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Abstract. In symmetric cryptography, vectorial Boolean functions over
finite fields F2n derive strong S-boxes. To this end, the S-box should sat-
isfy a list of tests to resist existing attacks, such as the differential, linear,
boomerang, and variants. Several tables are employed to measure an S-
box’s resistance, such as the difference distribution table (DDT) and the
boomerang connectivity table (BCT). Following the boomerang attacks
recently revisited in terms of the boomerang switch effect, with a lustra-
tion highlighting the power of this technique, a tool called the Boomerang
Difference Table (BDT), an alternative to the classical Boomerang BCT,
was introduced. Next, two novel tables have been introduced, namely, the
Upper Boomerang Connectivity Table (UBCT) and the Lower Boomerang
Connectivity Table (LBCT), which are considered improvements over BCT
while allowing systematic evaluation of boomerangs to return over mul-
tiple rounds.
This paper focuses on the new tools for measuring the revisited version
of boomerang attacks and the related tables UBCT, LBCT, as well as the
so-called Extended Boomerang Connectivity Table (EBCT). Specifically,
we shall study the properties of these novel tools and investigate the
corresponding tables. We also study their interconnections, their links to
the DDT, and their values for affine equivalent vectorial functions and
compositional inverses of permutations of F2n . Moreover, we introduce
the concept of the nontrivial boomerang connectivity uniformity and
determine the explicit values of all the entries of the EBCT, LBCT, and
EBCT for the important cryptographic case of the inverse function.

Mathematics Subject Classification: 06E30, 05A05, 35F05, 11T06, 11T55,
94A60.

1 Introduction

Let n be a positive integer, and F2n be the finite field with 2n elements. A
vectorial Boolean function is a map F : F2m → F2n where m is also a positive
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integer. In most cases, m = n and F is a permutation of F2n . Vectorial Boolean
permutations are intensively used for designing Substitution Boxes (S-boxes). An
important reference in this context is the book of Carlet ([7]). A typical example
is the Advanced Encryption Standard (AES) [9], which is based on the inverse
function. Several criteria are used to test the resistance of an S-box derived from
a Boolean vectorial function to cryptanalytic attacks by studying the entries
of specific tables. The most known tables are the Difference Distribution Table
(DDT) [2], the Boomerang Connectivity Table (BCT) [8], the Differential-Linear
Connectivity Table (DLCT) [1], and the Feistel Boomerang Connectivity Table
(FBCT) [3]. According to the maximum value of the non-trivial entries in a
table, the S-box is more or less resistant to an attack, and the vectorial Boolean
function is more or less suitable for cryptographic purposes. It is established that
the most secure vectorial Boolean functions are the inverse function[9], the Gold
function [16], the Kasami function [17], the Bracken-Leander [5] function, the
Welch function [11], the Niho function [12], and the Dobbertin function [13].

In this article, we concentrate on the boomerang attack [27], which is a
cryptanalysis technique that allows an attack to concatenate two short differen-
tial characteristics. The corresponding tools (the BCT table and the boomerang
uniformity) have attracted much attention recently. The reader can consult,
for instance, the following references [4,6,8,18,19,20,22,23] and the references
therein.

In the meantime, several research results showed that the dependency be-
tween these two characteristics at the switching round could significantly im-
pact the attack’s complexity or potentially make it invalid. In 2019, Wang and
Peyrin [26] introduced two new tables to test the resistance of an S-Box. The
two tables are variants of the BCT and were later labelled by Delaune, Derbez
and Vavrille [10] as Upper BCT (UBCT) and Lower BCT (LBCT).

The UBCT of a permutation F of F2n is a 2n×2n×2n table where the entry
at (a, b, c) ∈ F3

2n is given by

UBCTF (a, b, c) = #

{
x ∈ F2n

∣∣∣∣F (x) + F (x+ a) = b,
F−1(F (x) + c) + F−1(F (x+ a) + c) = a

}
.

Similarly, the LBCT of F is a 2n×2n×2n table where the entry at (a, b, c) ∈ F3
2n

is given by

LBCTF (a, b, c) = #

{
x ∈ F2n

∣∣∣∣F (x) + F (x+ b) = c,
F−1(F (x) + c) + F−1(F (x+ a) + c) = a

}
.

Yet another table called the Extended BCT (EBCT), was proposed in [10]. It
is a 2n × 2n × 2n × 2n table where the entry at (a, b, c, d) ∈ F4

2n is given by

EBCTF (a, b, c, d) = #

x ∈ F2n

∣∣∣∣∣∣
F (x) + F (x+ a) = b,
F (x) + F (x+ c) = d,
F−1(F (x) + d) + F−1(F (x+ a) + d) = a

 .

The UBCT, the LBCT, and the EBCT are new and have not been sufficiently
studied. Our contribution in this article aligns with our previous study [14] for
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the classical tables in which we present a first depth-in study of general properties
of the former tables and introduce a new uniformity bound for each table. We
shall also investigate the behaviours of the crucial case of the inverse function
and present the corresponding explicit values of their UBCT, the LBCT, and
the EBCT. Below is a summary of our contribution.

• We show that the UBCT and the LBCT of a vectorial Boolean permutation
F of F2n satisfy

UBCTF−1(a, b, c) = LBCTF (c, b, a),

LBCTF−1(a, b, c) = UBCTF (c, b, a),

for all a, b, c ∈ F2n where F−1 is the compositional inverse of F . This simpli-
fies the computation of the UBCT and the LBCT of F−1, especially when
F is hard to invert (since no expression of the inverse would be needed).

• We show that the values of UBCTF (a, b, c) are trivial to compute when abc =
0. This enables us to define the nontrivial upper boomerang connectivity
uniformity δF of F as the maximal value of all UBCTF (a, b, c) where abc ̸=
0. Moreover, we study more properties of the UBCT, especially for power
Boolean vectorial functions, and show that the nontrivial upper boomerang
connectivity uniformity is invariant by affine transformations.

• Similarly, we show that the values of LBCTF (a, b, c) are also trivial to compute
when abc = 0, leading us to define the nontrivial lower boomerang connec-
tivity uniformity δF of F as the maximal value of all LBCTF (a, b, c) where
abc ̸= 0. We also study more properties of the LBCT, especially for power
Boolean vectorial functions, and show that the nontrivial lower boomerang
connectivity uniformity is invariant by affine transformations.

• We also show the values of EBCTF (a, b, c, d) are trivial if abcd = 0. More-
over, we study the EBCT of a power function and define the nontrivial
extended boomerang connectivity uniformity δF of F as the maximal value
of all EBCTF (a, b, c, d) where abcd ̸= 0. We also study the EBCT for power
functions and affine equivalent permutations, showing that the nontrivial
extended boomerang connectivity is the same for any two affine equivalent
permutations.

• Finally, we focus on the inverse function defined over F2n by F (0) = 0,
and F (x) = 1

x for x ̸= 0. We explicitly state all the values of the UBCT,
the LBCT, and the EBCT of F . This enables us to compute the nontrivial
uniformities of the three tables for the inverse function.

The rest of this paper is organized as follows. Section 2 recalls some basic no-
tions related to some ingredients and concepts, which will be used in subsequent
sections. We also present some background related to codes and lattices, which
will be employed in the rest of the paper. In Section 3, we review the main tables
related to an S-box. Section 4 studies the links between the UBCT and the LBCT

tables. In Section 5, we study the properties of the UBCT table and explicitly
its values for the inverse function. In Section 6, we study the properties of the
LBCT table and determine explicitly its values for the inverse function. Section
7 presents results similar to the EBCT table. We conclude the paper in Section 8
and draw new avenues for future work.
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2 Preliminaries

This section recalls some terminologies and definitions. It also introduces nota-
tion and presents some background in algebra, including valuable results and
connections with elements from coding and latices contexts, which will be used
in subsequent sections. Throughout the paper, #E denotes the cardinality of a
finite set E.

