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Abstract. In isogeny-based cryptography, bilinear pairings are regarded
as a powerful tool in various applications, including key compression,
public-key validation and torsion basis generation. However, in most
isogeny-based protocols, the performance of pairing computations is un-
satisfactory due to the high computational cost of the Miller function.
Reducing the computational expense of the Miller function is crucial for
enhancing the overall performance of pairing computations in isogeny-
based cryptography.
This paper addresses this efficiency bottleneck. To achieve this, we pro-
pose several techniques for a better implementation of pairings in isogeny-
based cryptosystems. We use (modified) Jacobian coordinates and present
new algorithms for Miller function computations to compute pairings of
order 2• and 3•. For pairings of arbitrary order, which are crucial for key
compression in some SIDH-based schemes (such as M-SIDH and bin-
SIDH), we combine Miller doublings with Miller additions/subtractions,
leading to a considerable speedup. Moreover, the optimizations for pair-
ing applications in CSIDH-based protocols are also considered in this
paper. In particular, our approach for supersingularity verification in
CSIDH is 15.3% faster than Doliskani’s test, which is the state-of-the-
art.

Keywords: Pairing computations · Isogeny-based cryptography · Su-
persingularity verification · Torsion basis generation

1 Introduction

As one of the essential tools in elliptic curve cryptography, pairings are now
widely applied in isogeny-based protocols. To compress the public key, pairings
are considered to improve the performance of SIDH/SIKE [1]. Although SIDH
and SIKE are broken by the attacks proposed in [9,28,37], one can still use

Authors are listed in alphabetical order.
⋆ Corresponding auther



2 Shiping Cai, Kaizhan Lin, and Chang-An Zhao

pairings to improve the public-key compression in other SIDH-like schemes [25],
such as the SIDH-PoK-based identification protocol [16], M-SIDH [20], binSIDH
and terSIDH [4].

Recently, the implementations of isogeny-based signatures also involve pair-
ing computations. In SQIsign [17,18], the ideal-to-isogeny translation is the most
costly procedure. To enhance the performance, pairings are used to simplify the
discrete logarithm computations on elliptic curves [27]. As the most compact sig-
nature, SQIsignHD [15] also applies pairings to reduce the signature size. Com-
pared with SQIsign, SQIsignHD has a simpler signing phase, and pairing compu-
tations become one of the efficiency bottlenecks. A faster approach to compute
pairings would make SQIsignHD more attractive in isogeny-based cryptography.
Furthermore, pairings are also applied to isogeny-based public-key encryption
protocols, such as FESTA [5] and QFESTA [33]. Besides, pairings have been
considered as a powerful tool for supersingularity verification and full-torsion
basis generation/verification in CSIDH [35].

However, pairing computations in most of isogeny-based schemes are not effi-
cient now. In compressed SIDH/SIKE, one can use the precomputation technique
proposed in [32] to accelerate the pairing computation significantly. But in most
of isogeny-based schemes we mentioned above, the precomputation technique
does not benefit the performance because of the costly dual isogeny computa-
tion. Therefore, it is important to explore how to compute pairings efficiently
on a generic supersingular elliptic curve. For the case considered in CSIDH,
the pairing-based supersingularity verification [35] is still slightly less efficient
than the state-of-the-art [19,2], even with multiple techniques in the literature
to speed up the implementation.

In this paper, we mainly consider how to efficiently compute the pairings
in different isogeny-based protocols, including SIDH-based schemes (e.g., bin-
SIDH), SQISignHD, FESTA, QFESTA, CSIDH and dCSIDH [8]. To be precise,

– We optimize pairing computations when the embedding degree k = 1. Firstly,
a new formula is proposed to compute Miller tripling, which benefits the
computation of 3•-pairings. Besides, we reduce the cost of Miller line func-
tion evaluation for quadrupling in [27] to speed up 2•-pairing computations.
Compared with the pairing computation in projective coordinates [14], our
new approach performs better in (modified) Jacobian coordinates. Moreover,
we explore how to compute pairings of arbitrary order by proposing new for-
mulas for Miller doubling-and-addition and Miller doubling-and-subtraction.
These formulas improve the pairing performance in SIDH-like schemes, such
as M-SIDH, binSIDH and terSIDH. Since our new formulas do not rely on
specific underlying fields, they possess the potential to be applied to other
protocols.

– We enhance the performance of pairing computations for the case of k = 2,
which is adapted in CSIDH, dCSIDH, etc. Particularly, we revisit the pairing
computation for torsion points verification, supersingularity verification and
torsion basis generation in CSIDH [35]. Some technical details to improve
the performance are also presented. The experimental results show that the
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improvements bring a considerable speedup. It is worth noting that our algo-
rithm yields a factor 1.2 acceleration for the pairing-based supersingularity
verification, which beats Doliskani’s test [2,19].

Related work. Very recently, independent work by Robert [38] proposed an
elegant approach to compute pairings efficiently, which can also be used to ac-
celerate the pairing computations in isogeny-based protocols. We note that our
work optimizes the pairing implementation from a distinct perspective. It is pos-
sible that combining the techniques in both would lead to a better performance
in applications.

The organization of this paper is as follows. We give the preliminaries of this
paper in Section 2. In Sections 3 and 4, we present our main optimizations for
pairing computation in isogeny-based cryptography when the embedding degree
k = 1 and k = 2, respectively. Finally, we conclude in Section 5.

2 Preliminaries

This section provides the necessary background required for the remainder of
the paper. We begin with a brief overview of elliptic curves and then recall the
basic definition of pairings, including the Weil pairing and the reduced Tate
pairing. Furthermore, we introduce Miller’s algorithm.
Elliptic curves. Let q = pk where p is a prime. An elliptic curve E defined over
a finite field Fq has the following form:

E/Fq : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, a2, a3, a4, a6 ∈ Fq such that E is non-singular. When a1 = a3 = a6 = 0
and a4 = 1, the curve is of the form EA : y2 = x3 + Ax2 + x. We call it
a Montgomery curve. Setting a1 = a2 = a4 = 0 gives a curve in the form
Ea,b : y

2 = x3 + ax+ b, known as short Weierstrass curve. We denote the point
at infinity of an elliptic curve E as ∞E , or ∞ for simplicity when there is no
ambiguity in the context. For a curve E defined over Fq, all the rational points
on E, including ∞E , form an abelian group under point addition. We let E(Fq)
denote the group. For a positive integer n, define

E[n] = {P ∈ E(Fp)|[n]P =∞},
E(Fq)[n] = {P ∈ E(Fq)|[n]P =∞}.

