
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–35. DOI:XXXXXXXX

PoMMES: Prevention of Micro-architectural
Leakages in Masked Embedded Software

Jannik Zeitschner 1 and Amir Moradi 2

1 Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
firstname.lastname@rub.de

2 Technische Universität Darmstadt, Darmstadt, Germany
firstname.lastname@tu-darmstadt.de

Abstract.
Software solutions to address computational challenges are ubiquitous in our daily
lives. One specific application area where software is often used is in embedded
systems, which, like other digital electronic devices, are vulnerable to side-channel
analysis attacks. Although masking is the most common countermeasure and provides
a solid theoretical foundation for ensuring security, recent research has revealed a
crucial gap between theoretical and real-world security. This shortcoming stems
from the micro-architectural effects of the underlying micro-processor. Common
security models used to formally verify masking schemes such as the d-probing model
fully ignore the micro-architectural leakages that lead to a set of instructions that
unintentionally recombine the shares. Manual generation of masked assembly code
that remains secure in the presence of such micro-architectural recombinations often
involves trial and error, and is non-trivial even for experts.
Motivated by this, we present PoMMES, which enables inexperienced software developers
to automatically compile masked functions written in a high-level programming
language into assembly code, while preserving the theoretically proven security in
practice. Compared to the state of the art, based on a general model for micro-
architectural effects, our scheme allows the generation of practically secure masked
software at arbitrary security orders for in-order processors. The major contribution
of PoMMES is its micro-architecture aware register allocation algorithm, which is one
of the crucial steps during the compilation process. In addition to simulation-based
assessments that we conducted by open-source tools dedicated to evaluating masked
software implementations, we confirm the effectiveness of the PoMMES-generated codes
through experimental analysis. We present the result of power consumption based
leakage assessments of several case studies running on a Cortex M0+ micro-controller,
which is commonly deployed in industry.
Keywords: Side-Channel Analysis · Compiler · Software · Masking

1 Introduction
In our technologically advancing and increasingly interconnected world, adversaries are
constantly seeking opportunities to compromise third-party systems and gain access to
protected digital environments. Decades of research and scientific exchange have led to
the establishment of highly secure mathematical algorithms that ensure confidentiality,
authenticity, and integrity. Therefore, rather than breaking the algorithm itself, adversaries
continuously seek for practically feasible attack vectors. Side-channel attacks, which
exploit observable but undesired physical effects such as power consumption, timing
differences or electromagnetic emanation during the execution of an implementation

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
https://orcid.org/0000-0003-3682-1567
https://orcid.org/0000-0002-4032-7433
mailto:jannik.zeitschner@rub.de, amir.moradi@rub.de
mailto:amir.moradi@tu-darmstadt.de
http://creativecommons.org/licenses/by/4.0/

2 PoMMES

on a target device belong to such realistic attack scenarios. The burgeoning relevant
research in novel machine learning attacks, improved signal processing techniques, and the
development of sophisticated side-channel exploitation schemes highlight the importance of
protecting against side-channel attacks as part of a multi-layered defense against modern
adversaries. Therefore, it is crucial to integrate theoretically proven and practically robust
countermeasures into security-enabled devices to ensure the secrecy of citizens’ sensitive
data.

Among the known countermeasures, masking [CJRR99] – inspired by secret sharing
schemes [Sha79] – has received the most attention from the scientific community, as it allows
to formally define adversary models and provide proofs for protected implementations.
Although different types of masking are known, Boolean masking is the most common
scheme used in the implementation of symmetric block ciphers. Due to the transparency
of linear Boolean operations over Boolean masking, the majority of research deals with
the difficulty of applying Boolean masking to non-linear operations, e.g., substitution
boxes. During the emergence of side-channel countermeasures and formal models, it was
thought that masking would be easy to apply to software because operations realized by
sequential instructions simplify the model by assuming that instructions are well isolated.
As a result, the lion’s share of relevant research has focused on hardware masking, which
was thought to be more challenging due to physical imperfections, such as glitches and
parallelism, that complicate the modeling process. As a result, several hardware masking
schemes with solid foundations have been introduced in the last decade, enabling the
construction of masked hardware circuits that provide the desired security in theory
and in practice. Examples include but are not restricted to models [FGP+18, BCP+20],
constructions [NRS11, GMK16, GMK17, GIB18, MPZ22], composable modules [CS20,
CGLS21, CS21, KM22, KSM22], and tools [KSM20, KMMS22, MM22, GHP+21, BMRT22,
BBC+19].

While there is now a high level of understanding and knowledge about hardware masking,
looking back at the software domain, it is clear that software masking is significantly
less researched and understood. Although there are several publicly available masked
software implementations, they are either not thoroughly evaluated in practice, or physical
characteristics of the execution platform are ignored in their security proofs. Recent
research [BWG+22] has shown that almost every theoretically proven secure masked
software implementation exhibits unexpected leakage in practice. The reason for such
a shortcoming is often the micro-architecture of a Central Processing Unit (CPU) and
its physical behavior, which are commonly ignored. The micro-architecture of processors
describes their internal organization and structure. It is usually abstracted away from
software developers who interact with the processor through instructions given by the
Instruction Set Architecture (ISA). The micro-architecture defines how the CPU handles
instructions internally, what paths data can take, or where data can be temporarily stored.
Thus, micro-architectural effects are physical defaults within the CPU that can lead to the
unexpected recombination of masked data due to transitions in storage elements or glitches
in combinational logic within the Arithmetic-Logic Unit (ALU), memory bus, or pipeline
stages, resulting in an unforeseen leakage. Since software developers can only interact
with the CPU via instructions, the micro-architecture and potential sources of leakage
within the micro-architecture are a black box, especially when operating on commercial
micro-processors where insight into the details and netlist of the CPU is strictly limited.

Currently, we have two options for overcoming this discrepancy between the theoretical
and practical security of masked software implementations. The first is to outsource critical
operations of the ALU to dedicated hardware by integrating masked hardware modules
into the CPU [GMP+20, FBR+22]. The applicability of such a solution is fundamentally
limited. First, it is not trivial to identify and isolate all sources of leakages inside the netlist
of an ALU. Second, such modifications are beyond the capabilities of a software developer,

J. Zeitschner, A. Moradi 3

who has no chance to modify the hardware of the CPU. The other option is to explicitly
consider such effects during the generation of masked software. The authors of the recent
work [GD23] collected general sources of leakage from the literature and derived specific
notions and additional properties when applying Threshold Implementation (TI) [NRR06]
in software. Originally developed for hardware platforms, TI allows for first-order secure
masking in the presence of glitches. The technique divides a masked function into smaller
coordinate functions, each of which takes a non-complete masked input and produces
one share as output. The construction of the coordinate functions is based on the three
properties correctness, non-completeness and uniformity. However, these properties as
defined in [NRR06] do not cover common micro-architectural effects in software. Gaspoz
and Dhooghe extended the non-completeness property for registers in micro-controllers
with the notions of horizontal and vertical non-completeness. They also provided a refined
definition for register uniformity in the context of software masking to secure sequential
compositions. With the applied adaptions, the authors successfully presented practically
secure software implementations of some block ciphers.

Another work [ZMM23] has gone one step further by incorporating multiple micro-
architectural effects into a more or less general leakage model. The authors traced
observable leakage found in the public literature back to the origins of the micro-architecture,
such as transitions in developer-hidden storage elements, or glitches in combinational logic
of the ALU. Based on the potential leakage behavior of the micro-architecture, they
refined the ability of adversaries to obtain additional information induced by physical
defaults of the micro-architecture beyond just the probed position. The leakage model
is general because it is independent of a particular CPU implementation and is only
interested in the potential micro-architectural effects that can cause leakage. This allows
examining the security of arbitrary masked software implementations based on worst-
case micro-architectural leakages but without specifying a particular CPU. Although
implementations in [BC22, GD23] were partially written in assembly to avoid uncontrolled
optimizations of the compiler, the authors of [ZMM23] discovered security flaws in some
of their implementations. While this generalization handles various sources of leakage, it
leads to a conservative and worst-case hypothetical architecture of the CPU to be able
to capture as much leakage as possible originating from the micro-architecture. It means
that the model is conservative in the sense that it assumes a CPU that contains all the
micro-architectural sources of leakage defined within the model. However, a violation
originating from a micro-architectural effect defined in this model is not guaranteed to
result in observable leakage in practical measurements on a specific CPU. Considering
all these additional properties and potential leakage sources when manually developing a
masked software implementation is challenging and not easily feasible even for experts. As
a consequence, some research has been conducted to automate the generation of secure
software in order to reduce the development time and provide a higher level of confidence.
It is noteworthy that the currently existing tools [SSB+21, ABB+21] that attempt to
address the issues arising from micro-architectural details operate on already compiled
assembly code. In other words, the masked binary is already provided by the software
developer, which is then modified by such tools, mainly by inserting clean operation
between critical instructions or replace critical instructions by handcrafted gadgets.

We tackle this problem one step ahead, at compile time. Compilers are a crucial part
of almost every software development workflow. Unfortunately, off-the-shelf compilers
are not aware of the concept of masking and do not handle masked data with sufficient
awareness and care. This can lead either to the introduction of additional leakages or to
constructions with reduced security (e.g. lower security order), even if no optimizations
are performed by the compiler.

4 PoMMES

Our Contributions. In this work, we present a novel and open source tool PoMMES1 for
automated prevention of micro-architectural leakages in masked implementations targeting
the ARMv6-M ISA on in-order processors. Given a masked high-level implementation
in C, PoMMES generates assembly code that complies with a refined version of the general
and CPU-independent leakage model presented in [ZMM23]. The structure of the C code
is allowed to have arbitrary control flow, i.e., different kinds of loops, conditions, recursion
and internal function calls. To the best of our knowledge, we present the first approach as
a register allocation algorithm for compilers that is by design side-channel aware and thus
free of all the micro-architectural effects identified in [ZMM23]. Such register allocation
algorithms are a fundamental part of the back-end of any compiler, as their role is to
allocate the actual registers of the target CPU to the program, which is written using only
virtual registers. Further, PoMMES is not limited to any particular security order, and can
be applied on higher-order masked software implementations.

We demonstrate the effectiveness of our tool by verifying the security of its generated
assembly code with PROLEAD_SW, a simulation-based tool for assessing the security under
the CPU-independent leakage model, introduced at CHES 2023 [ZMM23]. We also provide
practical evaluation results on the commonly used ARM M0+ micro-processor. To the best
of our knowledge, we are the first to provide such a practical evaluation for higher-order
masked software implementations against multivariate attacks, and show the validity of
not only the CPU-independent leakage model, but also our proposed register allocation
algorithm.
Outline. The rest of the paper is organized as follows. Section 2 introduces the theoretical
foundations of Boolean masking and recalls the CPU-independent leakage model. This
provides the basis for understanding why masking schemes often fail to maintain their
security in practice due to micro-architectural effects. Since we address the issue of secure
software at compile time, we give an overview of compilers and in particular the register
allocation algorithm in this section as well. An overview of works done in this research
area is given in Section 3. In Section 4 we present our workflow from the high-level C code
to hardened assembly code. This includes the translation to intermediate representation,
the taint-tracking procedure and a detailed explanation of the modifications required for
register allocation algorithms to be in line with our leakage model. We show simulation-
based and practical evaluations of the assembly code generated by PoMMES in Section 5
and outline current limitations and attractive lines of future work in Section 5.5. Finally,
we conclude the paper in Section 6.