Definition 1. Let n and d be two integers with d < n and d|n. The trace func-
tion of an element x ∈ F2n is given by

Trnd (x) = x+ x2d + x22d + · · ·+ x2n−d

.

If d = 1, we simply set Tr(x).

The following result, in connection with the solvability of a quadratic equation
in F2n , will be used in the present paper.

Lemma 1 (Proposition 1 of [24]). Let a, b, c ∈ F2n . The equation ax2+ bx+
c = 0 has

(i) One root if and only if b = 0.
(ii) Two roots if and only if b ̸= 0 and Tr

(
ac
b2

)
= 0.

(iii) No root if and only if b ̸= 0 and Tr
(
ac
b2

)
= 1.

Several equivalence relations of vectorial Boolean functions are used to study
specific properties. The following definition concerns affine equivalent functions.

Definition 2. Two vectorial Boolean functions F,G : F2n → F2n are affine
equivalent if G = A2 ◦ F ◦A1 where A1, A2 are affine permutations of F2n .

3 Tables for Boolean Vectorial Functions

This section reviews several tables related to S-boxes derived from Boolean vec-
torial functions.

3.1 The difference distribution table (DDT)

The difference distribution table is used to study the resistance of an S-box to
the differential attack and their variants [2,21].

Definition 3. For n ≥ 2, let F : F2n → F2n be a vectorial Boolean function.
The difference distribution table (DDT) related to F is the 2n × 2n table where
the element at row a ∈ F2n and column b ∈ F2n is defined by

DDTF (a, b) = # {x ∈ F2n : F (x) + F (x+ a) = b} ,

and the differential uniformity of F is defined by

δF = max
a̸=0,b∈F2n

(DDTF (a, b)).
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Table 1 shows the DDT of the inverse function over F23 .

a\b 0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 2 0 2 0 2 0 2

2 0 0 0 0 2 2 2 2

3 0 2 0 2 2 0 2 0

4 0 0 2 2 0 0 2 2

5 0 2 2 0 0 2 2 0

6 0 0 2 2 2 2 0 0

7 0 2 2 0 2 0 0 2

Table 1. DDT(a,b) of the inverse function over F23 .

The following result from [14] gives in detail the entries of the DDT of the
inverse function over F2n .

Theorem 1. Let S be the inverse function over F2n . We have the following
possibilities for the entries of the DDT of S.

(i) if a = 0 and b = 0, then DDTS(a, b) = 2n,
(ii) if a = 0 and b ̸= 0, then DDTS(a, b) = 0,
(iii) if a ̸= 0 and b = 0, then DDTS(a, b) = 0,
(iv) if a ̸= 0, then

DDTS

(
a,

1

a

)
=

{
4 if Tr(1) = 0,

2 if Tr(1) = 1,

(v) if a ̸= 0, b ̸= 0, and ab ̸= 1, then

DDTS (a, b) =


2 if Tr

(
1

ab

)
= 0,

0 if Tr

(
1

ab

)
= 1.

3.2 The boomerang connectivity table (BCT)

The boomerang connectivity table plays a central role to study the resistance of
an S-box the boomerang attack [25].

Definition 4. Let F be a permutation of F2n . The Boomerang Connectivity
Table (BCT) of F is a 2n × 2n table where the entry at (a, b) with a, b ∈ F2n is
given by

BCTF (a, b) = #
{
x ∈ F2n | F−1(F (x) + b) + F−1(F (x+ a) + b) = a

}
.
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Moreover, the value

βF = max
a,b∈F2n

BCTF (a, b),

is called the boomerang uniformity of F .

3.3 The double difference distribution table (DDDT)

The double difference distribution table is a new notion introduced in [15] to
study the resistance of an S-box to some variants of the differential attack.

Definition 5. Let F be a permutation of F2n . The double difference distribution
table (DDDT) of F is a 2n × 2n × 2n table where the entry at (a, b, c) with
a, b, c ∈ F2n is given by

DDDTF (a, b, c) = #{x ∈ F2n |F (x+ a+ b) + F (x+ a) + F (x+ b) + F (x) = c}.

Moreover, the value

∆F = max
(a,b,c)∈F2n×F2n×F2m

ab(a+b)̸=0

DDDTF (a, b, c).

is called the double differential uniformity of F .

3.4 The Upper, the Lower, and the Extended Boomerang
Connectivity Tables

In 2019, Wang and Peyrin [26] introduced two new types of tables: the Boomerang
Difference Table (BDT) and its variant BDT’. The two tables were then re-
labelled by Delaune et al. [10] as the Upper Boomerang Connectivity Table
(UBCT), and the Lower Boomerang Connectivity Table (LBCT).

Definition 6. Let F be a permutation of F2n . The Upper Boomerang Connec-
tivity Table (UBCT) of F is a 2n× 2n× 2n table where the entry at (a, b, c) with
a, b, c ∈ F2n is given by

UBCTF (a, b, c) = #

{
x ∈ F2n

∣∣∣∣F (x) + F (x+ a) = b,
F−1(F (x) + c) + F−1(F (x+ a) + c) = a

}
.

Definition 7. Let F be a permutation of F2n . The Lower Boomerang Connec-
tivity Table (LBCT) of F is a 2n × 2n × 2n table where the entry at (a, b, c) with
a, b, c ∈ F2n is given by

LBCTF (a, b, c) = #

{
x ∈ F2n

∣∣∣∣F (x) + F (x+ b) = c,
F−1(F (x) + c) + F−1(F (x+ a) + c) = a

}
.

In addition to the UBCT and the LBCT tables, Delaune et al. [10] introduced
the so-called Extended Boomerang Connectivity Table as follows.
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Definition 8. Let F be a permutation of F2n . The Extended Boomerang Con-
nectivity Table (EBCT) of F is a 2n × 2n × 2n × 2n table where the entry at
(a, b, c, d) with a, b, c, d ∈ F2n is given by

EBCTF (a, b, c) = #

x ∈ F2n

∣∣∣∣∣∣
F (x) + F (x+ a) = b,
F (x) + F (x+ c) = d,
F−1(F (x) + d) + F−1(F (x+ a) + d) = a

 .

4 Links between the UBCT and the LBCT

The following result presents a result relating the UBCT of a permutation and
the and LBCT of its compositional inverse.

Proposition 1. Let F be a permutation of F2n , and F−1 its compositional in-
verse. Then the LBCT of F and the UBCT of F−1 satisfy

UBCTF−1(a, b, c) = LBCTF (c, b, a),

for all a, b, c ∈ F2n .

Proof. Let a, b, c ∈ F2n . Then, UBCTF−1(a, b, c) is the number of solutions of the
equation system{

F−1(x) + F−1(x+ a) = b,

F
(
F−1(x) + c

)
+ F

(
F−1(x+ a) + c

)
= a.

If we set F−1(x) = y, then the system is equivalent to{
y + F−1(F (y) + a) = b,

F (y + c) + F
(
F−1(F (y) + a) + c

)
= a.

The first equation of the system gives F−1(F (y) + a) = y+ b, and consequently

F (y) + F (y + b) = a.