An curve E in characterstic p is called supersingular if E[p] = {∞}. It is called
ordinary otherwise.
Weil pairing. In 1940, André Weil first introduced the Weil pairing [40]. The
efficient computation of Weil pairing was proposed by Miller [29]. Let E be an
elliptic curve over the finite field Fp and r be an integer with p ∤ r. Choose points
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P,Q ∈ E[r], we can define a map

ωr : E[r]× E[r]→ µr

(P,Q) 7→ (−1)r fr,P (Q)

fr,Q(P )
,

where µr is the r-th root of unity. We call ωr the Weil pairing. Here, fr,P and fr,Q
are the Miller functions with div(fr,P ) = r(P )−r(∞) and div(fr,Q) = r(Q)−r(∞).
Reduced Tate pairing. Based on the Weil pairing, the Tate pairing is proposed
in the case that the second argument Q ∈ E(Fpk)/rE(Fpk), and we only require
the first argument P is in the r-torsion group. Let k be the embedding degree
of E with respect to r, i.e., k is the smallest integer such that r | pk − 1. Then,
we can define the reduced Tate pairing τr as follows:

τr : E(Fpk)[r]× E(Fpk)/rE(Fpk)→ µr

(P,Q) 7→ fr,P (Q)
pk−1

r .

The computation of raising the power of fr,P (Q) to pk−1
r is called the final

exponentiation, which maps the result of Miller function evaluation into a group
formed by the r-th roots of unity in F∗

pk .
As stated above, the Weil pairing computation involves two Miller func-

tion computations, whereas the reduced Tate pairing computation contains one
Miller function computation and the final exponentiation. In most isogeny-based
cryptosystems, the final exponentiation typically requires less computational re-
sources if the embedding degree is less than or equal to 2. Conversely, Miller
function computation dominates the computational cost of the pairings. Com-
pared with the Weil pairing computation, the reduced Tate pairing computation
saves one Miller function computation. This is why the reduced Tate pairing is
preferred in isogeny-based protocols.
Miller’s algorithm. The computation of fr,P (Q) contains point operations and
Miller function evaluation, which can be computed by Miller’s algorithm [29]
and the elliptic net algorithm [41]. Although the elliptic net algorithm has been
improved significantly in recent years [12,7], it is still less efficient than Miller’s
algorithm. This paper mainly considers how to efficiently compute pairings by
Miller’s algorithm in isogeny-based schemes.
Non-Adjacent Form (NAF). In elliptic curve cryptography, the non-adjacent
form [23](NAF) representation that is a binary signed-digit representation for an
integer is applied to improve the scalar multiplication [31,22]. Compared with
the binary digit representation, the NAF representation ensures that the integer
has fewer non-zero digits. Ideally, the number of non-zero digits is about one-
third of the length of the NAF representation. This enables a more efficient
implementation of Miller’s algorithm. By using the NAF representation, one can
save a significant amount of Miller additions. To summarize, we show Miller’s
algorithm with the NAF form for the reduced Tate pairing in Algorithm 1.
Notation. In this paper, let M ,S, m, s, i denote the costs of one multipli-
cation, squaring in Fp2 , one multiplication, one squaring and one inversion in
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Algorithm 1 Miller’s algorithm in NAF form
Require: P ∈E(Fp)[r], Q∈E(Fpk )/rE(Fpk ) and an integer r= (rh−1, rh−2, · · · , r0)2

in NAF form.
Ensure: fr,P (Q)

pk−1
r .

1: T ← P , f ← 1;
2: for i from h− 2 to 0 do
3: f ← f2 · ℓT,T

v[2]T
(Q);

4: T ← [2]T ;
5: if ri = 1 then
6: f ← f · ℓT,P

vT+P
(Q);

7: T ← T + P ;
8: else if ri = −1 then
9: f ← f · ℓT,−P

vT−P
(Q);

10: T ← T − P ;
11: end if
12: end for
13: f ← f

pk−1
r ;

14: return f .

Fp, respectively. We estimate that 1M ≈ 3m, 1S ≈ 2m, 1s ≈ 0.8m and
1i ≈ 30m. For simplicity, the operations of field additions/subtractions are not
counted which are much cheaper compared with field multiplications and squar-
ings. We denote the line passing through the points P and Q by LP,Q, and the
notation ℓP,Q is the line function that defines LP,Q. Similarly, denote the ver-
tical line passing through P by vP , and define vP as its line function. When
there is no ambiguity in the context, we use Lk1,k2

, ℓk1,k2
, Vk1

, vk1
to represent

L[k1]P,[k2]P , ℓ[k1]P,[k2]P , V[k1]P , v[k1]P respectively. Besides, let fk,P be a ratio-
nal function with div(fk,P ) = k(P ) − ([k]P ) − (k − 1)(∞). Finally, we denote
P = (xP , yP ) in affine coordinates, P = (XP : YP : ZP ) in Jacobian coordi-
nates and P = (XP : YP : ZP : TP ) in modified Jacobian coordinates, where
xP = XP /Z

2
P , yP = YP /Z

3
P and TP = aZ4

P .

3 Efficient Pairing Computation for Embedding Degree 1

This section considers pairing computations when the embedding degree is equal
to one, which is widely used in isogeny-based schemes. For instance, one can uti-
lize pairings to transfer elliptic curve discrete logarithm computation to discrete
logarithm computation over the finite field in compressed SIDH-like schemes. In
addition, pairings are utilized to check the relative sign for two points in FESTA.
These require the pairing e satisfies that e(P, P ) = 1 for every point P ∈ E(Fp2),
where E is a supersingular elliptic curve defined over Fp2 = Fp[i]/⟨i2 + 1⟩. with
p ≡ 3 mod 4. The Weil pairing always satisfies this property, while the reduced
Tate pairing satisfies it under specific situations, as stated in Theorem 1.
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Theorem 1 ([25,27]). Let E be a supersingular elliptic curve defined over Fp2

with p ≡ 3 mod 4. Suppose that P ∈ E(Fp2)[N ] and N | p+1. Then τN (P, P ) = 1
for every P ∈ E(Fp2)[N ] if

– N is odd, or
– N is a power of 2.

As we analyzed in Section 2, computing the reduced Tate pairing is more
efficient than computing the Weil pairing in general. Indeed, we can adapt the
reduced Tate pairing in most isogeny-based protocols since we often encounter
the scenarios described in Theorem 1 in practice.

In this section, we will first describe how to efficiently compute the reduced
Tate pairings of degree 2e2 and 3e3 , where e2, e3 ∈ N. After that, we will consider
pairings of arbitrary order, which can be used to improve compressed SIDH-like
schemes.