2 Background
In this section, we review the basic knowledge needed to follow the rest of the paper.

2.1 Boolean Masking
Based on a solid theoretical foundation [CJRR99], masking is a side-channel countermeasure
that has been thoroughly researched and widely accepted by both academic and industrial
communities. Although it has been applied at various levels of abstraction, algorithm-
level approaches have received the most attention. In general, the goal is to prevent the
adversary from being able to predict the intermediate values of the circuit when observing
the associated side-channel leakages. For this purpose, each sensitive variable x ∈ Fn is
split into d + 1 shares (x0, . . . , xd), where the first d shares are drawn uniformly at random
from Fn. Following Boolean masking, the last share is determined as xd =

(⊕d−1
i=0 xi

)
⊕ x.

Algorithmically, all computations that are initially performed on x should now be performed
on the shares (x0, . . . , xd). Under this definition, linear Boolean operations are trivial to

1https://github.com/ChairImpSec/PoMMES

https://github.com/ChairImpSec/PoMMES

J. Zeitschner, A. Moradi 5

mask, since each share can be processed individually as L(x) =
⊕d

i=0 L(xi). Non-linear
operations, on the other hand, require combining different shares and are therefore more
complex to secure. An implementation is said to be d-th order secure, if any combination of
d intermediate values does not reveal any information about the secret x. The adversaries’
ability, i.e. the information they can gain from a device under attack, is commonly
abstracted by the probing model explained as follows.

2.2 Probing Model
Adversary models enable the formal representation of an adversary’s capabilities and
define what informational leakage can be extracted from the target. The advantage
of these models is that they allow the generation of systematic masking schemes and
formal security verification, assuming that the capabilities of the adversary defined in the
underlying security model hold. One of the earliest and most common security models is
the d-probing model [ISW03] proposed by Ishai, Sahai and Wagner. In this probing model,
the adversary is allowed to observe up to d signals carrying intermediate values during
the processing of information. Due to its simplicity and high level of abstraction, this
model attracts wide attention in the scientific community, especially for the generation of
security proofs [RP10a, Cor14, GSM+19]. However, the d-probing model comes with the
assumption that each probed intermediate value leaks independently and that only the
stable intermediate is observable. Unfortunately, these assumptions are generally not met
in practice, since physical defaults such as glitches, transitions and coupling may occur
during the operation on a physical device. To achieve a better transition between provably
secure masking schemes within an adversary model and practical security, physical defaults
must be taken into account.

Glitches occur within combinational logic and are caused by different path delays
between synchronization stages. They can cause unintentional value recombinations within
the combinational logic, allowing the adversary to observe not only the stable value at
the position probed, but also to observe other intermediate values within the probed
combinational logic back to the last synchronization point. The glitch-extended d-probing
model [FGP+18] allows up to d glitch-extended probes to be placed. Here, each probe
retrieves information about the all stable intermediates that contribute to the probed
intermediate.

Transitions occur when storage elements change their containing value. In this case,
the adversary is able to observe the incoming and outgoing intermediate value during the
transition, i.e. when the value of a storage element changes. The transition-extended
d-probing model [FGP+18] allows up to d transition-extended probes to be placed on
storage elements. In this model, each probe is able to observe the old and new stable
intermediate value of the storage element.

The (g, t, c)-robust probing model2 introduced by Faust et al. [FGP+18] unifies the ex-
tended probing models explained above for hardware circuits. However, the aforementioned
physical effects occur not only in hardware implementations but also in the execution of
software, since it must run on a dedicated hardware device with its own physical defaults.
Indeed, numerous practical evaluations [BWG+22, GOP21] showed that d-probing secure
software implementations fail to hold their security in practice.

Similar to the robust probing model for hardware implementations, the CPU-independent
leakage model [ZMM23, GD23] acknowledges physical defaults introduced by the micro-
architecture inside general purpose CPUs. It derives the ability of adversaries to retrieve
additional knowledge based on physical defaults inside a generalized CPU and its micro-
architecture, in particular the register file, ALU, pipeline, decoding stages, and memory

2g for glitches, t for transitions, and c for coupling. We do not cover coupling in this work as it highly
depends on the layout of the circuit.

6 PoMMES

lanes. All extensions of the probes can be traced back to the origins of transitions and
glitches.

2.3 Composability and Gadget-Based Masking
Instead of relying exclusively on practical measurements, e.g., in form of Test-Vector
Leakage Assessment (TVLA) [GJJR11], whose security statement is dependent on the
utilized setup and environment, the focus of the scientific community has shifted to
formally verifying masked implementations in a security model. It allows universal
reasoning, which is independent of factors such as execution platforms or experimental
equipment. Unfortunately, finding an efficient approach for the direct verification of
large implementations remains an open problem. The trivial approach of checking that
the distribution of all combinations of d probes are independent of all secrets poses
significant efficiency problems with growing number of probes. There exist dedicated
tools [BBC+19, KSM20, BGG+21, BMRT22, MM22, ZMM23] for hardware and software
implementations that are able to overcome this issue for small implementations and low
masking orders. However, larger implementations, e.g., full block ciphers, at higher orders
(d > 1) are even for them practically infeasible in terms of runtime and/or memory
requirements.

A widely acknowledged solution for this limiting problem is called gadget-based masking.
It follows a divide-and-conquer approach. The idea is to reason about the security of
large implementations, by composing smaller, formally verified and composable building
blocks, called gadgets. Gadgets themselves implement small functionalities, e.g., a masked
multiplication or XOR operation, and are equipped with properties that allow their
secure composition. Now the side-channel resistance can be efficiently verified for each
gadget independently as long as the circuit is composed of only such gadgets. A proper
composability notion for each gadget then allows the secure composition of gadgets to
create the desired, larger functionality. Generally, composability notions define how probe
propagation behaves through each gadget and establish sufficient conditions to allow
side-channel resistant combination of gadgets. For more relevant information, we refer to
the composability notions NI [BBD+15], SNI [BBD+16], and PINI [CS20].

2.4 CPU-Independent Leakage Model
The CPU-independent leakage model [ZMM23] has been presented at CHES 2023 to verify
the d-probing security of masked software implementations along with a tool that is in
line with ARMv6-M, ARMv7-M and ARMv7E-M ISAs. Compared to other adversary
models, the authors considered a wide range of micro-architectural effects collected from
the public literature [MPW22, GPM21, PV17]. Such micro-architectural effects play a
crucial role in making meaningful inferences about the security of embedded software
implementations in practice. Practical evaluations of masked software [BWG+22, BC22]
show that probing secure masking schemes alone are not sufficient in software, and that
additional attention must be paid with respect to the handling of the shares. Therefore,
the authors in [ZMM23] formalized some micro-architectural effects into generic security
statements that act as basis for their model. The advantage of such generic statements
is that no internal information about the specific design of the CPU is required. This is
important in many scenarios, because either the access to the hardware designs of CPUs
is restricted by intellectual property, or certain compilation phases are not designed to
take this information into account. The task of a compiler is to generate executable code
for different processors in a generic way, i.e., without having knowledge of internals other
than the information provided by the ISA of the respective CPU.

In the following we recall the micro-architectural effects discussed in [ZMM23]. Consider
a CPU that executes a program with a set of instructions I = {i0, . . . , i|I|−1} and leverages

J. Zeitschner, A. Moradi 7

|R| registers R = {r0, . . . , r|R|−1}, each of which is B bits wide, where we denote a single
bit of register rf ∈ R at bit position b by rb

f . Besides registers, the CPU has also a memory
area M where each memory location m can be accessed either with byte, half-word, or
word granularity.

Transitional Leakage. Transitions describe the changes between successive values stored
in a register across different instructions. If a register rf ∈ R contains a value that was set
by the instruction ij , and the content of rf is overwritten by the instruction ik, then each
bit position b with 0 ≤ b < B leaks the joint information between the old and new bit-value
of rb

f when instruction ik is executed. If the new and old values contain information about
different shares, it leads to an unintended recombination as a transition-extended probe is
able to observe both values.

Horizontal Leakage. Inside the ALU, multiple arithmetic and logical operations are
always performed simultaneously regardless of the desired operation of the instruction,
and later the appropriate result is selected to be stored in the target register [GD23].
Certain operations such as addition, subtraction or multiplication do not operate on the
bits individually, but result in interactions between different bits of the given operands.
For example, while every single-bit output of an XOR instruction depends only on the
corresponding bit of the registers (operands), an addition instruction over two registers
requires the interaction of all register bits. For instance, the most significant bit of the
addition’s result depends on all bits of both operands. As a result, glitch-extended probes
at the output of the ALU are able to observe the interaction of these register bits. To
capture such interactions between different register bits, the model allows access to all
bits of pairwise combinations between two registers in |R| that are the operands of the
instruction ij .

Vertical Leakage. To select which registers are required for the current instruction and
must be sent to the ALU, there must be some combinational logic, e.g. in the form of
multiplexers, that pass the desired registers to the ALU input. Glitch-extended probes
in such combinational logic are able to propagate backwards to multiple registers in the
register file and could reveal information about all registers that are connected to that
logic. Therefore the model covers this effect in a worst case manner, meaning that at
instruction ij the attacker is able to gain the joint information about the b-th bit of all
registers in R.

Memory Overwrite Leakage. Overwrites do not solely occur in registers, but can happen
at any storage element. Therefore, the authors of [ZMM23] additionally considered the
memory area M . The transition between a value stored at memory address m ∈ M during
instruction ij and the value that is written to the same address m during instruction
ik gives the attacker the combined information between the old and new value at that
memory address by placing a transition-extended probe on m. Similar to the transitional
leakage on the registers in R, if both values contain shares of masked data, this may reduce
the security order.

Memory Remnant Leakage. During the interaction between the registers and the memory
area, combined leakage can be observed not only between the same memory location, but
also between two instructions operating on two different memory addresses m and m′. The
authors modeled this observation with an additional hidden register that is placed between
the memory area M and the register file, called the memory shadow register. In short, this
means that if a value is loaded from (respectively stored to) memory address m during
instruction ij , followed by a load from (respectively store to) memory address m′ during
instruction ik, an adversary will be able to observe the combined information between
the consecutively read or stored values, even if m ≠ m′. In particular, the adversary gets

8 PoMMES

Front-End (Analysis) Back-End (Synthesis)

Lexical Syntax Semantic
Inter-
mediate

Optimize Instruction
Selection

Instruction
Scheduling

Register
Allocation

Figure 1: Schematic depiction of compiler phases.

always the combination of the word-size values regardless of the specified data-length
in the mnemonic. This means that independent of the number of bytes requested by
the instruction, e.g., loading one byte with ldrb or storing two bytes with strh, the
shadow register contains the full 4-byte value when the architecture is designed to handle
the memory with word (4-byte) granularity. As a side note, we identified a flaw in this
approach and altered the model and the tool, which is explained in detail in Section 4.1.