The second equation of the system gives F
(
F−1(F (y) + a) + c

)
= F (y + c)+a,

and F−1(F (y) + a) + c = F−1(F (y + c) + a). This implies that

F−1(F (y) + a) + F−1(F (y + c) + a) = c.

As a consequence, the original system is equivalent to{
F (y) + F (y + b) = a,

F−1(F (y) + a) + F−1(F (y + c) + a) = c,

which is related the LBCT of F . This implies that

UBCTF−1(a, b, c) = LBCTF (c, b, a).

This completes the proof. ⊓⊔
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We have the following result as a consequence of Proposition 1.

Proposition 2. Let F be a permutation of F2n , and F−1 its compositional in-
verse. Then the UBCT of F and the LBCT of F−1 satisfy

LBCTF−1(a, b, c) = UBCTF (c, b, a),

for all a, b, c ∈ F2n .

Proof. Applying Proposition 1 with F−1 gives

UBCTF (a, b, c) = LBCTF−1(c, b, a).

Rearranging, we get

LBCTF−1(a, b, c) = UBCTF (c, b, a).

⊓⊔

We can use Proposition 1 to redefine the UBCT of a permutation F of F2n

without using its compositional inverse.

Theorem 2. Let F be a permutation of F2n . Then

UBCTF (a, b, c) = #

(x, z) ∈ F2
2n

∣∣∣∣∣∣
F (x) + F (x+ a) = b,
F (x) + F (z) = c,
F (x+ a) + F (z + a) = c

 .

Proof. Using Proposition 1, we have

UBCTF (a, b, c) = LBCTF−1(c, b, a).

This is the number of solutions of the equation system{
F−1(X) + F−1(X + b) = a,

F
(
F−1(X) + a

)
+ F

(
F−1(X + c) + a

)
= c.

Let x = F−1(X), y = F−1(X + b), and z = F−1(X + c). Then, the former
system is equivalent to 

x+ y = a,

F (x) + F (y) = b,

F (x) + F (z) = c,

F (x+ a) + F (z + a) = c,

which can be simplified to
F (x) + F (x+ a) = b,

F (x) + F (z) = c,

F (x+ a) + F (z + a) = c.

This completes the proof. ⊓⊔
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We also can use Proposition 1 to redefine the LBCT of a permutation F of F2n

without using its compositional inverse.

Theorem 3. Let F be a permutation of F2n . Then

LBCTF (a, b, c) = #

{
(x, y) ∈ F2

2n

∣∣∣∣x+ y = b,
F (x+ c) + F (y + c) = a

}
.

Proof. Using Proposition 1, we use

LBCTF (a, b, c) = UBCTF−1(c, b, a),

which is the number of solutions of the equation system{
F−1(X) + F−1(X + a) = b,

F
(
F−1(X) + c

)
+ F

(
F−1(X + a) + c

)
= a.

Let x = F−1(X), and y = F−1(X + a). Then, the former system is equivalent
to {

x+ y = b,

F (x+ c) + F (y + c) = a.

This completes the proof. ⊓⊔

5 The Upper Boomerang Connectivity Table (UBCT)

In this section, we study the properties of the UBCT and compute its entries for
the inverse function.

5.1 Properties of the UBCT

The following result is valid for all permutations of F2n , and is valid when abc =
0.

Proposition 3. For a, b, c ∈ F2n with abc = 0, we have

UBCTF (a, b, c) =


2n if a = b = 0,

0 if a = 0, b ̸= 0, c ̸= 0,

DDTF (a, b) if c = 0,

0 if a ̸= 0, b = 0, c ̸= 0.

Proof. For a, b, c ∈ F2n , consider the equations

F (x) + F (x+ a) = b, (1)

and

F−1(F (x) + c) + F−1(F (x+ a) + c) = a, (2)
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Case 1: Suppose that a = 0. Then (1) implies that b = 0.
Case 1.1: Suppose that b = 0. Then (1) is verified for all x ∈ F2n . Moreover,
(2) gives

F−1(F (x) + c) + F−1(F (x) + c) = 0,

which is also verified for all x ∈ F2n . Then

UBCTF (0, 0, c) = 2n.

Case 1.2: Suppose that b ̸= 0. Then

UBCTF (0, b, c) = 0.

In the next cases, we suppose that a ̸= 0.
Case 2: Suppose that c = 0. Then (2) gives

F−1(F (x)) + F−1(F (x+ a)) = x+ x+ a = a,

which is verified for all x ∈ F2n . Then UBCTF (a, b, 0) depends only on the equation
(1). Hence

UBCTF (a, b, 0) = DDT (a, b).

In the next cases, we suppose that a ̸= 0 and c ̸= 0.
Case 3: Suppose that b = 0. Then (1) implies that F (x) + F (x + a) = 0, that
is x = x+ a which is not possible. Hence, for all a ̸= 0 and c ̸= 0,

UBCTF (a, 0, c) = 0.

In the next cases, we suppose that a ̸= 0, b ̸= 0, and c ̸= 0. ⊓⊔

Observe that Proposition 3 deals with situation abc = 0, and the results seem
obvious. This allows us to propose a new kind of uniformity for the UBCT.

Definition 9. Let F be a permutation of F2n . The nontrivial upper boomerang
connectivity uniformity δF of F is the maximal value of all UBCTF (a, b, c) where
abc ̸= 0, that is

δF = max
a,b,c∈F2n ,abc ̸=0

UBCTF (a, b, c).

The following result concerns the nontrivial upper boomerang connectivity uni-
formity of power functions.

Proposition 4. Let d be an integer such that gcd(d, 2n − 1) = 1. Let F be a
power function defined over F2n by F (x) = xd. The nontrivial upper boomerang
connectivity uniformity of F satisfies

δF = max
b,c∈F2n ,bc ̸=0

UBCTF (1, b, c).
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Proof. Let a ∈ F2n with a ̸= 0. The equation F (x) + F (x + a) = b can be
rewritten as xd + (x+ a)d = b, and equivalently

yd + (y + 1)d =
b

ad
,

where y = x
a . Similarly, the equation F−1(F (x) + c) + F−1(F (x + a) + c) = a

can be rewritten as (
xd + c

)−d
+
(
(x+ a)d + c

)−d
= a.

This can be simplified to(
yd +

c

ad

)−d

+
(
(y + 1)d +

c

ad

)−d

= 1,

where y = x
a . Since F is a permutation, this implies that

δF = max
b′,c′∈F2n ,b′c′ ̸=0

UBCTF (1, b
′, c′),

and terminates the proof. ⊓⊔

The following result gives a relation between the UBCT tables of two affine
equivalent functions.

Proposition 5. Let F and G be two affine equivalent permutations of F2n such
that G = A2 ◦ F ◦A1 where A1, A2 are affine permutations of F2n . Then

UBCTG(a, b, c) = UBCTF (A1(a), A
−1
2 (b), A−1

2 (c)).

Proof. Let G = A2 ◦ F ◦ A1 where A1, A2 are affine permutations of F2n . Then
UBCTG(a, b, c) is the number of the solutions x ∈ F2n satisfying the system of
equations {

G(x) +G (x+ a) = b,

G−1(G(x) + c) +G−1 (G(x+ a) + c) = a.

The first equation is equivalent to

A2 (F (A1(x)) + F (A1(x) +A1(a))) = b,

and F (A1(x)) + F (A1(x) +A1(a)) = A−1
2 (b).

The second equation is equivalent to

A−1
1 ◦ F−1 ◦A−1

2 (A2 ◦ F ◦A1(x) + c)

+A−1
1 ◦ F−1 ◦A−1

2 (A2 ◦ F ◦A1 (x+ a) + c) = a.