3.1 Pairing computation of degree 2e2 and 3e3

In isogeny-based cryptography, elliptic curves in Montgomery form are widely
used. Adapting the isomorphism

ϕ : EA → Ea,b,

(x, y) 7→ (x+
A

3
, y),

(1)

we can efficiently translate a Montgomery curve EA : y2 = x3 + Ax2 + x to a
Weierstrass curve Ea,b : y

2 = x3 + ax+ b, where

a = 1− A2

3
and b = −A

3
+

2A3

27
.

For a better performance, we mainly consider computing the reduced Tate pair-
ing τr(P,Q) on the supersingular elliptic curve Ea,b : y2 = x3 + ax + b, where
P,Q ∈ Ea,b(Fp2) are represented in affine coordinates.

Miller function computation consists of point operations and Miller func-
tion evaluation. For example, Miller doubling involves one point doubling and
Miller evaluation for doubling. Generally, Miller’s algorithm only considers Miller
doubling and Miller addition. While in [14,26,27], the authors proposed Miller
tripling and Miller quadrupling, improving the pairing performance in the spe-
cific setting of isogeny-based protocols. Based on these works, we explore how
to further optimize Miller tripling and Miller quadrupling.

We first consider the case when the reduced Tate pairing of degree 3e3 ,
i.e., given points P,Q ∈ Ea,b(Fp2), construct the Miller function f3e3 ,P with
div(f3e3 ,P ) = 3e3(P ) − 3e3(∞) and evaluate it at Q. In this case, one can de-
compose the Miller function computation into multiple Miller triplings. Suppose
that R = [m]P , where m is an integer. Let λ1 and λ2 be the slopes of the lines
Lm,m and L−m,−2m. The values of λ1 and λ2 can be easily obtained during the
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computations of [2m]P ← [2]([m]P ) and [3m]P ← [2m]P + [m]P . In [14], the
authors evaluate the Miller function for tripling with the following formula:

div(f3m,P ) = div
(
f3
m,P

ℓm,m · ℓm,2m

v2m · v3m

)
. (2)

Applying Equation (2), one needs to evaluate four Miller line functions. Here we
propose Equation (3), a more efficient formula for Miller function evaluation in
Miller tripling:

div(f3m,P ) = div
(
f3
m,P

ℓm,m · vm
ℓ−m,−2m

)
= div

(
f3
m,P

[λ1(x− x2m)− (y + y2m)] · (x− xm)

λ2(x− x2m)− (y + y2m)

)
.

(3)

Proposition 1. Equation (3) is correct.

Proof. Since div(fm,P ) = m(P )−([m]P )−(m−1)(∞) and div(f3m,P ) = 3m(P )−
([3m]P )− (3m− 1)(∞), we have div(f3m,P /f

3
m,P ) = 3([m]P )− ([3m]P )− 2(∞).

On the other hand, from

3([m]P )− ([3m]P )− 2(∞)

= (2([m]P ) + ([−2m]P )− 3(∞)) + (([m]P ) + ([−m]P )− 2(∞))

− (([−m]P ) + ([−2m]P ) + ([3m]P )− 3(∞))

=div(ℓm,m) + div(vm)− div(ℓ−m,−2m)

=div
(
ℓm,m · vm
ℓ−m,−2m

)
,

we can imply that the first equality in Equation (3) holds.

Note that Lm,m not only passes through [m]P but also [−2m]P . It follows
that the second equality in Equation (3) holds, which completes the proof. ■

Equation (3) only requires three Miller line function evaluations, thereby
saving one line evaluation compared to the previous work (Equation (2)). In
addition, we explore the computational efficiency of various coordinates and find
out that using Jacobian coordinates is the best choice for efficiency. We present
Algorithm 2, which executes point operation and line evaluation for tripling at
a cost of 19M + 11S.
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Algorithm 2 TPL: Miller tripling
Input: Miller function f = fm,P (Q), points R = [m]P = (XR : YR : ZR), Q = (xQ, yQ)
and the coefficient a of Ea,b : y

2 = x3 + ax+ b.
Output: [3]R = (X3 : Y3 : Z3) and f3m,R(Q).

1: XX←X2
R

2: Y Y ←Y 2
R

3: ZZ←Z2
R

4: Y4←Y Y 2

5: T0←ZZ2

6: T1←a · T0

7: M←T1 + 3 ·XX
8: MM←M2

9: T2←6 · ((XR + Y Y )2 −XX − Y4)
10: E←T2 −MM
11: EE←E2

12: T←16 · Y4

13: T3←(M + E)2 − EE −MM
14: U←T3 − T
15: T4←4 · Y Y · U
16: X3←4 · (XR · EE − T4)
17: T5←T − U
18: T6←E · EE

19: T7←U · T5

20: Y3←8 · YR · (T7 − T6)
21: Z3←(ZR + E)2 − ZZ − EE
22: U←U − T3/2
23: T1←ZZ · xQ −XR

24: T2←E · T1

25: T3←M · T1

26: T4←YR · ZZ
27: T5←T4 · ZR

28: T6←yQ · T5

29: T7←T2 · (T3 − 2 · T6 + 2 · Y Y )
30: T8←E · (T6 + Y Y )
31: T1←U · T1 − 2 · T8

32: T2←ZZ · T1

33: f←f3 · T7 · T2

34: return (X3 : Y3 : Z3), f
Cost : 19M + 11S

Compared with the previous work [14], our approach saves 10M−3S ≈ 24m.
Overall, it offers an approximate 23% speedup.

Remark 1. In Miller function evaluation, all inversion operations can be replaced
by conjugate operations which is easy to compute. Furthermore, the final expo-
nentiation step involves raising fr,P (Q) ∈ Fp2 to a power divided by p−1. Hence,
for every element α+ βi ∈ µp+1 = {x ∈ Fp2 |xp+1 = 1} with α, β ∈ Fp, we have

(α+ βi)−1 = (α+ βi)p = α− βi.

Moreover, we can omit the inversion of an element defined on Fp as raising it
to the power p− 1 is equal to 1. This technique, so-called denominator elimina-
tion [3], is widely applied for efficient pairing computations.

