
Tight Multi-user Security of Ascon and Its
Large Key Extension ⋆

Bishwajit Chakraborty1, Chandranan Dhar2, and Mridul Nandi2

1 Nanyang Technological University, Singapore
bishwajit.chakrabort@ntu.edu.sg

2 Indian Statistical Institute, Kolkata, India
{chandranandhar,mridul.nandi}@gmail.com

Abstract. The Ascon cipher suite has recently become the preferred
standard in the NIST Lightweight Cryptography standardization pro-
cess. Despite its prominence, the initial dedicated security analysis for
the Ascon mode was conducted quite recently. This analysis demon-
strated that the Ascon AEAD mode offers superior security compared to
the generic Duplex mode, but it was limited to a specific scenario: single-
user nonce-respecting, with a capacity strictly larger than the key size. In
this paper, we eliminate these constraints and provide a comprehensive
security analysis of the Ascon AEAD mode in the multi-user setting,
where the capacity need not be larger than the key size. Regarding data
complexity D and time complexity T , our analysis reveals that Ascon
achieves AEAD security when T is bounded by min{2κ/µ, 2c} (where κ
is the key size, and µ is the number of users), and DT is limited to 2b

(with b denoting the size of the underlying permutation, set at 320 for
Ascon). Our results align with NIST requirements, showing that Ascon
allows for a tag size as small as 64 bits while supporting a higher rate of
192 bits, provided the number of users remains within recommended lim-
its. However, this security becomes compromised as the number of users
increases significantly. To address this issue, we propose a variant of the
Ascon mode called LK-Ascon, which enables doubling the key size.
This adjustment allows for a greater number of users without sacrific-
ing security, while possibly offering additional resilience against quantum
key recovery attacks. We establish tight bounds for LK-Ascon, and fur-
thermore show that both Ascon and LK-Ascon maintain authenticity
security even when facing nonce-misuse adversaries.

1 Introduction

Authenticated Encryption (AE) serves as a fundamental component of symmet-
ric cryptography, enabling the simultaneous encryption and authentication of a
plaintext. Often, AE provides the capability to authenticate supplementary data,
which, unlike the plaintext, is transmitted without encryption. In this context,
AE is referred to as Authenticated Encryption with Associated Data (AEAD).

⋆ This is the full version of the work accepted at ACISP 2024.

Extensive research has been dedicated in recent years to developing and scru-
tinizing efficient and secure AEAD algorithms. Notably, widely utilized AEAD
mechanisms across the Internet include AES-GCM [MV04], which is used in TLS
[SCM08], and Chacha20-Poly1305, XSalsa20-Poly1305 [Ber05,Ber08b,Ber08a].

A specific area of focus involves the application of AEAD schemes in lightweight
cryptography, which has garnered significant attention in research over the past
decade. This exploration has been primarily inspired by the CAESAR compe-
tition [Com14], emphasizing authenticated encryption design, and subsequently
by the lightweight cryptography (LWC) competition [NIS18] hosted by the US
National Institute of Standards and Technology (NIST).

Of particular interest in the realm of lightweight cryptography is the As-
con cipher suite, which has emerged as the winner of the CAESAR competition
(in the lightweight applications category), and more recently in the NIST LWC
competition. Initially proposed as a candidate in Round 1 of the CAESAR com-
petition [Com14], subsequent iterations of Ascon (v1.1 and v1.2) incorporated
minor modifications to the original design (version 1 [DEMS14]). The latest ver-
sion, v1.2 [DEMS19], acclaimed as the victor of the NIST LWC competition,
encompasses the Ascon-128 and Ascon-128a authenticated ciphers, alongside
the Ascon-Hash hash function and the Ascon-Xof extendable output func-
tion. All the components within the suite ensure 128-bit security and utilize
a shared 320-bit permutation internally, facilitating the implementation of both
duplex-based AEAD and sponge-based extendable-output hashing using a single
lightweight primitive.

1.1 Existing Security Analysis

The authenticated encryption mode of Ascon is based on the duplex construc-
tion [BDPA11], specifically the MonkeyDuplex construction [BDPA12]. How-
ever, in contrast to MonkeyDuplex, Ascon’s mode integrates double-keyed
initialization and double-keyed finalization to reinforce its resilience. For an elab-
orate depiction of the Ascon AEAD mode, please refer to Section 3.

Until recently, security analyses of Ascon predominantly regarded it as a
variant of Duplex construction (as indicated in [DEMS19]). A common constraint
in the existing analyses of Duplex constructions, is the condition DT ≪ 2c (or
comparable variations where D might be substituted by qd), where D is the data
complexity and T is the time complexity, c is the capacity of the underlying
sponge and qd is the number of decryption queries.

At Asiacrypt 2023, Chakraborty et al. [CDN23a] conducted the first dedi-
cated security analysis of Ascon. They leveraged the double-keyed initialization
and finalization of Ascon, demonstrating the removal of the term DT/2c for
the Ascon AEAD. They achieved a bound of the order

O
(

T

2κ
+

D

2τ
+

DT

2b

)
.

The authors also demonstrated that their bound is tight. However, this bound
was only attainable in the single-user nonce-respecting setting, where nonces

2

cannot be reused across encryption queries. Additionally, their analysis assumed
that κ < c, i.e. the key size is strictly lesser than the capacity.3

In a concurrent work [ML23], Lefevre and Mennink also presented a dedicated
security analysis of Ascon. While they focus on various settings (nonce-based
confidentiality and authenticity, authenticity under nonce misuse and state re-
covery), they could only show the impact of strengthened initialization and fi-
nalization of Ascon in the case of authenticity under state recovery. However,
in the case of conventional multi-user nonce-based authenticity, their bounds
reduce to qdT

2c .

1.2 Our Contribution

In this work, we present a comprehensive analysis of the Ascon AEAD mode.
Our first result establishes a tight AEAD security bound for Ascon in the multi-
user nonce-respecting setting. Considering the number of users µ, tag size τ bits,
key size κ bits, capacity c bits, and state size b bits, the derived bound is of the
order

O
(
µT

2κ
+

D

2τ
+

DT

2b

)
.

Comparing this with the results of [CDN23a], we can see that although there is
some multi-user security degradation, the term DT/2c can be overcome in this
setting as well, thus improving over [ML23]. We also show that the achieved
bound is tight. As an added bonus, we establish the aforementioned result for
the κ = c scenario as well, thus broadening the assumption to κ ≤ c. This
extension presents an added benefit: considering the NIST LWC requirements
(D ≤ 253, T ≤ 2112, κ ≥ 128, τ ≥ 64), as long as the number of users does not
become too large, our findings suggest that a capacity size of c = 128 (given
b = 320) and τ = 64 are adequate to ensure sufficient security for Ascon.
This selection allows for a higher rate of 192 bits (constrained to 184 when
κ < c), significantly enhancing efficiency while maintaining security within the
parameters of the random permutation model.

In the nonce-misuse setting, where nonces can be reused for encryption
queries, confidentiality cannot be guaranteed. However, our second result shows
that as far as authenticity security is concerned, the bound is of the order

O
(
µT

2κ
+

D

2τ
+

DT

2b
+

D2

2c

)
.

This is also an improvement over [ML23], where the authors could not overcome
the hurdle of DT/2c under any attack setting.

A significant drawback of the Ascon AEAD mode is its compromised se-
curity as the number of users increases, with the term µT/2κ becoming the

3 In the original work [CDN23a], they initially assume κ ≤ c but later revise their
assertions to κ < c in the modified e-print version [CDN23b]. We delve into the
intricacies of the case when κ = c in Section 3.4.

3

dominant factor (due to the 128 bit size of the key). One simple solution to this
limitation would be to increase the key size of Ascon. Moreover, a larger key
size has the capability to enhance the resilience against key recovery attacks that
utilize Grover’s algorithm. However, key-size cannot be directly increased in the
Ascon mode. For instance, if we opt for a nonce size of 128 bits, along with
an extra 64-bit IV , the key-size becomes confined to 128 bits. The Ascon-80pq
scheme was introduced as a component of the Ascon cipher suite, aiming to
tackle this challenge. However, it should be noted that Ascon-80pq is only ca-
pable of accommodating a 160-bit key. As our final result, we introduce a novel
AEAD mode, akin to Ascon, labeled as LK-Ascon (representing Large Key
Ascon). This mode facilitates the doubling of the key size from 128 bits to 256
bits without requiring an increase in capacity, thus maintaining both security
and efficiency. The resulting bound is of the order

O
(
µT

2κ
+

T

2c
+

D

2min{τ,c} +
DT

2b

)
.

This bound is also tight. When nonces can be misused, the authnticity bound is
again of the order

O
(
µT

2κ
+

D2 + T

2c
+

D

2τ
+

DT

2b

)
.

A comparison among our results and the results of [CDN23a] and [ML23] can
be found in Fig. 1.

Setting Security [CDN23a] [ML23] This work

su nr Ascon AEAD
T

2κ
+

DT

2b
T

2κ
+

σdT

2c
T

2κ
+

DT

2b

mu nr Ascon AEAD -
µT

2κ
+

σdT

2c
µT

2κ
+

DT

2b

mu nm Ascon Authenticity -
µT

2κ
+

DT

2c
µT

2κ
+

DT

2b
+

D2

2c

mu nr LK-Ascon AEAD - -
µT

2κ
+

DT

2b
+

T

2c

mu nm LK-Ascon Authenticity - -
µT

2κ
+

DT

2b
+

D2 + T

2c

Fig. 1. Security Analysis Comparison. The expression D/2τ is a common factor in
all entries. “su” and “mu” represent single-user and multi-user, respectively. “nr” and
“nm” denote nonce-respecting and nonce-misuse, respectively. The term σd refers to
the data complexity of decryption queries.

4

1.3 Organization of the Paper

In section 2, we define the basic notations used in the paper. We give a brief
description of the AEAD security in the random permutation model, and also
briefly describe the H-coefficient technique. Moving forward, in S1ection 3, we
present a detailed examination of the Ascon AEAD scheme. We present one of
our two primary results, the security bound of Ascon, and establish its signifi-
cance in relation to the NIST LWC criteria. To support our claims, we provide
an interpretation of our findings within the context of the NIST guidelines, and
discuss the tightness. Then, in Section 4, we present the authenticity security of
Ascon in the nonce misuse setting. In Section 5, we define LK-Ascon, a vari-
ant of Ascon and state the security of LK-Ascon, along with a proof outline.
Finally, in Section 6, we conclude the paper.

2 Preliminaries

2.1 Notations

Let {0, 1}n represent the set of bit strings of length n, and {0, 1}+ denote the
set of bit strings of arbitrary length. The empty string is denoted by λ, and we
define {0, 1}∗ = {λ} ∪ {0, 1}+. For any integers a ≤ b ∈ N, [b] and [a, b] denote
the sets {1, 2, . . . , b} and {a, a+ 1, . . . , b}, respectively. For n, k ∈ N with n ≥ k,
the falling factorial is defined as (n)k := n(n−1) · · · (n−k+1). It’s worth noting
that (n)k ≤ nk.

For any bit string x = x1x2 · · ·xk ∈ {0, 1}k of length k, and for n ≤ k, we
use ⌈x⌉n := x1 · · ·xn (and ⌊x⌋n := xk−n+1 · · ·xk) to denote the most (and least)
significant n bits of x. The bit concatenation operation is denoted by ∥. The
notation (x1, . . . , xr) is also used to represent the bit concatenation operation
x1∥ · · · ∥xr, where xi ∈ {0, 1}∗. For instance, if V := x∥z := (x, z) ∈ {0, 1}r ×
{0, 1}c, then ⌈V ⌉r = x and ⌊V ⌋c = z. The bitwise XOR operation is denoted by
⊕.

For a finite set X , X $← X denotes the uniform and random sampling of X
from X , and X

wor← X denotes sampling without replacement of X from X .
Padding and Parsing a Bit String. Let r > 0 be an integer and X ∈ {0, 1}∗.
Let d = |X| mod r (the remainder while dividing |X| by r).

pad1(X) =

{
λ if |X| = 0

X∥1∥0r−1−d otherwise

and
pad2(X) = X∥1∥0r−1−d.

GivenX ∈ {0, 1}∗, let x = ⌈ |X|+1
r ⌉. We define (X1, . . . , Xx)

r←∗ X asX1∥ · · · ∥Xx =
X, |X1| = · · · = |Xx−1| = r and

Xx =

{
λ if |X| = r(x− 1)

⌊X⌋|X|−r(x−1) otherwise
.

5

For N ≥ 4, n = log2 N , we define

mcoll(q,N) =


3 if 4 ≤ q ≤

√
N

4 log2 q
log2 log2 q if

√
N < q ≤ N

5n
⌈

q
nN

⌉
if N < q.

2.2 Authenticated Encryption with Associated Data: Definition
and Security Model

An authenticated encryption scheme with associated data functionality, abbre-
viated as AEAD, is characterized by a tuple of algorithms AE = (E,D). These
algorithms, referred to as the encryption and decryption algorithms, operate over
the key space K, nonce space N , associated data space A, message space M, ci-
phertext space C, and tag space T . The functionalities are defined as follows:

E : K ×N ×A×M→ C × T and D : K ×N ×A× C × T →M∪ {rej}.