This can be simplified to

A−1
1 ◦ F−1

(
F ◦A1(x) +A−1

2 (c)
)
+A−1

1 ◦ F−1
(
F ◦A1 (x+ a) +A−1

2 (c)
)
= a,
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and then to

A−1
1 ◦F−1

(
F (A1(x)) +A−1

2 (c)
)
+A−1

1 ◦F−1
(
F (A1(x) +A1(a)) +A−1

2 (c)
)
= a.

This gives

F−1
(
F (A1(x)) +A−1

2 (c)
)
+ F−1

(
F (A1(x) +A1(a)) +A−1

2 (c)
)
= A1(a).

By setting A1(x) = x′, and since A1 is a permutation, then x′ is a solution of
the system{

F (x′) + F (x′ +A1(a)) = A−1
2 (b),

F−1(F (x′) +A−1
2 (c)) + F−1

(
F (x′ +A1(a)) +A−1

2 (c)
)
= A1(a).

This implies that

UBCTG(a, b, c) = UBCTF (A1(a), A
−1
2 (b), A−1

2 (c)).

and terminates the proof. ⊓⊔

Proposition 5 implies that the nontrivial upper boomerang connectivity unifor-
mity is invariant by affine equivalent transformations.

5.2 The UBCT of the Inverse Function

In this section, we study the UBCT table of the inverse function F defined over
F2n by F (0) = 0 and F (x) = 1

x for x ̸= 0. The following result complements
Proposition 3.

Theorem 4. For a, b, c ∈ F2n with abc ̸= 0, we have

UBCTF (a, b, c) =


4 if (a, b, c) ∈ I1 ∪ I2,
2 if (a, b, c) ∈ I3 ∪ I4,
0 if (a, b, c) ̸∈ I1 ∪ I2 ∪ I3 ∪ I4,

where

I1 =

{
(a, b, c) : b = c =

1

a
,Tr(1) = 0

}
,

I2 =

{
(a, b, c) : b =

1

a
, (ac)2 + ac+ 1 = 0

}
,

I3 =

{
(a, b, c) : a = b = c, a ̸= 1,Tr

(
1

a

)
= 0

}
,

I4 =

{
(a, b, c) : b = c, a ̸= c, b ̸= 1

a
,Tr

(
1

ab

)
= 0

}
.
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Proof. For a, b, c ∈ F2n with abc ̸= 0, consider the equations

F (x) + F (x+ a) = b, (3)

and

F−1(F (x) + c) + F−1(F (x+ a) + c) = a, (4)

Case 1: Suppose that x = 0 is a solution of (3) and (4). Then (3) gives F (a) = b,
that is ab = 1, and (4) gives

F−1(F (x) + c) + F−1(F (x+ a) + c) = F−1(c) + F−1(F (a) + c).

If F (a) = c, that is ac = 1, then F−1(c) = a is satisfied. If F (a) ̸= c, then

F−1(c) + F−1(F (a) + c) =
1

c(ac+ 1)
.

Hence, if 1
c(ac+1) = a, that is (ac)2 + ac+ 1 = 0, x = 0 is a solution of both (3)

and (4).
It follows that x = 0 is a solution of (3) and (4) if and only if b = c = 1

a or if
b = 1

a , and (ac)2 + ac+ 1 = 0.
Case 2: Suppose that x = a is a solution of (3) and (4). Then F (a) = b, that is
ab = 1, and

F−1(F (x) + c) + F−1(F (x+ a) + c) = F−1(F (a) + c) + F−1(c).

If F (a) = c, that is ac = 1, then F−1(c) = a is satisfied. If F (a) ̸= c, then

F−1(F (a) + c) + F−1(c) =
1

c(ac+ 1)
.

Hence, if 1
c(ac+1) = a, that is (ac)2 + ac+ 1 = 0, x = a is a solution of both (3)

and (4).
It follows that x = a is a solution of (3) and (4) if and only if b = c = 1

a or if
b = 1

a , and (ac)2 + ac+ 1 = 0.
Case 3: Suppose that x = 1

c is a solution of (3) and (4). Then (3) gives

c+ F

(
1

c
+ a

)
= b.

Case 3.1: If ac = 1, then c = b. Also, (4) gives

F−1

(
F

(
1

c
+ a

)
+ c

)
= a,

which is satisfied.
Case 3.2: If ac ̸= 1, then (3) gives

c+ F

(
1

c
+ a

)
=

1

c(ac+ 1)
= b.
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Also, (4) gives
ac+ 1

ac2
= a.

that is (ac)2 + ac+ 1 = 0.
It follows that x = 1

c is a solution of (3) and (4) if and only if b = c = 1
a or if

b = 1
c(ac+1) , and (ac)2 + ac+ 1 = 0.

Case 4: Suppose that x = a+ 1
c is a solution of (3) and (4) with ac ̸= 1 so that

x ̸= 0. Then (3) gives
ac2

ac+ 1
= b.

Also, in (4), we have F (x+ a) + c = 0, and F−1(F (x) + c) = a, that is

F−1

(
F

(
a+

1

c

)
+ c

)
= a.

Since ac ̸= 1, then
ac+ 1

ac2
= a,

and (ac)2 + ac+ 1 = 0. This gives

b =
ac2

ac+ 1
=

ac2

(ac)2
=

1

a
.

It follows that x = a + 1
c is a solution of (3) and (4) if and only if b = 1

a , and
(ac)2 + ac+ 1 = 0.
Case 5: Suppose that x ̸= 0, x ̸= a, x ̸= 1

c , x ̸= 1
c + a. Then the equations (3)

and (4) can be simplified to the system{
bx2 + abx+ a = 0,
cx2 + acx+ a = 0.

Case 5.1: If a = c, then the system is{
bx2 + abx+ a = 0,
x2 + ax+ 1 = 0.

Combining both equations, we get a = b. This leads to the unique equation
x2 + ax + 1 = 0, which has no solution if Tr

(
1
a

)
= 1, and two solutions if

Tr
(
1
a

)
= 0.

Case 5.2: If a ̸= c, and b = c, then the original system gives the unique equation
bx2+abx+a = 0. This equation has no solution if Tr

(
1
ab

)
= 1, and two solutions

if Tr
(

1
ab

)
= 0.

Case 5.3: If a ̸= c, b ̸= c, then the original system leads to{
bcx2 + abcx+ ac = 0,
bcx2 + abcx+ ab = 0.

Combining the two equations, we get a(b+ c) = 0 which is impossible.
The former cases can be summarized to find UBCTF (a, b, c).
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1. If b = c = a = 1, and Tr (1) = 0, then UBCTF (a, b, c) = 4. This is true by
Case 1, Case 2, and Case 5.1.

2. If b = c = 1
a , a ̸= 1, and Tr (1) = 0, then UBCTF (a, b, c) = 4. This is true by

Case 1, Case 2, and Case 5.2.
3. If b = 1

a and (ac)2+ac+1 = 0, then UBCTF (a, b, c) = 4. This is true by Case
1, Case 2, Case 3, and Case 4.

4. If a = b = c, a ̸= 1, and Tr
(
1
a

)
= 0, then UBCTF (a, b, c) = 2. This is true by

Case 5.1.
5. If b = c, a ̸= c, b ̸= 1

a , and Tr
(

1
ab

)
= 0, then UBCTF (a, b, c) = 2. This is true

by Case 5.2.
6. In all other cases, UBCTF (a, b, c) = 0.