Next, we explore the pairing computation of degree 2e2 . In [26,27], the authors
merged two Miller doublings into one Miller quadrupling, and used Equation (4)
to evaluate Miller functions for quadrupling:

div(f4m,P ) = div

([
f2
m,P · ℓm,m

]2
ℓ−2m,−2m

)

= div

([
f2
m,P [λ1(x− x2m)− (y + y2m)]

]2
λ2(x− x2m)− (y + y2m)

)
,

(4)
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where λ1 and λ2 are the slopes of the lines Lm,m and L−2m,−2m, respectively.
The values of λ1 and λ2 can be easily obtained by [2m]P ← [2]([m]P ) and
[4m]P ← [2]([2m]P ). We also use Equation (4) to compute Miller quadrupling.
However, compared with the previous work [27] we save 1M in each loop of
Miller quadrupling, according to Algorithm 3.

Algorithm 3 QDL: Miller quadrupling
Input: Miller function f = fm,P (Q), points R = [m]P = (XR : YR : ZR : TR),
Q = (xQ, yQ) and the coefficient a of Ea,b : y

2 = x3 + ax+ b.
Output: [4]R = (X4 : Y4 : ZR4 : TR4) and f4m,R(Q).

1: XX←X2
R

2: T1←2 · Y 2
R

3: T2←T 2
1

4: T3←(XR + T1)
2 −XX − T2

5: T4←2 · T2

6: λ1←3 ·XX + TR

7: X2←λ2
1 − 2 · T3

8: Y2←λ1 · (T3 −X2)− T4

9: Z2←2 · YR · ZR

10: TR2←2 · T4 · TR

11: XX←X2
2

12: T1←2 · Y 2
2

13: T2←T 2
1

14: T3←(X2 + T1)
2 −XX − T2

15: T4←2 · T2

16: λ2←3 ·XX + TR2

17: X4←λ2
2 − 2 · T3

18: Y4←λ2 · (T3 −X4)− T4

19: Z4←2 · Y2 · Z2

20: TR4←2 · T4 · TR2

21: ZZ←Z2
2

22: T0←Z2 · ZZ
23: f←f2

24: T1←ZZ · xQ −X2

25: T2←yQ · T0 + Y2

26: T3←T1 · λ1 − T2

27: f←f · T3

28: f←f2

29: f←f · Y2

30: T1←T1 · λ2

31: T3←2 · T2 · Y2

32: T1←(T1 + T3) · T0

33: f←f · T1

34: return (X4 : Y4 : Z4 : TR4), f
Cost : 16M + 13S

3.2 Pairing computation in a generic case

In this subsection, we intend to speed up pairing computations for generic cases,
i.e., computing the reduced Tate pairing of arbitrary order efficiently. The tech-
niques in this subsection can be adapted to improve pairing computations in
M-SIDH, binSIDH, etc.

In each Miller loop, Miller doublings are always executed in the original
Miller’s algorithm. When a Miller addition is required, the original Miller’s algo-
rithm handles the Miller doubling step and the Miller addition step individually.
Our main idea of improving the performance is to combine doubling with ad-
dition (subtraction) to evaluate the Miller function for doubling and addition
(subtraction) at the same time. More precisely, given a point [m]P and the
Miller line evaluation fm,P (Q) from the previous step, we can directly evaluate
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f2m+1,P (f2m−1,P ) at Q with Equation (5) (Equation (6)). That is,

div(f2m+1,P ) = div
(
f2
m,P

ℓm,m · v1
ℓ−2m,−1

)
= div

(
f2
m,P

[λ1(x− x2m)− (y + y2m)] · (x− x1)

λ2(x− x2m)− (y + y2m)

)
,

(5)

where λ1 and λ2 are the slopes of the lines Lm,m and L−2m,−1, respectively, and

div(f2m−1,P ) = div
(
f2
m,P

ℓm,m

ℓ−2m,1

)
= div

(
f2
m,P

λ1(x− x2m)− (y + y2m)

λ2(x− x2m)− (y + y2m)

)
.

(6)

where λ1 and λ2 are the slopes of the lines Lm,m and L−2m,1, respectively.
Analogous to the cases in Section 3.1, during the computation of [2m]P ←
[2]([m]P ) and [2m+ 1]P ← [2m]P + P ([2m− 1]P ← [2m]P − P ), it is easy to
obtain the slopes of the lines Lm,m and L−1,−2m (L−2m,1).

Proposition 2. Equations (5) and (6) are correct.

Proof. Since div(fm,P ) = m(P ) − ([m]P ) − (m − 1)(∞), and div(f2m+1,P ) =
(2m+ 1)(P )− ([2m+ 1]P )− 2m(∞), we have

div(f2m+1,P /f
2
m,P ) = (P ) + 2([m]P )− ([2m+ 1]P )− 2(∞).

On the other hand, from

(P ) + 2([m]P )− ([2m+ 1]P )− 2(∞)

=(2([m]P ) + ([−2m]P )− 3(∞)) + ((P ) + (−P )− 2(∞))

− (([−2m]P ) + (−P ) + ([2m+ 1]P )− 3(∞))

=div(ℓm,m) + div(v1)− div(ℓ−2m,−1)

=div
(
ℓm,m · v1
ℓ−2m,−1

)
,

we can imply the first equality in Equation (5) holds. Similarly, from the divisors
of fm,P and f2m−1,P , one can deduce that div(f2m−1,P /f

2
m,P ) = 2([m]P )−(P )−

([2m− 1]P ). It follows that

2([m]P )− (P )− ([2m− 1]P )

=(2([m]P ) + ([−2m]P )− 3(∞))− (([−2m]P ) + (P ) + ([2m− 1]P )− 3(∞))

=div(ℓm,m)− div(ℓ−2m,1)

=div
(

ℓm,m

ℓ−2m,−1

)
,

and thus the first equality of Equation (6) holds. Since Lm,m passes through
[−2m]P , it is easy to see that the second equality in Equation (5) and that in
Equation (6) hold as well. This completes the proof. ■
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Remark 2. If the x-coordinates of P and Q are in Fp, then Equation (5) can be
simplified as

div(f2m+1,P ) = div
(
f2
m,P

λ1(x− x2m)− (y + y2m)

λ2(x− x2m)− (y + y2m)

)
.

due to the final exponentiation p2−1
r = (p− 1) · p+1

r .

Moreover, to obtain an optimized implementation, we explore pairing computa-
tions in Jacobian coordinates and modified Jacobian coordinates, respectively.
We present Table 1 to give an efficiency comparison. It shows that point dou-
bling using modified Jacobian coordinates is more efficient, but point addition,
evaluation for Miller doubling and evaluation for Miller quadrupling are more
expensive. In general, the original Miller’s algorithm is superior in performance
when using Jacobian coordinates. However, we use the NAF representation of r
to compute pairings, which typically leads to a sparse representation of r, i.e.,
the NAF form of r has few non-zero bits. Hence, Miller doublings dominate the
computations. In this case, we prefer using modified Jacobian coordinates to
compute the reduced Tate pairings.