Pipeline Forwarding Leakage. Common processors use an n-stage pipeline that divides
the execution of instructions into n subtasks that are separated by pipeline registers. To
optimize processor performance, pipelines can have a dedicated forwarding logic, that
passes values from later pipeline stages to earlier stages before writing them back to the
register file. While such logic reduces the stalls inside the pipeline, glitches inside this
logic are able to reveal information about the values in all pipeline stages [GPM21]. The
CPU-independent leakage model handles this micro-architectural effect conservatively by
giving the adversary joint information about the b-th bit of every register in the register
file across the last n instructions.

2.5 Compiler
Software developers frequently use compilers to translate high-level source code into
executable software. A compiler is a piece of software that takes human-readable, high-
level source code, and translates it into a low-level language that ultimately results in
executable software. In the context of embedded software development, the C language
enjoys high popularity and widespread use because it has only a narrow abstraction layer
from the hardware and provides us with a low computational overhead. Arguably the
two most popular open-source compilers for C are Clang and GCC. In this paper, we focus
mainly on the GCC compiler, since ARM provides a powerful and widely used compiler
for ARM binaries with its ARM-GCC toolchain. Although various compilers differ in
their specific behavior and technical handling of inputs, we give a high-level overview, not
only because most of them follow similar phases as shown in Figure 1, but also because it
provides a better understanding of where our research comes into play.

From a high-level perspective, compilers have a front-end and a back-end module. The
main task of the front-end is to analyze the syntax and semantics of the source code.
Therefore, the Lexer scans the source code character by character and groups them into
tokens, i.e., meaningful elements for the compiler. These tokens are passed for Syntax
analysis to the Parser, which uses a predefined grammar to construct a tree-like data
structure and checks the correct combination of tokens. This tree structure is used by the
Semantic analysis tool to determine whether the source code (respectively the arranged
tokens) has a valid meaning. At the end of the front-end pass, the compiler generates
an Intermediate Representation (IR). Its representation is chosen to facilitate the
translation into the explicit low-level language.

While the front-end is practically platform-independent, the second module is respon-
sible for the synthesis and architecture-specific generation of the code in the low-level
language. Besides several (optional) Optimization steps, the platform-dependent code

J. Zeitschner, A. Moradi 9

generation consists of Instruction Selection, Instruction Scheduling, and Register
Allocation and are the main tasks of the back-end. Although the IR passed from the
front-end correctly resembles the semantics of the source and destination languages, its rep-
resentation of instructions does not correspond to real ISA-specific instructions. Therefore,
the task of the Instruction Selection is to choose a set of instructions provided by the
ISA of the underlying processor and replace the abstract IR instructions while maintaining
semantic correctness. During Instruction Scheduling, the compiler considers further
performance-critical properties of the instructions. This includes the order in which the
instructions can be arranged among each other. By reordering instructions, the compiler
can consider dependencies, which reduces unwanted stalls in the hardware and results
in increased performance and minimized runtime. The final step of the back-end, i.e.,
before the compiler outputs the result, is the Register Allocation. Up to this point, all
instructions operate on purely virtual registers. To reduce the complexity of the other
previously executed steps and to ensure modularity between them, the compiler assigns
virtual registers to all source code variables and internally created variables. Since the
developer can use any number of source code variables in the high-level language, the
number of virtual registers is potentially unlimited. However, since the processor is only
able to operate on a limited number of real registers available in its hardware, it is the task
of the Register Allocation algorithm to ensure that every virtual register is mapped
to a register provided by the ISA. Note that for each of the above code generation tasks,
there exist different algorithms with different strengths and weaknesses suitable for diverse
application scopes.

2.6 Linear Scan Register Allocation Algorithm
The linear scan register allocation algorithm was proposed by Polleto and Sarkar in
1999 [PS99]. It performs the mapping between virtual registers V and real registers R,
where possibly |V | ≫ |R|. It is a global register allocation technique, which means that
it operates over the entire function, unlike other techniques that perform the allocation
either on basic block level or across functions. The linear scan follows a comparatively
simple greedy approach, and captivates through an asymptotically linear runtime, while
other global allocation algorithms have quadratic complexity.

Before the actual algorithm is executed, the compiler must generate the necessary
data structure called live intervals for each virtual register in the IR. Live intervals are
continuous ranges that define the start and end of each virtual register. In other words,
each virtual register v ∈ V has exactly one live interval l = [x, y], where x is the earliest
instruction that uses v, and y denotes the last instruction that uses v. To construct
such live intervals, the representation of the instructions must be in a linear form, i.e., if
necessary the IR must be transformed into a linear sequence of instructions where each
instruction is numbered in ascending order. For the sake of clarity, we extend the live
interval l with additional explicit information. For each virtual register v, we define the
data-structure d = ⟨l, v, r, m⟩, which is a set containing the live interval, the virtual register
v, the real register r, and a memory position m. We call this set of information live
mapping.

The algorithm then generates two lists. The first list, called active, contains all live
mappings that have a real register assigned and whose live interval l overlaps with the
current instruction position. The second list, called available, contains the real registers
that are not assigned to any live mapping in active and is initialized with all registers
permitted by the respective ISA.

A complete illustration of the algorithm is given in Algorithm 1 to Algorithm 3. For
now, only the original version of the algorithm, i.e., without our modifications, is important
and is highlighted in black. Our adaptions, marked in red, will be explained in Section 4.4.

Algorithm 1 shows the main loop of the linear scan register allocation. The algorithm

10 PoMMES

iterates over all live mappings, sorted by the increasing start point of their live intervals l.
At the beginning of each iteration, i.e., before assigning a register to the current mapping,
the algorithm checks whether the list active contains mappings whose interval endpoint is
smaller than the start point of the current live interval. This functionality is outsourced to
Algorithm 2. If this condition is fulfilled, we can remove the corresponding live mapping
from active and put its assigned register r back into the available list, since this means
that all further live mappings that need a register to be assigned will not interfere with the
removed live mapping. After that, the algorithm distinguishes between two cases. If there
are still registers in available (respectively the size of active is less than |R|), we can simply
take a register from available, assign it to the current mapping, and add it to active. In
the second case, there is no register in available, i.e., all registers are currently assigned to
a live mapping. In this case, the algorithm must store a live mapping to memory instead
of a register. This procedure is called spilling, and its operational behavior is described in
Algorithm 3. To reduce the number of spills, the algorithm selects the mapping that needs
to be spilled based on the highest interval endpoint. Hence, either the current mapping or
a mapping from active should be spilled into memory.

3 Related Works
To the best of our knowledge, no research has been published that presents a micro-
architectural side-channel-aware version of a register allocation algorithm. However, there
are certain lines of research that either attempt to harden the software directly after
compilation or mimic the behavior of a compiler with side-channel protection in mind.

Moss et al. [MOPT12] introduced their own compiler that automatically applies Boolean
masking to a given high-level source code in CAO [BNPS05] and generates ARM assembly.
First, by annotating the sensitivity to variables in the code and parsing it to an intermediate
representation, the propagation of the sensitivity through the program flow is tracked. In
a second step, if predefined security violations are found, the tool transforms the program
based on repair heuristics. Their prototype is limited to first-order masking and makes the
critical assumption that the processor only leaks information associated to each instruction
independent of other instructions. It has been shown in [MPW22, GPM21, PV17] that
such assumptions do not hold in practice.

Bayrak et al. [BRB+11] introduced a customized compiler that applies Boolean masking
to an unprotected AVR assembly code. The authors perform information leakage analysis
on the code, identify sensitive instructions and apply the necessary code transformations.
Apart from the fact that micro-architectural leakages are completely ignored, similar to
the scheme presented in [MOPT12], their approach is limited to first-order masking.

Eldib and Wang [EW14] presented a scheme to take unprotected C code as input,
transform the program into the LLVM IR, and mask each instruction based on the scheme
given in [BGK04], i.e., the result of computations should become statistically independent of
secret data. For practical security, the authors insufficiently considered micro-architectural
effects. While they ensure that each instruction itself does not leak information, inter-
instruction leakage, i.e., leakage between different instructions, is not considered, which is
potentially harmful [MPW22]. Furthermore, after their transformation, the compiler is
able to introduce changes to the IR in later phases, such as re-ordering the sequence of
instruction whose order is important for the security of the scheme, or assigning registers
to instructions that make them prone to transitional leakage of different shares.

Abromeit et al. [ABB+21] used a standard off-the-shelf compiler to compile annotated
but unprotected C code. After performing information and control flow analysis, they
substitute insecure instructions with device-specific and formally verified gadgets, i.e.,
side-channel resistant but functionally equivalent versions. In addition to the fact that
they can only work on first-order designs, the gadgets, which are the crucial part of this
process, must be provided and constructed manually by security experts.

J. Zeitschner, A. Moradi 11

ROSITA, presented by Shelton et al. [SSB+21], uses an iterative approach. A pre-
compiled binary of a masked implementation is fed into the leakage emulator ELMO*, a
refined version of ELMO [MOW17]. The assembly code of the binary together with the
result of the leakage analysis is then passed to ROSITA, a rule-based code-rewrite engine.
Its core strategy is to eliminate leakage by inserting instructions that overwrite sensitive
data with a random value, i.e., the well-known random precharging technique [MOP07].
The process of leakage analysis and code-rewrite is repeated until no leakage is detected.
The accuracy of leakage detection is highly dependent on the emulator and its underlying
model. If the emulator is not accurate enough, leakage sources will remain undetected.
Furthermore, ROSITA occupies one register that contains the random mask throughout
the implementation. This means that either the developers must avoid using this register
(if the implementation is written directly in assembly) or the compiler must not use this
register by passing a particular flag during compilation (if the implementation is written
in a high-level language). This limits the number of available registers, since we have fewer
registers to work with than those available in the underlying architecture. As a consequence,
the total number of instructions may increase as the register pressure increases. Register
pressure describes the conflict between the number of variables that could reside in different
registers at the same time and the total number of registers available. Naturally, the
register pressure increases as the number of registers is reduced. As a result, values must
be stored in memory to make space for other values to use the register. Such a restriction
to avoid using certain registers is not present in PoMMES. We can freely use all registers
available in the architecture. Furthermore, we would like to note that ROSITA is only
able to add instructions to mitigate leakage, i.e., it repairs the implementations by not
dealing with register allocation algorithms or any other steps of the compiling process.

4 Technique
In this section, we describe the workflow of PoMMES. First, we modify the CPU-independent
leakage model to more closely reflect the behavior of the processor. We then transform
the capabilities of an adversary in this model into constraints on the generation of masked
assembly, and make adjustments to the linear scan register allocation algorithm to be in
line with our propositions.

4.1 Refinement of the CPU-Independent Leakage Model
Before we apply the implications for the register allocation algorithm that we will derive
from the CPU-independent leakage model, we need to make a subtle yet crucial modification
to the memory remnant leakage model. Currently, the leakage model in [ZMM23] (also
reviewed in Section 2.4) assumes that values relevant to both load and store instructions
(from and to memory) are transferred via the same bus. In their model, the authors
introduced one hidden shadow register that is overwritten by any value either loaded
from memory to a register or stored from a register to memory. This means that only
consecutive memory operations, regardless of the concrete mnemonic, could potentially
leak information through transitional leakage in the hidden shadow register. However,
through experimental analysis, we have recognized its inconsistency with the actual leakage
behavior of ARMv6-M compliant micro-processors.