Here, rej signifies that the tag-ciphertext pair is invalid and consequently re-
jected. Additionally, the correctness condition is imposed:

D(K,N,A,E(K,N,A,M)) = M for any (K,N,A,M) ∈ K ×N ×A×M.

For a key K ∈ K, we use EK(·) and DK(·) to denote E(K, ·) and D(K, ·), re-
spectively. In this paper, we consider K = {0, 1}κ,N = {0, 1}ν , T = {0, 1}τ , and
A,M = C ⊆ {0, 1}∗.

AEAD Security in the Random Permutation Model.
Let Perm(b) denote the set of all permutations over {0, 1}b and Func(N × A ×
M,M× T) denote the set of all functions from (N,A,M) to (C, T) such that
|C| = |M |. We consider the AEAD security in the multi-user (mu) setting,
parameterized by the number of users µ. Let:

– Π
$← Perm(b) (we use the superscript ± to denote bidirectional access to Π),

– Γ1, . . . , Γµ
$← Func(N ×A×M,M×T),

– rej denotes the degenerate function from (N ,A,M, T) to {rej}, and
– K1, . . . ,Kµ

$← K.

We have the following definition:

Definition 1. Let AEΠ be an AEAD scheme based on the random permutation
Π, defined over (K,N ,A,M, T). The mu-AEAD advantage of an adversary A
against AEΠ is defined as

Advmu−aead
AEΠ

(A) :=

∣∣∣∣∣∣∣∣ Pr
(Ki)

µ
i=1

$←K
Π±

[
A (EKi

,DKi
)µi=1,Π

±
= 1

]
− Pr

(Γi)
µ
i=1

Π±

[
A (Γi)

µ
i=1,rej,Π

±
= 1

]∣∣∣∣∣∣∣∣ .
6

Here A EKi
,DKi

,Π±
denotes A ’s response after its interaction with EKi , DKi , and Π±

(i.e., both forward and backward queries to Π) respectively. Similarly, A Γi,rej,Π
±

denotes A ’s response after its interaction with Γi, rej, and Π± respectively.
In this paper, we assume that the adversary is adaptive. This means that the

adversary neither issues duplicate queries nor requests information for which
the response is already known due to some previous query. Let qe, qd, and qp
represent the number of queries made across all EKi , all DKi , and Π±, respectively.
Furthermore, let σe and σd denote the sum of input lengths (including associated
data and message) across all encryption and decryption queries, respectively.
Additionally, let σ := σe + σd represent the combined resources for construction
queries.

Remark 1. Here σ corresponds to the online or data complexity, and qp corre-
sponds to the offline or time complexity of the adversary. An adversary adhering
to the specified resource constraints is referred to as an (qp, σe, σd)-adversary.

Separation into Confidentiality and Authenticity For any AEAD scheme,
the security can be separated into confidentiality and authenticity. In the mu
setting, we have the following definitions:

Definition 2. Let AEΠ be an AEAD scheme based on the random permutation
Π, defined over (K,N ,A,M, T). The mu-confidentiality advantage of an adver-
sary A against AEΠ is defined as

Advmu−conf
AEΠ

(A) :=

∣∣∣∣∣∣∣∣ Pr
(Ki)

µ
i=1

$←K
Π±

[
A (EKi

)µi=1,Π
±
= 1

]
− Pr

(Γi)
µ
i=1

Π±

[
A (Γi)

µ
i=1,Π

±
= 1

]∣∣∣∣∣∣∣∣ ,
and the mu-authenticity advantage of an adversary A against AEΠ is defined as

Advmu−auth
AEΠ

(A) := Pr
(Ki)

µ
i=1

$←K
Π±

[
A (EKi

,DKi
)µi=1,Π

±
forges

]
.

In the context of authenticity, we use the term “A forges” to describe a situation
where A successfully makes a query to one of its decryption oracles, and this
query is not the result of a previous encryption query. By an easy reduction
[DNT19], it can be shown that

Advmu−auth
AEΠ

(A) ≤

∣∣∣∣∣∣∣∣ Pr
(Ki)

µ
i=1

$←K
Π±

[
A (EKi

,DKi
)µi=1,Π

±
= 1

]
− Pr

(Γi)
µ
i=1

Π±

[
A (Γi)

µ
i=1,rej,Π

±
= 1

]∣∣∣∣∣∣∣∣ .
Proposition 1. [BN08] There exist adversaries A , A ′ and A ′′ having same
query complexities such that

Advmu−aead
AEΠ

(A) ≤ Advmu−conf
AEΠ

(A ′) +Advmu−auth
AEΠ

(A ′′).

7

2.3 H-coefficient Technique

Consider an adversary A , which is deterministic and computationally unbounded,
attempting to distinguish between the real oracle, denoted as Ore, and the ideal
oracle, denoted as Oid. The interaction of A with its oracle is captured by the
query-response tuple denoted as ω. In certain scenarios, at the conclusion of the
query-response phase of the game, the oracle may choose to reveal additional
information to the distinguisher. In such cases, the extended definition of the
transcript may include that additional information. Let Θre (respectively, Θid)
represent the random transcript variable when A interacts with Ore (respec-
tively, Oid). The probability of realizing a specific transcript ω in the security
game with an oracle O is referred to as the interpolation probability of ω with
respect to O. Given the determinism of A , this probability depends solely on
the oracle O and the transcript ω. A transcript ω is considered realizable if
Pr [Θid = ω] > 0. In this paper, Ore = (EK,DK,Π

±), Oid = (Γ, rej,Π±), and the
adversary aims to distinguish Ore from Oid in an AEAD sense.

Proposition 2 (H-coefficient technique [Pat91,Pat08]). Let Ω be the set
of all realizable transcripts. For some ϵbad, ϵratio > 0, suppose there is a set Ωbad ⊆
Ω satisfying the following:

– Pr [Θid ∈ Ωbad] ≤ ϵbad;
– For any ω /∈ Ωbad,

Pr [Θre = ω]

Pr [Θid = ω]
≥ 1− ϵratio.

Then for any adversary A , we have the following bound on its AEAD distin-
guishing advantage:

Advaead
Ore

(A) ≤ ϵbad + ϵratio.

A proof of Proposition 2 can be found in multiple papers including [Pat08,CS14,MN17].

2.4 Expected Multicollision in a Uniform Random Sample

Let S := (xi)i∈I be a tuple of elements from a set T . For any x ∈ T , we define
mcx(S) = |{i ∈ I : xi = x}| (the number of times x appears in the tuple).
Finally, we define multicollision of S as the mc(S) := maxx∈T mcx(S). In this
section, we revisit some multicollision results discussed in [CJN20,CDN23a].

Lemma 1. [CJN20] Let D be a set of size N ≥ 4, n = log2 N . Given random

variables X1, . . . ,Xq
$← D, we have E [mc(X1, . . . ,Xq)] ≤ mcoll(q,N).

Remark 2. Similar bounds as in the above Lemma 1 can be achieved in the case
of non-uniform samplings. Let Y1, . . . ,Yq

wor← {0, 1}b and define Xi := ⌈Yi⌉r for
some r < b. If we take N = 2r for this truncated random sampling, then we have
the same result as above for multicollisions among X1, . . . ,Xq.

We also have the following general result:

8

Lemma 2. [CDN23a] Let A be an adversary which makes queries to a b-bit ran-
dom permutation Π± and τ -bit to τ -bit random function Γ. Let (X1,Y1), . . . , (Xq1 ,Yq1)
and (Xq1+1,Yq1+1), . . . , (Xq1+q2 ,Yq1+q2) be the tuples of input-output correspond-
ing to Π and Γ respectively obtained by the A . Let q := q1 + q2 ≤ 2b and
Zi := truncτ (Xi)⊕ trunc′τ (Yi) for i ∈ [q1] and Zi := (Xi ⊕Yi) for i ∈ [q1 + 1, q],
where truncτ and trunc′τ represent some τ -bit truncations. For τ ≥ 2,

E [mc(Zq)] ≤ mcoll(q, 2τ).

2.5 Partial XOR-Function Graph

A partial function L : {0, 1}b 99K {0, 1}c is a subset L = {(p1, q1), . . . , (pt, qt)} ⊆
{0, 1}b×{0, 1}c with distinct pi values. An injective partial function has distinct
qi values. Define

domain(L) = {pi : i ∈ [t]}, range(L) = {qi : i ∈ [t]}.

We write L(pi) = qi and for all p ̸∈ domain(L), L(p) = ⊥.
Consider a partial function P : {0, 1}b 99K {0, 1}b, r ∈ [b − 1]. Define P⊕ :

{0, 1}b × {0, 1}r 99K {0, 1}b as

P⊕(u, x) = P(u′ ⊕ x)∥u′′),

where u = u′∥u′′ and u′ ∈ {0, 1}r. Define G⊕ := GP
⊕
with labeled edges denoted

as u
x−→⊕ v. A more detailed discussion on partial function graphs is given in

Appendix A.

3 The Ascon AEAD mode

In this section, we introduce the Ascon AEAD [DEMS19] mode of operation,
which is essentially a modified version of the Duplex construction. Let b represent
the state size of the underlying permutation π, and consider 0 < r < b as the
number of bits of associated data/message processed per permutation call. The
term r is referred to as the rate of the Ascon construction, while c = b − r is
known as the capacity.

Let κ, ν, τ denote the key size, nonce size, and tag size, respectively, with the
constraints: (i) τ ≤ κ ≤ c, and (ii) κ + ν ≤ b. Note that, unlike [CDN23a], we
assume κ ≤ c, thus encompassing the κ = c case.

We fix an IV ∈ {0, 1}b−κ−ν . The AEAD utilizes a permutation π (the Ascon
permutation), modeled as a random permutation for security analysis. Below, we
provide a description of the encryption and decryption algorithms of the Ascon
AEAD mode. For a visual representation of the encryption algorithm, refer to
Fig. 2.

Encryption Algorithm. It receives an input of the form (N,A,M) ∈ {0, 1}ν×
{0, 1}∗×{0, 1}∗ and a key K ∈ {0, 1}κ. We divide the encryption algorithm into

9

three phases: (i) initialization, (ii) associated data and message processing, and
(iii) tag generation, run sequentially.

Initialization. In this phase, we first apply the following function

Initπ(K,N) = π(IV ∥K∥N)⊕ (0b−κ∥K) := V0.

Associated Data and Message Processing. We first parse the associated
data and message:

(A1, . . . , Aa)
r← pad1(A), (M1, . . . ,Mm)

r← pad2(M).

Then, using the XOR-function graph corresponding to the function π⊕, we ob-
tain a walk

V0
A1−→⊕ V1

A2−→⊕ · · ·
Aa−→⊕ Va, Va ⊕ 0∗1

M1−→⊕ Va+1 · · ·
Mm−1−→ ⊕ Va+m−1.

We define the ciphertext as follows:

Ci = ⌈Va+i−1⌉r ⊕Mi, ∀i ∈ [m], C = ⌈C1∥ · · · ∥Cm⌉|M |.

We denote the above process as

AM Procπ(V0, A,M)→
(
C,F := Vt−1 ⊕ (Mm∥0c)

)
.

Tag Generation. Finally, we compute

T := Tagπ(K,F) = ⌊π
(
F ⊕ (0r∥K∥0c−κ

)
⌋τ ⊕ ⌊K⌋τ .

The Ascon AEAD returns (C, T).

Decryption Algorithm. The decryption algorithm consists of two steps. It
first performs a verification algorithm to ensure the correctness of the ciphertext
and tag pair. Upon successful verification, the algorithm advances to generate
the corresponding message. Our emphasis is primarily on the verification process
itself, rather than the specific steps involved in message computation.

On receiving an input of the form (N,A,C, T) ∈ {0, 1}ν ×{0, 1}∗×{0, 1}∗×
{0, 1}τ and a key K ∈ {0, 1}κ, the steps of the verification process is outlined
below:

1. (A1, . . . , Aa)
r← pad1(A) and (C1, . . . , Cl)

r← pad2(C).

2. Compute V0 := Initπ(K,N).

3. Compute the walk for the permutation π

V0
A1−→⊕ V1

A2−→⊕ · · ·
Aa−→⊕ Va.

4. Let Cl = C ′l∥10∗ for some C ′l (may be the empty string) and |C ′l | = d. Let
za = ⌊Va ⊕ 0∗1⌋c.
– Case l = 1: Define F = C ′l ∥ (⌊Va⌋b−d ⊕ 10∗1).

– Case l ≥ 2: Compute

za
C1−→ za+1

C2−→ · · · Cl−2−→ za+l−2.

Define F = C ′l ∥ ⌊π(Cl−1∥za+l−2)⊕ 10∗⌋b−d.
5. Reject if T ̸= Tagπ(K,F), otherwise, accept.