In summary, we present Algorithm 4 to compute pairings for a generic case.
Note that we also perform one Miller quadrupling (Algorithm 3) instead of
two consecutive Miller doublings to further improve the performance. The al-
gorithms for Miller doubling (DBL), Miller doubling-and-addtion (DBLADD)
and Miller doubling-and-subtration (DBLSUB) can be seen in Appendix A.

Procedures Jacobian Modified Jacobian
Point doubling 2M + 8S 3M + 5S
Point addition 7M + 4S 8M + 6S
Evaluation for Miller doubling 7M + 1S 7M + 2S
Evaluation for Miller doubling-and-addition 9M + 1S 9M + 1S
Evaluation for Miller doubling-and-subtraction 8M + 1S 8M + 1S
Evaluation for Miller quadrupling 10M + 2S 10M + 3S

Table 1: Comparison of computational costs in (Modified) Jacobian coordinates
for procedures of pairing computations

Remark 3. According to [11, Corollary 1], we can compute τc·r(P,Q) instead of
τr(P,Q), where c is an integer coprime to r. Therefore, we can choose a small
integer c such that c · r has lower Hamming weight in NAF form compared with
that of r in NAF form. Although it slightly increases the number of iterations,
the practical performance would be better as it may save considerable Miller
additions.
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Algorithm 4 Pairing computation for a generic case
Require: Points P = (xP , yP ), Q = (xQ, yQ) of order r = (rh−1rh−2 · · · r0) in NAF

form, the curve coefficient a of Ea,b : y
2 = x3 + ax+ b.

Ensure: τr(P,Q) = fr,P (Q)
p2−1

r .
1: f ← 1, i← h− 1, T ← P . // Transform P into modified Jacobian coordinates.
2: while i ̸= 0 do
3: if i ̸= 1 and ri = 1 then
4: (T, f)← DBLADD(Q,T, P, f). // T ← [2]T + P
5: i← i− 1.
6: else if i ̸= 1 and ri = −1 then
7: (T, f)← DBLSUB(Q,T, P, f). // T ← [2]T − P
8: i← i− 1.
9: else if i ̸= 2 and ri = 0 and ri−1 = 0 then

10: (T, f)← QDL(Q,T, f). // T ← [4]T
11: i← i− 2.
12: else
13: (T, f)← DBL(Q,T, f). T ← [2]T
14: i← i− 1.
15: end if
16: end while
17: if r0 = 1 then
18: f ← f · (xQ − xP ).
19: else if r0 = 0 then
20: f ← f2 · (xQ − xT ).
21: end if
22: f ← f

p2−1
r .

23: return f .

4 Efficient Pairing Computation for Embedding Degree 2

The pairing computation for k = 2 is mainly considered in CSIDH and its
variants. Reijnders [35] presented a general idea to adapt pairings to improve
the performance of full torsion basis verification, supersingularity verification
and torsion basis generation. Some techniques are also utilized to speed up the
implementation. In this section, we will propose several techniques to further im-
prove the performance, and give an efficiency comparison between our methods
and the previous work.

Assume that p = 4ℓ1ℓ2 · · · ℓn − 1, where ℓj (1 ≤ j ≤ n) are primes with
ℓ1 < ℓ2 < · · · < ℓn. Let Fp2 = Fp[i]/⟨i2 + 1⟩. Same as what we handled in
Section 3, we use the isomorphism in Equation (1) to transfer the points defined
on the Montgomery curve to the Weierstrass curve and consider the computation
of τr(P,Q), where

P ∈ G1,r = {(x, y) ∈ Ea,b[r]|x, y ∈ Fp},
Q ∈ G2,r = {(x, yi) ∈ Ea,b[r]|x, y ∈ Fp}.
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All the pairings in this section have the property that the order r divides p+ 1,
i.e., r is a product of small odd primes.

4.1 Torsion basis verification

In dCSIDH [8], the full torsion basis is a part of the public key. Hence, it is
vulnerable to side-channel attacks without the verification of a full torsion basis.
In this subsection, we focus on the following problem:

Problem 1. Given a supersingular elliptic curve EA/Fp and two points P ∈ G1,r

and Q ∈ G2,r where r = (p+ 1)/4, check that P and Q have full order.

It is easy to see that P and Q have order r = (p + 1)/4 if and only if
the value τr(P,Q) is a generator of µr. Therefore, one can compute τr(P,Q)
and then verify that it is indeed a generator of µr using a divide-and-conquer
approach [42, Algorithm 7.3]. Fixing a (public) primitive root ζ0 of µp+1, there
exists λ ∈ Z∗

p+1 such that τr(P,Q) = ζλ0 . When [λ−1]Q is known, one can
directly verify τr(P, [λ

−1]Q) = ζ0 to avoid the order verification. In this case,
we can regard [λ−1]Q as the original Q [35, Section 4.1]. However, the efficiency
bottleneck of torsion basis verification is the pairing computation, especially
Miller function evaluation.

Since the embedding degree is 2, one can use denominator elimination (Re-
mark 1) to reduce the computational cost. In addition, some techniques we
proposed in Section 3 can be applied to improve the performance. For exam-
ple, the previous work [35] used projective coordinates to compute the Miller
function [14], but adapting other coordinates to compute pairings will be more
efficient. Table 2 provides cost estimates for executing Miller doubling (DBL)
and Miller addition (ADD) using different coordinates. Similar to the case in
Section 3, the doubling operations in modified Jacobian coordinates is the most
efficient one. As for Miller addition, using Jacobian coordinates is the best choice.
Similar to what we did in Section 3.2, merging the Miller doubling and Miller

Coordinates Operation m s Total (m)

Projective [14,35] DBL 15 5 19
ADD 20 4 23.2

Jacobian DBL 11 8 17.4
ADD 13 4 16.2

Modified Jacobian DBL 12 6 16.8
ADD 14 6 18.8

Table 2: Comparison of DBL and ADD computational costs in different coor-
dinates. We estimate that 1s ≈ 0.8m.

addition/subtraction can further reduce the computational cost. Note that the
trick in Remark 2 can be applied in this case. Besides, one can also execute one
Miller quadrupling instead of two consecutive Miller doublings. For comparison,
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Table 3 compares the cost of Miller operations involved in Algorithm 4 in Jaco-
bian coordinates and modified Jacobian coordinates, respectively. According to
our experimental results, computing τr(P,Q) in modified Jacobian coordinates
is more efficient.

