermore, €); denotes the empty list in £L(PX x M), indicating that
there is no message required.

Definition 6 (Security for DDFE). For xx € {sel,adt}, yy € {sym,asym}, zz € {th,nfh}, a
xx-yy-zz-IND security game of DDFE for every PPT adversary A is defined with access to the oracles
QNewHon, QEnc, QDKGen and QCor described below:

Initialize: the challenger runs the setup algorithm pp < SetUp(\) and chooses a random bit

b {0,1}. It provides pp to the adversary A;

Participation creation queries QNewHon(): it generates (pk,skpk) <— KeyGen(), stores the associ-
ation (pk,skpk) and returns pk to the adversary;

Challenge message queries QEnc(pk, m®, m'): it outputs the ciphertext ct,, < (sk,m®) where sk
is associated with pk. If pk is not associated with any secret key, nothing is returned;

12

— Challenge key queries QDKGen(pk, k%, k'): it outputs the decryption key dkj < DKGen(sk, k?)
where sk is associated with pk. If pk is not associated with any secret key, nothing is returned;

— Corruption queries QCor(pk): it outputs the secret key sk associated to pk. If pk is not associated
with any secret key, nothing is returned;

— Finalize: A provides its guess b’ on the bit b, and this procedure outputs the result 8 according to
the analysis given below.

Let PK be the set of parties on which QNewHon() is queried, C C PK be the set of corrupted parties,
H = PK\C be the set of honest (non-corrupted) participants at the end of the game. Finalize outputs
the bit B = (V' = b) if the Condition (x) is satisfied, otherwise Finalize outputs & {0,1}. Condition
() holds if all the following conditions hold:

— there do not exist two lists of messages (m°

= (pk,mgk)pkeuM,ml = (pk, mFl)k)pkEZ/lM); including
(ear, enr)?, and two lists of keys (k° = (pk, kgk)pkEZ/{Kvkl = (pk, k;k)pkeu;«); including (ex, €x),
such that
o P(KO,m0) # F(k!,m!);
e Vpk € Uy, [QEnc(pk, mgk, mék) was made and pk € H] or [mgk = m;k € M and pk € C;
o Vpk € Us, [QDKGen(pk, k), , k) was made and pk € H| or [k}, = k) € K and pk € C].
— when xx = sel: the adversary sends all its QNewHon() queries in one shot. After that it sends in
one shot all QEnc(pk,m°®,m'), QDKGen(pk, k°, k') and QCor(pk) queries;
— when yy = sym: for pk € C, the queries QDKGen(pk, kgk,k;k) and QEnc(pk, mgk,m;k) queries
must satisfy k:gk = k:;k and mgk = m;k, respectively.

— when zz = nfh: all the queries QDKGen(pk, k), kb,) must satisfy ki) = k.

We say DDFE is xx-yy-zz-IND-secure if given any parameter A € N, for every PPT adversary A, the
following holds

Advppre (A) =

Prg = 1] — ;‘ < negl(\).

Definition 7 (Function-Hiding Inner-Product DDFE over Pairing Groups). Let PG =
(G1,G2,Gr,p) be a pairing group, a function-hiding IP-DDFE scheme over PG is defined for a di-

mension d € N, a message bound X < L, a function bound Y < 5, and label spaces (Lns, L) as
follows:

K (G[;Y’Y])d x S(PK) x L

M

d
(G[fX’X]) x S(PK) x L.
Then, one has

F(ex, (pk, [mpk]lyupkaépk)pkeu) = (upkvépk)pkew
F((pk, ([Ypkl2: Upks Lpk)) pketrs €ar) = (Upk, Lok pkess

for any U € L(PK) and

Z w;rk -Ypk if condition (x)
F((Pk, Kok)pkettc » (PK; Mipk)pketans) = pretix
1 otherwise.

FH-IP-DDFE condition (x) is:

- UK:Z/[M:Z/{;
— HEK S ﬁK, Vpk S U, kpk = ([ypk]g,u,ZK);
— 35]»{ S ﬁM, Vpk Eu, Mpk = ([:Bpkh,u,éM).

* We unified the function-revealing definition of DDFE in [CDSG™20| and the function-hiding definition of
DDFE in [AGT21b]. Furthermore, allowing empty lists in this condition prevents trivial wins from public
information in ciphertexts and decryption keys.

13

We have a remark from the admissibility for FH-IP-DDFE, which will be later useful for its security
proof.

Remark 2 (Admissibility for FH-IP-DDFE). The first condition of Condition (x) in Definition 6 when
applied to FH-IP-DDFE in Definition 7 implies that

§ pk ypk + :B ypk* - E pk ypk + m ypk*
pkeHNU\ pk* pkeHNU\ pk*

for each client pk* € #NU and each index 7 of the encryption query QEnc(pk™, (z; O U, lar), (x ;;(1 UL Lar)).
Then one has the value

Ab . 1 b
pk* = Zcpk* ypk* — pk* ypk* = :Bpk* ypk* — pk* ypk*

independent of 7 for each client pk*. Furthermore, Zpke?-mu Agk =0.

Remark 3 (Single-Input Inner-Product). We denote by IPE a single-input FE for function-hiding inner
products, that was defined as in Definition 7 for the case [PK| = 1.

Definition 8 (One key-label restriction for FH-IP-DDFE [AGT21b]). An FH-IP-DDFE scheme
is xx-yy-IND secure as in Definition 6 under the one key-label restriction if all the adversary’s queries
additionally satisfy the following condition:

— QDKGen(pk, ([ypJo, Ur,), ([yp)2, Ux, €xc)) query can be sent only once for each pair (pk, (k) €
H x EK

Definition 9 (Attribute-Weighted-Sum DDFE over Pairing Groups). Let PG = (G1,Go, Gr,p)
be a pairing group, a function-revealing ANS-DDFE scheme over PG is defined for the class of arith-

metic branching programs .7-',’?(')321 and a label space Ly as follows:

K = {f := (pk, fox)pkerxe where fox € F, no m and Ug € S(PK)}
M=z x 23*); x S(PK) x L.
iEN
Then, one has F(ex, (P, (Tpk,j> Zpk,j)j €[Nyl Unks Lok)pkett) = ((pk,j)je [N Upks Lpk)pkeu for any U €
L(PK) and

[Z Z fpk(wpk,j)szk,j]T if condition (x)
F((pk, kpk)pkettx » (PK, Mpk)pkettn,) = § PkEUK jE[Np]
1 otherwise.

AWS-DDFE condition (x) is:

— U =Upy =U;
—df e (fﬁBnl,Pk)pkeu, Vpk' € U, kg = (f,U);
— Iy € ﬁM, Vpk c Z/{ Mpk = ((:Bpkd,zka)Je[Npk],u,ﬁM).

Like FH-IP-DDFE, we have a remark from the admissibility for AWS-DDFE.

Remark 4 (Admissibility for AWS-DDFE). The first condition of Condition (x) in Definition 5 when
applied to AWS-DDFE in Definition 9 implies that

T T b T T ,0
Do famg) g+ S (ah) 2 = Y fak(@eg) 2y + S (2h) 20

pkeH.NU \pk* pkeH MU \pk*

for each client pk* € H NU, each T-indexed encryption query QEnc(pk*, (27 Loy oUu,), (2 gf(l,UJM))
where ;7 := (x],,2;") for v € {0,1}. Then one has the value

T T T_1b
Ai’,k* = fpk*(wgk*,‘) pk*' fpk*(pk*,j) pk*' fpk*(;k*,j) pk*' fpk*(ék*,j) Zpk*,j

independent of 7 for each client pk*. Furthermore, ZpkeHmu A’;k =0.

14

Definition 10 (Single-Input FE for AWSw/IP over Pairing Groups). Consider the case
|PK| =1 in Definition 5 for the single-input setting, and let PG = (G, Ga, Gr,p) be a pairing group,
an FE for attribute-weighted sums with function-hiding inner product scheme over PG is defined for

the class of arithmetic branching programs .F,’;\(Ef“ as follows:

K =F xG§

no,Mn1
M= J@p xz3); x GY.
i€EN

Then, one has

Flex, (x5, 25)jen, [811) = ((=5) jev);
F((f,[t]2),enr) = f;
and

F((f [t2), (), 25) e [810)) = [D f@5) 25+ st

JE[N]
We note that a concrete construction of FE for AWSw /IP that obtained a function-hiding security
in the standard model is provided in [ATY23].

Definition 11 (All-or-Nothing Encapsulation [CDSG720]). AoNE is defined on messages of
length L and label space L as follows:

K=0 M= {0,1}" x S(PK) x L
Then, F(ex, (Pk, (pk, Upk; Lpk))pkett) = (Upks Lpk)pkeu for any U € L(PK) and

(Pk, Zpk)pkeuns of condition (x)

F(exc, (P mpJprerans) = { L otherwise

and AoNE condition (x) is: 3¢ € L,Vpk € Unr, mpk = (2pk, Unr, £).

We note that a concrete AoNE construction that is secure in the standard model is provided
in [CDSG™20].

2.6 Pseudorandom Functions (PRF)

Definition 12 (PRF). A PRF from input space X to output space) is secure if for any security
parameter A € N, and for every PPT adversary A, there exists a negligible function negl(-) such that

K& {0,120 & (0,1}

b Vﬁ X
Advprr 4(N) == |P AOPRF(~)(1A) =b < 1 < negl(\)
OgRF(g) = PRFg(0))

Opge(£) := RF(¢)

where O,@RF() is an oracle depending on the challenge bit b and RF is a random function computed
on the fly.

2.7 Non-Interactive Key Exchange (NIKE)

Definition 13 (Non-Interactive Key Exchange). A NIKE scheme consists of three PPT algo-
rithms:

— SetUp(\) : On input a security parameter A, it outputs public parameters pp. Those parameters
are implicit arguments to all the other algorithms;

— KeyGen(): It generates and outputs a party’s public key pk € PK and the corresponding secret key
SI(pk:'

— SharedKey(pk, skpk): On input a public key and a secret key corresponding to a different public
key, it deterministically outputs a shared key K.

15

Correctness. For all security parameters A € N, it holds that
Pr[SharedKey(pk, skok') = SharedKey(pk', skok)] = 1,
where the probability is taken over pp < SetUp(\), (pk, skpk) < KeyGen(), (pk’, ski,) <— KeyGen().

Definition 14 (Security for NIKE). No adversary A should be able to win the following security
game against a challenger C, with unlimited and adaptive access to the oracles QNewHon, QRev,
QTest, and QCor described below:

— Initialize: the challenger runs the setup algorithm pp < SetUp(\) and chooses a random bit

b {0, 1}. It initializes the set H of honest participants to (). It provides pp to the adversary A;

— Participant creation queries QNewHon(): it generates (pk, skyk) <— KeyGen(), stores the association
(pk, skpk) in the set H of honest keys, and returns pk to the adversary;

— Rewveal queries QRev(pk, pk’) : it requires at least one of pk and pk’ be in H. Assume pk € H, then
it returns SharedKey(pk’, skpk);

— Test queries QTest(pk, pk’): it requires that both pk and pk’ were generated via QNewHon.

e if b =0, it returns SharedKey(pk', skok);
e if b =1, it returns a (uniformly) random value and stores the value so it can consistently
answer further queries to QTest(pk, pk’) or QTest(pk’, pk).

— Corruption queries QCor(pk): it recovers the secret key sk associated to pk from H and returns
it, then removes (pk,sk) from H. If pk is not associated with any secret key (i.e. it is not in H),
then nothing is returned;

— Finalize: A provides its guess b’ on the bit b, and this procedure outputs the result 8 according to
the analysis given below.

Finalize outputs the bit 5 = (V) = b) unless a QCor query was made for any public key which was
involved in a query to QTest, or a QRev query was made for a pair of public keys which was also
involved in a QTest query, in which case a random bit 5 is returned. We say NIKE is secure if given
any parameter A € N, for every PPT adversary A, the following holds:

Advnike(A) = |Pr[8 = 1] — 1/2] < negl(}A).