10

π
IV ∥K∥N

+

0b−k∥K

Initπ(K,N)

V0

⌈V0⌉r

⌊V0⌋c

+

A1

π

⌈V1⌉r

⌊V1⌋c
π

+

Aa

⌈Va−1⌉r

π

⌊Va−1⌋c

⌈Va⌉r

⌊Va⌋c

⌈Va⌉r

⌊Va⌋c ⊕ 0c−1∥1

+

M1

π

C1

π

⌈Va+1⌉r

⌊Va+1⌋c

+

Mm−1

⌈Vt−2⌉r

π

⌊Vt−2⌋c

Cm−1

+

Mm

⌈Vt−1⌉r
⌈F ⌉r

⌊F ⌋c
⌊Vt−1⌋c

Cm

AM Procπ(V0, A,M)

π
F

+

0r∥K∥0c−κ

+

⌊K⌋τ

T|
⌊⌋τ

Tagπ(K,F)

Fig. 2. Encryption in Ascon AEAD. The final ciphertext is C = ⌈C1∥ · · · ∥Cm⌉|M|,
and tag is T . Here t := a+m.

3.1 Security bound of Ascon

Theorem 1. Consider a nonce-respecting AEAD adversary A making qp per-
mutation queries, qe encryption queries with a total number of σe data blocks, and
qd decryption queries with a total number of σd data block. Define σ := σe + σd.
Then, we can upper bound the mu-AEAD advantage of A against Ascon as

11

follows:

Advmu−AEAD
Ascon (A) ≤ µ2

2κ
+

2qd
2τ

+
σ2
e

2b
+

σd(qp + σd)

2b
+

mcoll(σe, 2
r)(σd + qp)

2c

+
µ(qp + σ)

2κ
+

mcoll(qe, 2
τ)qd

2c
+

mcoll(σ + qp, 2
τ)qd

2κ

+
q2e + q2d + qeqd + (qe + qd)(σ + qp)

2b
+

qe(σ + qp)

2b

+
mcoll(qe, 2

r+c−κ)(σ + qp)

2κ
+

qd(σ + qp)

2c+τ
.

3.2 Interpretation of Theorem 1

First, note that when µ = 1 (corresponding to the su setting), the aforementioned
bound aligns with the security bound established in [CDN23a]. In that work, the
authors interpreted their bound in the context of the NIST LWC requirements,
demonstrating the security of the Ascon mode even when c = 136 and τ = 64,
as opposed to the original description’s requirement of c ≥ 192 and τ = 128.

As highlighted by the authors in [CDN23b], they were unable to reduce the
capacity to 128 because their result was proven under the additional assumption
that κ < c. Given that Ascon has a key size of 128 bits, the capacity needed to
exceed 128 bits.

In this current work, we enhance the proof technique, and our proof encom-
passes the κ = c scenario as well. Consequently, the Ascon mode remains secure
even when c = 128. It is crucial to note that the design of Ascon prohibits κ > c,
as the keys are XOR-ed in the capacity part.

Next, coming to the mu setting, note that the only extra terms in the security

bound as compared to the su setting are µ2

2κ and
µ(qp+σ)

2κ . While the term µ2

2κ does

not pose any threat, the term
µ(qp+σ)

2κ reduces the security significantly as the
number of users becomes large. For Ascon, the key size is 128, and according
to NIST LWC specifications, qp can be of the order 2112. This does not leave
room for a very large µ. For example, if the number of users is around 215, the
advantage is less than half.

Hence, it is evident that in the mu setting, the security of the Ascon mode
persists even when c = 128 and τ = 64, provided the number of users does not
reach excessively large values.

3.3 Tightness of the Bounds

We derive a bound of the following order:

µqp
2κ

+
µ2

2κ
+

qp
2c

+
qd
2c

+
σ2
e

2b
+

σ2
d

2b
+

qd
2τ

+
qpσd

2b
+

qd
2κ

As observed above, the only additional terms compared to the su setting, are
µqp/2

κ and µ2/2κ.

12

– The term
µqp
2κ corresponds to generic attacks which guesses one of the keys

in primitive calls.

– The term µ2

2κ corresponds to generic attacks which guesses key collisions.

As attacks for the remaining terms were already shown in [CDN23a], our
bounds are tight.

3.4 A Special Case: κ = c

Before delving into the proof of Theorem 1, let’s first examine why the authors
of [CDN23a] operated under the assumption κ < c. In the scenario where κ = c,
in the special case of having only one message block and no associated data, the
keys in the output of the initialization phase and the input of the finalization
phase nullify each other. This interaction is illustrated in Fig. 3.

π
IV ∥K∥N

+

+ + +

π

M1 C1

K 0c−1∥1 K

+

⌊K⌋τ

T|
⌊⌋τ

Fig. 3. Encryption in Ascon AEAD when κ = c, and we have only a single block
message without any associated data. The two keys additions in red cancel each other
out. The final ciphertext is C = ⌈C1⌉|M|, and tag is T .

We acknowledge this as a special case before initiating our proof to explain
why the proof in [CDN23a] cannot be directly adapted to the multi-user setting
with minor adjustments. Nevertheless, it is worth mentioning that our subse-
quent proof adheres to the general structure of [CDN23a], and some overlap is
inevitable.

3.5 Proof Overview of Theorem 1

We employ the H-coefficient technique for our proof. In the real world, µ keys
K1, . . . ,Kµ and a random permutation Π are sampled independently. All queries
are then responded to honestly. Extended transcript consists of:

– all inputs and outputs corresponding to encryption, decryption, and primi-
tive queries,

13

– all inputs and outputs of the permutation calls corresponding to encryption
and decryption queries.

The ideal world consists of an online phase and an offline phase. In the online
phase:

– encryption queries responded to randomly,

– all decryption queries are rejected, and

– permutation queries are responded to faithfully.

The offline phase samples intermediate variables, and generates extended tran-
script. It proceeds in stages:

1. Start with permutation query transcript P.

2. Sample intermediate variables for encryption queries to obtain permutation
input-output pairs PE.

3. Randomly extend P to P1 by setting input-outputs for decryption queries.
Set P2 := P1 ∪ PE.

4. Finally, sample keys K1, . . . ,Kµ. Set input-output pairs for initialization
first, and then move on to the finalization phase. Update P2 twice to obtain
Pfin.

In the offline phase of the ideal world, bad events occur when

– Variables sampled are not permutation-compatible.

– We have a correct forging.

– Decryption queries are not rejected.

Bounding the bad events conclude the proof. A detailed proof of the theorem is
given in Appendix B.

4 Authenticity in the Nonce Misuse Setting

Up until now, we only considered the nonce-respecting setting, where no two
encryption queries to the same user had the same nonce, although repetition of
nonce across decryption queries was allowed. If the adversary reuses nonces for
encryption queries, confidentiality cannot be guaranteed anymore, but we can
still aim for authenticity. Considering the authenticity security of Ascon against
adversaries that can possibly misuse nonces. We have the following result:

Theorem 2. Consider a possibly nonce-misusing authentication adversary A
making qp permutation queries, qe encryption queries with a total number of σe

data blocks, and qd decryption queries with a total number of σd data blocks.
Define σ := σe + σd. Then, we can upper bound the mu-auth advantage of A

14

against Ascon as follows:

Advmu−auth
Ascon (A) ≤ µ2

2κ
+

2qd
2τ

+
σ2
e

2b
+

σd(qp + σd)

2b
+

mcoll(σe, 2
r)(σd + qp)

2c

+
µ(qp + σ)

2κ
+

mcoll(qe, 2
τ)qd

2c
+

mcoll(σ + qp, 2
τ)qd

2κ

+
q2e + q2d + qeqd + (qe + qd)(σ + qp)

2b
+

qe(σ + qp)

2b

+
mcoll(qe, 2

r+c−κ)(σ + qp)

2κ
+

qd(σ + qp)

2c+τ
.

This bound is the similar to that of Theorem 1, only the term σ2
e/2

b is
replaced by σ2

e/2
c. Note that in the lightweight setting, σ2

e ≪ 2128. This means
Ascon maintains the authenticity security even under nonce misuse. The proof
is very similar to that of the nonce-respecting setting, and is given in Appendix
C. To show that the bound is tight, in Appendix F, we demonstrate a forgery
that establishes the σ2

e/2
c bound.

5 Large Key Ascon

One of the major limitations of Ascon is its compromised security as the user
count scales up. This issue is highlighted in Section 3.2, where the term

µqp
2κ

emerges as the dominant factor in Theorem 1, thereby limiting the number of
users. The most straightforward remedy for this constraint would involve aug-
menting the key size of Ascon. Additionally, a larger key size has the potential
to fortify the resistance against key recovery attacks that leverage Grover’s al-
gorithm. It is essential to note that increasing the key size does not necessarily
bolster security against quantum attacks in a generalized context, and the quan-
tum security of any Ascon or related scheme must be assessed independently.

The key size cannot be directly increased in the original Ascon construction
because of the constraints κ+ ν ≤ b and κ ≤ c, where ν denotes the nonce size.
For instance, if we opt for a nonce size of 128 bits, along with an extra 64-bit IV ,
the key size becomes confined to 128 bits. This limitation remains unchanged if
we aim to permit a rate of 192 bits. Consequently, we introduce a novel AEAD
mode akin to Ascon, known as the LK-Ascon mode, allowing for an arbitrary
key size denoted as τ ≤ κ < b, where τ signifies the tag size. To maintain
consistency, we select an IV ∈ {0, 1}b−κ. The AEAD uses a permutation π (can
be the same Ascon permutation), modeled to be the random permutation while
we analyze its security.

Remark 3. While we define the mode for any τ ≤ κ < b, we call this LK-Ascon
(for Large Key Ascon) as this enables us to increase the key size from 128 bits to
upto 320 bits. Of particular interest is the variant with key size 256 bits (allowing
a 64-bit IV). We call this variant Ascon-256. Note that τ ≤ κ is necessary for
masking the full tag.

15

Encryption Algorithm. It receives an input of the form (N,A,M) ∈ {0, 1}ν×
{0, 1}∗×{0, 1}∗ and a key K ∈ {0, 1}κ. We divide the encryption algorithm into
the same three phases: (i) initialization, (ii) nonce, associated data and message
processing, and (iii) tag generation, run sequentially.

Initialization. In this phase, we first apply the following function

Initπ(K) = π(IV ∥K)⊕ (0b−κ∥K) := V0.

Note that the initialization process no longer takes the nonce N as an input.
Here, it is processed with the associated data in the next step.

Nonce, Associated Data and Message Processing. We first parse them:

(A1, . . . , Aa)
r← pad1(N,A), (M1, . . . ,Mm)

r← pad2(M).

Note that a cannot be zero here, as even if there is no associated data, the nonce
is parsed. As before, m ≥ 1. Using the XOR-function graph corresponding to

the function π⊕, we obtain a walk

V0
A1−→⊕ V1

A2−→⊕ · · ·
Aa−→⊕ Va, Va ⊕ 0∗1

M1−→⊕ Va+1 · · ·
Mm−1−→ ⊕ Va+m−1.

We define the ciphertext as follows:

Ci = ⌈Va+i−1⌉r ⊕Mi, ∀i ∈ [m], C = ⌈C1∥ · · · ∥Cm⌉|M |.

We denote the above process as

AM Procπ(V0, N,A,M)→
(
C,F := Vt−1 ⊕ (Mm∥0c)

)
.

Tag Generation. Finally, we compute

T := Tagπ(K,F) = ⌊π
(
F ⊕ (K∥0b−κ

)
⌋τ ⊕ ⌊K⌋τ

The LK-Ascon AEAD returns (C, T). A pictorial description of the encryp-
tion algorithm of LK-Ascon can be found in Fig. 4.

Decryption Algorithm. As before, our focus lies primarily on the verification
process itself, rather than the specific steps involved in message computation. On
receiving an input of the form (N,A,C, T) ∈ {0, 1}ν ×{0, 1}∗×{0, 1}∗×{0, 1}τ
and a key K ∈ {0, 1}κ, the steps of the verification process is outlined below: .

1. (A1, . . . , Aa)
r← pad1(N,A) and (C1, . . . , Cl)

r← pad2(C).

2. Compute V0 := Initπ(K).

3. Compute the walk for the permutation π

V0
A1−→⊕ V1

A2−→⊕ · · ·
Aa−→⊕ Va

4. Let Cl = C ′l∥10∗ for some C ′l (may be the empty string) and |C ′l | = d. Let
za = ⌊Va ⊕ 0∗1⌋c.

16

π
IV ∥K

+

0b−k∥K

Initπ(K)

V0

⌈V0⌉r

⌊V0⌋c

+

A1

π

⌈V1⌉r

⌊V1⌋c
π

+

Aa

⌈Va−1⌉r

π

⌊Va−1⌋c

⌈Va⌉r

⌊Va⌋c

⌈Va⌉r

⌊Va⌋c ⊕ 0c−1∥1

+

M1

π

C1

π

⌈Va+1⌉r

⌊Va+1⌋c

+

Mm−1

⌈Vt−2⌉r

π

⌊Vt−2⌋c

Cm−1

+

Mm

⌈Vt−1⌉r
⌈F ⌉r

⌊F ⌋c
⌊Vt−1⌋c

Cm

AM Procπ(V0, N,A,M)

π
F

+

K∥0b−κ

+

⌊K⌋τ

T|
⌊⌋τ

Tagπ(K,F)

Fig. 4. Encryption in LK-Ascon AEAD. The difference with conventional Ascon is
that there is no nonce at the input of Init. The nonce is parsed with the associated
data, and fed at the AM Proc step. Also, the key addition at the input of Tag is
K∥0b−κ, meaning even if κ ≤ c, it is xored at the rate part.