It should be noted that the technique in Remark 3 does not work well in this
case. This is because r = (p+1)/4 is divisible by a number of small primes. Same
as [25,35], checking the order of the pairing value in µr can be done efficiently
with the help of Lucas sequences [36].

Jacobian Modified Jacobian
DBLADD 2M + 1S + 15m+ 12s 2M + 1S + 16m+ 11s
DBLSUB 2M + 1S + 15m+ 12s 2M + 1S + 16m+ 11s

QDL 2M + 2S + 11m+ 16s 2M + 2S + 13m+ 11s
DBL 1M + 1S + 6m+ 9s 1M + 1S + 7m+ 6s

Table 3: Computational costs of Miller operations in Algorithm 4 for computing
τr(P,Q).

4.2 Supersingularity verification

For long-term security, it is crucial to validate the public key in the implemen-
tations of CSIDH and its variants. In this subsection, we address the following
problem:

Problem 2. Given an elliptic curve EA defined over Fp, verify that EA is super-
singular.

To solve this problem, a direct approach is to randomly select a point P
and check its order ord(P ) satisfies that ord(P ) > 4

√
p and ord(P ) | p + 1[10].

Reijnders [35, Section 4.2] suggested to randomly select P = (xP , yP ) and Q =
(xQ, iyQ) with xP , yP , xQ, yQ ∈ Fp, and then check whether the pairing value
τr([4]P,Q) has order larger than 4

√
p in the group µp+1, where r = (p + 1)/4.

If the order of P divides p+ 1, then this verification confirms that the order of
P is larger than 4

√
p, and thus the elliptic curve is supersingular. One can also

compute the order of the pairing value τN (P ′, Q), to confirm ord(P ) > 4
√
p,

where N is slightly larger than 4
√
p and P ′ = [(p + 1)/N ]P . According to the

estimate in [35], the latter approach for verification is more efficient as the Miller
loop is shorter. Since EA(Fp)[ℓj ] ∼= Z/ℓjZ, j = 1, 2, · · · , n, the probability that
ℓj | ord(P ) for a random point P ∈ EA[p + 1] is 1/ℓj . Hence, it is best to set
N = ℓsℓs+1 · · · ℓn with N > 4

√
p.

However, the pairing-based verification proposed in [35, Algorithm 5] only
verifies that the order of τN (P ′, Q) is larger than 4

√
p. As we stated above, one

must also check ord(P ) divides p+1. The previous work suggested to verify that
the order of the pairing value divides p+1, to imply the curve is supersingular [35,
Remark 5]. However, this method does not work when adapting the reduced Tate
pairing because of the final exponentiation, i.e., the value is always in µp+1.
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Therefore, the verification is incomplete: given an ordinary elliptic curve E, the
orders of the points P ′ and Q may not divide p+1. Consequently, using Miller’s
algorithm to compute τN (P ′, Q) does not make sense.

Therefore, the algorithm should be modified with an additional verification
that [p + 1]P = ∞. At first glance, we need to perform an extra scalar multi-
plication. Fortunately, at the last iteration of Miller’s algorithm, we obtain the
coordinates of [N − 1]P ′ if the least significant bit of the NAF form of N is 1,
or [N + 1]P ′ if the least significant bit of the NAF form of N is −1. Therefore,
the condition that [p+ 1]P =∞ can be efficiently checked by verifying{

[N − 1]P ′ = P ′, if the least significant bit of the NAF form of N is 1,
[N + 1]P ′ = −P ′, otherwise.

(7)

All the optimizations mentioned in Section 4.1 can be still applied to improve
the performance. As N does not have a low Hamming weight in general and it
is not divisible by the small odd primes ℓj | p + 1 with j = 1, 2, · · · , s − 1, we
can adapt the technique in Remark 3 to optimize Miller function evaluation.

Besides, before computing τN (P ′, Q), we need to compute P ′ = [(p+1)/N ]P
first. A naive way is to use the Montgomery ladder [30] to compute the x-
coordinate of P ′ and then recover the y-coordinate by computing the square
roots of x3

P ′ + Ax2
P ′ + xP ′ . Note that the Montgomery ladder not only outputs

the x-coordinate of P ′, but also that of [(p + 1)/N + 1]P = P ′ + P . Thanks to
Okeya-Sakurai formula [34], we have

yP ′ =
(xPxP ′ + 1) (xP ′ + xP + 2A)− 2A− (xP ′ − xP )

2
xP+P ′

2yP
.

Therefore, one can compute the y-coordinate of P ′ efficiently, instead of com-
puting the square roots of x3

P ′ +Ax2
P ′ + xP ′ .

4.3 Torsion basis generation

To speed up the performance of key agreement in dCSIDH, the public key
involves the full torsion basis, but torsion basis generation overheads the key
generation phase. Besides, for the constant-time implementation of group actions
in CSIDH-based protocols (such as SQALE [13]), computing full torsion points
P ∈ G1,r and Q ∈ G2,r with r = (p + 1)/4 in advance is necessary. In this
subsection, we target the following problem:

Problem 3. Given an elliptic curve EA defined over Fp, generate P ∈ G1,r and
Q ∈ G2,r such that ⟨P,Q⟩ = EA[r], where r = (p+ 1)/4.

In [35], the author proposed an efficient algorithm to generate a full tor-
sion basis. However, it may fail with low but nonnegligible probability. Inspired
by [25], we propose Algorithm 5 to generate the torsion basis efficiently. It should
be noted that our algorithm always proceeds successfully. In the following, we
describe how the algorithm works in detail.
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Line 1: Generate two points P ∈ G1,r and Q ∈ G2,r using Elligator [6].
Lines 2-4: Compute v = τr(P,Q) and its order in µr, then we have Iv =
{j|v(p+1)/ℓj = 1}. For each j ∈ Iv, one can deduce that [(p + 1)/ℓj ]P = ∞ or
[(p + 1)/ℓj ]Q = ∞. Conversely, it follows that ℓj | ord(P ) and ℓj | ord(Q) for
j /∈ Iv. Therefore, we have IP ⊂ Iv and IQ ⊂ Iv, where IP = {j|ℓj ∤ ord(P )}
and IQ = {j|ℓj ∤ ord(Q)}.
Lines 5-7: This step aims to determine IP and IQ. Line 5 computes Pv =
[
∏

j /∈Iv
]P and Qv = [

∏
j /∈Iv

]Q. It is obvious that ℓj ∤ ord(Pv) (resp. ℓj ∤ ord(Qv))
if and only if ℓj ∤ ord(P ) (resp. ℓj ∤ ord(Q)) for j ∈ Iv. Therefore, we compute
ord(Pv) and ord(Qv) using a divide-and-conquer approach in Line 6, and then
we obtain IP and IQ, as shown in Line 7.
Lines 8-15: Line 8 checks if IP is empty or not. If IP is empty, then we can
deduce that P ∈ G1,r has full order r. Given IP ̸= ∅, Lines 9-10 generate a new
point P ′ whose order divides