To explain the problem, let us consider the assembly sequence given in Figure 2(a).
The first load operation on line 2 loads the first input share from memory into the register
r2 and stores it at a different location in memory on line 7. The load instruction at line
12 loads the second input share into the register r5. In the original CPU-independent
leakage model, the shadow memory register always contains the value of the last memory
operation, regardless of whether it was a store or a load operation. In particular, the

12 PoMMES

first share stored in line 7 and the second share loaded in line 12 would be recombined
in the shadow memory register, creating transitional leakage that exposes the unshared
input. To avoid this we initially placed a dummy store instruction between these memory
operations at line 10, which is highlighted in red. According to the original leakage model,
there should be no leakage as there is no more transitional leakage between the shares,
since the inserted store instruction has overwritten the shadow memory register with
a non-sensitive value. However, when we conducted power consumption based leakage
assessment t-test, we noticed clear leakage right when the first share was loaded in line
12, as shown in Figure 2(b). In a second experiment we only performed one modification
to the assembly code where we switched the dummy store operation to a dummy load
operation in line 10. We repeated our evaluation with this modified assembly code, and
the results in Figure 2(c) clearly reports the absence of the aforementioned leakage. This
behavior cannot be explained with the original leakage model presented in [ZMM23]. This
observation has led us to conclude that a single memory shadow register, which holds
both the values loaded from memory and the values stored to memory, does not model the
actual leakage behavior closely enough.

1 [...]
2 ldr r2 , [r5]
3 mov r3 , r13
4 str r3 , [r3]
5 mov r3 , r11
6 subs r3 , r3 , #20
7 str r2 , [r3]
8 lsls r2 , r4 , #2
9 mov r3 , r13

10 str r3 , [r3]
11 adds r3 , r0 , r2
12 ldr r5 , [r3]
13 [...]

(a) Leaking assembly se-
quence.

(b) T-test results of initial as-
sembly code.

(c) T-test results of assembly
code in line with the refined
memory remnant effect.

Figure 2: Experimental analyses showing leakage that are not explainable with the original
CPU-independent leakage model [ZMM23] leading us to a refinement of the memory
remnant effect.

Therefore, we propose to adapt the memory remnant effect as follows. Besides the
already existing shadow register, we add two additional memory shadow registers, which we
call rstore and rload. The content of these hidden registers only change when a corresponding
memory instruction is executed. More precisely, when at instruction ij and ik values are
loaded from memory addresses m and m′, and there is no other load instruction between
ij and ik, the adversary will be able to observe the combined information of the loaded
values regardless of any store instruction executed between ij and ik. The same principle
applies to rstore, which deals with instructions that store values into memory. With the
introduction of these two additional shadow registers rstore and rload, we are able to explain
the leakage observed in Figure 2. The first share that is loaded into register r2 in line 2
resides in the shadow register rload. If we load the second share in line 12 without any
further load instructions in between, we get the transitional leakage of both shares in rload,
which again reveals the unshared value. This leakage is eliminated when substituting the
mnemonic in line 10 from a non-sensitive store operation to a non-sensitive load operation.
We argue that our modification is still consistent with a CPU-independent leakage model
for two reasons. First, similar to all other effects that are encompassed in this model, they
are based on leakage observations and experiments. These observations are the foundations

J. Zeitschner, A. Moradi 13

from which general micro-architectural effects (such as transitions in hidden registers)
are derived. Second, with our adaption, we only extend the generality of the model to
allow not only subsequent memory operations to leak jointly, but additionally subsequent
memory operations of the same type.

4.2 GIMPLE
Our modifications only affect the back-end of a compiler, i.e., operations on the respective
intermediate representation. The language-independent IR of the GCC compiler is called
GIMPLE3 and provides simplified expressions and basic operations. The GIMPLE represen-
tation can be obtained by instructing the GCC compiler (via a specific flag) to pipe the
IR of the high-level code into a file. We intercept the compilation process right after the
IR is generated, so no optimization, instruction selection, or instruction scheduling has
taken place. We would like to emphasize that our main focus is the register allocation
algorithm. Prior back-end passes, i.e., optimization, instruction selection and instruction
scheduling may introduce sources of leakage that the register alocation algorithm cannot
adjust. Therefore, we do not perform optimizations on the GIMPLE code and use trivial
selection and scheduling. More precisely, each final assembly instruction mirrors exactly
each GIMPLE statement and operates only on the exact data size of the original variables.
Furthermore, no instructions are reordered. The GIMPLE IR format divides the scope of the
given C function into multiple basic blocks, which are atomic instruction sequences that
have no entry and exit point other than the beginning and end of the basic block. Each
instruction in these basic blocks is a GIMPLE statement. The functionality of the statements
is generally grouped into 1) simple constant assignments, 2) unary and binary expressions,
3) possible function calls, and 4) memory handling in the form of pointers and arrays.
The statements consist of one operation, at most three operands (one destination and two
source operands), and are in Static Single-Assignment (SSA) form. The three-address
representation already closely mimics the structure of actual instructions, since our target
micro-processors typically operate on one target and two source registers as well. The
SSA form is an additional property of the IR, where each variable is assigned exactly once
and must be defined before use. This form is not only useful (and sometimes required) for
compiler optimizations, but also helps us in the information propagation step by making it
easier to track different security levels and identify dependencies between instructions and
other variables. We parse the generated GIMPLE IR and build a Control-Flow Graph (CFG),
which is used in the information flow analysis phase explained below.

4.3 Sensitivity Tracking
We perform our information flow analysis statically based on the CFG generated in the
previous step, i.e., without running the program. To track the propagation of sensitive
information through a function, we need to annotate the inputs. We do this by defining
a C macro in the source file called PoMMES_INPUT_<function_name>, followed by some
annotations according to the number of inputs of the function, each of which can be
either PUB or SEC (for public or secret). Since the function that PoMMES operates on
is able to call other functions, we also have to annotate (if necessary) the sensitivity
of the inputs and possible outputs for the internal function calls. For this, we use the
macro PoMMES_FUNCTION_CALL_<function_name> with the same possible annotations as
described above. All internally used variables are initially set to PUB, but their sensitivity
may change during the tracking process.

We have chosen Kildall’s Algorithm [Kil73] for our information analysis. Each basic
block in our CFG gets two lists, called in and out, which track the sensitivity of all

3https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html

https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html

14 PoMMES

incoming, respectively outgoing, variables. We initialize a worklist with the entry basic
block of the function and fill in with the input variables and their sensitivities. The
algorithm removes one basic block from the worklist and performs the analysis sequentially
on each instruction of the basic block. Therefore, we need to define how secret information
is able to propagate. Generally speaking, if at least one source operand in any assignment
or arithmetic instruction is marked SEC, its destination should be marked SEC as well. For
memory instructions, it holds that loading from a memory address containing a secret
value taints the destination as SEC, while storing secret values to a memory address marks
the content of the address SEC. Note that the address that contains sensitive information
does not necessarily have to be sensitive as well. Our tool is able to distinguish between the
case where the address itself contains secret related information, e.g., in a table lookup, or
just points to a secret value without being secret dependent, e.g., a pointer to input shares.
Furthermore, we allow only one sensitivity annotation for each variable, i.e., variables
marked as SEC are not able to change their sensitivity back to PUB. At the end of the basic
block, out contains the updated sensitivity of all variables that have been detected. If the
algorithm identifies changes in sensitivity between in and out, we add the subsequent basic
blocks to the worklist. When there are no more basic blocks in the worklist, the algorithm
terminates, and we have the final sensitivity assignment for each variable in the function.
For the final annotation, we introduce the sensitivity level s, which will be a new entry
in the live mapping d of every virtual register (see Section 2.6). We call a live mapping
sensitive, if s is set to SEC.

4.4 Our Linear Scan Register Allocation Algorithm
Considering the possible micro-architectural leakage sources explained in Section 2 and
Section 4.1, our goal is to derive properties that must be satisfied to ensure that such
micro-architectural effects do not violate any security assumption that is considered by the
underlying masked implementation. We use these properties in the next steps to modify
the linear scan algorithm to suite our needs.
Proposition 1 (Leakage-Free Transitions). A real register that is marked as sensitive, i.e.,
is or was assigned to a live mapping of a sensitive virtual register, must not be assigned to
a live mapping whose virtual register is also marked as sensitive.

Proposition 2 (Leakage-Free Memory Overwrites). A memory address that is marked as
sensitive, i.e., containing a sensitive value, must not be overwritten with another sensitive
value.

Proposition 3 (Leakage-Free Memory Remnants). Two sensitive live mappings must not
be loaded subsequently, and two sensitive live mappings must not be stored subsequently
to ensure no combined leakage in our refined definition of memory remnant leakage.
Furthermore, there must not be two subsequent, arbitrary memory operations of sensitive
live mappings. Note that subsequent operations are not necessarily consecutive operations.

Proposition 4 (Leakage-Free Pipeline Forwarding). No two sensitive live mappings must
be in n consecutive instructions, where n is the pipeline-depth.

Proposition 5 (Leakage-Free Vertical). The live intervals of any two sensitive live
mappings must not overlap in order to ensure that only one secret value is in the register
file at a time.

Proposition 6 (Leakage-Free Horizontal). At most one sensitive value must be stored in
one register at any time.

J. Zeitschner, A. Moradi 15

for(int i=0;i <2;++i)
{

state[i]^= key[i];
}

(a) High level

mov rA , #0
.loop:
ldrb rB , [rC ,rA]
ldrb rD , [rE ,rA]
eor rB , rB , rD
strb rB , [rC ,rA]
add rA , #1
cmp rA , #2
blt .loop

(b) Unoptimized assembly

ldrh rB , [rC]
ldrh rD , [rE]
eor rB , rB , rD
strh rB , [rC]

(c) Optimized assembly

Figure 3: Instruction selection and optimization may lead to horizontal leakage.

Note that Proposition 6 is not solely achievable with a modification of the register
allocation algorithm. In fact, it defines restrictions on the optimization pass and the
instruction selection algorithm (see Figure 1), since it selects the exact ISA instruction
to transform the IR. For clarification, let us consider the example shown in Figure 3(a),
where state is represented by a byte array containing two shares. The goal is to update
state by adding key, which is also represented by a byte array containing two shares.
In the high-level code, we loop over both indices and add the key to each array index
individually. If the compiler does not optimize the code and selects the instructions based
on the size of each operand, the assembly code may look like Figure 3(b). However, to
minimize the number of instructions, the compiler may apply modifications as long as it
ensures the correctness of the final result. In this particular example, it may choose not to
handle each byte separately, but to perform the operation directly on both indices, since
they fit together in one register and the same operation is applied to each of them (see
Figure 3(c)). It can be seen that regardless of the chosen specific register, the instruction
itself always loads both shares at once into the register, causing horizontal leakage.