– Case l = 1: Define F = C ′l ∥ (⌊Va⌋b−d ⊕ 10∗1).

– Case l ≥ 2: Compute

za
C1−→ za+1

C2−→ · · · Cl−2−→ za+l−2

We define F = C ′l ∥ ⌊π(Cl−1∥za+l−2)⊕ 10∗⌋b−d.

5. Reject if T ̸= Tagπ(K,F), otherwise, accept.

17

Remark 4. The functions Initπ, AM Procπ and Tagπ are different for Ascon
and LK-Ascon. In fact, for the first two, even the domains are different. We have
intentionally reused the notations to emphasize the similarity in the processes
of the two AEAD modes.

5.1 Security bounds on LK-Ascon

We give two security bounds on Ascon: AEAD advantage for nonce-respecting
multi-user LK-Ascon, and authenticity advantage for nonce-misuse multi-user
LK-Ascon, along with their interpretations.

Theorem 3. Consider a nonce-respecting AEAD adversary A making qp per-
mutation queries, qe encryption queries with a total number of σe data blocks, and
qd decryption queries with a total number of σd data block. Define σ := σe + σd.
Then, we can upper bound the mu-AEAD advantage of A against LK-Ascon
as follows:

Advmu−AEAD
LK−Ascon(A) ≤ µ2

2κ
+

2qd
2τ

+
σ2
e

2b
+

σd(qp + σd)

2b
+

mcoll(σe, 2
r)(σd + qp)

2c

+
µ(qp + σ)

2κ
+

mcoll(qe, 2
τ)qd

2c
+

mcoll(σ + qp, 2
τ)qd

2κ

+
q2e + q2d + qeqd + (qe + qd)(σ + qp)

2b
+

ωr,κ(σ + qp)

2b
,

where

ωr,κ =

{
2qe, if r ≤ κ

qe +mcoll(qe, 2
r−κ) · 2r−κ otherwise

.

Interpretation of the Theorem. The first thing we would like our modified
construction to have is achieve the same security as Ascon when κ ≤ c (though
this necessitates a larger IV). Upon interpreting our bound within the context
of the NIST LWC requirements, it becomes evident that we maintain the same
level of security as previously, encompassing both a 128-bit rate and 192-bit rate,
as well as both a 64-bit tag and 128-bit tag.

Next, note that for any arbitrary κ, the above bound is of the order

O
(µqp
2κ

+
qd
2τ

+
qp
2c

+
σqp
2b

)
,

when interpreted with NIST parameters, which is the exact same as that of
multi-user AEAD security of conventional Ascon. Thus, LK-Ascon achieves
the same security as Ascon, while enabling an increase in key size of upto
320 bits. Particularly, we would like to note that Ascon-256 achieves the same
security as Ascon by just doubling the key size and keeping everything else
same (note that for other key sizes, we need to change the IV as well).

18

Theorem 4. Consider a possibly nonce-misusing authentication adversary A
making qp permutation queries, qe encryption queries with a total number of σe

data blocks, and qd decryption queries with a total number of σd data blocks.
Define σ := σe + σd. Then, we can upper bound the mu-auth advantage of A
against LK-Ascon as follows:

Advmu−auth
LK−Ascon(A) ≤ µ2

2κ
+

2qd
2τ

+
σ2
e

2c
+

σd(qp + σd)

2b
+

mcoll(σe, 2
r)(σd + qp)

2c

+
µ(qp + σ)

2κ
+

mcoll(qe, 2
τ)qd

2c
+

mcoll(σ + qp, 2
τ)qd

2κ

+
q2e + q2d + qeqd + (qe + qd)(σ + qp)

2b
+

ωr,κ(σ + qp)

2b
.

This shows that like Ascon, LK-Ascon too maintains authenticity under
nonce-misuse. In the next section, we give a proof overview of Theorem 3. The
proof of Theorem 4 is a straightforward extension, and we outline the sketch in
Appendix E.

5.2 Proof Overview of Theorem 3

The proof follows the structure outlined in Section 3.5 for Ascon. However,
there are notable differences, summarized as follows:

– The case κ = c does not result in key nullification because the positions where
keys are XOR-ed are distinct. This aspect simplifies the proof slightly.

– New challenges arise due to alterations in constraints. The nonce is now
processed with associated data, leading to the identical output of the ini-
tialization phase, V0, for each query to the same user. Additionally, if the
nonce spans more than one block, up to a certain point i, all Vi values can be
the same for two queries. This challenge is addressed by defining the longest
common prefix, especially for encryption queries.

– The analysis diverges depending on whether κ ≥ r. If κ ≥ r, the final block of
the ciphertext is fully masked by the key XOR in the input of the finalization
phase. Otherwise, if κ < r, the final ciphertext block is only partially masked.

A detailed proof is provided in Appendix D.

6 Conclusion

In this paper, we derived a multi-user security bound for the Ascon AEAD
mode, the winner of the recently concluded NIST LWC competition. This mode
follows a Sponge type of construction. Notably, the inclusion of a key XOR
operation during the tag generation phase allows us to derive a bound of the
following order:

µT

2κ
+

T

2c
+

D

2τ
+

DT

2b

19

where T is the time complexity and D is the data complexity of the adversary.
We also show that Ascon maintains this authenticity security even in the nonce
misuse setting, although confidentiality is not guaranteed.

Finally, we introduce a variant of Ascon, called LK-Ascon, which allows
an increase in key size, upto 320 bits. Notably, increasing the key size enhances
the security of Ascon in the multi-user seting in addition to providing better
security against quantum key recovery attacks utilizing Grover’s algorithm. Like
Ascon, LK-Ascon also maintains its authenticity security in the nonce misuse
setting.

Acknowledgements

Bishwajit Chakraborty is supported by the NRF-ANR project SELECT (“NRF-
2020-NRF-ANR072”). Mridul Nandi is partially supported by DRDO project.

References

BDPA11. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Du-
plexing the sponge: Single-pass authenticated encryption and other appli-
cations. In SAC, volume 7118 of Lecture Notes in Computer Science, pages
320–337. Springer, 2011.

BDPA12. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Permutation-based encryption, authentication and authenticated encryp-
tion. In DIAC 2012, 2012.

Ber05. Daniel J. Bernstein. The Poly1305-AES Message-Authentication Code. In
Henri Gilbert and Helena Handschuh, editors, FSE, volume 3557 of Lecture
Notes in Computer Science, pages 32–49. Springer, 2005.

Ber08a. Daniel J. Bernstein. Chacha, a variant of salsa20. Workshop Record of
SASC, 8:3–5, 2008.

Ber08b. Daniel J. Bernstein. The salsa20 family of stream ciphers. In Matthew
J. B. Robshaw and Olivier Billet, editors, New Stream Cipher Designs - The
eSTREAM Finalists, volume 4986 of Lecture Notes in Computer Science,
pages 84–97. Springer, 2008.

BN08. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm. J.
Cryptol., 21(4):469–491, 2008.

CDN23a. Bishwajit Chakraborty, Chandranan Dhar, and Mridul Nandi. Exact secu-
rity analysis of ASCON. In ASIACRYPT 2023, Proceedings, Part III, vol-
ume 14440 of Lecture Notes in Computer Science, pages 346–369. Springer,
2023.

CDN23b. Bishwajit Chakraborty, Chandranan Dhar, and Mridul Nandi. Exact secu-
rity analysis of ASCON. IACR Cryptol. ePrint Arch., page 775, 2023.

CJN20. Bishwajit Chakraborty, Ashwin Jha, and Mridul Nandi. On the security
of sponge-type authenticated encryption modes. IACR Transactions on
Symmetric Cryptology, pages 93–119, 2020.

Com14. The CAESAR Committee. Caesar: competition for authenticated encryp-
tion: security, applicability, and robustness, 2014.

20

CS14. Shan Chen and John P. Steinberger. Tight security bounds for key-
alternating ciphers. In Advances in Cryptology - EUROCRYPT 2014. Pro-
ceedings, pages 327–350, 2014.

DEMS14. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. ASCON v1. Submission to the CAESAR Competition, 2014.

DEMS19. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. ASCON. Submission to NIST LwC Standardization Process (FI-
NALIST), 2019.

DNT19. Avijit Dutta, Mridul Nandi, and Suprita Talnikar. Beyond birthday bound
secure MAC in faulty nonce model. In EUROCRYPT Proceedings, Part
I, volume 11476 of Lecture Notes in Computer Science, pages 437–466.
Springer, 2019.

ML23. Bart Mennink and Charlotte Lefevre. Generic security of the ascon mode:
On the power of key blinding. IACR Cryptol. ePrint Arch., page 796, 2023.

MN17. Bart Mennink and Samuel Neves. Encrypted davies-meyer and its dual:
Towards optimal security using mirror theory. In Advances in Cryptology -
CRYPTO 2017. Proceedings, Part III, pages 556–583, 2017.

MV04. David A. McGrew and John Viega. The security and performance of the
galois/counter mode (GCM) of operation. In INDOCRYPT, volume 3348
of Lecture Notes in Computer Science, pages 343–355. Springer, 2004.

NIS18. NIST. Submission requirements and evaluation criteria for the
Lightweight Cryptography Standardization Process, 2018. https:

//csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/

documents/final-lwc-submission-requirements-august2018.pdf.
Pat91. Jacques Patarin. Etude des Générateurs de Permutations Pseudo-aléatoires

Basés sur le Schéma du DES. PhD thesis, Université de Paris, 1991.
Pat08. Jacques Patarin. The “coefficients H” technique. In Selected Areas in Cryp-

tography - SAC 2008. Revised Selected Papers, pages 328–345, 2008.
SCM08. Joseph Salowey, Abhijit Choudhury, and David A. McGrew. AES galois

counter mode (GCM) cipher suites for TLS. RFC, 5288:1–8, 2008.

21

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

A Graph Structures for Functions

The details of this section are thoroughly discussed in [CDN23a]. We provide
a summary here as we will refer to the randomized extension algorithms in
subsequent discussions.

A.1 Partial Function Graph

A partial function L : {0, 1}b 99K {0, 1}c is a subset L = {(p1, q1), . . . , (pt, qt)} ⊆
{0, 1}b×{0, 1}c with distinct pi values. An injective partial function has distinct
qi values. Define

domain(L) = {pi : i ∈ [t]}, range(L) = {qi : i ∈ [t]}.

We write L(pi) = qi and for all p ̸∈ domain(L), L(p) = ⊥.
For f : {0, 1}b 99K {0, 1}b, c ∈ [b − 1], define ⌊f⌋c : {0, 1}b 99K {0, 1}c such

that ⌊f⌋c(x) = ⌊f(x)⌋c when f(x) ̸= ⊥.

Definition 3. Let L : {0, 1}b 99K {0, 1}c for r := b − c > 0. Define a labeled
directed graph G := GL, called (labeled) partial function graph, over

V := ⌊domain(L)⌋c ∪ range(L) ⊆ {0, 1}c

with labels {0, 1}r and edges

E(G) := {u x−→ v | L(x∥u) = v}.

We call it (labeled) function graph if L is known to be a function.

We write a walk
u0

x1−→ u1
x2−→ · · · xl−1−→ ul−1

xl−→ ul

simply as u0
xl

−→ ul. If u
x−→ v1 and u

x−→ v2, then v1 = v2.

A.2 Sampling Process of a Labeled Walk

Let f : {0, 1}b 99K {0, 1}b, x := (x1, . . . , xk) be a k-tuple label, k ≥ 0, and
z0 ∈ {0, 1}c. Define a process

Rand Extnf (z0, x
k),

which extends f to complete the walk.

1. Initialize f ′ = f .
2. For j = 1 to k:

(a) vj = f ′(xj , zj−1).
(b) If vj = ⊥:

– vj
$← {0, 1}b.

22

– f ′ ← f ′ ∪ {(xj∥zj−1, vj)}.
(c) zj = ⌊vj⌋c.
Similarly, we can define a randomized extension algorithm for P⊕, denoted

as xorRand ExtnP(v0, x
k), v0 ∈ {0, 1}b, xi ∈ {0, 1}r.

1. Initialize P ′ = P.
2. For j = 1 to k:

(a) vj = P ′(vj−1 ⊕ (xj∥0c)).
(b) If vj = ⊥:

– vj
$← {0, 1}b.

– P ′ ← P ′ ∪ {vj−1 ⊕ (xj∥0c), vj)}
After this process, obtain a modified partial function P ′ : {0, 1}b 99K {0, 1}b
with the walk

v0
x1−→⊕ v1

x2−→⊕ · · ·
xk−1−→⊕ vk−1

xk−→⊕ vk.

B Proof of Theorem 1

Since we employ the H-coefficient technique for the proof, we first need to de-
scribe the real and ideal worlds.