3 Updatable Pseudorandom Zero Sharing

In this section, we provide a definition and a security model for Updatable Pseudorandom Zero-
Sharing. A construction in DDH groups will be provided and supports the bilinear update property,
which serves as a core building blocks for later pairing-based DDFE constructions.

3.1 Definition

Definition 15 (Updatable Pseudorandom Zero Sharing). Given a set of users PK, a seeding
label space Lg and an updating label space Ly, an updatable pseudorandom zero sharing scheme UZS
over a group (A,+) consists of siz algorithms:

— SetUp(\): On input a security parameter X\, it outputs public parameters pp. Those parameters
are implicit arguments to all the other algorithms.

— KeyGen(): It outputs a party’s public key pk € PK and the corresponding secret key skpk.

— SeedGen(skyk,U, £s): On input a secret key skyk, a user setU € S(PK), and a seeding label {5 € Lg,
it outputs a seed seedpy 1s.0, if pk € U. Otherwise, it outputs L.

— TokGen(skpk, U, ¢,): On input a secret key skpx, a user set U € S(PK), and an updating label
L, € Ly, it outputs a token tokeny ¢, if pk € U. Otherwise, it outputs L.

— SeedUpt(seedpi 4.¢, , tokenpk 4.0,): On input a seed seedpi s, and a token tokenyy s e
ministically outpuls a seed seedpy 14,6, |1, -

— ShareEval(seedpk ¢): On input a seed seedpkys.0 for £ € LsU(Lg % Lyr), it deterministically outputs
a share sharepy 1/.¢.

it deter-

uw?

16

Correctness. For any security parameter A € N, any {5 € Lg, any L, € Ly, any U € S(PK), then
it holds that

Pr E sharepk .0, = E sharepy 14,116, = 0a| =1
pkeld pkeld

where the probability is taken over pp < SetUp(X\) and over the following algorithms: Vpk € U,
(skpk, pk) < KeyGen(), seedyi 1r,e, < SeedGen(skpk, U,), tokenpk is,o, < TokGen(sky, U, £y), seedyy 146,110,
SeedUpt(seedyy 11,¢, , tokenpy 14,0,), sharepi 14,0, < ShareEval(seedpi ¢,), sharepy 14,0, e, < ShareEval(seedpy 146,116,)-

Definition 16 (Correlated Pseudorandomness for UZS). For xx € {otu,any}, yy € {sta,adt},
a xx-yy-IND security game of UZS for every PPT adversary A is defined with access to the oracles
QNewHon, QCor, QTokGen, QSeedGen, and QShare described below:

— Initialize: the challenger runs the setup algorithm pp < SetUp()\) and chooses a random bit

b & {0,1}. It initializes the sets H and C of honest participants and corrupted participants
respectively to (), and provides pp to the adversary A;
Participant creation queries QNewHon(): it generates (pk,skyk) < KeyGen() to simulate a new
participant, stores the association (pk,skpk) in the set H, and returns pk to the adversary;
Corruption queries QCor(pk): it moves the association (pk,skyk) from H to C and returns the
secret key sk. If pk is not associated with any secret key in H, then nothing is returned;
Seed generation queries QSeedGen(pk,U, ls): it returns seedpy 14,0, < SeedGen(sk,U,ls) to the
adversary. If [pk is not associated with any secret key in either H or C] or [pk & U] or [{s & Ls],
nothing is returned;
Token generation queries QTokGen(pk,U, £,,): it returns tokenpy ¢, < TokGen(sk,U,¢,) to the
adversary. If [pk is not associated with any secret key in either H or C| or [pk ¢ U] or [¢, ¢ Ly,
nothing is returned;
— Challenge share queries QShare(U,£): if [{ ¢ Ls U (Ls x Ly)] and [|[HNU| < 2], nothing is
returned. We define the following share distributions:
e A pseudorandom share generation algorithm PShareGen(S,U,£): it outputs L if S ¢ U, the
challenger generates seedyy 144 as follows:
% if { =05 € Lg: seedpi 10, = QSeedGen(pk, U, {;);
¥ if £ = L||€, € Ls x Ly : seedpy gy r,)je, = SeedUpt(seedpy 4., , tokenpi s e,,)
where seedpi 11,0, = QSeedGen(pk,U, £;) and tokeny /.0, = QTokGen(pk, U, ¢,,).
and outputs

sharepy 14,0 < ShareEval(seedpk 14.¢)

for all pk € S.
o A uniformly correlated random distribution for any (S,U,¥) where S CU

8 AlS
Rsue = { (Spk)pkes — AlS| E Spk = — E Tk
pkeS pkeU\S

where (tpk)pkeu\s = PShareGen(U \ S, U, 7).
Then,
e if b =0, the challenger returns (sharepk 1/.¢)pkerru <— PShareGen(HNU, U, L) to the adversary;
o if b=1, the challenger returns (sharepk 11,0)pkerru < Runuu,e to the adversary;
— Finalize: A provides its guess b’ on the bit b, and this procedure outputs the result 3 of the game,
according to the analysis given below which aims at preventing trivial wins.

Let ‘H and C be the sets of honest users and corrupted users at the end of the game respectively.
Finalize outputs the bit 5 = (b = b) if the Condition (x) is satisfied, otherwise Finalize outputs

Jé] & {0,1}. Condition (x) holds if all the following conditions hold:

— there are no QCor(pk) queries after a QShare(U, £) query was made;

— there does not exist s € Lg such that a QShare(U, ;) query and a QSeedGen(pk,{s) query are
sent;

— there does not exist ({s,0,,) € Lg X Ly such that a QShare(U, £s||€,) query and a QTokGen(pk, £,,)
query are sent;

17

— when xx = otu: for any U, the queries of the form QShare(U,s||-) can be sent for only one
b, € Ly.

— when yy = sta: the adversary sends all its QNewHon() queries in one shot. After that it sends in
one shot all QCor(pk) queries.

We say UZS is xx-yy-IND-secure if given any parameter X\ € N, for every PPT adversary A, the
following holds

Adviyzs ™" (A) =

Pr[g=1] - ;’ < negl()).

The security model described above captures the security for a standard pseudorandom zero-
sharing scheme: the adversary has full access to the oracles and can win the game by only distin-
guishing the pseudorandom non-updated shares from the correlated random ones. Additionally, the
last condition in () does not prevent the adversary from querying the non-updated challenge shares
that result in the updated challenge ones. This intuitively means that even when the adversary has
access to the non-updated shares, the updated shares remain indistinguishable from a correlated
random distribution.

On the other hand, extending a standard pseudorandom zero-sharing scheme over £ = Lg X Ly
to an updatable one can be achieved by using its share generation algorithm to create new shares
on concatenated labels of the form (¢;]|¢,). However, this straightforward approach may require
operations that are more complex than those allowed in pairing groups. Therefore, we specify a more
pairing-friendly property for the updating algorithm of an UZS scheme.

Definition 17 (Bilinear Update). An updatable pseudorandom zero sharing scheme UZS =
(SetUp, KeyGen, SeedGen, TokGen, SeedUpt, ShareEval) of security parameter X is said to satisfy the
bilinear update property if each seed is of the form [a] € A?N | each token is of the form b € 7P
where p is a A-dependent parameter, and for any pk € PK, any {5 € Lg, and any £, € Ly, it holds
that

[@pks,e,] O bpku,e, = SeedUpt([apku e,]s bpkr,e,),

where ©, 1 AP X ZP — AP is an entry-wise bilinear map.

3.2 Construction in DDH Groups

Let PRF : {0,1}* — Z,, be a pseudorandom function, NIKE = (SetUp, KeyGen, SharedKey) be a non-
interactive key exchange protocol, Lg be a seeding label space, and Ly be an updating label space.
A construction of UZS is described in Figure 8.

Correctness. Given A € N, pp « SetUp(1%), (pk,skpk) < KeyGen() Vpk € PK, U € S(PK), any
labels 45 € Lg and /¢, € Ly, from the above scheme, one has

Z sharepi 11,0, = Z Z [apk 4,0k]

pkeld pkel pk’ e\ {pk}

IO BEN COl
pkel pk’ e\ {pk}
Z [(_1)pk<pklcpk,pk’ + (—1)pk,<pkcpk’,pk]

(pk,pk")eU?
pk£pk’

= > [

(pk,pk’)eU?
pk#pk’

= [0].

18

where cpy ok := PRFy_ (78" |[U][€s) and cprr pk = Cpk pk/- Similarly, one has

pk, pk’

> sharege e, = Y " [kttt pkbpktd.t, pic]

pkelt pkeld pk’ €U\ {pk}

= Z Z [(_l)prk/C;k,pk/]

pkeU pk’ et \{pk}

k<pk’ K’ <pk
=Y D et ()P Py]
(pk,pk’)€U?
pk#pk’

= > [0

(pk,pk’)€U?
pk#~pk’

= [0].

where céhpk, = PRFy, ., (”S”||UWS)PRFI<:,,W, (u”||U|]¢,,) and C;k’,pk = C:)k,pk"]

Construction:
— SetUp(1*): It generates G < GGen(1*) and NIKE.pp < NIKE.SetUp(1*) and returns
pp = (G, NIKE.pp, PRF, Ls, Ly).

The parameters pp are implicit to other algorithms.
— KeyGen(): Each user samples
e NIKE keys (pk, NIKE.skyk) < NIKE.KeyGen();
o a shared key kpy o < NIKE.SharedKey(pk’, NIKE.skpk) for each published pk’ € P\ {pk}.
It returns
(pk7 Skpk) = (pk, (NlKE.Skpk, (kpk,pk')pk'EPK\pk)) .

— SeedGen(skpk, (U, £s)): It computes

—((=1 Pk<Pk/PRF 71U £)

anucr, = ((=1) b O IANE))
and returns seedpk /.0, = [@pkur,e,]- If pk € U, it returns L.

— TokGen(skpk, (U, £.)): It computes

bokit0, = (PRkakypk, (”“””“”‘3”))pk/@,\{pk} ,
and returns tokenpyus,e, = bpkur,e, - If pk € U, it returns L.
— SeedUpt(seedpk,is,¢, , tokenpk,us,e,,) It parses
o seedp e, = [@pru,e.],
° tOkenpkyu,gu = bpk,u’gu,
e p=Ul-1;
and returns
seedpit . 16n = [@pkut,e,] Op bpks e, -

— ShareEval(seedpk 1r,¢): It parses p = [U| — 1, seedpk,ur,e = [@pkut,e.] € G, and returns

sharepiue = Y [Gpare, o).
ok €U\ {pk}

Fig. 8. Updatable Pseudorandom Zero-Sharing in DDH groups

Remark 5 (Bilinear Update). The UZS scheme in the above construction satisfies the bilinear update
property in Definition 17.

19

3.3 Security Analysis

Theorem 1 (Indistinguishability for UZS). IfNIKE is a IND-secure non-interactive key exchange
protocol, and the DDH assumption holds in G, then the UZS scheme constructed in Section 3.2 is otu-
sta-IND secure (as defined in Definition 16) in the standard model.

Proof. In the static corruption game, we can fix a PX to be the set of parties generated by QNewHon(),
C to be the set of corrupted parties and H = PK \ C to be the set of honest parties. Let gqnewHon
and gqshare be the number of QNewHon and QShare queries respectively. We proceed via a hybrid
argument by using the games described in Figure 9. In this argument, the game G corresponds to
the otu-sta-IND security game as defined in Definition 16, and the game Ggs corresponds to the case
where the adversary’s advantage is 0 since there is no challenge bit b. Given A € N, we denote by
Adv; the advantage of a PPT adversary A running in time ¢ in each game G;, and Adv,, be the best
advantage of any PPT adversary running in time ¢ against the primitive xx that is setup with A.

Game Gi: The change is that for each (pk,pk’) € H?, the challenger uses (uniformly) random

shared keys Kpy pi/ & Z,, instead of Ky pir NIKE.SharedKey(pk/,skpk) in generating answers
to QSeedGen(pk*,U, ,), QTokGen(pk*,U, () for pk* € {pk, pk’}, and QShare(U,¢) queries. The
indistinguishability is implied by the security of the non-interactive key exchange protocol, given
in Lemma 1.