∏
j∈IP

ℓj . If P ′ is not the point at infinity, then we
set P ← P + P ′ and modify the corresponding set IP . Meanwhile, we execute
Pv ← Pv + P ′, which will be useful for generating the full order point in G2,r.
We repeat this procedure until P has full order r, i.e., IP = ∅. Simultaneously,
we also obtain Pv, a point of order

∏
j∈Iv

ℓj .
Lines 16-26: Line 16 checks if IQ is empty or not. If IQ = ∅, then Q is a full-
order point of G2,r, and thus we have generated a full torsion basis successfully.
Otherwise, compute PQ = [u]Pv with u =

∏
j∈Iv\IQ ℓj . It is clear that PQ

has order
∏

j∈IQ
ℓj . After that, we generate another point Q′ ∈ G2,p+1 using

Elligator and compute the pairing v′ = τu′(PQ, Q
′) where u′ =

∏
j∈IQ

ℓj . We
repeat generating Q′ until v′ has order u′, i.e., the point [(p+1)/u′]Q′ has order
u′. This implies that Q+ [(p+ 1)/u′]Q′ has full order in G2,r.
Line 27: Output P and Q.

Remark 4. When generating a full order point in G1,r, we may perform several
point additions in Line 13 to update P until IP = ∅. Conversely, when IQ ̸= ∅
we just find one point Q′ such that v′ = τu′(PQ, Q

′) is a generator of µu′ , and
then perform one point addition (Line 23) to generate the full order point in
G2,r. This is because updating Q is a costly step: before updating Q, we have to
perform an expensive scalar multiplication Q′ ← [(p+ 1)/u′]Q′ first. According
to our experiments, our strategy to generate the full order point Q is faster than
that to update Q and IQ frequently.

It is easy to see that the algorithm is correct. Except for the technique men-
tioned in Remark 3, all the other techniques we mentioned Sections 4.1 and 4.2
benefit Algorithm 5. For a faster implementation, we also utilize the following
tricks to save the computational cost:

– Note that the Elligator technique is able to generate points P ∈ G1,p+1 and
Q ∈ G2,p+1 simultaneously. Hence, when generating P ′ (in Line 9), we also
store the points which are defined on G2,p+1. In Line 19, we can just use
these points instead of generating Q′ by Elligator.
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Algorithm 5 New torsion basis generation

Require: Integer r = p+1
4

and the coefficient A of the curve EA : y2 = x3 +Ax2 + x.
Ensure: Two points P ∈ G1,r and Q ∈ G2,r such that ⟨P,Q⟩ = EA[r].
1: Generate P ∈ G1,r and Q ∈ G2,r.
2: v ← τr(P,Q).
3: Compute the order of v in µp+1.
4: Iv ← {j|v(p+1)/ℓj = 1}.
5: u←

∏
j /∈Iv

ℓj , Pv ← [u]P , Qv ← [u]Q.
6: Compute ord(Pv) and ord(Qv).
7: IP ← {j|ℓj ∤ ord(Pv)}, IQ ← {j|ℓj ∤ ord(Qv)}.
8: while IP ̸= ∅ do
9: Generate P ′ ∈ G1,r.

10: u←
∏

j /∈IP
ℓj , P ′ ← [u]P ′.

11: if P ′ ̸=∞ then
12: Compute ord(P ′).
13: P ← P + P ′, Pv ← Pv + P ′, IP ← IP \{j|ℓj divides ord(P ′)}.
14: end if
15: end while
16: if IQ ̸= ∅ then
17: u←

∏
j∈Iv\IQ

ℓj , PQ ← [u]Pv, label← 0.
18: while label = 0 do
19: Generate Q′ ∈ G2,p+1.
20: v′ ← τu′(PQ, Q

′) where u′ =
∏

j∈IQ
ℓj .

21: Compute the order of v′ in µp+1 (denoted by ord(v′)).
22: if ord(v′) = u′ then
23: Q′ ← [(p+ 1)/u′]Q′, Q← Q+Q′, label← 1.
24: end if
25: end while
26: end if
27: return P,Q.

– Since the first argument of τu′(PQ, Q
′) (Line 20) is fixed inside the while

loop (Lines 18-25), it is feasible to store information that solely depends on
PQ when computing v′ for the first time. It benefits the performance when
we have to evaluate the pairings (Line 20) multiple times. As u′ is generally
small, using this technique requires relatively low memory.

There are still some techniques in the literature that have the potential to op-
timize Algorithm 5. For example, when u′ (Line 20) is a prime, checking the order
of the value v′ = fu′,PQ

(Q′)(p
2−1)/u′

(Line 21) in µp+1 is equivalent to checking
whether fu′,PQ

(Q′)p+1 is a u′-th power residue modulo p. When u′ ≤ 11, com-
puting the u′-th power residue symbol is cheaper than executing the hard part of
the final exponentiation [24]. In [21], Galbraith and Lin proposed algorithms to
compute compressed pairing using x-only coordinates. Compared with the tra-
ditional approach to compute pairings, the x-only pairing computation is more
expensive, and the gap will widen as the order of the pairing increases. However,
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there is no need to recover the y-coordinate of Q′ when just computing ord(v′)
(Line 21). In the case that ord(v′) is not equal to u′, one may save the square
root computation when executing Elligator. Therefore, it is possible that com-
puting v′ (Line 21) with x-only coordinates would be more efficient. We leave
these explorations as future works.

4.4 Experimental Results

To give an efficiency comparison between the previous work and ours, we imple-
ment our algorithms in SageMath. The code is available at:

https://github.com/LinKaizhan/Pairingoptimizations

As mentioned in Section 2, we neglect field additions/substractions and only
count field multiplications and squarings. Furthermore, we also count field in-
versions. Since it is unnecessary to execute the algorithms in constant time, the
field inversion is relatively efficient.

As shown in Table 4, computing pairings in modified Jacobian coordinates is
more competitive compared to that in Jacobian coordinates. The experimen-
tal results indicate that we not only optimize torsion basis verification but
also supersingularity verification in CSIDH. It should be noted that pairing-
based supersingularity verification in [35] is slightly less efficient than Doliskani’s
test [19,2]. With our optimizations, pairing-based supersingularity verification is
15.3% faster than Doliskani’s test.