4.4.1 Leakage-Free Vertical Modifications

Generation of Live Mappings. To ensure vertical separation between live intervals of
sensitive live mappings, we start our modifications at the generation of live intervals. We
make use of the sensitivity attribute s (introduced in Section 4.3) in the live mappings and
check for each combination of sensitive live mappings whether their live intervals overlap.
If this is the case, we divide the intervals of these mappings into the minimal number of
disjoint ranges. To generate these ranges, it is not enough to save only the start and the
end of each interval, because we need to define the boundaries of the new ranges, which
are based on the instructions that make use of the sensitive virtual registers. Therefore, we
introduce the list u to our live mapping, which collects all use points, i.e., all instruction
indices where the corresponding virtual register is used. This means that all elements in u
are between the start and end of the initial live interval.

A visual representation of the transformation of live intervals is given in Figure 4. The
live intervals of the sensitive virtual registers V1, V3, V4, V5, V6 and the non-sensitive
virtual register V2 in Figure 4(a) are computed as in the original algorithm. With our
sensitivity level s, we identify that the live intervals of the sensitive virtual registers V1, V3
and V4 overlap. This means that the linear scan would assign them to different registers,
leading to the presence of multiple sensitive values in different registers and thus violating
Proposition 5. Therefore, we split the intervals of these virtual registers so that they do
not overlap (see Figure 4(b)). Note that instruction 6, for example, uses the sensitive
virtual registers V1, V3 and V6, which effectively results in three sensitive values in three
registers in the same instruction. We cannot prevent this tangent use of sensitive registers
as the function provided by the user requires the sensitive values to be in the registers to
execute this instruction. We should highlight that if such an instruction leads to a leakage,

16 PoMMES

Instr.

V1
V2
V3
V4
V5
V6

1 2 3 4 5 6 7

(a) Original live intervals

Instr.

V1
V2
V3
V4
V5
V6

1 2 3 4 5 6 7

(b) Non-overlapping of sensitive intervals

Figure 4: Live intervals with sensitive virtual registers V1, V3, V4, V5, V6 (marked as
green), while V2 is not annotated as sensitive (marked as yellow). The use points are

marked with a black vertical line.

it originates from the original masked C implementation given by the user. In other words,
if the algorithm of the given masked C implementation is correct with respect to security
(e.g., fulfills probing security requirements), it is ensured that such instructions combining
multiple sensitive values do not lead to leakage.

When we split the sensitive live intervals, we create gaps between the ranges (see V1
in Figure 4(b)). To ensure the correctness of the program, we either have to ensure that
the content of the register is not overwritten until we arrive at the next range of the live
mapping or save the content by writing it to memory, i.e., spill the mapping. Holding the
value in the register is not an option for sensitive live mappings, because it would violate
Proposition 5, since other sensitive intervals are active in those gaps. Therefore, we mark
these mappings during the generation of the live mappings as spilled and assign a stack
location m in memory to each of them.

In general, Proposition 5 is not fully satisfied when sensitive live intervals do not have
any overlap. The live intervals only mark the duration where the virtual registers are in
active, i.e., in use during the execution of the program. Afterwards, during the expiration of
intervals (Algorithm 2), the algorithm only moves the real register back to available. This
does not mean that the value of the register is cleared, it just notifies the algorithm that
this register can be assigned to another live mapping. This may lead either to transitional
leakage of sensitive values if the register is assigned to another sensitive live mapping, or to
vertical leakage if the sensitive value resides in this register while other sensitive mappings
are in active. To attain sufficiency for Proposition 5, we apply two adjustments. First, we
modify the list available and place constraints on the selection of available registers in the
linear scan algorithm. Second, we adjust the spill procedure during the algorithm. These
two adjustments are explained below.

Selection of available registers. Instead of just storing the free real registers r in available,
we store a tuple (r, s) that tracks whether an available register was previously assigned to
a sensitive live mapping. Depending on the sensitivity of the next live mapping to which a
register should be assigned, we distinguish between the following two cases.

• In the first case, the next live mapping is non-sensitive. We check in available if
we identify a tuple, whose sensitivity s is set to SEC. If we find a sensitive available
register, i.e., a register that still contains secret information, we assign the register
to the non-sensitive live mapping. This removes the sensitive value from the register
before the next sensitive live mapping becomes active. Trivially, if there is no
sensitive register in available, we assign any available register to the live mapping.
This modification reflects lines 12 to 16 highlighted in red in Algorithm 1.

J. Zeitschner, A. Moradi 17

• In the second case, the next live mapping, that needs a register assignment, is
sensitive. Before we check if there is a suitable register in available, we make the
following important observation.

– If the virtual register of the sensitive live mapping starts as a destination
register, and we detect a sensitive live mapping in active, then we know by
construction that the two sensitive live mappings are used in the same instruction.
Since we split all sensitive intervals into disjoint ones during live interval
generation, only the necessity of multiple sensitive values at the same instruction
can lead to an occurrence of a new sensitive live mapping while there is a
sensitive live mapping in active. Consequently, we can assign the real register
of the sensitive live mapping in active to the current live mapping, which removes
the content of the active live mapping before another unrelated sensitive value
will be written into any other real register. This modification will result in the
highlighted lines 8 through 11 in Algorithm 1.
Let us take a look at the sensitive virtual register V3 in Figure 4(b). When V3
starts at instruction 3, the sensitive virtual register V1 is active at the same
instruction. If the provided function is correctly masked at the algorithmic
level, we do not observe leakage between V1 and V3 because they need to be
combined at the same instruction. Furthermore, V1 will no longer be in active
after the live interval of V3 has started, because we have split the intervals into
disjoint ranges. Therefore, we assign the real register of V1 to V3, ensuring
that the sensitive value of V1 will be not present in the real register anymore,
when an unrelated sensitive live mapping is active.

– If either the virtual register of the next live mapping does not start as destination
register, or there is no sensitive live mapping in active, we now check if there
is a sensitive register in available. We have to assign the sensitive available
register to the live mapping, because if we would write it to a different available
register, we would violate Proposition 5.

– Finally, if no sensitive register is in available, we assign an arbitrary available
register.

Spilling of live mappings. If we have no available register, i.e., all registers are currently
assigned to a live mapping, a mapping must to be spilled. Regardless of the sensitivity
level of the next live mapping, we check if active contains sensitive live mappings. If the
virtual register of the next live mapping is used as a destination at its first use point,
and the endpoint of the active live mapping matches the first use point of the next live
mapping, we assign the real register of the active live mapping to the new live mapping.
This means that the live intervals do not overlap, except in one instruction where the
destination register and one source register share the same real register. This modification
is also highlighted in red in Algorithm 3. The argument why this satisfies Proposition 5
follows the same reasoning as in Section 4.4.1. Even if the next live interval is sensitive
and we assign it the register of a sensitive live mapping from active, because both intervals
are used in the same instruction, and assuming that the function is correctly masked, it
does not lead to any leakage even if the intervals share the same register. If either there
is no sensitive interval in active or the start point of the next interval differs from the
end point of the mapping in active, we follow the standard algorithm where we spill the
non-sensitive mapping with the longest live interval.

Note that we never spill a sensitive live mapping during the actual register allocation.
During the generation of the live mappings, we already ensured that the intervals do not
overlap. Further spillings of sensitive live mappings do not change this property, but only
introduce load and store operations of sensitive values, which need to be handled to fulfill

18 PoMMES

Instr

V1
V2
V3
V4
V5

1 2 3 4 5 6 7 8

(a) Live intervals after sensitivity annotation. V1,
V3 and V5 are sensitive.

I2
I1

I7
I8

I3
I4
I5
I6

(b) Control-Flow Graph of the provided
function.

Figure 5: Linearized description of the program can not ensure leakage free memory
remnants.

Proposition 3 while creating further overhead. If at any point in time all registers are
simultaneously assigned to live mappings, the maximum number of sensitive live mappings
in active is two (two source registers of an instruction). Since in the ARMv6-M ISA the
number of real registers is greater than two, we can be sure that there will always be a
non-sensitive live mapping to spill.

4.4.2 Leakage-Free Memory Modifications

The original algorithm imposes no restrictions on the assignment of memory addresses to
spilled live mappings. However, to be consistent with Proposition 2 and also Proposition 6,
we concretize the memory assignments. For Proposition 2, it is important that each
spilled sensitive live mapping gets its own stack location even if such mappings could share
a memory location due to temporal separation. To comply with Proposition 6 during
memory operations, we always place (sensitive) data at a word-aligned memory address
m, regardless of its actual size. This ensures that each memory operation does not place
multiple secret values in any of our modeled memory shadow registers, as according to
the model, each memory shadow register always gets the word-size value at the specified
address. This specification is especially important during the generation of live mappings,
where sensitive mappings may be split and assigned a memory address.

To fulfill Proposition 3, we have to ensure that no subsequent loads (respectively stores)
of two sensitive live mappings appear in our final output. Sensitive memory operations can
only occur while a sensitive live mapping is active, either because the mapping is marked
as spilled and thus has to be loaded from (respectively stored to) memory, or there is a
non-spilling memory instruction during the interval. While there can be multiple sensitive
memory operations within a sensitive live mapping, they do not cause memory remnant
leakage because they belong to the same sensitive live mapping and no other sensitive live
mapping is active during this interval. Since internal memory operations do not interact
between two different sensitive live mappings, for Proposition 3 we consider only the first
(respectively last) load and store operation of each sensitive live mapping.

As we consider functions with arbitrary control flow, the current description of the
program in form of a linearized code and live mappings does not give us enough information
to check all possible violations of Proposition 3. We indeed miss the control flow, which
may jump to later or earlier instructions, effectively not following the program in a linear
fashion. Let us take a closer look at Figure 5(a) with the sensitive live mappings V1, V3
and V5 and assume that all live mappings V1 through V5 are spilled, i.e., at the beginning
of each interval the value is loaded from memory into a register and at the end stored from
the register to memory. If we would have only this representation, we would assume that
there is no memory remnant leakage observable, since the spilled non-sensitive mappings
V2 and V4 separate each sensitive mapping. However, the actual control flow in Figure 5(b)

J. Zeitschner, A. Moradi 19

reveals a direct control flow path between instructions I2 and I7. Consequently, we have
two subsequent loads and stores between the sensitive live mappings V1 and V5, which
breaks Proposition 3. Therefore, we check the property of leakage-free memory remnant
in each control flow path. We do this by transforming the linearized code back into the
CFG. Afterwards, we perform a reverse Depth-First Search (DFS) for every sensitive live
mapping. We start the search at the first load (respectively store) of the sensitive live
mapping and check if there exists a path with a preceding sensitive load (respectively store)
from a different sensitive live mapping. If such a path exists, we have found a violation of
Proposition 3 and have to insert an overwrite instruction that clears the content of the
corresponding memory shadow register. We insert the instruction at the position in the
path that is closest to the beginning of the function, since it may be beneficial to the next
sensitive live intervals in the CFG. Let us take another look at the example in Figure 5
and assume that only the sensitive live mappings V1, V3 and V5 are spilled. In our reverse
DFS we would detect a violation of Proposition 3 between V1 and V3. We insert the
clear instruction in the first basic block after I2. Now V5 also benefits from the clear
instruction, as the path between V1 and V5 does not contain any subsequent sensitive
memory operations, and we do not need to insert an additional clear between V1 and V5.