Game G,: The change is that for each (pk,pk’) € H?2, the challenger uses a random function
RFpk pk' = RFpir pk instead of PRFy, , in generating answers to QSeedGen(pk*,U, £,,), QTokGen(pk*,U, ¢5)
for pk* € {pk, pk'}, and QShare(U/,¢) queries. The indistinguishability is implied by the security
of the pseudorandom functions, given in Lemma 2.

Game Gg3: The change is that for each QShare(i,) query, the challenger answers independently

from the bit b by sampling (sharepk,¢)pkernu & Rynuu,e, where the distribution Royymis 4, is

defined in the QShare oracle in Definition 16. The indistinguishability is implied by the multi-
DDH assumption, given in Lemma 3.

From the transitions above, one completes the theorem by having

Adv76%* <AdVNIKE + gQNewHon (GQNewHon — 1) - AdVpre

1
+§QQNewHon(QQNewHon — 1)gqshare - Advpph (t + 4gqshare X tc)-

where tg is the time for an exponentiation in G. O

Lemma 1 (UZS: Transition from Gy to Gi). For any PPT adversary A, the advantage in
distinguishing two games is
‘AdVO — AdV1| S AdVN|KE.

Proof. We build an adversary B against the IND security of NIKE from an adversary A that distin-
guishes between G and G;. To simulate a UZS challenger, 3 uses the NIKE oracles as follows:

— For every QNewHon() query, the adversary B returns pk from the NIKE.QNewHon() query to A.
— For every QCor(pk) query, B obtains NIKE.sky. from the NIKE.QCor(pk) query, and computes
Kok pk' < NIKE.SharedKey(pk’, NIKE.skp) for all pk’ € PK to complete the reply to A.

Instead of generating by itself the keys (Kpk k) (pk,pk’)e22,pkopk’ » the adversary B uses the challenge
shared keys kpy pi from the NIKE.QTest(pk, pk’) queries.

— B outputs A’s guess for the challenge bit NIKE.b.

The admissibility condition (%) of NIKE holds since the set of corrupted users in UZS is sent in one
shot. Therefore, when NIKE.b = 0, B is playing Gg; when NIKE.b = 1, B is playing G;. a

Lemma 2 (UZS: Transition from G; to Gi). For any PPT adversary A, the advantage in
distinguishing two games is

|AdV1 - AdV2| < QQNeWHon(QQNeWHon - 1) - Advpgr.

20

Go, |G1, Ga,|Gs! |

pp < SetUp(1*), b < {0, 1}

(PK,st1) < A(pp)

(pk)pkeric < QNewHon([PK])

(C,st2) + A((pk)pkepic, st1)

(pk, skpk)pkec < QCor([C])

For (pky,pky) € H2 and pk, # pky : ko, pky < Zp
i AQSeedGen(<,<,‘),QTokGen(',','),QShare(,4)((pk’ Skpk)pkgc,stg)
Output: b’ if Condition (x) is satisfied, or o’ & {0,1} otherwise.

QNewHon():
(pk, NIKE.skyk) <— NIKE.KeyGen()
Vpk' € PK : kpk pkr < NIKE.SharedKey (pk’, sko)

Store (pk, skpk) = (pk, NIKE.skpk, (Kpk,pk’) pk’ €24\ {pk})
Return pk

QCor(pk):
If pk ¢ PK, return L.
Return skpk = (NIKE.skpk, (Kpk,pk’)pk/ €t {pk}) -

QSeedGen(pk, U, s):
asase, = ((~D)PPRRL L O NUL)

’ ’ 2
apate. = (1)< PRy, /RFp] PP (757 1)

pk/ €U\ {pk}
Return seedpk 4,0, = [apki/{,gs].

QTokGen(pk,U, £,,):
oty = (PRFi, 0 (0" |[U]]6))
oty = (PR Cwlldlle)

’ 2
bokut,0, = ([PRkakmk,/RFpk,pk,](Pk,pk JEH (”u”IIUIIEu))

Return tokenpkis,¢,, = bpk,us,z, -

pk! €U\ {pk}

QShare(U, £):
Return (sharepk,u,¢) pkemnu [PShareGen/R] (HNnU,U,?L)

Fig. 9. Games for the otu-sta-IND proof of UZS in Theorem 1

21

Proof. We proceed by using multiple hybrid games over each pair of different honest parties (pk, pk’) €
H2. For each transition, we build an adversary B against the IND security of PRF from an adversary A
that distinguishes two games in the transition. To simulate a UZS challenger, B uses the PRF oracle,
instead of generating by itself the PRF key kpy o to handle all PRkak,pw related operations, and
finally outputs A’s guess for the challenge bit PRF.b. Since the number of honest parties is bounded
by gQNewHon (¢QNewHon — 1), one completes the proof. a

Lemma 3 (UZS: Transition from Gy to Gs). For any PPT adversary A, the advantage in
distinguishing two games is

1
|Advy — Advs| < §QQNewHon(QQNewHon — 1)gqshare - AdvppH(t + 4qqshare X tc)-

Proof. For every U queried in the form of QShare(l, -), we use multiple hybrid games that go all over
the pairs in HPy = {(pk, pk’) € (H NU)?, pk # pk'}. Without loss of generality, we assume that all
pairs in HPy, are bijectively mapped by & to [gy] for some integer ¢, > 1. For i € [qy], we define the
following sequence of games as follows:

Game Gy ;: In this game, for any QShare(U, £;||¢%) query®, when b = 0, for all pk € H NU, the
challenger computes

[@pku,e.] = QSeedGen(pk,U, Cy),
bok,u,ex = QTokGen(pk,U, £},),

seedpi s, = [@pkat,e,1ez]
where
Ak, 0,][0 k! & Zy if (pk,pk’) € HPy and x(pk, pk’) < i

Aple,U 0, || €% ,pk’ & Ly, if (pk,pk’) € HPy and x(pk, pk’) =i

okt 0,105 k' = [Opkad oo k) Dpkatew ok if (Pk, pk') € HPy and k(pk, pk’) > i

Apk 2,165k = [Qpk,ad, 00,9k] * Dkt ok otherwise

and outputs sharey 14 ¢,|¢x = ShareEval(seedpy g/,¢,|j¢x). The change between Gy ;1 and Gy ; is
in the PShareGen algorithm (defined by the QShare oracle in Definition 16) and is highlighted in

gray.
For every U, we assume that Ga /.0 is the game where QShare(U, -) is the same as in Gs. To transition

from Goyi—1 to Gay; for i € [qy], we build an adversary B against the multi-DDH assumption,
which can be described as follows:

— To answer QSeedGen(pk,U, £,) and QSeedGen(pk’,U, £,) queries, the adversary B implicitly uses
[Cok a0, pk] = Yo, & G from the multi-DDH when r(pk,pk’) = i to compute [Qpk .0, pk'] =

(1P o, pie] and [apier o, k] = [(—1)PK <P cpiczq.0, i) Tespectively.
— To answer QShare(U, £,||(},) queries, if b = 0, the adversary B implicitly uses [co 14,0,)¢ pk'] = Zo,
from the multi-DDH when r(pk, pk’) = i to compute [apk 1/, |jex k] = [(—1)pk<pk/0pk7u$gs||g1*upk/}

and [apw ¢, (jex ok] = [(—=1)PK <PRCo 40,105 o] TESPECEiVELY.
— B outputs A’s guess for the challenge bit DDH™ p.

The adversary B has a complete multi-DDH challenge D = (X, (Y2,)¢, (Ze.)e,) where X can be
(implicitly) considered as [bpk,¢x pk’] &a.

— When DDH™ ! 5 = 0, one has [Cokt,ealezok’] = Zo, = COH(X,Ye,) = [conuren,pk'] * Dokttt pk’s
which corresponds to Go/.i_1-

— When DDH™ " p = 1, one has [Cok,ut,e.|1e5,pk') = Zuaje, ez & Zy, which corresponds to Ga.;.

5 In the one-time-update setting, for each I/, £ can change while £ is fixed.

22

Therefore, the computational gap between each Gg ;-1 and Go g ; happens only when b = 0 and is
bounded by % - AdvppH ()\, t + 4qqshare - t([;,).

The last step is to show that for the last U* queried to QShare(-,-), one has Gayr.q,. = Gs.
It suffices to describe the case b = 0. We note that for all (U,) queried to QShare(-,-), one has
QShare(U, ¢) = (sharepk 14,¢)pkenuy Where sharepy 110 = Zpk/eu\{pk} [@pk u1,0,pk']- By all transitions until

G2+ g5 We have apy 14,0 i & Z, for any pair of honest users (pk,pk’), any set U, any label £. As
Qpk! £,pk = ~pk ¢,pk’ > then

0 ._
shareyy 1inp0 = Z Qpk,U,0,pk’

pk’ eHNU\{pk} pkeHNU

are uniformly random shares of zero among users in H NU. Therefore, one has

. 0
sharepk 11,0 == E Apk,ut,¢,pk’ + Sharegy 2,000 ¢
’
pk’eCnU\{pk} pkeHNU

are uniformly random shares of _ZpkECﬂL{ sharepk i4,¢, which is identical to the distribution Ry e-
Since the number of sets U queried to QShare(-,¢) for £ € Lg x Ly is bounded gqshare; and each g is
bounded by (‘IQN;W“""), one obtains

1
|Advy — Advs| < §QQNewHon(QQNewHon — 1)gQshare - AdvppH (A, t + 4gQshare X tg).

4 Function-Hiding Inner-Product DDFE

In this section, we construct a DDFE scheme for function-hiding inner products from a UZS scheme,
a single-input function-hiding IPFE scheme, and an all-or-nothing encapsulation AoNE scheme. The
FH-IP-DDFE scheme is proved to be sel-sym-IND secure in the standard model.

4.1 Construction

For every client, let d be an inner-product dimension, let X and Y be a message bound and a
function bound of size poly(\) respectively, let £y and Lx be a message-label space and key-label
space respectively. The scheme is described in Figure 10 with the following primitives:

— IPE = (iSetup, iKeyGen, iEnc, iDKGen, iDec) be a single-input function-hiding IPFE;

— UZS = (SetUp, KeyGen, SeedGen, TokGen, SeedUpt, ShareEval) be a bilinear-updatable pseudoran-
dom zero-sharing scheme over G; for a seeding label space £j; and an updating label space
L.

— AoNE = (aSetup, aKeyGen, aEnc, aDKGen, aDec) be an all-or-nothing encapsulation scheme.

Correctness. Given \ € N, pp < SetUp(1*), (pk, skpk) < KeyGen() Vpk € PK, lns € Lis, U € L,
Unr,Ure € S(PK) such that Upnr = Ui = U, xpk € [X, X]|%, Yok € [-Y, Y]? Vpk € U, from the above
scheme, one can parse dkpx = (actpk, U, k) and cty = (act;k,M,KM) for pk € U. By the correctness
of the AoNE scheme, one can always recover

iCtpk = iEnC(iSkpk7 [wpkv Oma Q ok Ung s s 0]1)7
idkpk = iKeyGen(iSkPka [yPka Oma bPkJ/[K,eKa 0]2)

Construction:
— SetUp(1*): It generates PG < PGGen(1*) and sets up parameters for the underlying schemes:
ipp + iSetup(lA) upp SetUp(l’\) app + aSetup(l’\).

It returns
pp = (PG, ipp, upp, app).
The parameters pp are implicit to other algorithms.
— KeyGen(): Each client samples
e a PRF key kp« & Kprr;
e UZS keys (upk, uskpk) < KeyGen();
e AoNE keys (apk, askpk) < aKeyGen().
It returns pk = (upk, apk) and skpk = (Kpk, uskpk, askpk)-
— Enc(skpk, m): It parses m = (@, U,) and computes
1. a UZS seed: [apkﬂz/{M,th < SeedGen(uskpk, (Z/[]u,gj\/[));
2. arandom coin for IPE key generation: coinpk <— PRFy,, (Uar);
3. a 2d + |Unr|-length IPE secret key: iskp = iKeyGen(124+1401: coingy);
4. an IPE encryption:
ictpk iEnC(iSkpk, [:B, Od, Qpk,Ung,Ong s 0]1);

5. an AoNE layer on icty:
actpk < aEnc(askpk, (ictok, Unr, £ar,”dE”)) .