Description of the Real World

The real-world samples µ keys K1, . . . ,Kµ
$← {0, 1}κ and a random permutation

Π. All queries are then responded to honestly following Ascon AEAD as defined
above (including direct primitive queries to Π). A transcript in the real world is
of the form

Θre,on =
(
(ui,Ni,Ai,Mi,Ci,Ti)i∈[qe], (u′i,N

′
i,A
′
i,C
′
i,T
′
i,M

′
i)i∈[qd], P

)
,

where ui, u
′
i represent user numbers for encryption and decryption queries, and

P represents the query responses for primitive queries (represented in terms of
the partial function for Π). When the i-th decryption query is rejected we write
M ′i = rej (we keep this as one of the necessary conditions for a good transcript
in the ideal world).

Once all queries have been executed, every input-output pair utilized in Π
for both encryption and decryption queries is incorporated into the offline tran-
script. Let Pfin represent the extended partial function, and it is evident that all
encryption and decryption queries are determined by Pfin. It is essential to note
that the keys K1, . . . ,Kµ are also determined from the domain of Pfin. Implicitly,
the domain and range elements of Pfin are presented in the order of the execution
of the underlying permutation to compute all encryption and decryption queries.
Let

Θre =
(
(ui,Ni,Ai,Mi,Ci,Ti)i∈[qe], (u′i,N

′
i,A
′
i,C
′
i,T
′
i,M

′
i)i∈[qd], Pfin

)
denote the extended real world transcript. For any real world realizable transcript
θ =

(
(ui, Ni, Ai,Mi, Ci, Ti)i∈[qe], (u′i, N

′
i , A
′
i, C
′
i, T
′
i ,M

′
i)i∈[qd], Pfin

)
,

Pr(Θre = θ) = Pr(Pfin ⊆ Π) = 1/(2b)|Pfin|.

23

Description of the Ideal World

We now elaborate on how the ideal oracle interacts with the adversary A . This
depiction consists of two main phases: (i) the online phase, covering the ac-
tual interaction between the adversary and the ideal oracle, and (ii) the offline
phase, occurring subsequent to the online phase, where the ideal oracle samples
intermediate variables to ensure compatibility with the Ascon construction.

The offline phase is further divided into multiple stages, each contingent on
events defined over the preceding stages. In the case of a bad event occurring at
any stage, the ideal oracle has the flexibility to either abort or exhibit arbitrary
behavior. To facilitate a comprehensive analysis, we aim to establish an upper
bound on the probability of all such bad events. Consequently, at any given
stage, we assume that all prior bad events have not occurred. To streamline
notation, we employ the same symbols for the transcripts in both the real and
ideal worlds.

Online Phase. The adversary can make three types of queries in an interleaved
manner without any repetition: (i) encryption queries (ii) decryption queries, and
(iii) primitive queries.

– On i-th Encryption Query (ui,Ni,Ai,Mi), ∀i ∈ [qe], respond ran-
domly:

Ci
$← {0, 1}|Mi|, Ti

$← {0, 1}τ , return(Ci,Ti).

– On i-th Decryption Query (u′i,N
′
i,A
′
i,C
′
i,T
′
i), i ∈ [qd], reject straight-

away: Ideal oracle returns rej for all decryption queries (here we assume that
the adversary does not make any decryption query that is obtained from a
previous encryption query).

– On i-th Primitive Query (Qi, diri) ∈ {0, 1}b × {+1,−1}, i ∈ [qp], re-
spond honestly: We maintain a list P of responses of primitive queries,
representing the partial (injective) function of a random permutation Π. Ini-
tially, P = ∅.
1. If diri = +1, we set Ui = Qi. Let Vi

$← {0, 1}b \ range(P), P ← P ∪
{(Ui,Vi)}, return Vi.

2. If diri = −1, we set Vi = Qi. Let Ui
$← {0, 1}b \ domain(P), P ← P ∪

{(Ui,Vi)}, return Ui.

After all queries have been made we denote the online transcript (visible to
the adversary) as

Θid,on =
(
(ui,Ni,Ai,Mi,Ci,Ti)i∈[qe], (u′i,N

′
i,A
′
i,C
′
i,T
′
i, rej)i∈[qd], P

)
.

Bad Event. We set bad1 = 1, if

(ui,Ni,Ai,Ci,Ti) = (u′j ,N
′
j ,A
′
j ,C
′
j ,T
′
j), i ∈ [qe], j ∈ [qd]

for which the encryption query is made later. It is crucial to highlight that
the adversary is prohibited from making a decryption query that matches a

24

previous encryption query. However, there exists a possibility that a decryption
query accidentally matches a subsequently made encryption query, termed a
“bad event”, which requires attention. Given that the adversary can make only
nonce-respecting encryption queries, we can establish an upper bound for the
probability of bad1 as provided in the following lemma.

Lemma 3. Pr(bad1 = 1) ≤ qd
2τ

.

The proof follows trivially since we need to match the tag for some decryption
query.

Offline Phase. The offline phase is divided into three main stages, performed
sequentially: (i) setting internal states of encryption queries, (ii) setting internal
states of decryption queries, and (iii) sampling a key, and verifying compatibility
with the online phase.

First, we set the input-output pairs for all permutations used in processing
associated data and message part of each encryption query. For i ∈ [qe] (i.e., for
i-th encryption query) we perform the following:

1. We first parse all data we have in the online transcript.

(Ai,1, . . . ,Ai,ai)
r← pad1(Ai)

(Mi,1, . . . ,Mi,mi
)

r←∗ Mi

(Ci,1, . . . ,Ci,mi
)

r←∗ Ci

2. Let ti = ai +mi, di = |Mi,mi | = |Ci,mi |. We now sample

Vi,0, . . . ,Vi,ai−1
$← {0, 1}b

Zi,ai
, . . . ,Zi,ti−1

$← {0, 1}c, δ∗i
$← {0, 1}r−di

The values of Vi,j would determine all inputs and outputs for associate data
processing. Similarly, Ci,Zi,j , δ

∗
i would determine the input and outputs for

message processing.

3. We now set all inputs and outputs of the permutation used in associate data
and message processing. Note that while ai = 0 is possible, mi ≥ 1.

If ai > 0, we define the following:
– Ui,j = Vi,j−1 ⊕ (Ai,j∥0c), ∀j ∈ [ai].

– Vi,ai
= (Ci,1 ⊕Mi,1)∥Zi,ai

.

If mi ≥ 2:
– Ui,ai+1 = Ci,1∥(Zi,ai

⊕ 0c−11).

– Ui,ai+j = Ci,j∥Zi,ai+j−1, 2 ≤ j ≤ mi − 1.

– Vi,ai+j = (Ci,j+1 ⊕Mi,j+1)∥Zi,ai+j−1, ∀j ∈ [mi − 2].

– Vi,ti−1 = (Ci,mi ⊕Mi,mi)∥δ∗i ∥Zi,ti−1.

25

– Fi = Ci,mi
∥δ∗i ∥Zi,ti−1.

Otherwise:
– Fi = Ci,m1

∥δ∗1∥(Zi,ai
⊕ 0c−11).

We define PE to be the partial function mapping Ui,j to Vi,j for all i ∈ [qe],
j ∈ [ti − 1], provided all Ui,j ’s are distinct. In this case, it is easy to see that

Vi,0
Ai,1−→⊕ Vi,1

Ai,2−→⊕ · · ·
Ai,ai−→⊕ Vi,ai

;

Vi,ai ⊕ 0b−11
Mi,1−→⊕ Vi,ai+1 · · ·

Mi,mi−1−→ ⊕ Vi,ti−1.

Moreover, PE would be an injective partial function if Vi,j ’s are all distinct.

Bad Event (PE is Not an Injective Partial Function). We set

1. bad2 = 1 if for some (i, j) ̸= (i′, j′), either Ui,j = Ui′,j′ or Vi,j = Vi′,j′ ,
2. bad3 = 1 if for some i ̸= i′ ∈ [qe], Fi = Fi′ (if this happens then it would

force Ti = Ti′ to hold).

Lemma 4. Pr(bad2 = 1 ∨ bad3 = 1) ≤ σ2
e

2b
.

Proof. Vi,j ’s are randomly sampled and Ui,j ’s are defined through a bijective
mapping of Vi,j−1 values. The same applies to Fi values. Given that we have
at most

(
σe

2

)
choices for inputs and outputs, we get the above bound by simply

using the union bound. □

Contingent on the condition that none of the aforementioned bad events
occur, we would like to set the input-output pairs for all permutations used in
associated data and ciphertext processing for all decryption queries. Here, we
only use P to run the randomized extension. Later, we set a bad event if it is
not disjoint (both from the domain and the range) with PE. This would ensure
the compatibility of P1 ⊔ PE (where P1 is the randomized extension of P) and
would also help later in upper bounding the forging probability of a decryption
query. For i ∈ [qd] (i.e., for the i-th decryption query) with ti ≥ 2, we perform
the following:

We first parse all data as we have done for encryption queries:

(A′i,1, . . . ,A
′
i,a′

i
)

r← pad1(A
′
i)

(C′i,1, . . . ,C
′
i,ci)

r←∗ C′i

Let t′i = a′i + ci, d
′
i = |Ci,ci |. Now, we define pi indicating the length of the

longest common prefix with an encryption query.

Definition of pi, i ∈ [qd].

1. If there does not exist any j ∈ [qe] such that (uj ,Nj) = (u′i,N
′
i), we define

pi = −1.

26

2. Otherwise, there exists a unique j for which (uj ,Nj) = (u′i,N
′
i) (since the

adversary is nonce-respecting and hence every nonce in encryption queries to
the same user is distinct). Define pi denote the length of the largest common
prefix of
– (A′i,1, . . . , (A

′
i,a′

i
, ∗),C′i,1, . . . ,C′i,ci) and

– (Aj,1, . . . , (Aj,aj
, ∗),Cj,1, . . . ,Cj,mi

).
Here ∗ is used to distinguish associate data blocks and ciphertext blocks.

Now, for each i ∈ [qd], depending on the value of pi, we perform the following:

Associated Data and Ciphertext Processing.

1. For i = 1 to qd with pi = −1:
– If (u′i,N

′
i) = (u′j ,N

′
j) for some j ∈ [i− 1], V′i,0 := V′j,0. Otherwise, V′i,0

$←
{0, 1}b.

– If a′i > 0, run xorRand ExtnP (V′i,0, (A
′
i,1, . . . ,A

′
i,a′

i
)) to obtain a walk

V′i,0
A′
i,1−→⊕ V′i,1

A′
i,2−→⊕ · · ·

A′
i,a′

i−→⊕ V′i,a′
i
.

– If ci > 1, run Rand ExtnP (V′i,ai
⊕ 0∗1,C′i,1∥ . . . ∥C′i,ci−1) to obtain a walk

V′i,a′
i
⊕ 0∗1

C′
i,1−→ V′i,a′

i+1

C′
i,2−→ · · ·

C′
i,ci−1−→ V′i,a′

i+ci−1.

2. For i = 1 to qd with 0 ≤ pi ≤ a′i:

– V′i,pi
:= Vj,pi

, where j ∈ [qe] such that (u′i,N
′
i) = (u′j ,N

′
j).

– If a′i > pi, run xorRand ExtnP (V′i,pi
, (A′i,pi+1, . . . ,A

′
i,a′

i
)) to obtain a walk

V′i,pi

A′
i,pi+1−→ ⊕ V′i,pi+1

A′
i,pi+2−→ ⊕ · · ·

A′
i,a′

i−→⊕ V′i,a′
i
.

– If ci > 1, run Rand ExtnP (V′i,ai
⊕ 0∗1,C′i,1∥ . . . ∥C′i,ci−1) to obtain a walk

V′i,a′
i
⊕ 0∗1

C′
i,1−→ V′i,a′

i+1

C′
i,2−→ · · ·

C′
i,ci−1−→ V′i,a′

i+ci−1.

3. For i = 1 to qd with a′i < pi < ti − 1:

– V′i,pi
:= Vj,pi

, where j ∈ [qe] such that (u′i,N
′
i) = (u′j ,N

′
j).

– If pi < ti − 1, run Rand ExtnP (V′i,pi
,C′i,pi−a′

i+1∥ . . . ∥C′i,ci−1) to obtain a

walk

V′i,pi

C′
i,pi−a′

i
+1

−→ V′i,pi+1

C′
i,pi−a′

i
+2

−→ · · ·
C′
i,ci−1−→ V′i,a′

i+ci−1.

4. For i = 1 to qd with pi = ti − 1:

– V′i,a′
i+ci−1 := Vj,a′

i+ci−1, where j ∈ [qe] such that (u′i,N
′
i) = (u′j ,N

′
j).

27

For all the cases above, we define

F′i =

{
C′i,ci∥10

∗∥⌊V′i,a′
i+ci−1⌋c if ci ≥ 2

C′i,ci∥10
∗∥(⌊V′i,a′

i+ci−1⌋c ⊕ 0c−11) if ci = 1
.

Note that for each i ∈ [qd], P is updated by both the randomized extension
algorithms, and although we start with a permutation, the resulting extended
function P1 need not be injective.