This completes the proof. ⊓⊔

Given Proposition 3 and Theorem 4, the following lemma is obvious. It concerns
the nontrivial uniformity of the inverse function.

Lemma 2. For the inverse permutation F : F2n → F2n , the nontrivial unifor-
mity δF of the UBCT is

δF =

{
4 if n is even,

2 if n is odd.

In Appendix A, we present the UBCT of the inverse function over F23 .

6 The Lower Boomerang Connectivity Table (LBCT)

In this section, we study the properties of the LBCT, and give explicit values of
its entries for the inverse function.

6.1 Properties of the LBCT

The following result is valid for all permutations of F2n , and abc = 0. Recall that

LBCTF (a, b, c) = #

{
x ∈ F2n

∣∣∣∣F (x) + F (x+ b) = c,
F−1(F (x) + c) + F−1(F (x+ a) + c) = a

}
.

Proposition 6. For a, b, c ∈ F2n with abc = 0, we have

LBCTF (a, b, c) =


2n if b = c = 0,

0 if b = 0, c ̸= 0,

0 if b ̸= 0, c = 0,

DDTF (b, c) if a = 0.
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Proof. For a, b, c ∈ F2n , consider the equations

F (x) + F (x+ b) = c, (5)

and

F−1(F (x) + c) + F−1(F (x+ a) + c) = a, (6)

Case 1: Suppose that b = 0. Then (5) implies that c = 0.
Case 1.1: Suppose that c = 0. Then (5) is verified for all x ∈ F2n . Moreover,
(6) gives

F−1(F (x)) + F−1(F (x+ a)) = x+ x+ a = a,

which is also verified for all x ∈ F2n . Then

LBCTF (a, 0, 0) = 2n.

Case 1.2: Suppose that c ̸= 0. Then

UBCTF (a, 0, c) = 0.

In the next cases, we suppose that b ̸= 0.
Case 2: Suppose that c = 0. Then (5) gives F (x) + F (x + b) = 0, and b = 0
which is not possible.

LBCTF (a, b, 0) = 0.

In the next cases, we suppose that b ̸= 0 and c ̸= 0.
Case 3: Suppose that a = 0. Then (6) implies that

F−1(F (x) + c) + F−1(F (x) + c) = 0,

which is always satisfied. Hence, (5) implies that

LBCTF (0, b, c) = DDT (b, c).

This proves the claim. ⊓⊔

Since Proposition 6 concerns the situation abc = 0, we propose a new uniformity
concept for the EBCT.

Definition 10. Let F be a permutation of F2n . The nontrivial lower uniformity
δF of the LBCT is the maximal value of all LBCTF (a, b, c) where abc ̸= 0, that is

δF = max
a,b,c∈F2n ,abc ̸=0

LBCTF (a, b, c).

The following result simplifies the nontrivial lower boomerang connectivity uni-
formity of power functions.

Proposition 7. Let d be an integer such that gcd(d, 2n − 1) = 1. Let F be a
power function defined over F2n by F (x) = xd. The nontrivial lower boomerang
connectivity uniformity of F satisfies

δF = max
a,c∈F2n ,ac̸=0

LBCTF (a, 1, c).
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Proof. Let a, b, c ∈ F2n with abc ̸= 0, and F (x) = xd. The system of equations{
F (x) + F (x+ b) = c,

F−1(F (x) + c) + F−1(F (x+ a) + c) = a,

can be rewritten as {
xd + (x+ b)d = c,(
xd + c

)−d
+

(
(x+ a)d + c

)−d
= a.

Set x = by. Then, the former system gives{
bdyd + bd(y + 1)d = c,(
bdyd + c

)−d
+

(
(by + a)d + c

)−d
= a.

This equivalent to{
yd + (y + 1)d = c

bd
,(

yd + c
bd

)−d
+
(
(y + a

b )
d + c

bd

)−d
= a

b .

Hence
δF = max

a,c∈F2n ,ac̸=0
UBCTF (a, 1, c).

This completes the proof. ⊓⊔

The LBCT tables of two affine equivalent functions is presented in the following
result.

Proposition 8. Let F and G be two affine equivalent permutations of F2n such
that G = A2 ◦ F ◦A1 where A1, A2 are affine permutations of F2n . Then

LBCTG(a, b, c) = UBCTF
(
A1(a), A1(b), A

−1
2 (c)

)
.

Proof. Let G = A2 ◦ F ◦ A1 where A1, A2 are affine permutations of F2n . The
value LBCTG(a, b, c) is the number of the solutions x ∈ F2n satisfying the system
of equations {

G(x) +G (x+ b) = c,

G−1(G(x) + c) +G−1 (G(x+ a) + c) = a.

The first equation can be transformed to

A2 (F (A1(x)) + F (A1(x) +A1(b))) = c,

which is equivalent to F (A1(x)) + F (A1(x) +A1(b)) = A−1
2 (c).

As in the proof of Proposition 5, the second equation is equivalent to

F−1
(
F (A1(x)) +A−1

2 (c)
)
+ F−1

(
F (A1(x) +A1(a)) +A−1

2 (c)
)
= A1(a).
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By setting A1(x) = x′, and since A1 is a permutation, then x′ is a solution of
the system{

F (x′) + F (x′ +A1(b)) = A−1
2 (c),

F−1
(
F (x′) +A−1

2 (c)
)
+ F−1

(
F (x′ +A1(a)) +A−1

2 (c)
)
= A1(a).

This implies that

LBCTG(a, b, c) = UBCTF
(
A1(a), A1(b), A

−1
2 (c)

)
.

and terminates the proof. ⊓⊔

Proposition 5 implies that the nontrivial lower boomerang connectivity unifor-
mity is invariant under affine transformations.

6.2 The LBCT of the Inverse Function

In this subsection, we study the LBCT of the inverse function F defined over
F2n . The following result is a continuation of Proposition 6.

Theorem 5. For a, b, c ∈ F2n with abc ̸= 0, we have

LBCTF (a, b, c) =


4 if (a, b, c) ∈ I ′

1 ∪ I ′
2,

2 if (a, b, c) ∈ I ′
3,

0 if (a, b, c) ̸∈ I1 ∪ I ′
2 ∪ I ′

3,

where

I ′
1 =

{
(a, b, c) : a = b =

1

c
,Tr(1) = 0

}
,

I ′
2 =

{
(a, b, c) : b =

1

c
, (ac)2 + ac+ 1 = 0

}
,

I ′
3 =

{
(a, b, c) : a = b ̸= 1

c
,Tr

(
1

ac

)
= 0

}
.

Proof. For a, b, c ∈ F2n with abc ̸= 0, consider the equations

F (x) + F (x+ b) = c, (7)

and

F−1(F (x) + c) + F−1(F (x+ a) + c) = a, (8)

Case 1: Suppose that x = 0 is a solution of (7) and (8). Then (3) implies that
F (b) = c, and bc = 1. Also, (8) gives

F−1(c) + F−1(F (a) + c) = a.
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If F (a) = c, that is ac = 1, then F−1(c) = a is satisfied. If F (a) ̸= c, then

F−1(c) + F−1(F (a) + c) =
1

c(ac+ 1)
.

Hence, if 1
c(ac+1) = a, that is (ac)2 + ac+ 1 = 0, x = 0 is a solution of both (7)

and (8).
It follows that x = 0 is a solution of (7) and (8) if and only if a = b = 1

c or if
b = 1

c , and (ac)2 + ac+ 1 = 0.
Case 2: Suppose that x = b is a solution of (7) and (8). Then (7) implies
F (b) = c, that is bc = 1, and (8) implies that

F−1(F (b) + c) + F−1(F (b+ a) + c) = F−1(F (b+ a) + c) = a.