It returns the ciphertext
ctpk = (actpk, Unr, £ar).

If pk ¢ Unr, it returns L.
— DKGen(skpk, k): Tt parses k = (y,Ux, £x)® and computes
1. a UZS token: by iy o5 < TokGen(uskpk, Uk, LK);
2. a random coin for IPE key generation: coinpx < PRFk,, Uxk);
3. a 2d + |Ux|-length IPE secret key: iskp = iKeyGen(1241Ux!: coingy);
4. an IPE decryption key:

idkpk < iDKGen(iskpk, [4, 0%, Boicaiyc o » 0]2);
5. an AoNE layer on idkpi:
actpk < aEnc(askpk, (idkpk, Uk, £xc, 7 dE”)).

It returns the decryption key
dkpk = (actpk, Ur, Ux).

If pk € Uk, it returns L.
— Dec ((dkpk)pketrs s (Ctok)pkettns s Unt, ar), U, Ui)): If Unr = Uk = U is not true, it returns L.
Otherwise,
1. it parses dkyx = (actpk, U, £x) and recovers the IPE decryption keys

(idkpk)pkerr = aDec((actpi)prerr, U, £);
2. it parses ctp = (acty,, U, £ar) and recovers the IPE ciphertexts
(ictpk)preu = aDec((actpw)preut, U, £ar);

3. it computes

[o]r =) _ iDec(ictpk, idkpk).
pkeU

It returns « from [o]r.

“ AoNE encryptions are additionally randomized by prefixes ”ct” and ”dk”.
b Key labels £ are synchronized for all clients and fresh for each time of decryption key generation.

Fig.10. DDFE for Function-Hiding Inner Products

23

24

The correctness is then implied by the correctness of the IPE scheme and the UZS scheme over Gy:

. . . T T
Z iDec(ictpk, idkpk) = Z [wpk “Ypk T Cpd 00 okt |T
pkeld pkeld

= [Z ac;(“YpklT + € Z ShareEval(SeedUpt(seedpk 11.¢,, , tokenpk 14,¢5), [1]2
pkeld pkeld

= [Z x; “YpklT + € Z sharepy 1,0,/ (10x 5 [1]2

pkeld pkeld
=) zg yprlr + e ([0]1,[1]2)
pkeU
-
= [Z Lok yPk]T'
pkeU
As the inner product o, ac;(- Ypk 18 of size poly(A), it can always be recovered. O

Remark 6 (Size of Ciphertext/Decryption Key). In the above FH-IP-DDFE construction, if one uses
the sel-sym-IND-secure AoNE that is constructed from a rate-1 identity-based encryption and em-
ployed in the hybrid-encryption mode with a symmetric encryption as described in [CDSG20], then
the complexity for the size each DDFE ciphertext/decryption key will be Ox(d + [U]).

4.2 Security Analysis

Theorem 2 (Indistinguishability for FH-IP-DDFE). If IPE is a single-input sel-sym-fh-IND-
secure FE for function-hiding inner products, AoNE is a sel-sym-nfh-IND-secure all-or-nothing en-
capsulation, and UZS is an otu-sta-IND-secure updatable pseudorandom zero sharing, then the FH-
IP-DDFE scheme constructed in Figure 10 is sel-sym-fh-IND secure (as defined in Definition 6) under
the one key-label restriction (as defined in Definition 8) in the standard model.

Proof. In the selective game, we can fix PK to be the set of parties generated by QNewHon() queries,
C to be the set of corrupted parties in PX and H = PK \ C to be the set of honest parties. Let gxx
be the number of xx-oracle queries where xx € {QNewHon, QEnc, QDKGen, QCor}. Given A € N, we
denote by Advg, the advantage of an PPT adversary A in each game G;, and Advy, be the best
advantage of any PPT adversary against the primitive xx that is setup with \. Since the UZS security
applies only when there are more than one honest client, we consider two cases: only one honest client
and more than one honest client.

The case of one honest client % = {pk*}. By facts in Remark 2, given any U € S(PK), for
any QEnc(pk*, 2, z!,U,¢);)° query and for any QDKGen(pk*, 4", y',U, (x), then it must hold that

:cOTyO _ mlTyl -0
Let k be a bijective map from the set
{U € S(PK) : QEnc(pk*,-,-,U,-) or QDKGen(pk*,-,-,U, ") was sent}
to [gy] for some integer g,. With j € [g,], we proceed by the following sequence of hybrid games:

ng* : This is the real game with one honest client pk*.

G‘fk* : The change is that the pseudorandom function PRFy . is replaced by a random function RF.
The indistinguishability is implied by the security of the PRF:

Adv — Adv S AdVPRF~

pk* pk*
Gy GY

5 Without losing the formality, we omit subscript indexes in clear contexts and use the format (-,-,-, U, £)
instead of (-, (-,U,¥), (-,U,£)) for encryption/decryption-key queries.

25

G'fk; The change is that instead of depending on the bit b, for every QEnc(pk, =%, x!,U, £5s) query
and for every QDKGen(pk, y°, y',U, {rc) query where (i) = j, the challenger chooses z° and y"
to generate the answers respectively.

We note that in the symmetric-key variant of the security game, there is no information on the
challenge bit b from the QEnc and QDKGen queries on corrupted clients. Then we can assume that
Grl’f(o corresponds to G‘fk and GFl’Equ corresponds to the game where the adversarial advantage is

0. To transition between Grl’lf;_l and G'f'_‘; , we construct an adversary B against the IPE security as
follows:

— For every QEnc(pk*, z°, &, U, £3;) query and every QDKGen(pk*, y°, y',U, £) query where k(U) =
j from A, then B queries the IPE challenge oracles with the following messages and functions re-
spectively

[m’y]l = [:EW? Od7 apk*,u,fM) 0]17
[k7]2 = [y, 0%, boke 24,01, 02

where v € {0,1} and a@pk* 14,6,,, bpk* 11,65 are generated from the UZS scheme. Then B receives
the answers from IPE oracles to complete the reply to A.
— B outputs A’s guess for the challenge bit IPE.b.

The admissibility condition holds for IPE as wOTyO - wlTyl =0 and (@pk* 14,027 > bpk* 14,65) are inde-

pendent of IPE.b. Therefore, we have |[Advps — Adv < Advipg and then

pk*
1.5-1 GY;

Adv g < (4QEnc + 4QDKGen) - Advipe + AdVere.

The case of more than one honest client. Let Q); and Qx” be the set of encryption queries
and decryption key queries sent in one shot by A respectively. We proceed via a hybrid argument: for
readability, we describe the global changes in the IND game by using the games G, G1, G2 and Gj
(see Figure 11); the transition between Gy and Gg requires intermediate games Go 1 and Gg 14, for
each queried key label {x € Qg (see Figure 6), and the transition between {Ga.1.¢) }rec0, requires
intermediate (G}, ;)ics) (see Figure 7) for each (k. Notably, the game G corresponds to sel-sym-
fh-IND security game as defined in Definition 6, and the game Gj corresponds to the case where
adversary’s advantage is 0 since there is no challenge bit b.

Game Gj: The change is that the challenger uses a random function RFyy instead of PRFy . The
indistinguishability is implied by the security of the pseudorandom function, given in Lemma 4.

Game G,: When pk € H, a decryption key query (pk, y°, y!, Uk, k) € Q is said to be incomplete
if there exists pk’ € H N Uk and the decryption key query (pk’,y’°, y'!,Ux,lx) ¢ Q. For
that query, actyk is changed to the encapsulation of (0,Ux,{x,”dk”). Similarly, when pk € H,
an encryption query (pk,z°, &', Ups, ¢yr) € Qyy is said to be incomplete if there exists pk'pk’ €
H N Uy and the encryption query (pk’, ', @'Y, Unr, €ar) & Qar- For that query, acty is changed
to the encapsulation of (0,Uns, £ar,” ct”). The indistinguishability is implied by the security of the
AoNE scheme, given in Lemma 5.

Game G, : The change is that for every complete encryption query on (pk,x%, z', Uy, ¢1s), the
challenger sets the IPE message as (:Eb, 0, Qpk .y 5 0). The indistinguishability is implied by the
security of the IPE scheme, given in Lemma 6.

Assume that the set of queried key labels is ordered, for every fx € Qg, one has the following
intermediate games:

Game Gj,_;: The change is that for every complete decryption key query on (pk, y°,yt, U,) for
lh = lx, the challenger sets the IPE key as (0%, 09, 0/“1=1 1), and for every complete encryption
query on (pk,z% ®',U, f5s), the challenger sets the IPE message as (@°, 2°, apkus,0n Qi 1.0y,
boku1,0xc + z®" - yb). The indistinguishability is implied by the security of the IPE scheme, given
in Lemma 7.

" Qu and Qk contain elements of the form (pk, -, -, U, £). For a string xx € {0,1}*, we denote by xx € Qu
or xx € Qg if there exists a query containing xx.

26

Game Gj, ,: The change is that for every complete encryption query on (pk, x°, 2t U,), the chal-

b 0 bl b
lenger sets the IPE message as (€°, €, @pk 1,60, s Rpktt 00,06 + 27 -Y°) Where (Rpii4,60; 05) pkeHnid
are sampled uniformly such that

_ T
E , Rpk,ulMlK = E Ak, 00 'bpk,Z/l,@K'
pkeHNU pkeCrU

The indistinguishability is implied by the security of the UZS scheme, given in Lemma 8.
Game Gj, ;: The change is that for every complete encryption query on (pk, 2%, 21, U, l3), the

challenger sets the IPE message as (2°, %, @pk 14,02, s Rok 4,1 05 +a:0T-y0). The indistinguishability
is perfect, given in Lemma 9.
Game Gj, ,: The change is that for every complete encryption query on (pk,x°,x',U, (y), the

challenger sets the IPE message as (2", 2", @pkus.0r> Qo 14,05, * Dokt e + 2®" - y°). This change is
symmetric to the change in Gj, , and then the indistinguishability is implied by the security of
the UZS scheme.

Game Gy q (1, +1): For the subsequent label ({x + 1) of /i in Q, the change is that for ev-
ery complete decryption key query on (pk,y°,y',U,¢k), the challenger sets the IPE key as
(Od,ygk,bpk,z,{’gK,O), and for every complete encryption query on (pk,x° x!,U,¢ys), the chal-
lenger sets the IPE message as (x, 2°, apk11,05,,0). This change is symmetric to the change in
G7,. 1 and then the indistinguishability is implied by the security of the IPE scheme.

By using a recursive transition through all /x € Qg , one comes to the final game:

Game Gg: In this game, to answer any complete encryption query and any complete decryption
key generation query, the challenger sets the IPE key as (0%,y°, b,0) and the IPE message as
(04, 2°, @, 0) respectively. There is thus no dependence on the challenge bit b in this game, so
AC|V(_;3 =0.

From the transitions above, one completes the theorem by having

otu-sta

sel-sym-fh B
Advyy E Dore < [29QDKGen (4QEnc + 4QDKGen) + 4QEnc) - AdVise™ ™ + 2¢qpkGen - AdV{jzs
sel-sym-nfh
+ AdV;:%oI\ISI}E,m " + (QQNeWHon - QQCor) - Advpge.

O

Lemma 4 (FH-IP-DDFE: Transition from G(to Gi). For any PPT adversary A, the advantage
in distinguishing two games is

|Advg, — Advg, | < (gQNewHon — 4QcCor) - Advprr.

Proof. We proceed by using multiple hybrid games for each pk € H. For each transition, we build an
adversary B against the IND security of PRF from an adversary A that distinguishes two games in
the transition. To simulate a FH-IP-DDFE challenger, 13 uses the PRF oracle, instead of generating
by itself the PRF key kpi to handle all PRFy, related operations, and finally outputs A’s guess for
the challenge bit PRF.b. Since the number of honest parties is bounded by (gqNewHon — GQcor), OnE
completes the proof. O

Lemma 5 (FH-IP-DDFE: Transition from G; to G2). For any PPT adversary A, the advantage
in distinguishing two games s

|Adva, — Adva,| < Adviasymnih,

Proof. We build an adversary B against the sel-sym-nfh-IND security game of AoNE from an adversary
A that distinguishes between G and Gs. To simulate a FH-IP-DDFE challenger, B uses the oracles
of the AoNE challenger to handle all AoNE related operations.