4.4.3 Leakage-Free Transition Modifications

An advantage of our changes for Proposition 5 is that we have already implicitly covered
multiple potential pitfalls regarding harmful transitional leakage. If the algorithm finds
registers in available that we can assign, only assigning a sensitive live mapping to a
sensitive available register may cause a harmful transition. This constellation tells us that
the expired sensitive live mapping and the new sensitive live mapping are unrelated, i.e.,
they have no overlap at an instruction, as otherwise the previous sensitive live mapping
would still be in active. Hence, we cannot assume under this constellation that the combined
leakage of the old and new sensitive values does not lead to leakage-free transitions.

Every other transition of registers between live mappings leads to a non-harmful
transitional leakage between live mappings. This means, if we have a non-sensitive live
mapping that gets assigned to a sensitive available register, we overwrite the sensitive
content of the register with a non-sensitive value. Otherwise, we detect a sensitive live
mapping in active while handling the next sensitive live mapping. In this case, we know
that their live intervals are tangent and that they share the same instruction. Hence, their
information jointly leaks due to their combined use at the same instruction. Again, if the
function is correctly masked at the algorithmic level, this joint leakage does not reveal
any information. Trivially, if we have only non-sensitive registers in available, no harmful
transitional leakage occurs.

If all registers are assigned to live mappings at the same time, we need to spill a live
mapping to memory. Here, our modification checks if there is a sensitive live mapping in
active, whose end point overlaps with the start point of the next live mapping. If so, we
assign the register from the active live mapping to the new live mapping. If the new live
mapping is sensitive as well, we know that their intervals overlap at the same instruction.
Hence, the same reasons given above for the non-harmful transitions in the non-spilling
case, apply here as well. If the new live mapping is non-sensitive, we overwrite the sensitive
value in the register with a non-sensitive value. Thus, there is no transitional leakage
during spilling.

However, similar to that for Proposition 3, the linear description during the register
allocation algorithm is not sufficient to account for all possible transitions for functions
with arbitrary control flow. Referring back to Figure 5, let us assume that the sensitive
mappings V1 and V5 are assigned the same register. Again, in its linearized form in
Figure 5(a), we do not detect any potential violations of Proposition 1. However, the CFG
in Figure 5(b) reveals a direct path between V1 and V5 leading to a transition between

20 PoMMES

these two sensitive live mappings. In this case, analogous to handling Proposition 3, we
need to insert an additional instruction that clears the content of the register and breaks
the transition between the two sensitive live mappings. Similar to Section 4.4.2, we place
the instruction at the position between two sensitive live mappings that is closest to the
start of the function.

Algorithm 1 Linear Scan Register Allocation
Input: D = {d0, . . . , d|D|−1}, where di = ⟨l, v, r, m, s, u⟩ ▷ list of live mappings of all

virtual registers
Output: D ▷ Updated live mappings with assigned registers

1: active ← ∅
2: available ← {(r0, s0), . . . , (r|R|−1, s|R|−1)}
3: for ∀d ∈ D, in order of increasing start point of dl do
4: ExpireOldInterval(d, active, available)
5: if |active| = R then ▷ cardinality of active
6: SpillAtInterval(d, active)
7: else
8: if (ds = SEC) ∧ (∃a ∈ active : as = SEC) ∧ (dv is destination at dlx) then
9: dr ← ar

10: active← active \ {a}
11: else
12: if ∃av ∈ available : avs = SEC then
13: dr ← avr

14: available← available \ {av}
15: active ← active ∪ {d}
16: else
17: av ← arbitrary element from available
18: dr ← av ▷ assign real register to mapping
19: available ← available \ {av} ▷ remove assigned register
20: active ← active ∪ {d} ▷ add updated mapping to active

Algorithm 2 Expire Old Interval
Input: d = ⟨l, v, r, m, s, u⟩, active, available
Output: active, available ▷ Updated sets

1: for ∀a ∈ active, in order of increasing end point of al do
2: if aly ≥ dlx then return ▷ mapping can be removed from active if the end

point in interval is smaller than start point of
current mapping.

3: active ← active \ {a} ▷ remove expired mapping from active
4: available ← available ∪ {(ar, as)} ▷ add register from expired mapping

5 Case Studies
We thoroughly examine the security of our presented scheme and conduct a two-stage
evaluation of four different masked software implementations. The first stage consist
of a simulation-based evaluation of the generated assembly code with PROLEAD_SW to
ensure that the output of PoMMES is in line with the CPU-independent leakage model.
We then show that our implementations provide practical security by collecting power
traces from an ARM Cortex-M0+ processor and performing first-order and second-order
t-test evaluations using 100 000 measurements. Our case studies aim to demonstrate the
versatility of PoMMES and consist of four implementations. The first three case studies cover

J. Zeitschner, A. Moradi 21

Algorithm 3 Spill At Interval
Input: d = ⟨l, v, r, m, s, u⟩, active
Output: active ▷ Updated set

1: if (∃a ∈ active : as = SEC) ∧ (dlx = aly) ∧ (dv is destination at dlx) then
2: dr ← ar

3: active ← active \ {a}
4: active ← active ∪ {d}
5: else
6: s← last live mapping in active
7: if sly > dly then ▷ first case: spill mapping from active
8: dr ← sr ▷ hand over register from spilled mapping
9: sm ← new stack location ▷ spilled mapping gets memory location

10: active ← active \ {s} ▷ remove spilled mapping
11: active ← active ∪ {d} ▷ add current interval
12: else ▷ second case: spill current mapping
13: dm ← new stack location

gadgets that implement a refresh of shares, a multiplication in F2n , and a bitwise AND
operation. The last case study is a more complex implementation, i.e., a masked AES
Sbox. For each case study, we generated both first- and second-order implementations.

We choose these case studies as the provided functions are commonly found in masked
software, either in symmetric cryptography or Post-Quantum Cryptography (PQC), and
cover different properties. We show that PoMMES is able to handle different masking
domains as it is able to generate secure software for the multiplication gadget which
uses arithmetic masking, while the other examples use Boolean masking. Second, we
can handle different security notions, such as Probe Isolating Non-Interference (PINI) for
the multiplication and refresh gadget, and Strong Non-Interference (SNI) for the AND
gadget (see Section 2.3). PoMMES is able to not only implement linear functions securely,
e.g., a refresh gadget, but also to handle non-linear functions, which are more difficult to
implement securely as different shares need to be combined. With our generated masked
AES Sbox we highlight that PoMMES is also able to handle more complex implementations
and can uphold the security across function borders, since our AES Sbox implementation
is a concatenation of different functions.

5.1 Setup

5.1.1 PROLEAD_SW

Initially, we start by verifying that the assembly code generated by PoMMES follows the
general leakage model represented in [ZMM23]. We adapt PROLEAD_SW to handle the
refined memory remnant effect as explained in Section 4.1. We tested all first-order
designs and evaluated them with 10 000 simulations in a fixed vs. random setting. For the
second-order designs, we were not able to perform a bivariate evaluation with PROLEAD_SW
due to the large size of the case studies and as a result the exponential growth of probing
sets, which made the analysis infeasible in terms of runtime and memory consumption.
The randomness required by the gadgets is sampled from the internal randomness source
of PROLEAD_SW. We ran the simulations on a standard computer with an Intel i7 CPU at
1.8 GHz, 32 GB of RAM, and a maximum of 6 threads. We choose PROLEAD_SW’s compact
mode for its statistical evaluation to identify leakage for large probing sets with fewer
number of simulations. The confidence threshold for the false-positive probability was set
to 10−5.

22 PoMMES

5.1.2 Power Measurements

We conducted our practical measurements on an STM32L081CB micro-controller with an
ARM Cortex-M0+ processor that uses an ARMv6-M architecture. The supply voltage is
set to 1.8 V and the clock for all implementations was set to 8 MHz. For the acquisition
of power traces, we used a PicoScope 5000 series oscilloscope with a sampling rate set
to 250 MS/s. We performed a non-specific t-test in a fixed vs. random setting. The
required randomness during the execution of the gadgets was sampled on the PC and
sent to the board via UART. For the t-test calculation, we used SCAlib [CB23]. For
each case study listed below we instantiated the gadget with 2 (respectively 3) shares to
generate the first-order (respectively second-order) masked implementations. Each of these
implementations was generated separately with PoMMES by adjusting the number of shares
in the high-level C code, but without needing to further modify the resulting assembly
code in any form. The power traces for each case study were measured one after each
other but independently, i.e., for each first-order and second-order designs we collected
100 000 traces.

5.2 Results
5.2.1 Locality Refresh Gadget

The first gadget, that we evaluate, is a mask refreshing scheme presented by Coron et
al. [CGZ20] which is proven to be secure under the PINI [CS20] notion. Refreshing is an
essential part of masking schemes as it allows to reduce the number of required shares,
which in turn reduces runtime and code size. Furthermore, the mask refreshing does not
only act as a methodology to lower the number of shares [BBD+16], but certain masking
schemes [RP10a] rely on mask refreshing to guarantee the security. The simulation-based
results with PROLEAD_SW did not reveal leakage with all effects enabled. Furthermore, the
t-test results of the assembly code generated by PoMMES is visualized in Figure 6. The
first-order results in Figure 6(a) stay well below the 4.5 threshold. For the second-order
refresh gadget, we performed a first-order and a second-order multivariate t-test shown in
Figure 6(b) and Figure 6(c). In both cases, PoMMES was able to generate assembly code
which upholds the desired security level.

5.2.2 ISW-AND Gadget

As the second case study, we use the ISW-AND gadget presented in [ISW03]. It is proven
secure in the d-probing model and operates – like the refresh gadget – over Boolean masking.
Such side-channel secure non-linear operations are commonly found in the confusion layer
of masked symmetric ciphers and bitsliced implementations. This gadget is significantly
more complex than the refresh gadget, as it has to combine shares from different share
domains. We show that PoMMES is able to generate assembly code that upholds the desired
security level in practice, even in such complicated situations. Similar to the refresh gadget,
all t-values stay below the threshold as depicted in Figure 7, showing the expected results
for both first- and second-order implementations. The experimental results are backed
up by PROLEAD_SW for the ISW-AND gadget as no leakage was detected within 10 000
simulations and all effects enabled.

5.2.3 PINI Multiplication Gadget

The third case study utilizes the PINI multiplication gadget presented by Cassiers [Cas22].
This gadget can operate on arithmetic shares, contrary to the first two gadgets. Such
arithmetic gadgets increasingly absorb the attention of the scientific community with
regard to masking PQC schemes, where many operations are performed arithmetically.

J. Zeitschner, A. Moradi 23

(a) First-order t-test of the
first-order implementation

(b) First-order t-test of the
second-order implementation

(c) Second-order t-test of the
second-order implementation

Figure 6: Fixed vs. random t-test of PoMMES refresh gadget using 100 000 traces.

(a) First-order t-test of the
first-order implementation

(b) First-order t-test of the
second-order implementation

(c) Second-order t-test of the
second-order implementation

Figure 7: Fixed vs. random t-test of PoMMES ISW-AND gadget using 100 000 traces.