Bad Event (P1 is Not an Injective Partial Function). We define
bad4 = 1 if there exist (X,Y) and (X ′, Y ′) in the set P1 such that Y = Y ′. It is
important to note that P is an injective partial function, and thus this bad event
can only occur when at least one of the values Y or Y ′ is obtained during the
offline phase. Considering that both inputs and outputs are uniformly sampled,
the probability of bad4 can be straightforwardly bounded using the union bound.

Lemma 5. Pr(bad4 = 1) ≤ σd(qp + σd)

2b
.

Bad Event (Permutation Compatibility of PE and P1). We now set
bad5 = 1 if

domain(P1) ∩ domain(PE) ̸= ∅ or range(P1) ∩ range(PE) ̸= ∅.

Given that this bad event does not hold, PE ⊔ P1 is an injective partial function
that is desired for a random permutation.

Lemma 6. Pr(bad5 = 1) ≤ mcoll(σe, 2
r)× (σd + qp)

2c
.

Proof. Let ρ1 (and ρ2) denote the multicollision on the values of ⌈x⌉r, for all
x ∈ domain(PE) (and for all x ∈ range(PE) respectively). Then, by the random-
ness of the randomized extension process and randomized xor-extension process,
Pr(bad5 = 1 | max{ρ1, ρ2} = ρ) ≤ ρ(σd + qp)/2

c. Hence, using the expectation
of max{ρ1, ρ2}, and applying Lemma 1 and Remark 2, we get the above bound.
□

Bad Event (Correctly Forging). We now set bad events whenever we
have a correct forging in the ideal world based on the injective partial function
P2 := P1 ⊔ PE constructed so far. We set bad6 = 1 if

(F′i,T
′
i) = (Fj ,Tj), i ∈ [qd], j ∈ [qe].

This is similar to bad3 as this would force a decryption query to be valid.

Lemma 7. Pr(bad6 = 1) ≤ mcoll(qe, 2
τ)qd

2c
.

28

Proof. We divide this into two cases. First, consider pi = t′i − 1 and T′i = Tj .
Then F′i ̸= Fj , and hence bad6 does not occur.

Next, we assume pi ̸= t′i−1. Let ρ3 denote the number of multicollision of Tj

values. By using the randomness of Zj,ti−1 and using the multicollision we have,
Pr(bad6 = 1 | ρ3 = ρ) ≤ ρqd

2c . Hence, using the expectation of ρ3, and applying
Lemma 1, we have the above bound. □

Now, we reach the time to sample the keys K1,K2, . . .Kµ
$← {0, 1}κ. For

each Ki, let Ki = (Ki,1,Ki,2) where Ki,2 ∈ {0, 1}τ .

Bad Event (Key-Collision). We set bad7 = 1 when the keys of two users
collide. It is easy to prove the following lemma:

Lemma 8. Pr(bad7 = 1) ≤ µ2

2κ
.

Let

J = {j ∈ [qd] : (u
′
j ,N
′
j) ̸= (ui,Ni) ∀i ∈ [qe]}.

Now, we can define the input-outputs for the underlying permutation used in
the initialization phase as follows:

1. For all i ∈ [qe],

Ii := IV ∥Kui∥Ni, Oi :=

{
Vi,0, if κ = c and ti = 1

Vi,0 ⊕ 0b−κ∥Kui , otherwise

2. For all j ∈ J ,

I′j := IV ∥K ′uj∥N
′
j , O′j :=

{
V′j,0, if κ = c and tj = 1

V′j,0 ⊕ 0b−κ∥K ′uj , otherwise

3. For all other j ∈ [qd], there exists i ∈ [qe] such that (u′j ,N
′
j) = (ui,Ni), and

we define I′j := Ii, O
′
j := Oi.

Here, Kui and K ′uj corresponds to the key of users ui and u′j respectively.

Define Pinit =
(
(Ii,Oi)i∈[qe], (I′j ,O

′
j)j∈J

)
.

Bad Event (Permutation Compatibility of Pinit and P2). We define
bad8 = 1 if one of the following holds:

1. Ii, I
′
j ∈ domain(P2) for some i ∈ [qe], j ∈ [qd].

2. Oi = Oj for i, j ∈ [qe] or O
′
i = O′j for i, j ∈ [qd] such that (u′j ,N

′
j) ̸= (u′i,N

′
i).

3. Oi = O′j for i ∈ [qe] and j ∈ [qd] such that (ui,Ni) ̸= (u′j ,N
′
j).

4. Oi,O
′
j ∈ range(P2) for some i ∈ [qe], j ∈ [qd].

Lemma 9. Pr(bad8 = 1) ≤ µ(qp + σ)

2κ
+

q2e + q2d + qeqd + (qe + qd)(σ + qp)

2b
.

29

Proof. In the first case, since the IV and the nonce are in adversarial control,
for Ii or I

′
j to be in the domain of P2, a key must collide with the (b−κ−ν+1)-th

to the (b− ν)-th bit of an element of the set domain(P2). Since there are µ keys,

and the size of P2 is (qp+σ), the probability of this event is bounded by
µ(qp+σ)

2κ .
In the second case, if either κ < c, or both ti ̸= 1, tj ̸= 1, then Oi = Oj

implies Vi,0 ⊕ 0b−κ∥Kui
= Vj,0 ⊕ 0b−κ∥Kuj

. For fixed i, j, this happens with
probability at most 1/2b. The same can be easily verified if one or both of ti
and tj is 1 and κ = c. Hence, the probability that Oi = Oj occurs for some

i, j ∈ [qe] is
q2e
2b
. A similar analysis holds when we consider the decryption queries

with different nonces, and we get the probability
q2d
2b
.

The analysis of the third case is similar to that of the second case, and since
we consider a match between encryption and decryption queries, this happens
with probability qeqd

2c .
The last case considers a full state match between the outputs of (qe + qd)

encryption or decryption queries, and the range of (σ+qp) elements of P2. Hence,
we get the required bound. □

Define P3 := P2 ⊔ Pinit. Now, we settle tag computation for all encryption
queries. Note that the user is already specified by setting the initialization phase,
and hence we can work with a single key K. For all i ∈ [qe], we define Xi :=

Fi ⊕ (0r∥K∥0c−κ), Yi := αi∥(Ti ⊕ K2), where αi
$← {0, 1}b−τ . Define Ptag =(

(Xi,Yi)i∈[qe]
)
.

Bad Event (Permutation Compatibility of Ptag and P3). We define
bad9 = 1 if either of the following holds:

1. domain(Ptag) ∩ domain(P3) ̸= ∅, or
2. range(Ptag) ∩ range(P3) ̸= ∅.

Given this bad event does not hold, P4 := P3⊔Ptag is once again an injective
partial function.

Lemma 10. Pr(bad9 = 1) ≤ mcoll(qe, 2
r+c−κ)(σ + qp)

2κ
+

qe(σ + qp)

2b
.

Proof. We divide this into two cases, depending on whether κ = c or not. If κ < c,
let λi = ⌈Fi⌉r||⌊Fi⌋c−κ = ⌈Xi⌉r||⌊Xi⌋c−κ. Let ρ4 denote the multicollision of λi

values. Then, by the randomness of K and using the multicollision, we have

Pr(domain(Ptag)∩domain(P3) ̸= ∅ | ρ4 = ρ) ≤ ρ(σ+qp)
2κ . So, using the expectation

of ρ4, and using Remark 2, we have

Pr(domain(Ptag) ∩ domain(P3) ̸= ∅) ≤
mcoll(qe, 2

r+c−κ)(σ + qp)

2κ
.

in this case.
If κ = c, let Ωi = {Xi ∈ domain(Ptag) | ti = 1}. It is enough to bound Pr(Ωi∩

domain(P3) ̸= ∅). Let λi = ⌈Fi⌉r = ⌈Xi⌉r. Let ρ5 denote the multicollision of
λi values. Then, by the randomness of ⌊Fi⌋c = ⌊Vi,0⌋c ⊕ 0∗1 and using the

30

multicollision, we have Pr(Ωi ∩ domain(P3) ̸= ∅ | ρ5 = ρ) ≤ ρ(σ+qp)
2c . So, using

the expectation of ρ5, and using Remark 2, we have

Pr(Ωi ∩ domain(P3) ̸= ∅) ≤
mcoll(qe, 2

r)(σ + qp)

2c
.

Using the randomness of αi and K, it can be easily seen that

Pr(range(Ptag) ∩ range(P3) ̸= ∅) ≤
qe(σ + qp)

2b
.

Hence, we get the above bound. □

Finally, we settle the tag computation of all decryption queries and we set
bad whenever a valid forgery occurs. For all i ∈ [qd], we define

X′i :=

{
F′i, if κ = c and ti = 1

F′i ⊕ (0r∥K∥0c−κ), otherwise

If X′i ∈ domain(P4) then we define Y′i = P4(X
′
i). Else, Y

′
i

$← {0, 1}b.

Bad Event (Decryption Queries are Not Rejected). We divide this into
two cases depending on whether X′i ∈ domain(P4) or not:

– We set bad10 = 1 if

∃i ∈ [qd], X′i ∈ domain(P4) ∧ ⌊P4(X
′
i)⌋τ ⊕K2 = T′i.

Again, we first consider the case κ < c. Let F′i = (β′i∥γ′i∥δ′i), where |β′i| =
r + κ− τ , |γ′i| = τ and |δ′i| = c− κ. If bad10 = 1, then
(i) for some (xj∥yj∥zj) ∈ domain(P4), X

′
i = (xj∥yj∥zj), |xj | = r + κ − τ ,

|yj | = τ and |zj | = c− κ, and
(ii) yj ⊕ wj = T′i ⊕ γ′i where wj = ⌊P4(xj∥yj∥zj)⌋τ .
Let ρ6 denote the multicollision on the values of (ya ⊕wa)a varying over all
elements of P4. Hence, the number of choices of j is at most ρ6. Then, by
the randomness of K,

Pr(bad10 = 1 | ρ6 = ρ) ≤ ρqd
2κ

.

Now, coming to the κ = c case, we only need to consider the case when
t′i = 1, otherwise the above proof applies. For a fixed i ∈ [qd] such that
t′i = 1, Pr(X′i ∈ domain(P4)) ≤ (σ + qp)/2

c. Now, given X′i ∈ domain(P4),
Pr(⌊P4(X

′
i)⌋τ ⊕K2 = T′i) = 1/2τ . Taking union bound, and using the expec-

tation of ρ6 for the κ < c case, we have

Lemma 11. Pr(bad10 = 1) ≤ mcoll(σ + qp, 2
τ)qd

2κ
+

qd(σ + qp)

2c+τ
.

– X′i /∈ domain(P4). Let yi = ⌊Y′i⌋τ . We set bad11 = 1 if there exists i ∈ [qd]
such that yi ⊕K2 = T′i. By the randomness of yi, we have

31

Lemma 12. Pr(bad11 = 1) ≤ qd
2τ

.

Let bad denote the union of all bad events, namely ∪11i=1badi. By Lemmas 3
through 12, we have shown that

Pr(bad = 1) ≤ µ2

2κ
+

2qd
2τ

+
σ2
e

2b
+

σd(qp + σd)

2b
+

mcoll(σe, 2
r)(σd + qp)

2c

+
µ(qp + σ)

2κ
+

mcoll(qe, 2
τ)qd

2c
+

mcoll(σ + qp, 2
τ)qd

2κ

+
q2e + q2d + qeqd + (qe + qd)(σ + qp)

2b
+

qe(σ + qp)

2b

+
mcoll(qe, 2

r+c−κ)(σ + qp)

2κ
+

qd(σ + qp)

2c+τ
.

If all these bad events do not occur, then all the decryption queries are
correctly rejected for the injective partial function P4.

Let Pfin := P4 ∪
(
(X′i,Y

′
i)i∈[qd]

)
. In the offline transcript, we provide all the

input-outputs of Pfin. Then,

Θid =
(
(ui,Ni,Ai,Mi,Ci,Ti)i∈[qe], (u′i,N

′
i,A
′
i,C
′
i,T
′
i, rej)i∈[qd], Pfin

)
.

Let θ be a good transcript (no bad events occur). Note that we sample either
inputs or outputs of Pfin \ P uniformly. Thus,

Pr(Θid = θ) = Pr(P ⊆ Π)× 2−b(|Pfin|−|P|) ≤ 1/(2b)|Pfin| = Pr(Θre = θ)

By using the H-coefficient technique, we complete the proof of Theorem 1.

C Proof of Theorem 2

We highlight the parts where it differs from the proof of Theorem 1. We reuse
bad event numbers for easier understanding.

The description of the real world is exactly the same as in the nonce respect-
ing setting.

Description of the Ideal World Online phase. On i-th encryption query
(ui,Ni,Ai,Mi), parse Ai and Mi and determine the longest common prefix pi as
follows:

1. If there does not exist any j ∈ [i− 1] such that (uj ,Nj) = (ui,Ni), we define
pi = −1.

2. Otherwise, there exists at least one j for which (uj ,Nj) = (ui,Ni) (since the
adversary can misuse nonces). For each such j, let pi,j denote the length of
the largest common prefix of
– (Ai,1, . . . , (Ai,ai

, ∗),Mi,1, . . . ,Mi,mi
) and

– (Aj,1, . . . , (Aj,aj
, ∗),Mj,1, . . . ,Mj,mj

).
Here ∗ is used to distinguish associate data blocks and message blocks.
Finally define pi = maxj<i pi,j .