— For each QDKGen(pk, y°, y!, Uk, lx) query from A, the adversary B prepares the IPE key idkpk.
If the query is complete, B sends (pk, idkp, idkpk, Us, £rc,”dk”) to the AoNE encryption oracle.
Otherwise, it sends (pk, idkpk, 0, U, £c,”dk”). Upon receiving the oracle’s reply actpy, B3 uses this
ciphertext to complete the reply to QDKGen query from A.

27

Go, |Gy, Gg,:G3E :

pp SetUp(1*), b < {0,1}

(PK,st1) « A(pp)

(pk)pkePrc < QNewHon([PK])

(Qm, 9k, C,stz) + A((pk)pkerk, st1)

sto,, <+ QEnc([Qum]), sto, < QDKGen([Qk]), ste < QCor([C])
b+ A(sta,,,sto,stc,st2)

Output: b’ if Condition (x) is satisfied, or b’ <— {0, 1} otherwise.

QNewHon():

kok <+ Kprr; (upk, uskyk) < KeyGen(); (apk, askpk) + aKeyGen()
pk = (upk, apk); skpk = (kpk, uskpk, askpk)

Store (pk, skpk) and return pk.

QDKGen(pk, y°, y*, (U, 0)):
b + TokGen(uskpk, (U, £))

coin + PRFy,, (U) ‘coin — RFp(U) Vpk € H\
12d+L{,

isk «— iKeyGen(1*""; coin)
k= (y°,0%,b,0) 'k = (0%, 4°,b,0) Vpk € H |
idk < iDKGen(isk, [k]o) 777
If 3pk’ € H such that (pk’,y’°,y'*,U,¢) ¢ Qx:
act < aEnc(askpx, (0,U, ¢))

act < aEnc(askyy, (idk, U, ¢,” dk”))

Return (act,U, ?).

QEnc(pk, z°, ', (U, £)):

[a]y < SeedGen(uskey, (U, ()

coin + PRFy,, (U) | coin + RFp(U) Vpk € |
isk < iKeyGen(124+Y;
m = (x°,0%,a,0) 'm = (0%, 2°, a,0) VkaH‘:
ict < iEnc(isk, [m]1)

If 3pk’ € H such that (pk’,2’°, =%, U, 0) & Qur:
act < aEnc(askpk, (0,4, ¢))

act < aEnc(askpk, (ictpk, U, £, 7 ct”))
Return (act,U, ?).

QCor(pk):
If pk ¢ PK, return L.
Return skpk = (Kpk, uskpk, askpk).

Fig. 11. Games for the sel-sym-fh-IND proof of FH-IP-DDFE in Theorem 2

28

— For each QEnc(pk,x®, ', Uy, ar) query from A, the adversary B prepares the IPE ciphertext
ictpk. If the query is complete, B sends (pk,ictpk,ictek,Uns, £ar,”ct”) to the AoNE encryption
oracle. Otherwise, it sends (pk,ictpk, 0,Uns, £as,”ct”). Upon receiving the oracle’s reply actpk, B
uses this ciphertext to complete the reply to QEnc query from A.

— B outputs A’s guess for the challenge bit AoNE.b.

The admissibility condition (%) of AoNE holds since each pair of challenge messages differ only when
an incomplete query was made. We also use prefix "ct" and "dk" to prevent possible combinations
between key queries and ciphertext queries in decryption. Therefore, when AoNE.b = 0, B is playing
G1; when AoNE.b = 1, B is playing Gs. O

Lemma 6 (FH-IP-DDFE: Transition from Gz to Ga.1). For any PPT adversary A, the advantage
in distinguishing two games is

sel-s -fh
|Advg, — Advg, ,| < gqenc - Advipg >

Proof. We proceed by using multiple hybrid games for each pair of honest (pk,U) € Q. For each
transition, we build an adversary B against the sel-sym-fh-IND security of IPE from an adversary A
that distinguishes between two games in the transition. To simulate a FH-IP-DDFE challenger, B uses
the IPE oracles to handle all IPE related operations for the reply of each (pk,U)-involved query from
A.

— For each complete QDKGen(pk, y°, y*,U, () query, B prepares the IPE key as
ko = kl = (yb7 Oda bpk,l/{,nyo)

and sends (pk, [k°]2, [k']2) to the IPE decryption key oracle. It uses the returned decryption key
idkpk to complete the reply to A.
— For each complete QEnc(pk,x®, ', U, ¢;) query, B prepares the IPE message as

0 _ b nd .
m- = (113 70 aapk,u,€M7O)7

1 _ b 0 .
m- = (T, T, pks,tns,0);

and sends (pk, [m°]1, [m'];) to the IPE encryption oracle. It uses the returned ciphertext icty to
complete the reply to A.
— B outputs A’s guess for the challenge bit IPE.b.

The admissibility condition () of IPE in each transition holds since one always has KO mO = k! .mb.
Therefore, in each transition of the multiple hybrid games for each (pk,i), when IPE.b = 0, A is
playing the previous game; when IPE.b = 1, A is playing the subsequent game. As the number of
pairs (pk,U) € Qs is bounded by gqenc, one completes the proof by having

1- -th
|AdVG2 - AdVG2.1| < GQEnc ACIVISF?ESym :

Lemma 7 (FH-IP-DDFE: Transition from Gg i, to GZK'I). For any PPT adversary A, the
advantage in distinguishing two games is

l-sym-fh
AdVGZ'l’ZK - AdVGZK.l < (qQEnc + QQDKGen) . AdVTSEbym .

Proof. We proceed by using multiple hybrid games for each pair of honest (pk,U) € Qn U Q. We
build an adversary B against the sel-sym-fh-IND security of IPE from an adversary A that distinguishes
between two games in the transition. To simulate a FH-IP-DDFE challenger, B uses the IPE oracles
to handle all IPE related operations for the reply of each (pk,U)-involved query from .A.

— For each complete QDKGen(pk7ygk Z,K,yék e;{,U,K’K)S query, B prepares the IPE key as
If EIK < lg: ko = kl = (Od,ygkj}(?bpk’u’glx,())
If O = lk:
ko = (ygk,ZK) Od’ bpk,Z/l,lK) 0)
kl — (Od7 Od, O‘fol—l’ 1)
If o > Uy KO = k! = (ygu,}(,od, bk, e, 0)

8 We additionally use subscripts £ and £x for ygk to differentiate the vector ygk that generates the decryption
key under /i from those of other key labels.

29

and sends (pk, [k°]2, [k']2) to the IPE decryption key generation oracle. It uses the returned
decryption key idkpk to complete the reply to A.
— For each complete QEnc(pk, mgk, m;k,u,ﬁM) query, B prepares the IPE message as

0 __ b 0 .
m- = (wpkvakVGPkauyeMvo)a
1_ (b .0 T b T b)
m = (wpkvakvapkyu,fzw’apk,Z/l,ZM 'bpk,U,@K + Lok 'ypk,ZK)’

and sends (pk, [m°]y,[m!];) to the IPE encryption oracle. It uses the returned decryption key
ictpk to complete the reply to A.
— B outputs A’s guess for the challenge bit IPE.b.

The admissibility condition (x) of IPE in each transition holds since one always has KOT om0 = k! m?.
Therefore, in each transition of the multiple hybrid games for each (pk,i), when IPE.b = 0, A is
playing the previous game; when IPE.b = 1, A is playing the subsequent game. Since the number of
pairs (pk,U) € Qpr U Q is bounded by (¢qenc + ¢pDKGen), One has

sel-s -th
AdVGgll,gK - AdVGrZK»1 S (QQEnc + QQDKGen) . Adv'@sEiym

O

Lemma 8 (FH-IP-DDFE: Transition from Gj,_, to Gj _,). For any PPT adversary A, the
advantage in distinguishing two games is

otu-sta
AdVGZK.l — AdVszKA2 S AdVUZS .

Proof. We build an adversary B against the otu-sta-IND security of UZS from an adversary A that
distinguishes between two games in the transition. To simulate a FH-IP-DDFE challenger, B uses the
UZS oracles to handle all UZS related operations.

— For each complete QDKGen(pk, ygk, yék,u, Uy) query, the adversary B prepares the IPE key as
o If U} # [k it obtains by ¢ < QTokGen(pk,U, l}) to complete the key k.
o If /) = (k: it does not have to obtain by /¢, as k = (09,09, 01=1 1) in this case.
— For each complete QEnc(pk, &), @}, U, {ar) query,
o BB obtains [@pk ey,]1 < QSeedGen(pk, U, £ar);
e 3 obtains (sharepy /.y, Jpkeunm < QShare(U, £ar| |k);
and implicitly complete the message in G; as

— b .0 bl b
[m]l - [wpk’ mpk’ Qpk,U s> Sharepk,u,fMHZK +x pk ° ypk]

The admissibility condition (x) of UZS holds since

— all the corruption queries in FH-IP-DDFE are sent in one shot;
— QShare(U, £pr]|€Kk) queries are made for the same ¢k on every U while there are no QTokGen(pk, U, {k)
queries required.

When UZS.b = 0, one has sharep 1.0, [16x = [@pp 1405, okt £]1 Which corresponds to G, ; and when

UZS.b = 1, one has (sharepy 4,7, |10)pkernu & Ryrua,en e (as in Definition 16), which corresponds
to Gj,_ . Therefore, one has

tu-st
A(I|V(;zK.1 — AdVGZK,z S Advazuss a.
O
Lemma 9 (FH-IP-DDFE: Transition from Gj,_ , to Gj,_ 3). The two games Gj,_, to Gj,_ 5 are
identical.
Proof. Given any set of complete encryption queries on {(pk,af:;’(o,a:;[},u,ﬁM)}Te[qpk’u_’ .,,) and any
complete decryption-key query on (pk, ygk, yék,u, lk), by the Remark 2, one has the following facts:

30

'r,O—r

b _ 0 T b .
L Apk,u,eM,zK =T ok " Ypk — T ok " Ypk VT € [qok st

b _
2. ZpkeHﬁZ/l Apk,M,ZM,fK =0.

For any random shares (Rpk /e,) prenrys ©f the relation

T
E Rok i en o = — E Aol 00 bkt
pkeHNU pkecnU
b . .
one has (R’) = (R WUl b + A) are shares of the same distribu-
pk,u,fM,fK pkeHNU PK,ULEM S E K pk,Z/{,ZM,éK pkeHNU

tion by the fact 2. Moreover, one has the following by the fact 1,

bT

b 7,0 T, by d o7b 7,0 / bl b

(:Bpk s Lk ?aPkM,vaRpk,UlM,fK +x pk ypk) = (wpk » Ll 7apk,U,€MaRpk,u7€M,€K +x pk * ypk)
d , rb 1,0 b b1 b
= (@l s Tpje s Qpk U ear s Lok 000 + Ay ok 2770k Ypi)
d b 7.0 70T .0
- (wpk 7wpk aapk,?/l,fM>Rpk,lx{,€M,ZK +x pk ’ ypk)'

Therefore, two games G, and G} . identical. ad

)) li.3

5 Attribute-Weighted-Sum DDFE

In this section, we construct a DDFE scheme for attribute-weighted sums from a UZS scheme, a
single-input FE scheme for attribute-weighted sums with function-hiding inner products, and an all-
or-nothing encapsulation AoNE scheme. The AWS-DDFE scheme is proved to be sel-sym-IND secure
in the standard model.

5.1 Construction

Let d be an inner-product dimension, let £, and Lk be a message-label space and a key-label space
respectively. The AWS-DDFE scheme is described in Figure 12 with the following primitives:

— AWIPE = (aiSetup, aiKeyGen, aiEnc, aiDKGen, aiDec) be a FE for attribute-weighted sums with
function-hiding inner products;

— UZS = (SetUp, KeyGen, SeedGen, TokGen, SeedUpt, ShareEval) be a bilinear-updatable pseudoran-
dom zero-sharing scheme over G- for a seeding-label space Lx and an updating-label space L.