(a) First-order t-test on the
first-order implementation

(b) First-order t-test of the
second-order implementation

(c) Second-order t-test of the
second-order implementation

Figure 8: Fixed vs. random t-test of PoMMES PINI multiplication gadget using 100 000
traces.

Our intention is to show that PoMMES is widely applicable for different scenarios and different
masking techniques. The corresponding first-order as well as multivariate second-order
t-test results are depicted in Figure 8. Similar to the previous case studies, all t-values
stay within the 4.5 threshold and PROLEAD_SW confirms the security within the refined
CPU-independent leakage model or the first-order design as no leakage is found.

5.2.4 Rivain-Prouff AES Sbox

The Rivain-Prouff AES Sbox [RP10b] serves as our fourth case study. The authors
provided an algorithm to perform masked AES Sbox computations at any security order
and have proven the security under the d-probing model. They expressed the inversion
of an element in F28 as the exponentiation to the power of 254. This exponentiation

24 PoMMES

(a) First-order t-test of the
first-order implementation

(b) First-order t-test of the
second-order implementation

(c) Second-order t-test of the
second-order implementation

Figure 9: Fixed vs. random t-test of PoMMES Rivain-Prouff AES Sbox using 100 000 traces.

can be efficiently computed with common exponentiation techniques, such as the square-
and-multiply algorithm. To secure the exponentiation the authors provided methods to
perform a masked squaring operation, which operates on each share separately, and a
masked field multiplication, which is a generalization of the ISW-AND scheme for any
finite field F2n . Furthermore, the exponentiation includes refresh of masks as the inputs to
the multiplications need to be mutually independent.

The concrete implementation of this scheme is taken from GitHub4. The implementation
of this Sbox consists of five different functions, where two functions are responsible for
squaring (respectively two functions for multiplication), and the fifth function acts as a
wrapper and performs the exponentiation. We created all of these functions with PoMMES.
Initially, we perform the security analysis with PROLEAD_SW under all micro-architectural
effects and 10 000 simulations. Under the consideration of all available micro-architectural
effects in PROLEAD_SW our implementation holds the security in the CPU-independent
leakage model. Our experimental t-test results in Figure 9 further underline the simulation
results and highlight that PoMMES is able to generate secure software even for larger
implementations and also for a concatenation of multiple functions.

5.3 Comparison
To evaluate the performance of PoMMES we compare our case studies presented in Sec-
tion 5.2.1 to Section 5.2.4 with different optimization levels of the off-the-shelf GCC compiler
and handcrafted assembly implementations under four different metrics. These metrics
include the code size, cycle count, instruction count, as well as the compile time, and
the t-test result. The code size represents the number of bytes within the binary that
belong to each case study. To get the cycle counts we used the SysTick timer, which is a
24-bit decrement counter, as our processor does not include a dedicated register that can
accurately give the cycle count for each function. We have synchronized the SysTick timer
with the processor clock and read the value of the timer before and after the execution of
the function under test. Based on these values, we compute the number of cycles. The
instruction count represents the number of instructions executed, and the compile time
describes the time it took in seconds to generate the output of each case study.

For the results with the GCC compiler, we used the same C functions that we passed
as input to PoMMES and compiled them with the arm-none-eabi-gcc compiler. The
handcrafted implementations were created in an iterative process, where we implemented
the behavior of each gadget as efficient as possible and performed power measurements. If
the results indicated leakage, we identified the problematic instruction based on the leaking
measurement points. We then made educated guesses how the assembly instructions should

4https:https://github.com/coron/htable/blob/master/src/aes_rp.c

https: https://github.com/coron/htable/blob/master/src/aes_rp.c

J. Zeitschner, A. Moradi 25

be modified and re-evaluated the implementation. We repeated this until no leakage was
detectable with 100 000 traces. Note that this approach was non-trivial and required
several iterations, despite having a good understanding of the underlying platform. The
benefit of this approach is an overall improvement in code size and cycle count compared
to all other implementations, including those that were compiled with GCC-O3. However,
there is no guarantee that these handcrafted assembly implementations generated by the
iterative approach preserve the same practical security when run on the same processor
produced by another vendor.

Starting with security evaluations which we limited only to the first-order designs, none
of these implementations (including the handcrafted ones) were identified as secure by
PROLEAD_SW. We further provided the corresponding t-test results in Figure 10 to Figure 13.
As an interesting point, no leakage is observed by the t-test conducted on the refresh
gadget compiled with GCC-O0. This elucidates two things. While we do observe leakage
with PROLEAD_SW, we would like to stress that the CPU-independent leakage model of
PROLEAD_SW over-approximates in the sense that leakage in the model does not inevitably
lead to leakage in practice, i.e., worst-case scenario. Second, the refresh gadget is extremely
simple. It consists of mainly two XOR operations and a few memory operations. This
reduces potential pitfalls for the GCC compiler, since only a few instructions need to be
compiled. In this case, the compiler was able to generate by chance a practically secure
assembly for this gadget. Note that it is not guaranteed that this behavior holds for other
functions, as we can see this for the other case studies, for slight modifications to the same
function, or even for the same function under different GCC versions.

The comparative performance results are bundled in Table 1. As expected, we observed
different overheads for different case studies and different optimization levels. While
optimizations are beneficial in terms of cycle count and instruction count, they fully ignore
the security aspect, which can lead to the unintended leakage, as can be seen in Figure 10 to
Figure 13. As PoMMES does not yet implement any optimization, we focus our comparisons
with the cases that were compiled with no optimization, i.e., GCC-O0. Here, the overhead
in terms of cycle count for the gadgets ranges from a factor of 1.34 for the first-order PINI
multiplication to 2.09 for the second-order refresh gadget. The cycle count overhead for
the Rivain-Prouff Sbox ranges from 3.38 for the first-order implementation to 3.5 for the
second-order implementation. Similarly, the code size between PoMMES and GCC-O0 is in the
range of 1.46 for the second-order multiplication gadget and 3.41 for the first-order refresh
gadget. The overhead in terms of code size for the Rivain-Prouff AES Sbox is around
2.75. Although PoMMES has to execute additional steps to generate assembly code which is
in-line with the CPU-independent leakage model, we do not see significant overhead in
the compile time, i.e., the time it takes for PoMMES to produce the output, compared to
the GCC compiler. For all gadget implementations the compile time is close to the GCC
compile time. While it does take slightly longer for PoMMES to generate the assembly code
for the AES Sbox, the overhead is imperceptible in real-time.

5.4 Security vs. Efficiency

After discussing the performance differences between PoMMES, GCC, and handcrafted as-
sembly implementations, we now delve into the reasons for the performance penalty
and, more generally, the trade-off between security and efficiency. We identify two main
sources that explain the efficiency gap. Naturally, the runtime is negatively affected by
the conservativeness of our leakage model and the constraints derived from it. PoMMES
is based on the assumption that software developers do not have detailed information
about the CPU’s netlist. This is especially true for ARM processors, which are the focus
of this paper. Although ARM provides access to netlists of specific processors to academic

26 PoMMES

(a) with GCC-O0 (b) with GCC-O1

(c) with GCC-O2 (d) with GCC-O3

Figure 10: First-order fixes vs. random t-test of refresh gadget compiled with four different
optimization levels using 100 000 traces.

(a) with GCC-O0 (b) with GCC-O1

(c) with GCC-O2 (d) with GCC-O3

Figure 11: First-order fixed vs. random t-test of ISW-AND gadget compiled with four different
optimization levels using 100 000 traces.

J. Zeitschner, A. Moradi 27

(a) with GCC-O0 (b) with GCC-O1

(c) with GCC-O2 (d) with GCC-O3

Figure 12: First-order fixed vs. random t-test of PINI multiplication gadget compiled with four
different optimization levels using 100 000 traces.

(a) with GCC-O0 (b) with GCC-O1

(c) with GCC-O2 (d) with GCC-O3

Figure 13: First-order fixed vs. random t-test of Rivain-Prouff AES Sbox compiled with four
different optimization levels using 100 000 traces.

28 PoMMES

Table 1: Comparison of our case studies regarding their code size in bytes, cycle counts,
instruction count and compile time in seconds between PoMMES, GCC with four different
optimization levels and handcrafted implementations.

Tool Design Code Size Cycle Count Instr. Count Compile Time
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

PoMMES

Refresh 348 356 282 464 178 306 0.02 0.02
ISW-AND 632 632 598 1270 405 927 0.03 0.03
PINI Mult. 662 674 812 1918 579 1404 0.03 0.03
R-P Sbox 2742 2742 19594 39839 13122 26715 0.11 0.11

GCC-O0

Refresh 102 138 136 222 71 122 0.01 0.01
ISW-AND 220 258 296 614 172 354 0.01 0.01
PINI Mult. 436 460 603 1384 419 1089 0.02 0.02
R-P Sbox 996 996 5791 11373 3786 7633 0.03 0.03

GCC-O1

Refresh 44 76 59 93 27 46 0.01 0.02
ISW-AND 86 152 85 270 42 166 0.02 0.02
PINI Mult. 158 224 141 493 85 355 0.02 0.03
R-P Sbox 720 654 2515 4923 1564 3007 0.04 0.04

GCC-O2

Refresh 44 76 57 91 27 46 0.02 0.02
ISW-AND 88 156 86 271 43 173 0.02 0.03
PINI Mult. 132 200 115 407 71 293 0.03 0.03
R-P Sbox 702 690 2339 4833 1447 2657 0.06 0.05

GCC-O3

Refresh 44 76 60 94 27 46 0.02 0.02
ISW-AND 88 112 84 239 43 158 0.02 0.03
PINI Mult. 96 228 87 225 46 130 0.03 0.03
R-P Sbox 580 1210 1648 3962 1229 3119 0.06 0.06

Handcrafted
Refresh 24 - 41 - 12 - 0.01 -
ISW-AND 52 - 64 - 26 - 0.01 -
PINI Mult. 60 - 68 - 30 - 0.01 -

institutions through the ARM Academic Access5, the netlists are generally not open source
or accessible to arbitrary organizations or software developer. Therefore, to be independent
of the underlying netlist while accounting for multiple micro-architectural leakage sources,
we require such a conservative model at the expense of performance loss. It has been
shown in several publications [MPW22, GPM21, PV17] that such micro-architectures are
exploitable and affect a wide variety of processors. Arguably, a more fine-grained approach
would be beneficial to reduce the overhead imposed. One may think of focusing on the
leakage points and patch only those positions, similar to what we did for our comparative
handcrafted implementations. This approach may be feasible for small functions such
as the gadgets in our case studies, since they show only a few leakage points. However,
for larger implementations such as the masked AES Sbox, we see that leakage occurs
throughout the whole power trace, and identifying all of these leakages in the source code
quickly becomes a tedious task. Furthermore, we did not follow a fine-grained approach
for three reasons.

5https://www.arm.com/resources/research/enablement/academic-access

https://www.arm.com/resources/research/enablement/academic-access

J. Zeitschner, A. Moradi 29

• First, if we identify leakage and decide to fix it locally, i.e., to focus solely on the
leaking instructions, we may inadvertently introduce new leaks, depending on how
we modify the code to remove the original leak.