Case 2.1: Suppose that F (b+ a) = c. Then 0 = a, which is not possible.
Case 2.2: Suppose that F (b+ a) ̸= c. Then, since bc = 1, we get

F−1(F (b+ a) + c) =
b+ a

ca
= a,

and (ac)2 + ac+ 1 = 0.
It follows that x = b is a solution of (7) and (8) if and only if b = 1

c , and
(ac)2 + ac+ 1 = 0.
Case 3: Suppose that x = 1

c is a solution of (7) and (8). Then (7) gives

c+ F

(
1

c
+ b

)
= c.

Case 3.1: If bc ̸= 1, this is not possible.
Case 3.2: If bc = 1, then (7) holds, and (8) gives

F−1

(
F

(
1

c
+ a

)
+ c

)
= a,

and F
(
1
c + a

)
+ c = F (a) = 1

a .
Case 3.2.1: If ac = 1, then this is satisfied.
Case 3.2.2: If ac ̸= 1, then F

(
1
c + a

)
+ c = 1

a implies that (ac)2 + ac+ 1 = 0.
It follows that x = 1

c is a solution of (7) and (8) if and only if a = b = 1
c , or if

b = 1
c and (ac)2 + ac+ 1 = 0.

Case 4: Suppose that x = a+ 1
c is a solution of (7) and (8) with ac ̸= 1 so that

x ̸= 0. Then (8) gives

F

(
a+

1

c

)
+ c = F (a) =

1

a
,

and (ac)2 + ac+ 1 = 0. Also, (7) gives

F

(
a+

1

c

)
+ F

(
a+

1

c
+ b

)
= c.
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This is valid if b = 1
c .

It follows that x = a + 1
c is a solution of (7) and (8) if and only if b = 1

c , and
(ac)2 + ac+ 1 = 0.
Case 5: Suppose that x ̸= 0, x ̸= b, x ̸= 1

c , x ̸= 1
c + a. Then the equations (7)

and (8) can be simplified to the system{
cx2 + bcx+ b = 0,
cx2 + acx+ a = 0.

Case 5.1: If a = b, then the system reduces to cx2+ acx+ a = 0. This equation
has two solutions of Tr

(
1
ac

)
= 0, and no solution if Tr

(
1
ac

)
= 1. Moreover, when

Tr
(

1
ac

)
= 0, one can easily check that 0, b, 1

c ,
1
c + a do not satisfy the equation

cx2 + acx+ a = 0.
Case 5.2: If a ̸= b, then subtracting the equation in the system, we get

(a+ b)(cx+ 1) = 0,

which is impossible since a ̸= b and x ̸= 1
c .

The former cases can be summarized to find LBCTF (a, b, c).

1. If b = c = a = 1, and Tr (1) = 0, then LBCTF (a, b, c) = 4. This is true by
Case 1, Case 3, and Case 5.1.

2. If a = b = 1
c , c ̸= 1, and Tr (1) = 0, then LBCTF (a, b, c) = 4. This is true by

Case 1, Case 3, and Case 5.1.

3. If b = 1
c and (ac)2+ac+1 = 0, then LBCTF (a, b, c) = 4. This is true by Case

1, Case 2, Case 3, and Case 4.

4. If a = b ̸= 1
c , and Tr

(
1
ac

)
= 0, then LBCTF (a, b, c) = 2. This is true by Case

1, Case 3, 5.1.

5. In all other cases, LBCTF (a, b, c) = 0.

This completes the proof. ⊓⊔

By Proposition 6 and Theorem 5, the following lemma gives the nontrivial uni-
formity of the inverse function.

Lemma 3. For the inverse permutation F : F2n → F2n , the nontrivial unifor-
mity δF of the LBCT is

δF =

{
4 if n is even,

2 if n is odd.

7 The Extended Boomerang Connectivity Table (EBCT)

In this section, we study some properties of the EBCT, and give all its entries
for the inverse function.
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7.1 Properties of the EBCT

The following result is valid for all permutations of F2n , and abcd = 0. We recall
that

EBCTF (a, b, c, d) = #

x ∈ F2n

∣∣∣∣∣∣
F (x) + F (x+ a) = b,
F (x) + F (x+ c) = d,
F−1(F (x) + d) + F−1(F (x+ a) + d) = a

 .

Proposition 9. For a, b, c ∈ F2n with abcd = 0, we have

EBCTF (a, b, c, d) =


2n if a = b = c = d = 0,

DDTF (c, d) if a = b = 0, c ̸= 0, d ̸= 0,

DDTF (a, b) if a ̸= 0, b ̸= 0, c = d = 0,

0 otherwise.

Proof. Consider the equations

F (x) + F (x+ a) = b, (9)

F (x) + F (x+ c) = d, (10)

and

F−1(F (x) + d) + F−1(F (x+ a) + d) = a. (11)

Case 1. Suppose that a = 0. Then (9) gives 0 = b.
Case 1.1. If b ̸= 0, then

EBCTF (0, b, c, d) = 0.

Case 1.2. If b = 0, then (9) is satisfied. Also, (11) is satisfied. Hence, (11)
represents the DDTF (c, d), and

EBCTF (0, 0, c, d) = DDTF (c, d).

In the next cases, we assume that a ̸= 0.
Case 2. Suppose that b = 0. Then (9) gives F (x) + F (x+ a), that is x = x+ a
and a = 0. This is not possible. Hence, for a ̸= 0, we get

EBCTF (a, 0, c, d) = 0.

In the next cases, we assume that ab ̸= 0.
Case 3. Suppose that c = 0. Then (10) implies that d = 0.
Case 3.1. If d ̸= 0, then

LBCTF (a, b, 0, d) = 0.

Case 3.2. If d = 0, then (10) is satisfied. Also, (11) implies that

F−1(F (x)) + F−1(F (x+ a)) = a,
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and F (x+ a) = F (x+ a). Hence (11) is satisfied. Finally, we get

EBCTF (a, b, 0, 0) = DDTF (a, b).

In the next cases, we assume that abc ̸= 0.
Case 4. Suppose that d = 0. Then (10) implies that F (x) = F (x + c), and
x = x+ c, which is impossible since c ̸= 0. Hence, for abc ̸= 0, we get

EBCTF (a, b, c, 0) = 0.

This completes the proof. ⊓⊔

Proposition 9 gives the values of EBCTF (a, b, c, d) when abcd = 0. This motivates
us to propose the following notion.

Definition 11. Let F be a permutation of F2n . The nontrivial extended boomerang
connectivity uniformity δF of F is the maximal value of all EBCTF (a, b, c, d) where
abcd ̸= 0, that is

δF = max
a,b,c,d∈F2n ,abcd ̸=0

EBCTF (a, b, c, d).

The following result concerns the nontrivial extended boomerang connectivity
uniformity of power functions.

Proposition 10. Let r be an integer such that gcd(r, 2n − 1) = 1. Let F be a
power function defined over F2n by F (x) = xr. The nontrivial extended boomerang
connectivity uniformity of F satisfies

δF = max
b,c,d∈F2n ,bcd ̸=0

EBCTF (1, b, c, d).

Proof. Let a ∈ F2n with a ̸= 0. Consider the equation system
F (x) + F (x+ a) = b,

F (x) + F (x+ c) = d,

F−1(F (x) + d) + F−1(F (x+ a) + d) = a.

If F (x) = xr, then the system is equivalent to
xr + (x+ a)r = b,

xr + (x+ c)r = d,

(xr + d)
−r

+ ((x+ a)r + d)
−r

= a.