— AoNE = (aSetup, aKeyGen, aEnc, aDKGen, aDec) be an all-or-nothing encapsulation scheme.

Correctness. Given \ € N, pp < SetUp(1%), (pk, skpk) < KeyGen() Vpk € PK, €y € Lo, Uy € Li
where f = (fok)pkew, Uni, Uk € S(PK) such that Uy = Ux = U, from the above scheme, one can
parse dkpk = (actpk,U,y) and ctpx = (act;k,U,KM) for pk € U. By the correctness of the AoNE
scheme, one can always recover

aictpk = aiEnc(aiskpk, (@pk,j: Zpk,j) je[Np+ [@ok2t,00r5 0]1);

aidkpk = aiKeyGen(aiskpk, fok; [Bpk,us,e55 0]2)-

31

The correctness is then implied by the correctness of the AWIPE scheme and the UZS scheme over
GQZ

. . . T
Z aiDec(aictpk, aidkpk) = Z [Z for(Tpk,j) - Zpk,j + aka,M,éM bk s
pkeU pkeU jE[Np]

=13 D fok@pes) " - Zpwglr

PkEU j €[Ny

+e | [1]1, Z ShareEval(SeedUpt(seedpi u/,¢,, tokenpi u,e,,)

pkell
=D > Ffokl@ors) " 2okl +e [[1, D sharegu ey jen
pkeU jE[Np] pkeUd
T
=D Y fok(@prs) - zpwglr +e (12, [0))
kel j€ [Ny
.
=D > fok(@prs) - Zpslr
pkeU jE[Np]

a

Remark 7 (Size of Ciphertext/Decryption Key). In the above AWS-DDFE construction, if one uses the
sel-sym-IND-secure AoNE that is constructed from a rate-1 identity-based encryption and employed
in the hybrid-encryption mode with a symmetric encryption as described in [CDSG™20], then the
complexity for the size each DDFE ciphertext/decryption key will be Oy (N + |i/]). Notably, N is the
number of AWS inputs, which is polynomially unbounded.

5.2 Security Analysis

Theorem 3 (Indistinguishability for AWS-DDFE). If AWIPE is a single-input sel-sym-th-IND-
secure FE for attribute-weighted sums with function-hiding inner products, AoNE is a sel-sym-nfh-
IND-secure all-or-nothing encapsulation, and UZS is an otu-sta-IND-secure updatable pseudorandom
zero sharing, then the AWS-DDFE scheme constructed in Figure 12 is sel-sym-nfh-IND secure (as
defined in Definition 6) in the standard model.

Proof. In the selective game, we can fix PX to be the set of parties generated by QNewHon() queries,
C to be the set of corrupted parties in PX and H = PK\ C to be the set of honest parties. Let gy be
the number of xx-oracle queries where xx € {QNewHon, QEnc, QDKGen, QCor}. For brevity, we use
the notations Z := (x;, 2;) ey and f for each ABP function f such that f(2) := 2 jelN] f(:cj)sz.
Given A € N, we denote by Advg, the advantage of an PPT adversary A in each game G;, and Advyy
be the best advantage of any PPT adversary against the primitive xx that is setup with A.

Since the UZS security applies only when there are more than one honest client, we consider two
cases: only one honest client and more than one honest client.

The case of one honest client H = {pk*}. From the facts in Remark 4, any U € S(PK), any
QEnc(pk*, &y, ¥, U, r) query and any QDKGen(pk*, (for)pkerr,U), then it must hold that

fpk* (jgk*) - fpk* (j;k*) =0

This is also the admissibility condition of AWIPE. Following a strategy similar to the case of one
honest client in Theorem 2, we construct a sequence of hybrid games:

ng* : This is the real game with one honest client pk*.

G‘fk* : The change is that the pseudorandom function PRFy . is replaced by a random function RF.
The indistinguishability is implied by the security of the PRF.

G'fkl; : For each U, the change is that instead of depending on the bit b, for every QEnc(pk, 2°, 1,U, £1r)
query, the challenger chooses 2° to generate the answer.

32

Construction:
— SetUp(1*): Generates PG + PGGen(1*) and sets up parameters:
aipp + aiSetup(lA) upp < SetUp(lA) app < aSetup(lA).

It returns
pp = (PG, aipp, upp, app).
The parameters pp are implicit to other algorithms.
— KeyGen(): Each client samples
e a PRF key ko <= Kpre;
e UZS keys (upk, uskpk) < KeyGen();
e AoNE keys (apk, askpk) < aKeyGen().
It returns pk = (upk, apk) and skpk = (Kpk, uskpk, askpk)-
— Enc(skpk, m): Parses m = ((x5, ;) je[n], Unm, £ar)” and computes
1. a UZS token: bpk sy, ¢, < TokGen(uskpk, Unr, nr);
2. a random coin for AWIPE key generation: coinpk <— PRFx,, (Un);
3. a AWIPE secret key: aiskpx = aiKeyGen(li‘gM‘;coinpk);
4. an AWIPE encryption:

aictpk — aiEnc(aiskpk, (:Bj, zj)je[N]’ [bPkJ/fM,fM s 0]1);
5. an AoNE layer on icty:
actpk <— aEnc(askpk, (aictpk, Unr, £ar, 7 ct”)).

It returns the ciphertext
Ctok = (aCtpk,uM,eM).

If pk ¢ Unr, it returns L.
— DKGen(skpk, k): Parses k = (f := (fok, PK) ket s Uk) and computes
1. a UZS seed: [apkuyep]2 + SeedGen(uskpk, Us, £5);"
2. a random coin for AWIPE key generation: coinpy <— PRFx,, Uk);

3. a AWIPE secret key: aiskpk = aiKeyGen(li‘gK‘; Coinpk);
4. an AWIPE decryption key:

aidkpk < aiDKGen (aiskpk, fok, [@pk,e4, 0]2);
5. an AoNE layer on aidkpy:
actpk < aEnc(askpk, (aidkpk, Uk, L5, 7 dE”)).

It returns the decryption key
dkpk = (actpk,uK,éf).
If pk € Uk, it returns L.
— Dec ((dkpk)pkeuK, (Ctpk)pkeuM7 (UJ\/[,E]\/[), (Z/{K,Z_f)): If Uy = Uk = U is not true, it returns L.
Otherwise,
1. it parses dkpk = (actpk, U, £5) and recovers the AWIPE decryption keys

(aidkpk)pkers = aDec((actpr)prers U, Lr);
2. it parses ctp = (acty,, U, £ar) and recovers the AWIPE ciphertexts
(aictpk)pker = aDec((acty)pkerrs U, £ar);

It returns [a]r = >, o, aiDec(aictyk, aidkpk).

¢ Each client can choose an arbitrary polynomial number N of AWS inputs.

b ¢ € Lx contains a description of f.

Fig.12. DDFE for Attribute-Weighted Sums

33

The advantage of A is then upper bounded by gqenc - Advawipe + Advpgrr.

The case of more than one honest client. Let Q); and Qk be the set of encryption queries
and decryption key queries sent in one shot by A respectively. We proceed via a hybrid argument:
we describe the global changes in the IND game by using the games Gy, Gi, G2 and Gg; the
transition between G and Gz requires intermediate games (Ga,(14,¢,,).1)ic[5) (see Figure 13) for each
pair (U, lyr) € Q. Notably, the game Gy corresponds to sel-sym-nfh-IND security game as defined
in Definition 6, and the game Gg3 corresponds to the case where adversary’s advantage is 0 since there
is no challenge bit b.

Game G;: The change is that the challenger uses a random function RFgy instead of PRF,, for
pk € H. The indistinguishability is implied by the security of the pseudorandom functions.

Game Go: When pk € H, a decryption key query (pk, (fpk)pkeuK,UK) € Qg is said to be incomplete
if there exists pk’ € H NUy and the key query (pk’, (]Epk)pkeuK,Z/fK) ¢ Q. For that query, actpk
is changed to the encapsulation of (0,Ux,¢¢,”dk”). Similarly, when pk € H, an encryption query
(Pk, Z0k Zpir Una, £ar) € Qa1 said to be incomplete if there exists pk’ € % NUys and the encryp-

tion query (pk’,iﬂ,aﬁ*&,uMlM) ¢ Qur. For that query, acty is changed to the encapsulation of
(0,Uns, lar,” ct”). The indistinguishability is implied by the security of the AoNE scheme.

Game Gg3: In this game, for every complete encryption query on (pk, &3y, &, Unr, £ar), the challenger
sets the AWIPE message as (:%gk7 [Dokt4as 2205 0]1). There is thus no dependence on the challenge
bit b in this game, so Advg, = 0.

To avoid duplicate arguments, we omit lemmas for the transitions from Gy to Go. The transitions in
this stage are well-established and can be referenced in the proof for FH-IP-DDFE (see in Theorem 2
and Figure 11). Instead, we focus on the transition from Gs to Gz, which is done by using the
following intermediate games for each (U, €ys) € Qs

Game Gy (,¢,,).1: The change is that for every complete decryption key query on (pk, (fpk)pkeu,u),
the challenger sets the AWIPE key as (fpk, [@pk 1,055 a;—)rk,U,Zf bpk,u4,,,)2), and for every complete en-
cryption query on (pk, fcgk, :z;k,u, £ar), the challenger sets the AWIPE message as (:igk, [0U1=1 1]).
The indistinguishability is implied by the security of the AWIPE scheme, given in Lemma 10.

Game Gy ,¢,,).2: The change is that for every complete decryption key query on (pk, (fok)pkers, U),

the challenger sets the AWIPE key as (fpk, [@pkut,e5> Bokd,ens 05]2) Where (Rpw s 6005)pketnu are
sampled uniformly such that

E _ E T
Rka/{,ZM,Zf - apk,lx{,@f bpk;M7ZM'
pkeHNU pkeCnU

The indistinguishability is implied by the security of the UZS scheme, given in Lemma 11.

Game Gy ¢,,).3: The change is that given a set of ({4, £s)-involved complete encryption queries on
{(pk, 5:;;(0, igl’(l U, Enr) b relgpae,,] tO answer any complete decryption-key query on (pk, (For)okert,U),
the challenger sets the AWIPE key as (fo, [kt > Rokt,ens 05 + Agk,u,eM,éf]Q) where

¢ ~0, P ~b,
Agk,u,éM,éf = fpk(xka) - ka(xka) VT € [qpk,uﬂM}?

b _
> Ahrtine, =0
pkeHNU

as indicated in Remark 4. The indistinguishability is perfect, given in Lemma 12.

Game Gy y1,¢,,).4¢ The change is that for every complete decryption-key query on (pk, (fok)pker, U),
the challenger sets the AWIPE key as (fo, [apk,u’gﬁa;(’u’éf bokur,0,,]2)- This change is symmetric
to the change in Gy (14,,,).2, and then the indistinguishability is implied by the security of the
UZS scheme.

Game Gy (11,0,,)+1.0 := Ga.(u1,0,,).5¢ For the subsequent pair (U, fnr) + 1) of (U,) in Qny, the
change is that for every complete decryption key query on (pk, (fpk)pkeu, U), the challenger sets the
AWIPE key as (fok, [@pk 11,245 0]2), and for every complete encryption query on (pk, 20y, Zpy, U, £ar),
the challenger sets the AWIPE message as (&3, [bpku,¢,,,0]1)- The indistinguishability is implied
by the security of the AWIPE scheme, given in Lemma 13.

34

By using a recursive transition through all (U, ¢y;) € Qps, one comes to the final game Gj
completes the theorem by having

l-sym-nfh l-sym-fh -
AdvVans pore < 29Qenc(gQNewHon — 4Qcor) AdVawipe + 24QEnc - 'A\dV?Jtzusbta

-sym-nfh
+ AdVSAill\ISI}E]m et (QQNewHon - CIQCor) - Advpge.