32

If pi ≤ ai, respond randomly:

Ci,j
$← {0, 1}r ∀j ∈ [mi], Ti

$← {0, 1}τ , return(Ci := ⌈Ci,1∥ · · · ∥Ci,mi
⌉Mi

,Ti).

If pi > ai, set Ci,j = Ci′,j for j ≤ pi − ai (where i′ ∈ [i− 1] is the query with
the longest common prefix) and Ci,pi+1 = Mi,pi+1⊕Mi′,pi+1⊕Ci′,pi+1. The rest
of the ciphertext blocks and the tag are defined randomly. Finally,

return(Ci := ⌈Ci,1∥ · · · ∥Ci,mi
⌉Mi

,Ti).

Decryption and primitive queries are handled as before, i.e. decryption queries
are rejected straightaway and primitive queries are responded to faithfully. The
event bad1 and its bound are also the same as before.

Offline phase. (i) Setting internal states of encryption queries: Unlike the
single user nonce-respecting setting, here we have three cases. Note that all the
data are already parsed, and hence we begin directly at Step 2 (of the nonce-
respecting setting).

– If pi = −1, proceed exactly as in the nonce-respecting setting.
– If pi < ai, Vi,j = Vi′,j for all j ∈ [0, pi], where i′ ∈ [i− 1] is the query index

with maximum common prefix. The rest of the Vi,j , Zi,j and δ∗i are defined
randomly as before.

– If ai ≤ pi < ti, Vi,j = Vi′,j for all j ∈ [0, ai], Zi,j = Zi′,j for all j ∈
[ai + 1, pi + 1], where i′ ∈ [i− 1] is the query index with maximum common
prefix. The rest of the Zi,j and δ∗i are defined randomly as before.

Step 3 is exactly the same as the nonce-respecting setting. Again, we define
PE to be the partial function mapping Ui,j to Vi,j for all i ∈ [qe], j ∈ [ti − 1],
provided all Ui,j ’s are distinct.

The events bad2 and bad3 differ a bit a bit from before. Since a nonce-misuse
adversary can force any desired value to the outer part of a permutation call, the
probability of the union of events bad2 and bad3 is bounded by σ2

e/2
c, instead

of σ2
e/2

b as in the nonce-respecting scenario.
(ii) Setting internal states of decryption queries: This process is also similar to

that of the the nonce-respecting setting. The only exception is that the length
of the longest common prefix pi needs to be defined as in the nonce-misuse
encryption case above, since more than one encryption query can have the same
nonce. Even after this small change in definition, it can be easily verified that
the bad events bad4 through bad6 and their proofs are also the same as the
nonce-respecting case.

(iii) Sampling keys and verifying compatibility with the online phase: This
process is also similar to the multi-user nonce-respecting scenario. We have the
same bad event bad7 with the same bound.

For all i ∈ [qe] and j ∈ [qd], Ii and I′j are defined exactly as in the nonce-
respecting case. Note that for i, j ∈ [qe], we can have (ui,Ni) = (uj ,Nj), resulting
in Ii = Ij , but then Vi,0 = Vj,0 which implies Oi = Oj , and thus we do not have

33

any inconsistency in the definitions. Hence, the event bad8 can be defined as the
same as above and we have the same upper bound.

Now, coming to the finalization, for i, j ∈ [qe], Fi ̸= Fj even if (ui,Ni) =
(uj ,Nj) and hence, the bad9 can be defined as above. The events bad10 and
bad11 are also the same as above including their bounds. We can then define bad
as the union of events bad1 through bad11.

Thus, we again have an ideal world transcript

Θid =
(
(ui,Ni,Ai,Mi,Ci,Ti)i∈[qe], (u′i,N

′
i,A
′
i,C
′
i,T
′
i, rej)i∈[qd], Pfin

)
.

In setting too, note that any good transcript θ ∈ Θid, we sample either inputs
or outputs of Pfin \ P uniformly. Thus,

Pr(Θid = θ) = Pr(P ⊆ Π)× 2−b(|Pfin|−|P|) ≤ 1/(2b)|Pfin| = Pr(Θre = θ)

By using the H-coefficient technique, we complete the proof.

D Proof of Theorem 3

The proof structure follows the proof of Theorem 1. However, since the encryp-
tion and verification algorithms differ slightly, we present the full proof. As we
have done throughout, we reuse bad event notations, and omit proofs of state-
ments already proved above if the proofs are also same.

Description of the Real World: The real-world samples K1, . . . ,Kµ
$←

{0, 1}κ and a random permutation Π. All queries are then responded to hon-
estly following LK-Ascon AEAD as defined above (including direct primitive
queries to Π). After all queries have been made, all inputs-outputs used in Π for
all encryption and decryption queries are included in the offline transcript. Let
P represent the query responses for primitive queries (represented in terms of
the partial function for Π), and let Pfin denote the extended partial function. Let

Θre =
(
(ui,Ni,Ai,Mi,Ci,Ti)i∈[qe], (u′i,N

′
i,A
′
i,C
′
i,T
′
i,M

′
i)i∈[qd], Pfin

)
denote the extended real world transcript.

For any real world realizable transcript θ,

Pr(Θre = θ) = Pr(Pfin ⊆ Π) = 1/(2b)|Pfin|.

Description of the Ideal World: The ideal world is again divided into two
phases: the online phase, and the offline phase.

Online Phase. The adversary can make three types of queries in an interleaved
manner without any repetition: (i) encryption queries (ii) decryption queries, and
(iii) primitive queries.

34

– On i-th encryption query (ui,Ni,Ai,Mi), ∀i ∈ [qe], respond randomly.

– On i-th decryption query (u′i,N
′
i,A
′
i,C
′
i,T
′
i), ∀i ∈ [qd], reject straightaway.

– On i-th primitive query (Qi, diri) ∈ {0, 1}b × {+1,−1}, ∀i ∈ [qp], respond
honestly.

After all queries have been made we denote the online transcript (visible to
the adversary) as

Θid,on =
(
(ui,Ni,Ai,Mi,Ci,Ti)i∈[qe], (u′i,N

′
i,A
′
i,C
′
i,T
′
i, rej)i∈[qd], P

)
.

Bad Event. We set bad1 = 1, if

(ui,Ni,Ai,Ci,Ti) = (u′j ,N
′
j ,A
′
j ,C
′
j ,T
′
j), i ∈ [qe], j ∈ [qd]

for which the encryption query is made later.

Lemma 13. Pr(bad1 = 1) ≤ qd
2τ

.

Offline Phase. The offline phase is divided into three stages, performed se-
quentially: (i) setting internal states of encryption queries, (ii) setting internal
states of decryption queries, and (iii) sampling a key, and verifying compatibility
with the online phase.

We first set the input-output pairs for all permutations used in processing
nonce, associated data and message part of each encryption query. For each
i ∈ [qe], we perform the following:

1. We first parse all data we have in the online transcript.

(Ai,1, . . . ,Ai,ai)
r← pad1(Ni,Ai)

(Mi,1, . . . ,Mi,mi
)

r←∗ Mi

(Ci,1, . . . ,Ci,mi
)

r←∗ Ci

2. Let ti = ai+mi, di = |Mi,mi
| = |Ci,mi

|. Note that ai ≥ 1. Since the adversary
is nonce-respecting, if there exists j < i such that ui = uj , then Ni ̸= Nj . Let

k = ⌈ |N|r ⌉. Then, this implies (Ai,1, . . . ,Ai,k) ̸= (Aj,1, . . . ,Aj,k). Let k
′ ≤ k be

the first index such that Vi,k′ ̸= Vj,k′ . Then, we set Vi,0 = Vj,0, . . . ,Vi,k′−1 =

Vj,k′−1. Otherwise, we sample Vi,0, . . . ,Vi,k′−1
$← {0, 1}b. We also sample

Vi,k′ , . . . ,Vi,ai−1
$← {0, 1}b

Zi,ai , . . . ,Zi,ti−1
$← {0, 1}c, δ∗i

$← {0, 1}r−di .

The values of Vi,j would determine all inputs and outputs for associate data
processing. Similarly, Ci,Zi,j , δ

∗
i would determine the input and outputs for

message processing.

35

3. We now set all inputs and outputs of the permutation used in associate data
and message processing.

– Ui,j = Vi,j−1 ⊕ (Ai,j∥0c), ∀j ∈ [ai].

– Vi,ai
= (Ci,1 ⊕Mi,1)∥Zi,ai

.

If mi ≥ 2:
– Ui,ai+1 = Ci,1∥(Zi,ai

⊕ 0c−11).

– Ui,ai+j = Ci,j∥Zi,ai+j−1, 2 ≤ j ≤ mi − 1.

– Vi,ai+j = (Ci,j+1 ⊕Mi,j+1)∥Zi,ai+j−1, ∀j ∈ [mi − 2].

– Vi,ti−1 = (Ci,mi ⊕Mi,mi)∥δ∗i ∥Zi,ti−1.

– Fi = Ci,mi
∥δ∗i ∥Zi,ti−1.

Otherwise:
– Fi = Ci,m1∥δ∗i ∥(Zi,ai ⊕ 0c−11).

We define PE to be the partial function mapping Ui,j to Vi,j for all i ∈ [qe],
j ∈ [ti − 1], provided all Ui,j ’s are distinct. In this case, it is easy to see that

Vi,0
Ai,1−→⊕ Vi,1

Ai,2−→⊕ · · ·
Ai,ai−→⊕ Vi,ai

;Vi,ai
⊕0b−11 Mi,1−→⊕ Vi,ai+1 · · ·

Mi,mi−1−→ ⊕ Vi,ti−1.

Moreover, PE would be an injective partial function if Vi,j ’s are all distinct.

Bad Event (PE is Not an Injective Partial Function). We set

1. bad2 = 1 if for some (i, j) ̸= (i′, j′), either Ui,j = Ui′,j′ or Vi,j = Vi′,j′ .
Additionally, if ui = ui′ , we do not consider the equalities Ui,k = Ui′,k or

Vi,k = Vi′,k for k < ⌈ |N|r ⌉ since they are set as equal.
2. bad3 = 1 if for some i ̸= i′ ∈ [qe], Fi = Fi′ . Ideally, we should not allow this

if ui = ui′ , but we are giving an upper bound anyway.

It can be easily checked that

Lemma 14. Pr(bad2 = 1 ∨ bad3 = 1) ≤ σ2
e

2b
.

We would now like to set the input-output pairs for all permutations used in
the noce, associated data and ciphertext processing for all decryption queries.
For i ∈ [qd] (i.e., for the i-th decryption query) with ti ≥ 2, we perform the
following:

We first parse all data as we have done for encryption queries:

(A′i,1, . . . ,A
′
i,a′

i
)

r← pad1(N
′
i,A
′
i)

(C′i,1, . . . ,C
′
i,ci)

r←∗ C′i

Let t′i = a′i + ci, d
′
i = |Ci,ci |. Now, we define pi indicating the length of the

longest common prefix with an encryption query.

Definition of pi, i ∈ [qd].

36

1. If there does not exist any j ∈ [qe] such that uj = u′i, we define pi = −1.
2. Else if there does not exist any j ∈ [qe] such that (uj ,Nj) = (u′i,N

′
i), we

define p0 = 0.
3. Otherwise, there exists a unique j for which (uj ,Nj) = (u′i,N

′
i) (since the

adversary is nonce-respecting and hence every nonce in encryption queries
is distinct). Define pi denote the length of the largest common prefix of
– (A′i,1, . . . , (A

′
i,a′

i
, ∗),C′i,1, . . . ,C′i,ci) and

– (Aj,1, . . . , (Aj,aj
, ∗),Cj,1, . . . ,Cj,mi

).
Here ∗ is used to distinguish associate data blocks and ciphertext blocks.

Now, for each i ∈ [qd], depending on the value of pi, we perform the following:

Associated Data and Ciphertext Processing.

1. For i = 1 to qd with pi = −1:
– If u′i = u′j for some j ∈ [i− 1], V ′i,0 := V ′j,0. Otherwise, V′i,0

$← {0, 1}b.
– Run xorRand ExtnP (V′i,0, (A

′
i,1, . . . ,A

′
i,a′

i
)) to obtain a walk

V′i,0
A′
i,1−→⊕ V′i,1

A′
i,2−→⊕ · · ·

A′
i,a′

i−→⊕ V′i,a′
i
.

– If ci > 1, run Rand ExtnP (V′i,ai
⊕ 0∗1,C′i,1∥ . . . ∥C′i,ci−1) to obtain a walk

V′i,a′
i
⊕ 0∗1

C′
i,1−→ V′i,a′

i+1

C′
i,2−→ · · ·

C′
i,ci−1−→ V′i,a′

i+ci−1.

2. For i = 1 to qd with pi = 0:
– V′i,0 := Vj,0, where j ∈ [qe] such that u′i = uj .

– Run xorRand ExtnP (V′i,0, (A
′
i,1, . . . ,A

′
i,a′

i
)) to obtain a walk

V′i,0
A′
i,1−→⊕ V′i,1

A′
i,2−→⊕ · · ·

A′
i,a′

i−→⊕ V′i,a′
i
.