Procedures Coordinates Field operations Total(m) [35] Speedup
M S m s i

Torsion basis verification Jacobian 683 518 21235 17842 1 17395 19109 9.0%
Modified Jacobian 683 509 8299 7093 1 17140 10.3%

Torsion basis verification Jacobian 683 509 4516 4773 1 11501 13248 13.2%
(given [λ−1]Q) Modified Jacobian 683 509 5025 3819 1 11247 15.1%

Supersingularity verification Jacobian 352 273 5652 5622 3 11842 14230 16.8%
Modified Jacobian 352 273 5925 5088 3 11687 17.9%

Torsion basis generation Jacobian 694 517 21222 17928 8 38920 - -
Modified Jacobian 694 517 21912 16983 8 38614 -

Table 4: Efficiency comparison of different pairing applications in CSIDH be-
tween [35] and this work. The performance of torsion basis generation is not
in constant time, hence we execute 104 times and record the average cost. We
estimate that 1M ≈ 3m, 1S ≈ 2m, 1s ≈ 0.8m and 1i ≈ 30m.

5 Conclusion

In this paper, we utilized various techniques for pairing computations in isogeny-
based cryptography. We presented novel algorithms for computing pairings in

https://github.com/LinKaizhan/Pairingoptimizations
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(modified) Jacobian coordinates. These algorithms improve the implementations
of SIDH-like schemes and SQIsignHD. Furthermore, we optimized pairing com-
putations used in CSIDH and targeted three applications: full torsion basis ver-
ification, supersingularity verification and torsion basis generation. To enhance
the performance, we developed new algorithms that achieved speedups of 10.3%,
15.1% and 17.9%, respectively. As a future work, we aim to implement these op-
timizations in Rust or C, leveraging technical skills such as lazy reduction [39]
to achieve even greater performance improvements.
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Appendix A Sub-algorithms in Algorithm 4

Algorithm 6 DBL: Miller doubling
Input: Miller function f = fm,P (Q), points R = [m]P = (XR : YR : ZR : TR),
Q = (xQ, yQ) and the coefficient a of Ea,b : y

2 = x3 + ax+ b.
Output: [2]R = (X2 : Y2 : Z2 : TR2) and f2m,P (Q).

1: XX←X2
R

2: T1←2 · Y 2
R

3: T2←T 2
1

4: T3←(XR + T1)
2 −XX − T2

5: T4←2 · T2

6: λ←3 ·XX + TR

7: X2←λ2 − 2 · T3

8: Y2←λ · (T3 −X2)− T4

9: Z2←2 · YR · ZR

10: TR2←2 · T4 · TR

11: ZZ←Z2
2

12: T1←ZZ · Z2

13: T2←ZZ · xQ −X2

14: T3←T2 · Z2

15: T2←T2 · λ
16: T2←T2 − Y2 − T1 · yQ
17: T2←T2 · T3

18: f←f2

19: f←f · T2

20: return (X2 : Y2 : Z2 : TR2), f
Cost : 10M + 7S

Algorithm 7 DBLADD: Miller doubling-and-addition
Input: Miller function f = fm,P (Q), points R = [m]P = (XR : YR : ZR : TR),
P = (xP , yP ), Q = (xQ, yQ) and the coefficient a of Ea,b : y

2 = x3 + ax+ b.
Output: [2m+ 1]P = (X3 : Y3 : Z3 : TR3) and f2m+1,P (Q).

1: XX←X2
R

2: T1←2 · Y 2
R

3: T2←T 2
1

4: T3←(XR + T1)
2 −XX − T2

5: T4←2 · T2

6: λ1←3 ·XX + TR

7: X2←λ2
1 − 2 · T3

8: Y2←λ1 · (T3 −X2)− T4

9: Z2←2 · YR · ZR

10: TR2←2 · T4 · TR

11: ZZ←Z2
2

12: T1←ZZ · xP −X2

13: T2←T 2
1

14: T3←4 · T2

15: T4←T1 · T3

16: T0←ZZ · Z2

17: T5←T0 · yP − Y2

18: T6←2 · T5

19: T7←T3 ·X2

20: X3←T 2
6 − T4 − 2 · T7

21: Y3←T6 · (T7 −X3)− 2 · Y2 · T4

22: Z3←(Z2 + T1)
2 − ZZ − T2

23: TR3←a · Z4
3

24: T2←ZZ · xQ −X2

25: T3←yQ · T0 + Y2

26: T4←λ1 · T2 − T3

27: T3←T1 · T3

28: T5←T5 · T2

29: T5←T3 + T5

30: T1←T1 · T4

31: T1←T1 · (xQ − xP )
32: T1←T1 · T5

33: f←f2

34: f←f · T1

35: return (X3 : Y3 : Z3 : TR3), f
Cost : 20M + 11S
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Algorithm 8 DBLSUB: Miller doubling-and-subtraction
Input: Miller function f = fm,P (Q), points R = [m]P = (XR : YR : ZR : TR),
P = (xP , yP ), Q = (xQ, yQ) and the coefficient a of Ea,b : y

2 = x3 + ax+ b.
Output: [2m− 1]P = (X3 : Y3 : Z3 : TR3) and f2m−1,P (Q).

1: XX←X2
R

2: T1←2 · Y 2
R

3: T2←T 2
1

4: T3←(XR + T1)
2 −XX − T2

5: T4←2 · T2

6: λ1←3 ·XX + TR

7: X2←λ2
1 − 2 · T3

8: Y2←λ1 · (T3 −X2)− T4

9: Z2←2 · YR · ZR

10: TR2←2 · T4 · TR

11: ZZ←Z2
2

12: T1←ZZ · xP −X2

13: T2←T 2
1

14: T3←4 · T2

15: T4←T1 · T3

16: T0←ZZ · Z2

17: T5←−T0 · yP − Y2

18: T6←2 · T5

19: T7←T3 ·X2

20: X3←T 2
6 − T4 − 2 · T7

21: Y3←T6 · (T7 −X3)− 2 · Y2 · T4

22: Z3←(Z2 + T1)
2 − ZZ − T2

23: TR3←a · Z4
3

24: T2←ZZ · xQ −X2

25: T3←yQ · T0 + Y2

26: T4←λ1 · T2 − T3

27: T3←T1 · T3

28: T5←T5 · T2

29: T5←T3 + T5

30: T1←T1 · T4

31: T1←T1 · T5

32: f←f2

33: f←f · T1

34: return (X3 : Y3 : Z3 : TR3), f
Cost : 19M + 11S
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