Game Adjustment Assumption

aiEnc:

Go.w.ep).0 U,) < U, tur): (Jﬁgmbpk,ung,o) Hybrids on
U') > U, tnr): (i'gkabpk,l/{',qw?o) ') < U, tn)
aiDKGen: same as in Go
aiEnc:

Ga.w.en)a U) = U, ar) = (&5, 0V 1) IND of AWIPE
aiKeyGen:

114 (F T
U =U: (for, Gkt g, Gpiaey * Dokt en)

aiEnc: same as in Ga.(1/,0,,).1
Gy 2iDKGen: IND of UZS
u =u: (fpk,apk,u,z,’Rpk,u,ile) where

_ T
ZpkE’HﬂM Rowut,eng 0y = — ZpkECﬁZ/{ Aok, bok,ut, 0

aiEnc: same as in G, (1/,¢,,).1

aiDKGen:
/ L f b ..
G2.(L{,£M).3 U =U: (fpk, Cl,pkyz,{,gf, Rpkyz,{,gM,zf + Apk,u,ﬂM,@f) Statistics
where
> R == Aoty - b
pkeH N Lk U En Ly — pkecnu “pkU Ly pk,U, € g

AgkvuaéM’lf - fpk(igk) - fpk(fzgk)

aiEnc: same as in Gg.(1/,0,,).1

aiDKGen:

Go.,ep).4 U =U: (forr @pkareg Ggeare, bokttin +Aptenge,) IND of UZS
where
Agk,u,eM,ef = fpk(igk) - fpk(if?gk)

aiEnc:

GQ-(U»ZM)Jrl-O = (ul7 GM) = (Z/{, KIW) : (i)gkvbpk,Z/{,ZM,O) IND of AWIPE
Gowryrs aiKeyGen

U' =U: (fpky apk,lx{,ffao)

. One

Fig. 13. Intermediate hybrids for the transition from G2 to G in Theorem 3. We denote by (U’, £);) < (U, Lar)

when (U, £},) is a previous pair of (U, £ar) in the encryption-query set Q.

Lemma 10 (AWS-DDFE: Transition from Gs /,¢,,).0 t0© G y).1). For any PPT adversary

A, the advantage in distinguishing two games is

sel-sym-fh
Adsz.(u,zM).o - AdVGz.(u,zM>.1 < (gQNewHon — 4Qcor) - Advawipe -

35

Proof. On a fixed user set U, we proceed by using multiple hybrid games for each pk € H. We build
an adversary B against the sel-sym-fh security of AWIPE from an adversary A that distinguishes
between two games in the transition. To simulate a AWS-DDFE challenger, 15 uses the AWIPE oracles
to handle all AWIPE related operations for the reply of each (pk,U)-involved query from .A.

— For each complete QDKGen(pk, (fpk)pkeu,l/l) query, B prepares the AWIPE key as

K0 = (fok: [@pkut,e45,0]2),

k= (fpkv [apkxulfva;—k,ulf : bpkM,fM]Z)

where f = (fpk)pkeu and sends (pk,k° k') to the AWIPE decryption-key oracle. It uses the
returned decryption key aidkyk to complete the reply to A.
— For each complete QEnc(pk, ;fcgk, ﬁék,u, £yr) query, B prepares the AWIPE message as

m® = (ffm [bpk,U,fM’O]l)7
m! = (&}, [0M171 1]);

and sends (pk,m", m?') to the AWIPE encryption oracle. It uses the returned ciphertext aictpk to
complete the reply to A.
— B outputs A’s guess for the challenge bit AWIPE.b.

Let Fawipe be the functionality defined in Definition 10 for AWIPE. The admissibility condition (x)
of AWIPE in each transition holds since one always has

Fawipe (K0, m°) = [fpk(ﬁf,k) + apk,u,efT bkt = Fawipe (k' m?).

Therefore, in each transition of the multiple hybrid games for each pk € H, when AWIPE.b = 0, A is
playing the previous game; when AWIPE.b = 1, A is playing the subsequent game. Since the number
of pk € H queried to either QEnc or QDKGen is bounded by (gqNewHon — 4Qcor), One has

sel-sym-fh
AdVGQ.(u,fM),o - AdVG2.(u,tzM),1 < (gQNewHon — 4Qcor) - Advawipe

a

Lemma 11 (AWS-DDFE: Transition from Gy 1¢,,).1 t0 G ,e,).2)- For any PPT adversary
A, the advantage in distinguishing two games is

otu-sta
AdVGz,(u,tzM).l - AdVGz,(u,tzM).z < Advyzs

Proof. We build an adversary B against the otu-sta-IND security of UZS from an adversary A that
distinguishes between two games in the transition. To simulate a AWS-DDFE challenger, B uses the
UZS oracles to handle all UZS related operations.

— For each complete QEnc(pk, sﬁgk, ;%Flij/{', ¢4;) query, B prepares the AWIPE message as

o If U', l),) # (U, Lar): it obtains by gy ¢ < QTokGen(pk,U’, £;) to complete m.
o If (U',¢),) = (U, £n): it does not have to obtain by z4.¢,, as m = (2%, [0¥/=1 1];) in this case.
— For each complete QDKGen(pk, (fpk)pkeu,l/{) query, B prepares the AWIPE key as
e 3 obtains [apk,¢,]2 < QSeedGen(pk,U, {y);
e B obtains (sharepkﬁu,nggM)pkeum.[< QShare(U, Lf|14n);
where f = (fok)pkers and implicitly completes the key with the inner-product input in Go as

k= (foks [@pkat,tp - Sharepu e f1ea]2)-
The admissibility condition (x) of UZS holds since

— all the corruption queries in AWS-DDFE are sent in one shot;
— QShare(U, £¢||¢ar) queries are made for the same £, on every U while there are no QTokGen(pk, U, £ar)
queries required.

36

When UZS.b = 0, one has sharey 1,16, = [a;—kylf - bok 4,05,]2 which corresponds to G, (14,0,,).1;

and when UZS.b = 1, one has (shareyy /,¢;(¢,,) pkerru & Rru,ez)en (as defined in Definition 16),
which corresponds to Go 4,¢,,).2- Therefore, one has

otu-sta
AdVGz.(u,eM).l - AdVGz.(u,zM).z < Advyzs .
O

Lemma 12 (AWS-DDFE: Transition from Gy /,¢,,).2 t0 Ga.(11,¢,,).3).- The two games G 14,¢,,).2
to Ga (5.3 are tdentical.

b _
Proof. From the fact that Zpke?—lﬂu Apk,u,eM,zf = 0, for any random shares (Rka/{’éM’ef)pkE’Hﬁu of
the relation
_ T
Y Rektttarty == D Ggrrne, bokit s

pkeHMU pkecnu

b .
one has (Rpk,u,eM,ef + A"k’u’é’”’ef)pkeﬂmu are also random shares of the same relation. 0

Lemma 13 (AWS-DDFE: Transition from Gy 1,4 to Ga.@¢,)5). For any PPT adversary
A, the advantage in distinguishing two games is

1- -th
< (QQNeWHon - (IQCor) : AdVSAeWISgén

‘AdVGz.(u,zMM - AdVGz.(u,zM>.s

Proof. For any pk € H, given a set of complete encryption queries on {(pk, :i:;[(O, i;,;l U, gM)}Te[ka,u,ZM]

that share the same (U, ¢;) and any complete decryption-key query on (pk, (fpk)pkeu,l/{), one has
the following facts by the Remark 4:
N N
L. Agk,l/{,ZM,éf = fpk(‘rka) - fpk(mpk7—> VT € [QPKU,@M]’
b _
2. Zpke?{ﬁu Apk,Z/I,ZMny =0.

We proceed by using multiple hybrid games for each pk € H. We build an adversary B against
the sel-sym-fh security of AWIPE from an adversary A that distinguishes between two games in the
transition. To simulate a AWS-DDFE challenger, B uses the AWIPE oracles to handle all AWIPE related
operations for the reply of each (pk,U)-involved query from A.

— For each complete QDKGen(pk, (fpk)pkeu,Z/{) query, B prepares the AWIPE key as

0 ; T b
k = (fpk; [apkvuvgf7apk71/{,£‘f ’ bpkvu-,ZM + Apk,M,ZI\/j,ff]Q)
1 ; T
k™ = (fok: [@pkt g5 Qpir ey~ Bokit,ea]2)
where f = (fok)pkew and sends (pk, k%, k1) to the AWIPE decryption key generation oracle. It uses

the returned decryption key aidkpi to complete the reply to A.
— For each complete QEnc(pk, :%gk, ;i;k,u, £pr) query, B prepares the AWIPE message as

m’ = (‘%gkv[olu‘_lal]l);

m' = (jgw [bpk,U,lJva]l);

and sends (pk,7°,m') to the AWIPE encryption oracle. It uses the returned ciphertext aictpy to
complete the reply to A.
— B outputs A’s guess for the challenge bit AWIPE.b.

Let Fawipe be the functionality defined in Definition 10 for AWIPE. The admissibility condition (x)
of AWIPE in each transition holds since one always has
Fawipe(k®,m°) = [(for (&) + Abrions o) + Crae, * bokttond|T
= [fpk(igk) + a;rkyujf - ok,)7 (by the above fact 1)

= Fawipe(k',m")

37

The index 7 is omitted in the above equalities as Ang’eM,éf applies to all pairs of 7 € [gpk 05

and f = (fpk)pkeu- Therefore, in each transition of the multiple hybrid games for each pk € H, when
AWIPE.b = 0, A is playing the previous game; when AWIPE.b = 1, A is playing the subsequent game.
Since the number of pairs pk € H queried to either QEnc or QDKGen is bounded by (gqnewHon — 4QCor)

one has

sel-sym-fh
AdVGz.(u,zM>,4 - AdVGz.(u,zM).s < (gQNewHon — 4QCor) - AdVawipE

Acknowledgements. We would like to thank Ky Nguyen, Duong Hieu Phan and David Pointcheval
for fruitful discussions that motivated this work. The project was supported by the PhD funding from
“Institut Polytechnique de Paris”.

References

ABDP15. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes for
inner products. In PKC 2015: 18th International Conference on Theory and Practice of Public
Key Cryptography, Lecture Notes in Computer Science 9020, pages 733-751, Gaithersburg, MD,
USA, March 30 — April 1, 2015. Springer, Heidelberg, Germany.

ABG19. M. Abdalla, F. Benhamouda, and R. Gay. From single-input to multi-client inner-product func-
tional encryption. In Advances in Cryptology — ASIACRYPT 2019, Part III, Lecture Notes in
Computer Science 11923, pages 552—-582, Kobe, Japan, December 8-12, 2019. Springer, Heidel-
berg, Germany.

ABKW19. M. Abdalla, F. Benhamouda, M. Kohlweiss, and H. Walduner. Decentralizing inner-product func-
tional encryption. In PKC 2019: 22nd International Conference on Theory and Practice of Public
Key Cryptography, Part II, Lecture Notes in Computer Science 11443, pages 128-157, Beijing,
China, April 14-17, 2019. Springer, Heidelberg, Germany.

ABM™20. M. Abdalla, F. Bourse, H. Marival, D. Pointcheval, A. Soleimanian, and H. Waldner. Multi-client
inner-product functional encryption in the random-oracle model. In SCN 20: 12th International
Conference on Security in Communication Networks, Lecture Notes in Computer Science 12238,
pages 525-545, Amalfi, Italy, September 14-16, 2020. Springer, Heidelberg, Germany.

ACF*18. M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu. Multi-input functional encryption for
inner products: Function-hiding realizations and constructions without pairings. In Advances in
Cryptology — CRYPTO 2018, Part I, Lecture Notes in Computer Science 10991, pages 597-627,
Santa Barbara, CA, USA, August 19-23, 2018. Springer, Heidelberg, Germany.

ACF™20. S. Agrawal, M. Clear, O. Frieder, S. Garg, A. O’Neill, and J. Thaler. Ad hoc multi-input functional
encryption. In ITCS 2020: 11th Innovations in Theoretical Computer Science Conference, pages
40:1-40:41, Seattle, WA, USA, January 12-14, 2020. LIPIcs.