Let x = ay. Then the system can be reduced to
yr + (y + 1)r = b

ar ,

yr +
(
y + c

ar

)r
= d

ar ,(
yr + d

ar

)−r
+

(
(y + 1)r + d

ar

)−r
= 1.
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This implies that

EBCTF (a, b, c, d) = EBCTF

(
1,

b

ar
,
c

ar
,
d

ar

)
,

and, as a consequence, the nontrivial extended boomerang connectivity unifor-
mity of F satisfies

δF = max
b,c,d∈F2n ,bcd ̸=0

EBCTF (1, b, c, d).

This completes the proof. ⊓⊔

The following result presents a link between the EBCT and the double difference
distribution table (DDDT).

Proposition 11. Let F be a permutation of F2n . For any a, b, c, d ∈ F2n ,

EBCTF (a, b, c, d) ≤ DDDTF (a, c).

Proof. Suppose that x is a solution of (9), (10), and (11). Then, Equation (9)
implies that F (x + a) = F (x) + b, and Equation (10) implies that F (x) + d =
F (x+ c). Plugging this in Equation (11), we get

F−1(F (x+ c)) + F−1(F (x) + b+ d) = a,

and F−1(F (x) + b + d) = x + a + c. Then F (x) + b + d = F (x + a + c), and
F (x) + F (x + a + c) = b + d. On the other hand, adding Equation (9) and
Equation (10), we get b+ d = F (x+ a) + F (x+ c). Hence

F (x) + F (x+ a) + F (x+ c) + F (x+ a+ c) = 0,

which implies that
EBCTF (a, b, c, d) ≤ DDDTF (a, c).

This completes the proof.
⊓⊔

The following result gives a relation between the EBCT tables of two affine
equivalent functions.

Proposition 12. Let F and G be two affine equivalent permutations of F2n such
that G = A2 ◦ F ◦A1 where A1, A2 are affine permutations of F2n . Then

EBCTG(a, b, c, d) = EBCTF (A1(a), A
−1
2 (b), A1(c), A

−1
2 (d)).

Proof. Let G = A2◦F ◦A1 where A1, A2 are two affine permutations of F2n . Then
UBCTG(a, b, c, d) is the number of the solutions x ∈ F2n satisfying the system of
equations 

G(x) +G (x+ a) = b,

G(x) +G (x+ c) = d,

G−1(G(x) + d) +G−1 (G(x+ a) + d) = a.
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The first equation is equivalent to

A2 (F (A1(x)) + F (A1(x) +A1(a))) = b,

and F (A1(x)) + F (A1(x) +A1(a)) = A−1
2 (b).

The second equation is equivalent to

A2 (F (A1(x)) + F (A1(x) +A1(c))) = d,

and F (A1(x)) + F (A1(x) +A1(c)) = A−1
2 (d).

The third equation is equivalent to

A−1
1 ◦ F−1 ◦A−1

2 (A2 ◦ F ◦A1(x) + d)

+A−1
1 ◦ F−1 ◦A−1

2 (A2 ◦ F ◦A1 (x+ a) + d) = a.

This can be transformed to

A−1
1 ◦ F−1

(
F ◦A1(x) +A−1

2 (d)
)
+A−1

1 ◦ F−1
(
F ◦A1 (x+ a) +A−1

2 (d)
)
= a,

and then to

A−1
1 ◦F−1

(
F ◦A1(x) +A−1

2 (d)
)
+A−1

1 ◦F−1
(
F (A1(x) +A1(a)) +A−1

2 (d)
)
= a,

and finally to

F−1
(
F (A1(x)) +A−1

2 (d)
)
+ F−1

(
F (A1(x) +A1(a)) +A−1

2 (d)
)
= A1(a).

By setting A1(x) = x′, and since A1 is a permutation, then x′ is a solution of
the system

F (x′) + F (x′ +A1(a)) = A−1
2 (b),

F (x′) + F (x′ +A1(c)) = A−1
2 (d),

F−1
(
F (x′) +A−1

2 (d)
)
+ F−1

(
F (x′ +A1(a)) +A−1

2 (d)
)
= A1(a).

This implies that

EBCTG(a, b, c, d) = EBCTF (A1(a), A
−1
2 (b), A1(c), A

−1
2 (d)).

and terminates the proof. ⊓⊔

Proposition 12 implies that the nontrivial extended boomerang connectivity uni-
formity satisfies δF = δG whenever F and G are affine equivalent functions.

7.2 The EBCT of the Inverse Function

This section studies the EBCT of the inverse function F . The following result
completes Proposition 9 for abcd ̸= 0.
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Theorem 6. For a, b, c, d ∈ F2n with abcd ̸= 0, we have

EBCTF (a, b, c, d) =


4 if (a, b, c, d) ∈ I ′

1 ∪ I ′
2,

2 if (a, b, c, d) ∈ I ′
3,

0 if (a, b, c, d) ̸∈ I1 ∪ I ′
2 ∪ I ′

3,

where

I ′
1 =

{
(a, b, c) : c = a, b = d =

1

a
, n ≡ 0 (mod 2)

}
,

I ′
2 =

{
(a, b, c) : b =

1

a
, c =

1

d
, (ad)2 + ad+ 1 = 0

}
,

I ′
3 =

{
(a, b, c) : c = a, d = b, ab ̸= 1,Tr

(
1

ab

)
= 0

}
.

Proof. Let a, b, c, d ∈ F2n with abcd ̸= 0. Let

F (x) + F (x+ a) = b, (12)

F (x) + F (x+ c) = d, (13)

and

F−1(F (x) + d) + F−1(F (x+ a) + d) = a. (14)

Case 1. Assume that x = 0. Then F (x) = 0, and (12) gives ab = 1, and (13)
gives cd = 1. Also, (14) gives F−1(d) + F−1(F (a) + d) = a.
Case 1.1. If ad = 1, then the former equality is satisfied.
Case 1.2. If ad ̸= 1, then F (a) + d ̸= 0, and the former equality implies that
(ad)2 + ad+ 1 = 0.
Hence, x = 0 is a solution of the three equations if b = d = 1

a , c = a, or if b = 1
a ,

d = 1
c , (ad)

2 + ad+ 1 = 0.
Case 2. Assume that x = a. Then F (x + a) = 0, and (12) gives ab = 1, and
(14) gives F−1(F (a) + d) + F−1(d) = a.
Case 2.1. If ad = 1, then F (a) = d, and the former equality is satisfied. More-
over, (13) gives a = c.
Case 2.2. If ad ̸= 1, then the former equality gives (ad)2 + ad+ 1 = 0.
Case 2.2.1. If a = c, then (13) gives ad = 1, which is not possible.
Case 2.2.2. If a ̸= c, then (13) gives

c =
a2d

ad+ 1
=

1

d
.

Hence, x = a is a solution of the three equations if b = d = 1
a , c = a, or if b = 1

a ,
d = 1

c , a ̸= c, (ad)2 + ad+ 1 = 0.
Case 3. Assume that x = c. Then F (x+ c) = 0, and (13) gives cd = 1.
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Case 3.1. If a = c, then (12) gives bc = 1, and (14) gives ad = 1 which is
satisfied.
Case 3.2. If a ̸= c, then (14) gives F−1(F (c+a)+d) = a, and (ad)2+ad+1 = 0.
Also, (12) gives

b =
a

(a+ c) c
=

1

a
.