– If ci > 1, run Rand ExtnP (V′i,ai
⊕ 0∗1,C′i,1∥ . . . ∥C′i,ci−1) to obtain a walk

V′i,a′
i
⊕ 0∗1

C′
i,1−→ V′i,a′

i+1

C′
i,2−→ · · ·

C′
i,ci−1−→ V′i,a′

i+ci−1.

3. For i = 1 to qd with 0 ≤ pi ≤ a′i:
– V′i,pi

:= Vj,pi
, where j ∈ [qe] such that (u′i,N

′
i) = (uj ,Nj).

– If a′i > pi, run xorRand ExtnP (V′i,pi
, (A′i,pi+1, . . . ,A

′
i,a′

i
)) to obtain a walk

V′i,pi

A′
i,pi+1−→ ⊕ V′i,pi+1

A′
i,pi+2−→ ⊕ · · ·

A′
i,a′

i−→⊕ V′i,a′
i
.

– If ci > 1, run Rand ExtnP (V′i,ai
⊕ 0∗1,C′i,1∥ . . . ∥C′i,ci−1) to obtain a walk

V′i,a′
i
⊕ 0∗1

C′
i,1−→ V′i,a′

i+1

C′
i,2−→ · · ·

C′
i,ci−1−→ V′i,a′

i+ci−1.

37

4. For i = 1 to qd with a′i < pi < ti − 1:
– V′i,pi

:= Vj,pi
, where j ∈ [qe] such that (u′i,N

′
i) = (uj ,Nj).

– If pi < ti − 1, run Rand ExtnP (V′i,pi
,C′i,pi−a′

i+1∥ . . . ∥C′i,ci−1) to obtain a

walk

V′i,pi

C′
i,pi−a′

i
+1

−→ V′i,pi+1

C′
i,pi−a′

i
+2

−→ · · ·
C′
i,ci−1−→ V′i,a′

i+ci−1.

5. For i = 1 to qd with pi = ti − 1:
– V′i,a′

i+ci−1 := Vj,a′
i+ci−1, where j ∈ [qe] such that (u′i,N

′
i) = (uj ,Nj).

For all the cases above, we define

F′i =

{
C′i,ci∥10

∗∥⌊V′i,a′
i+ci−1⌋c if ci ≥ 2

C′i,ci∥10
∗∥(⌊V′i,a′

i+ci−1⌋c ⊕ 0c−11) if ci = 1
.

Bad Event (P1 is Not an Injective Partial Function). We define
bad4 = 1 if there exist (X,Y) and (X ′, Y ′) in the set P1 such that Y = Y ′.
Considering that both inputs and outputs are uniformly sampled, the probability
of bad4 can be straightforwardly bounded using the union bound.

Lemma 15. Pr(bad4 = 1) ≤ σd(qp + σd)

2b
.

Bad Event (Permutation Compatibility of PE and P1). We now set
bad5 = 1 if

domain(P1) ∩ domain(PE) ̸= ∅ or range(P1) ∩ range(PE) ̸= ∅.

Given that this bad event does not hold, PE ⊔P1 is an injective partial function.
As before, we have the following lemma.

Lemma 16. Pr(bad5 = 1) ≤ mcoll(σe, 2
r)× (σd + qp)

2c
.

Bad Event (Correctly Forging). We now set bad events whenever we
have a correct forging in the ideal world based on the injective partial function
P2 := P1 ⊔ PE constructed so far. We set bad6 = 1 if

(F′i,T
′
i) = (Fj ,Tj), i ∈ [qd], j ∈ [qe].

This is similar to bad3 as this would force a decryption query to be valid if
ui = uj .

Lemma 17. Pr(bad6 = 1) ≤ mcoll(qe, 2
τ)qd

2c
.

Now, we sample the keys K1,K2, . . .Kµ
$← {0, 1}κ. For each Ki, let Ki =

(Ki,1,Ki,2) where Ki,2 ∈ {0, 1}τ .

Bad Event (Key-Collision). We set bad7 = 1 when the keys of two users
collide. It is easy to prove the following lemma:

38

Lemma 18. Pr(bad7 = 1) ≤ µ2

2κ .

Let

J = {j ∈ [qd] : u
′
j ̸= ui ∀i}.

Now, we can define the input-outputs for the underlying permutation used in
the initialization phase as follows:

1. for all i ∈ [qe], Ii := IV ∥Kui , Oi := Vi,0 ⊕ 0b−κ∥K,

2. for all j ∈ J , I′j := IV ∥Kuj and O′j := V′j,0 ⊕ 0b−κ∥K,

3. For all other j ∈ [qd], there exists i ∈ [qe] such that u′j = ui, and we define
I′j := Ii, O

′
j := Oi.

Define Pinit =
(
(Ii,Oi)i∈[qe], (I′j ,O

′
j)j∈J

)
.

Bad Event (Permutation Compatibility of Pinit and P2). We define
bad8 = 1 if one of the following holds:

1. Ii, I
′
j ∈ domain(P2) for some i ∈ [qe], j ∈ [qd].

2. Oi = Oj for i, j ∈ [qe] such that ui ̸= uj or O′i = O′j for i, j ∈ [qd] such that
u′i ̸= u′j .

3. Oi = O′j for i ∈ [qe] and j ∈ [qd] such that ui ̸= u′j .
4. Oi,O

′
j ∈ range(P2) for some i ∈ [qe], j ∈ [qd].

As in the case of Ascon, we have the following:

Lemma 19. Pr(bad8 = 1) ≤ µ(qp + σ)

2κ
+

q2e + q2d + qeqd + (qe + qd)(σ + qp)

2b
.

Once again, if this bad event does not hold, P3 := P2 ⊔ Pinit is an injective
partial function. Now, we settle tag computation for all encryption queries. For
all i ∈ [qe], we define Xi := Fi ⊕ (Kui∥0b−κ), Yi := αi∥(Ti ⊕ Kui,2), where

αi
$← {0, 1}b−τ . Define Ptag =

(
(Xi,Yi)i∈[qe]

)
.

Bad Event (Permutation Compatibility of Ptag and P3). We define
bad9 = 1 if either of the following holds:

1. domain(Ptag) ∩ domain(P3) ̸= ∅, or
2. range(Ptag) ∩ range(P3) ̸= ∅.

Given this bad event does not hold, P4 := P3⊔Ptag is once again an injective
partial function.

Lemma 20. Pr(bad9 = 1) ≤ ωr,κ(σ + qp)

2b
, where

ωr,κ =

{
2qe, if r ≤ κ

qe +mcoll(qe, 2
r−κ) · 2r−κ otherwise

.

39

Proof. We divide this into two cases depending on whether r ≤ κ or not. If
r ≤ κ, then using the randomness of Kui and ⌊Fi⌋c, it can be easily shown that

Pr(domain(Ptag) ∩ domain(P3) ̸= ∅) ≤
qe(σ + qp)

2b
.

However, if r > κ, then for any i ∈ [qe], let λi = ⌊⌈Fi⌉r⌋r−κ = ⌊⌈Xi⌉r⌋r−κ.
Let ρ7 denote the multicollision of λi values. Then, by the randomness of Kui

and ⌊Fi⌋c, and using the multicollision, we have Pr(domain(Ptag)∩domain(P3) ̸=
∅ | ρ7 = ρ) ≤ ρ(σ+qp)

2κ . Using the expectation of ρ7, and using Remark 2, we have

Pr(domain(Ptag) ∩ domain(P3) ̸= ∅) ≤
mcoll(qe, 2

r−κ)(σ + qp)

2c+κ
.

In both the cases, using the randomness of αi and Kui
, it can be easily seen

that

Pr(range(Ptag) ∩ range(P3) ̸= ∅) ≤
qe(σ + qp)

2b
.

Hence, we get the above bound.

Finally, we settle the tag computation of all decryption queries and we set bad
whenever a valid forgery occurs. For all i ∈ [qd], we define X

′
i := F′i⊕(Kui∥0b−κ).

If X′i ∈ domain(P4) then we define Y′i = P4(X
′
i). Else, Y

′
i

$← {0, 1}b.

Bad Event (Decryption Queries are Not Rejected). We divide this into
two cases depending on whether X′i ∈ domain(P4) or not:

– We set bad10 = 1 if

∃i ∈ [qd], X′i ∈ domain(P4) ∧ ⌊P4(X
′
i)⌋τ ⊕Kui,2 = T′i.

It is easy to check that

Lemma 21. Pr(bad10 = 1) ≤ mcoll(σ + qp, 2
τ)qd

2κ
.

Proof. Let F′i = (β′i∥γ′i∥δ′i), where |β′i| = κ − τ , |γ′i| = τ and |δ′i| = b − κ. If
bad10 = 1, then
(i) for some (xj∥yj∥zj) ∈ domain(P4), X

′
i = (xj∥yj∥zj), |xj | = κ− τ , |yj | = τ

and |zj | = b− κ, and
(ii) yj ⊕ wj = T′i ⊕ γ′i where wj = ⌊P4(xj∥yj∥zj)⌋τ .
Let ρ8 denote the multicollision on the values of (ya ⊕wa)a varying over all
elements of P4. Hence, the number of choices of j is at most ρ8. Then, by
the randomness of Kui ,

Pr(bad10 = 1 | ρ8 = ρ) ≤ ρqd
2κ

.

So, using the expectation of ρ8, and applying Lemma 2, we have the result.

40

– X′i /∈ domain(P4). Let wi = ⌊Y′i⌋τ . We set bad11 = 1 if there exists i ∈ [qd]
such that yi ⊕Kui,2 = T′i. Similarly, by the randomness of yi, we have

Lemma 22. Pr(bad11 = 1) ≤ qd
2τ

.

If all these bad events do not occur, then all the decryption queries are
correctly rejected for the injective partial function P4.

Let Pfin := P4 ∪
(
(X′i,Y

′
i)i∈[qd]

)
. In the offline transcript, we provide all the

input-outputs of Pfin. Then,

Θid =
(
(ui,Ni,Ai,Mi,Ci,Ti)i∈[qe], (u′i,N

′
i,A
′
i,C
′
i,T
′
i, rej)i∈[qd], Pfin

)
.

Let θ be a good transcript (no bad events occur). Note that we sample either
inputs or outputs of Pfin \ P uniformly. Thus,

Pr(Θid = θ) = Pr(P ⊆ Π)× 2−b(|Pfin|−|P|) ≤ 1/(2b)|Pfin| = Pr(Θre = θ)

By using the H-coefficient technique, we complete the proof of the theorem.

E Proof of Theorem 4

As in the case of Ascon, this proof is very similar to that of the nonce-respecting
setting of LK-Ascon. In fact, the only parts where the proof of Theorem 4
differs from the proof of Theorem 3 are the parts where the proof of Theorem
2 differs from Theorem 1. Since the adversary can now reuse the nonce for
encryption queries to the same user, we only need to redefine pi for encryption
queries. The rest of the proof remains the same as that of Theorem 3. This
streamlined approach renders the proof notably straightforward, thus we have
opted to exclude it.

Definition of pi

1. If there does not exist any j ∈ [i− 1] such that uj = ui, we define pi = −1.
2. Else if there does not exist any j ∈ [i−1] such that uj = ui, we define p0 = 0.

3. Otherwise, there exists at least one j for which (uj ,Nj) = (ui,Ni) (since the
adversary can misuse nonces). For each such j, let pi,j denote the length of
the largest common prefix of

– (Ai,1, . . . , (Ai,ai
, ∗),Mi,1, . . . ,Mi,mi

) and

– (Aj,1, . . . , (Aj,aj , ∗),Mj,1, . . . ,Mj,mj).

Here ∗ is used to distinguish associate data blocks and message blocks.

Finally define pi = maxj<i pi,j .

41

F Forgery Against Ascon Authenticity In the Nonce
Misuse Setting

Here, we show an online c/2-bit forgery against the authenticity of Ascon. Note
that the same attack is possible for LK-Ascon too.

1. Fix a nonce N and a one-block message M , and choose 2c/2 different asso-
ciated data A[1], ..., A[2c/2].

2. Obtain 2c/2 pairs of ciphertext and tag (C[i], T [i]) = E(K,N,A[i],M).
3. For each i, define a new one-block message M [i] such that the outer part

after absorbing M [i] is 0r, i.e.,M [i] = C[i]⊕M .
4. Obtain 2c/2 pairs of ciphertext and tag (C ′[i], T ′[i]) = E(K,N,A[i],M [i]).
5. If there exists a pair (i1, i2) such that T [i1] = T ′[i2], then do the following

steps. Since the attacker chooses 2c/2 different associated data, the inner
part values are the same with high probability.

6. For A[i1], define a new one-block message M∗[i1] such that the outer part
after absorbing M∗[i1] is 1

r.
7. Obtain (C∗[i1], T

∗[i1]) = E(K,N,A[i1],M
∗[i1]).

8. Make a decryption query D(K,N,A[i2], 1
r, T ∗[i1]). One can expect that the

forgery succeeds with high probability.

42

	Tight Multi-user Security of Ascon and Its Large Key Extension