ACGU20. M. Abdalla, D. Catalano, R. Gay, and B. Ursu. Inner-product functional encryption with fine-
grained access control. In Advances in Cryptology — ASTACRYPT 2020, Part I11, Lecture Notes in
Computer Science 12493, pages 467-497, Daejeon, South Korea, December 7-11, 2020. Springer,
Heidelberg, Germany.

AGT2la. S. Agrawal, R. Goyal, and J. Tomida. Multi-input quadratic functional encryption from pairings.
In Advances in Cryptology — CRYPTO 2021, Part IV, Lecture Notes in Computer Science 12828,
pages 208-238, Virtual Event, August 16-20, 2021. Springer, Heidelberg, Germany.

AGT21b. S. Agrawal, R. Goyal, and J. Tomida. Multi-party functional encryption. In TCC 2021: 19th
Theory of Cryptography Conference, Part II, Lecture Notes in Computer Science 13043, pages
224-255, Raleigh, NC, USA, November 811, 2021. Springer, Heidelberg, Germany.

AGT22. S. Agrawal, R. Goyal, and J. Tomida. Multi-input quadratic functional encryption: Stronger
security, broader functionality. In TCC 2022: 20th Theory of Cryptography Conference, Part I,
Lecture Notes in Computer Science 13747, pages 711-740, Chicago, IL, USA, November 7-10,
2022. Springer, Heidelberg, Germany.

AGW20. M. Abdalla, J. Gong, and H. Wee. Functional encryption for attribute-weighted sums from k-Lin.
In Advances in Cryptology — CRYPTO 2020, Part I, Lecture Notes in Computer Science 12170,
pages 685-716, Santa Barbara, CA, USA, August 17-21, 2020. Springer, Heidelberg, Germany.

AJ15. P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional encryption. In
Advances in Cryptology — CRYPTO 2015, Part I, Lecture Notes in Computer Science 9215, pages
308-326, Santa Barbara, CA, USA, August 16-20, 2015. Springer, Heidelberg, Germany.

38

ALMT20.

ALS16.

ATY23.

BCFG17.

BFO01.

BIKT17.

BJK15.

BSW11.

BV15.

BWO7.

CDG*18.

CDSG*20.

Cha07.

CLT18.

DP19.

GGGT14.

GKL™T13.

GPSWO06.

S. Agrawal, B. Libert, M. Maitra, and R. Titiu. Adaptive simulation security for inner product
functional encryption. In PKC 2020: 23rd International Conference on Theory and Practice
of Public Key Cryptography, Part I, Lecture Notes in Computer Science 12110, pages 3464,
Edinburgh, UK, May 4-7, 2020. Springer, Heidelberg, Germany.

S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from
standard assumptions. In Advances in Cryptology — CRYPTO 2016, Part III, Lecture Notes in
Computer Science 9816, pages 333—-362, Santa Barbara, CA, USA, August 14-18, 2016. Springer,
Heidelberg, Germany.

S. Agrawal, J. Tomida, and A. Yadav. Attribute-based multi-input FE (and more) for attribute-
weighted sums. In Advances in Cryptology — CRYPTO 2023, Part IV, Lecture Notes in Computer
Science 14084, pages 464-497, Santa Barbara, CA, USA, August 20—24, 2023. Springer, Heidel-
berg, Germany.

C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional encryption for quadratic
functions with applications to predicate encryption. In Advances in Cryptology — CRYPTO 2017,
Part I, Lecture Notes in Computer Science 10401, pages 67-98, Santa Barbara, CA, USA, Au-
gust 2024, 2017. Springer, Heidelberg, Germany.

D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In Advances
in Cryptology — CRYPTO 2001, Lecture Notes in Computer Science 2139, pages 213-229, Santa
Barbara, CA, USA, August 19-23, 2001. Springer, Heidelberg, Germany.

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,
A. Segal, and K. Seth. Practical secure aggregation for privacy-preserving machine learning. In
ACM CCS 2017: 24th Conference on Computer and Communications Security, pages 1175-1191,
Dallas, TX, USA, October 31 — November 2, 2017. ACM Press.

A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryption. In Advances in
Cryptology — ASTACRYPT 2015, Part I, Lecture Notes in Computer Science 9452, pages 470-491,
Auckland, New Zealand, November 30 — December 3, 2015. Springer, Heidelberg, Germany.

D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In
TCC 2011: 8th Theory of Cryptography Conference, Lecture Notes in Computer Science 6597,
pages 253-273, Providence, RI, USA, March 28-30, 2011. Springer, Heidelberg, Germany.

N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation from functional encryption.
In 56th Annual Symposium on Foundations of Computer Science, pages 171-190, Berkeley, CA,
USA, October 17-20, 2015. IEEE Computer Society Press.

D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In TCC 2007:
4th Theory of Cryptography Conference, Lecture Notes in Computer Science 4392, pages 535—554,
Amsterdam, The Netherlands, February 21-24, 2007. Springer, Heidelberg, Germany.

J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Decentralized multi-client
functional encryption for inner product. In Advances in Cryptology — ASIACRYPT 2018, Part II,
Lecture Notes in Computer Science 11273, pages 703-732, Brisbane, Queensland, Australia, De-
cember 2-6, 2018. Springer, Heidelberg, Germany.

J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval. Dynamic decentralized
functional encryption. In Advances in Cryptology — CRYPTO 2020, Part I, Lecture Notes in
Computer Science 12170, pages 747-775, Santa Barbara, CA, USA, August 17-21, 2020. Springer,
Heidelberg, Germany.

M. Chase. Multi-authority attribute based encryption. In TCC 2007: 4th Theory of Cryptog-
raphy Conference, Lecture Notes in Computer Science 4392, pages 515-534, Amsterdam, The
Netherlands, February 21-24, 2007. Springer, Heidelberg, Germany.

G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unrestricted inner product
functional encryption modulo p. In Advances in Cryptology — ASIACRYPT 2018, Part II, Lecture
Notes in Computer Science 11273, pages 733—764, Brisbane, Queensland, Australia, December 2—
6, 2018. Springer, Heidelberg, Germany.

E. Dufour Sans and D. Pointcheval. Unbounded inner-product functional encryption with succinct
keys. In ACNS 19: 17th International Conference on Applied Cryptography and Network Security,
Lecture Notes in Computer Science 11464, pages 426-441, Bogota, Colombia, June 5-7, 2019.
Springer, Heidelberg, Germany.

S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, and H.-
S. Zhou. Multi-input functional encryption. In Advances in Cryptology — EUROCRYPT 201/,
Lecture Notes in Computer Science 8441, pages 578-602, Copenhagen, Denmark, May 11-15,
2014. Springer, Heidelberg, Germany.

S. D. Gordon, J. Katz, F.-H. Liu, E. Shi, and H.-S. Zhou. Multi-input functional encryption.
Cryptology ePrint Archive, Report 2013/774, 2013. https://eprint.iacr.org/2013/774.

V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access
control of encrypted data. In ACM CCS 2006: 15th Conference on Computer and Communications

https://eprint.iacr.org/2013/774

IW14.

KSWO08.

LT19.

LW11.

LWGT23.

MJ18.

MKMS22.

NPP22.

NPP23a.

NPP23b.

Sha&4.

SV23.

SWO05.

TT18.

ZLZ%124.

39

Security, pages 89-98, Alexandria, Virginia, USA, October 30 — November 3, 2006. ACM Press.
Available as Cryptology ePrint Archive Report 2006/309.

Y. Ishai and H. Wee. Partial garbling schemes and their applications. In ICALP 2014: 41st
International Colloquium on Automata, Languages and Programming, Part I, Lecture Notes in
Computer Science 8572, pages 650662, Copenhagen, Denmark, July 8-11, 2014. Springer, Hei-
delberg, Germany.

J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In Advances in Cryptology — EUROCRYPT 2008, Lecture Notes in
Computer Science 4965, pages 146-162, Istanbul, Turkey, April 13-17, 2008. Springer, Heidelberg,
Germany.

B. Libert and R. Titiu. Multi-client functional encryption for linear functions in the standard
model from LWE. In Advances in Cryptology - ASIACRYPT 2019, Part III, Lecture Notes in
Computer Science 11923, pages 520-551, Kobe, Japan, December 8-12, 2019. Springer, Heidel-
berg, Germany.

A. B. Lewko and B. Waters. Decentralizing attribute-based encryption. In Advances in Cryptology
- EUROCRYPT 2011, Lecture Notes in Computer Science 6632, pages 568-588, Tallinn, Estonia,
May 15-19, 2011. Springer, Heidelberg, Germany.

Y. Li, J. Wei, F. Guo, W. Susilo, and X. Chen. Robust decentralized multi-client functional
encryption: Motivation, definition, and inner-product constructions. In Advances in Cryptol-
ogy — ASTACRYPT 2023, Part V, Lecture Notes in Computer Science 14442, pages 134-165,
Guangzhou, China, December 4-8, 2023. Springer, Heidelberg, Germany.

Y. Michalevsky and M. Joye. Decentralized policy-hiding ABE with receiver privacy. In ES-
ORICS 2018: 28rd European Symposium on Research in Computer Security, Part 11, Lecture Notes
in Computer Science 11099, pages 548—567, Barcelona, Spain, September 3—7, 2018. Springer, Hei-
delberg, Germany.

J. M. B. Mera, A. Karmakar, T. Marc, and A. Soleimanian. Efficient lattice-based inner-product
functional encryption. In PKC 2022: 25th International Conference on Theory and Practice of
Public Key Cryptography, Part II, Lecture Notes in Computer Science 13178, pages 163-193,
Virtual Event, March 8-11, 2022. Springer, Heidelberg, Germany.

K. Nguyen, D. H. Phan, and D. Pointcheval. Multi-client functional encryption with fine-grained
access control. In Advances in Cryptology — ASIACRYPT 2022, Part I, Lecture Notes in Computer
Science 13791, pages 95-125, Taipei, Taiwan, December 5-9, 2022. Springer, Heidelberg, Germany.
D. D. Nguyen, D. H. Phan, and D. Pointcheval. Verifiable decentralized multi-client functional
encryption for inner product. In Advances in Cryptology — ASIACRYPT 2023, Part V, Lecture
Notes in Computer Science 14442, pages 33—-65, Guangzhou, China, December 4-8, 2023. Springer,
Heidelberg, Germany.

K. Nguyen, D. H. Phan, and D. Pointcheval. Optimal security notion for decentralized multi-
client functional encryption. In ACNS 23: 21st International Conference on Applied Cryptography
and Network Security, Part II, Lecture Notes in Computer Science 13906, pages 336-365, Kyoto,
Japan, June 19-22, 2023. Springer, Heidelberg, Germany.

A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology —
CRYPTO’84, Lecture Notes in Computer Science 196, pages 47-53, Santa Barbara, CA, USA,
August 19-23, 1984. Springer, Heidelberg, Germany.

E. Shi and N. Vanjani. Multi-client inner product encryption: Function-hiding instantiations
without random oracles. In PKC 2023: 26th International Conference on Theory and Practice
of Public Key Cryptography, Part I, Lecture Notes in Computer Science 13940, pages 622-651,
Atlanta, GA, USA, May 7-10, 2023. Springer, Heidelberg, Germany.

A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In Advances in Cryptology —
EUROCRYPT 2005, Lecture Notes in Computer Science 3494, pages 457-473, Aarhus, Denmark,
May 22-26, 2005. Springer, Heidelberg, Germany.

J. Tomida and K. Takashima. Unbounded inner product functional encryption from bilinear
maps. In Advances in Cryptology — ASIACRYPT 2018, Part II, Lecture Notes in Computer
Science 11273, pages 609-639, Brisbane, Queensland, Australia, December 2-6, 2018. Springer,
Heidelberg, Germany.

Z. Zhu, J. Li, K. Zhang, J. Gong, and H. Qian. Registered functional encryptions from pairings.
Cryptology ePrint Archive, Paper 2024/327, 2024. https://eprint.iacr.org/2024/327.

https://eprint.iacr.org/2024/327

	Dynamic Decentralized Functional Encryptions from Pairings in the Standard Model