Hence, x = c is a solution of the three equations if a = c, b = d = 1
a , or if d = 1

c ,
b = 1

a , a ̸= c, (ad)2 + ad+ 1 = 0.
Case 4. Assume that x = 1

d . Then F (x) + d = 0, and (14) gives

F−1

(
F

(
1

d
+ a

)
+ d

)
= a.

Case 4.1. If ad = 1, then the former equality gives F−1(d) = a, which is
satisfied. Moreover, (12) gives b = d, and (13) gives F

(
1
d

)
+F

(
1
d + c

)
= d, that

is cd = 1.
Case 4.2. If ad ̸= 1, then (14) gives (ad)2 + ad+ 1 = 0. Also, (12) gives

b =
a

(a+ c) c
=

1

a
.

Finally, (13) gives cd = 1, that is 1
d = c. We observe that, in this case c = 1

d is
also a solution of the system, as in Case 3.2.
Hence, x = 1

d is a solution of the three equations if d = 1
a , a = c or if b = 1

a ,
c = 1

d , and (ad)2 + ad+ 1 = 0.
Case 5. Assume that x = a+ 1

d . Then F (x+ a) + d = 0, and (14) gives

F−1

(
F

(
1

d
+ a

)
+ d

)
= a,

and (ad)2 + ad+ 1 = 0. Next, (12) gives

b =
ad2

ad+ 1
=

1

a
.

Case 5.1 If c = a + 1
d , then (13) gives F

(
a+ 1

d

)
= d, and a = 0, which is

impossible.
Case 5.2 If c ̸= a+ 1

d , then (13) gives

c =
a2d2 + 1

ad2
=

1

d
.

Hence, x = a+ 1
d is a solution of the three equations if (ad)2+ad+1 = 0, b = 1

a ,
c = 1

d .
Case 6. Assume that x ̸= 0, x ̸= a, x ̸= c, x ̸= 1

d , and x ̸= a + 1
d . Then,

combining the equations (12), (13), and (14), we get the system bx2 + abx+ a = 0,
dx2 + cdx+ c = 0,
dx2 + adx+ a = 0,



Title Suppressed Due to Excessive Length 27

Case 6.1 If a ̸= c, then, adding the last two equations, we get (a+c)(dx+1) = 0.
This is not possible since x ̸= 1

d .
Case 6.2 If b ̸= d, then, adding the first and the last equations, we get (b +
d)x(x+ a) = 0. This is not possible since x ̸= a.
Case 6.3 Assume that a = c, and b = d. Then, the system reduces to the
equation bx2 + abx+ a = 0. This equation has two solutions if Tr

(
1
ab

)
= 0, and

no solution if Tr
(

1
ab

)
̸= 0.

Moreover, one can easily check that 0, a, c, 1
d , and a+ 1

d are not solutions of this
equation.
The former cases can be summarized as follows.

1. If c = a, b = d = 1
a , and Tr (1) = 0, then EBCTF (a, b, c, d) = 4. This is true

by Case 1, Case 2, Case 3, and case 4.
2. If b = 1

a , c = 1
d a ̸= c, and (ad)2 + ad + 1 = 0, then EBCTF (a, b, c, d) = 4.

This is true by Case 1, Case 2, Case 3, and Case 5.
3. If c = a, b = d, and then EBCTF (a, b, c, d) = 2. This is true by Case 6.3.
4. In all other cases, EBCTF (a, b, c) = 0.

This completes the proof. ⊓⊔

Theorem 6 implies the following result regarding the nontrivial extended boomerang
connectivity uniformity of F .

Lemma 4. The nontrivial extended boomerang connectivity uniformity of the
inverse permutation satisfies

δF =

{
4 if n is even,

2 if n is odd.

8 Conclusions

The boomerang attack is a cryptanalysis technique that allows an attack to
concatenate two short differential characteristics. Given its importance, this re-
search direction has attracted considerable attention. The main crucial tool for
quantifying the resistance of a block cypher involving an S-box is the so-called
Boomerang Connectivity Table (BCT), which is admitted to be channelling to
compete through its system of equations defined by it.

This paper follows the recent advance in boomerang cryptanalysis due to
Wang and Peyrin by investigating two appropriate tables introduced recently
to measure the resistance of S-boxes derived from vectorial Boolean permuta-
tions to cryptanalytic attacks, such as the differential and boomerang attacks:
the Upper Boomerang Connectivity Table (UBCT) and the Lower Boomerang
Connectivity Table (LBCT). We studied the properties of the UBCT, LBCT,
and the Extended Boomerang Connectivity Table (EBCT) for investible S-boxes.
We showed that the three tables are interconnected and have various remarkable
properties. We also introduced the notion of the nontrivial boomerang connec-
tivity to measure the strengths of these tables. Moreover, we give an explicit
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value of all the entries of the UBCT, the LBCT, and the EBCT of the signif-
icant inverse function. For future work, many directions could be investigated.
Still, the natural one would be to study these new tools for other classic popular
invertible S-boxes known to have excellent results regarding fundamental attacks
in the context of the block cipher in the line of our previous study [14] as well
as the depth-in study of the UBCT, LBCT, and EBCT to derive more general
results for vectorial permutations at least for quadratic or low-degree functions,
in the line of [19].
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A Appendix: list of the UBCT of the Inverse Function
over F23

In this section, we give the list of all values of UBCTF (a, b, c) for the inverse
function F over F23 . We can check that UBCTF (a, b, 0) = DDT (a, b), as claimed
in Proposition 3, by comparing Table 1 and Table 2.

http://www.staff.uni-mainz.de/pommeren/MathMisc/QuGlChar2.pdf
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a\b 0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 2 0 2 0 2 0 2

2 0 0 0 0 2 2 2 2

3 0 2 0 2 2 0 2 0

4 0 0 2 2 0 0 2 2

5 0 2 2 0 0 2 2 0

6 0 0 2 2 2 2 0 0

7 0 2 2 0 2 0 0 2

Table 2. UBCT(a,b,c) of the inverse function over F23 for c = 0.

a\b 0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 2 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 2 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 2 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 2 0 0 0 0 0 0

Table 3. UBCT(a,b,c) of the inverse function over F23 for c = 1.

a\b 0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 2 0 0 0 0 0

5 0 0 2 0 0 0 0 0

6 0 0 2 0 0 0 0 0

7 0 0 2 0 0 0 0 0

Table 4. UBCT(a,b,c) of the inverse function over F23 for c = 2.
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a\b 0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 0 0 2 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 2 0 0 0 0

4 0 0 0 2 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 2 0 0 0 0

7 0 0 0 0 0 0 0 0

Table 5. UBCT(a,b,c) of the inverse function over F23 for c = 3.

a\b 0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

2 0 0 0 0 2 0 0 0

3 0 0 0 0 2 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 2 0 0 0

7 0 0 0 0 2 0 0 0

Table 6. UBCT(a,b,c) of the inverse function over F23 for c = 4.

a\b 0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 0 0 0 0 2 0 0

2 0 0 0 0 0 2 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 2 0 0

6 0 0 0 0 0 2 0 0

7 0 0 0 0 0 0 0 0

Table 7. UBCT(a,b,c) of the inverse function over F23 for c = 5.
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a\b 0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 2 0

3 0 0 0 0 0 0 2 0

4 0 0 0 0 0 0 2 0

5 0 0 0 0 0 0 2 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

Table 8. UBCT(a,b,c) of the inverse function over F23 for c = 6.

a\b 0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 2

2 0 0 0 0 0 0 0 2

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 2

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 2

Table 9. UBCT(a,b,c) of the inverse function over F23 for c = 7.
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