• The second reason is that fixing the leakage based on the observed leakage points is
tailored to the specific processor design and its realization. While this customization
helps to improve the performance, it prohibits porting the code to another platform
as a different processor may exhibit different leakage behavior. The strength of our
model is that it removes leakage independent of a specific processor and focuses on a
generalized CPU model.

• Third and most importantly, a more fine-grained approach requires either the pro-
cessor netlist or a gray-box model. While we already discussed the restrictive access
to the ARM netlists, the gray-box approaches rely heavily on the accuracy of the
underlying setup and model to effectively identify the sources of leakage. Micro-
architectural leakages can be very subtle, non-intuitive, and spread across multiple
instructions [ZMM23]. A gray-box model must be sophisticated enough to reliably
handle such scenarios.

The second major aspect contributing to the performance gap is the difference in
complexity between GCC and PoMMES. Currently, our tool focuses mainly on the register
allocation step during compilation. We do only incorporate trivial instruction selection
and instruction reordering, and have not yet implemented any compiler optimization steps.
Hence, PoMMES suffers from performance penalties that more sophisticated compilers like
GCC do not have. PoMMES uses linear scan as its register allocation algorithm. It is a rather
simple algorithm, and modern compilers rely on more complex algorithms that provide
better code quality. For example, GCC uses a combination of local register allocation
and graph coloring register allocation, which results in a longer analysis runtime but
better performance. In addition, optimization passes within compilers are crucial for the
performance of software. Under common optimization flags such as -O1, -O2 or -O3, the
compiler groups several optimization techniques together6. Certain optimization techniques
under these flags can greatly reduce the security of the implementation for example by
reordering security-critical instructions or inlining and merging functions. The negative
impact of optimizations on the security is shown in the t-test results of the implementations
generated by the GCC compiler under different optimization levels (Figure 10 to Figure 13).
The more aggressive the level of optimization is, the more opportunities for leakage are
created. While it is not certain that a higher level of optimization certainly introduces
leakage, off-the-shelf compilers can never guarantee that they do not introduce leakage,
since their main focus is performance, not Side-channel Analysis (SCA) security. It is
difficult to predict which particular optimization pass or combination of optimizations
has a negative impact on security. We show in Figure 13 that the masked AES Sbox has
significant leakage throughout the function, even without any optimization, i.e., -O0. We
argue that the primary goal of masked software is to be secure against SCA. While PoMMES
undoubtedly cannot currently match the efficiency of commercial compilers, it is the first
step toward providing security in the face of several harmful micro-architectural effects.

5.5 Limitations and Future Work
While we think PoMMES helps software developers to avoid micro-architectural leakages
in masked software, there is still room for improvement in both PoMMES and the broader
research field. Contrary to compilers such as CompCert [Ler09] or Jasmin [ABB+17],
PoMMES is not formally verified. Having a formal proof of PoMMES and the underlying
algorithm would be helpful to increase the trust in PoMMES.

6https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

30 PoMMES

While PoMMES is able to handle arbitrary control-flows, i.e., (nested) loops, recursions,
function calls, and conditions, PoMMES is currently not able to handle the full C functionality,
e.g., C structs are not supported at the moment. This restriction is only due to the current
limitations of the utilized parser.

It would be interesting to see how other register allocation algorithms behave under
the restrictions we presented in this paper. While other register allocation algorithms
have a higher runtime complexity, they tend to generate better results in term of code
quality. Therefore, we leave the comparison of performance and overhead between different
SCA-aware register allocation approaches as an interesting line of research for the future.

Furthermore, there are different optimization ideas regarding our presented technique.
Our approach, as well as other works, categorize inputs and variables as either secret
or public. Thus, any combination of secret variables leads to a violation. It would be
beneficial to have a more fine-grained distinction of sensitive values. For instance, let us
consider two sensitive variables a and b. Each of these variables has two shares a = a0 ⊕ a1
and b = b0 ⊕ b1. Currently, if we detect for example a transition between a0 and b0 in a
register, we consider this as harmful since both are marked as sensitive, even though their
combination does not necessarily provide the attacker with useful information if a and b
are independently shared. We believe that classifying variables beyond the two groups
of public and secret, e.g., their share domain, would lead to a significant reduction in
overhead. We expect that tackling sensitivity at the information analysis step, by allowing
different levels of sensitivity for the same variable throughout the execution flow, would
have a positive impact on runtime, but possibly complicate the register allocation process
even further.

PoMMES is currently limited to handling ARM processors, specifically the GIMPLE IR, and
generating assembly code that is inline with the ARMv6-M ISA. However, our technique
in its general form is independent of specific compilers, i.e. PoMMES or related tools can be
extended to handle different IRs and generate code for different processor models.

6 Conclusions

Correctly applying algorithmic-level masking to programs written in high-level program-
ming languages hardly provides the expected security in practice, since micro-architectural
effects are not taken into account during machine code generation. To counteract the
security reduction of such effects we introduced PoMMES, which – given a masked C code
and security annotations of the inputs – transforms the program into ARMv6-M assembly
code that is secure under a refined version of the CPU-independent leakage model. We
particularly focused on the register allocation algorithm used during compilation. This
last step of the compilation process is responsible for assigning an unlimited number
of virtual registers to a limited number of real registers, and also decides which values
reside in memory and at which location. Based on the ability of an attacker considered
in our adversary model to place various transition- and glitch-extended probes inside the
processor, we have adjusted and adapted the linear scan register allocation algorithm. To
the best of our knowledge, we are the first to propose an SCA-aware register allocation
algorithm covering micro-architectural effects. We conducted a two-stage validation of
our approach with four different masked software case studies. First, we verified the
result of our approach, i.e., the assembly code generated by PoMMES, using PROLEAD_SW
to evaluate its security based on the CPU-independent leakage model covering several
micro-architectural effects. In a subsequent step, we performed an experimental analysis
using power consumption measurements of the same software running on actual ARM
processors, confirming the expected security levels in practice.

J. Zeitschner, A. Moradi 31

Acknowledgments
The work described in this paper has been supported in part by the German Research
Foundation (DFG) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972,
and by the Federal Ministry of Education and Research of Germany through the Project
DevToSCA (16KIS1603).

References
[ABB+17] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin

Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt,
and Pierre-Yves Strub. Jasmin: High-assurance and high-speed cryptogra-
phy. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1807–1823, 2017.

[ABB+21] Arnold Abromeit, Florian Bache, Leon A. Becker, Marc Gourjon, Tim Güneysu,
Sabrina Jorn, Amir Moradi, Maximilian Orlt, and Falk Schellenberg. Auto-
mated masking of software implementations on industrial microcontrollers. In
DATE 2021, 2021.

[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin
Grégoire, and François-Xavier Standaert. maskverif: Automated verification
of higher-order masking in presence of physical defaults. In ESORICS 2019,
volume 11735 of LNCS, pages 300–318. Springer, 2019.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking.
In EUROCRYPT 2015, volume 9056 of LNCS, pages 457–485. Springer, 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In CCS 2016, pages
116–129. ACM, 2016.

[BC22] Olivier Bronchain and Gaëtan Cassiers. Bitslicing arithmetic/boolean masking
conversions for fun and profit with application to lattice-based kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):553–588, 2022.

[BCP+20] Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and
Abdul Rahman Taleb. Random Probing Security: Verification, Composition,
Expansion and New Constructions. In CRYPTO 2020, volume 12170 of LNCS,
2020.

[BGG+21] Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maximilian Orlt, Clara
Paglialonga, and Lars Porth. Masking in fine-grained leakage models: Con-
struction, implementation and verification. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(2):189–228, 2021.

[BGK04] Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably secure
masking of AES. In Helena Handschuh and M. Anwar Hasan, editors, Selected
Areas in Cryptography, 11th International Workshop, SAC 2004, Waterloo,
Canada, August 9-10, 2004, Revised Selected Papers, volume 3357 of Lecture
Notes in Computer Science, pages 69–83. Springer, 2004.

32 PoMMES

[BMRT22] Sonia Belaïd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb.
Ironmask: Versatile verification of masking security. In IEEE S & P 2022,
pages 142–160. IEEE, 2022.

[BNPS05] Manuel Barbosa, Richard Noad, Daniel Page, and Nigel P. Smart. First steps
toward a cryptography-aware language and compiler. IACR Cryptol. ePrint
Arch., page 160, 2005.

[BRB+11] Ali Galip Bayrak, Francesco Regazzoni, Philip Brisk, François-Xavier Stan-
daert, and Paolo Ienne. A first step towards automatic application of power
analysis countermeasures. In Leon Stok, Nikil D. Dutt, and Soha Hassoun,
editors, Proceedings of the 48th Design Automation Conference, DAC 2011,
San Diego, California, USA, June 5-10, 2011, pages 230–235. ACM, 2011.

[BWG+22] Arthur Beckers, Lennert Wouters, Benedikt Gierlichs, Bart Preneel, and Ingrid
Verbauwhede. Provable secure software masking in the real-world. In COSADE
2022, volume 13211 of LNCS, pages 215–235. Springer, 2022.

[Cas22] Gaëtan Cassiers. Composable and efficient masking schemes for side-channel
secure implementations. PhD thesis, Catholic University of Louvain, Louvain-
la-Neuve, Belgium, 2022.

[CB23] Gaëtan Cassiers and Olivier Bronchain. Scalib: A side-channel analysis library.
Journal of Open Source Software, 8(86):5196, 2023.

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware private circuits: From trivial composition to full verification.
IEEE Trans. Computers, 70(10):1677–1690, 2021.

[CGZ20] Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-channel mask-
ing with pseudo-random generator. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, May 10-14, 2020, Proceedings, Part III, volume 12107 of Lecture
Notes in Computer Science, pages 342–375. Springer, 2020.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In CRYPTO 1999,
volume 1666 of LNCS, pages 398–412. Springer, 1999.

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15,
2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages
441–458. Springer, 2014.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and Efficiently
Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE
Trans. Information Forensics and Security, 15:2542–2555, 2020.

[CS21] Gaëtan Cassiers and François-Xavier Standaert. Provably secure hardware
masking in the transition- and glitch-robust probing model: Better safe than
sorry. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):136–158, 2021.

J. Zeitschner, A. Moradi 33

[EW14] Hassan Eldib and Chao Wang. Synthesis of masking countermeasures against
side channel attacks. In Armin Biere and Roderick Bloem, editors, Computer
Aided Verification - 26th International Conference, CAV 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.
Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 114–130.
Springer, 2014.

[FBR+22] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick Karl,
Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked acceler-
ators and instruction set extensions for post-quantum cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

[GD23] John Gaspoz and Siemen Dhooghe. Threshold implementations in software:
Micro-architectural leakages in algorithms. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2023(2):155–179, 2023.

[GHP+21] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick
Bloem. Coco: Co-design and co-verification of masked software implementa-
tions on cpus. In USENIX Security Symposium, pages 1469–1468. USENIX
Association, 2021.

[GIB18] Hannes Groß, Rinat Iusupov, and Roderick Bloem. Generic low-latency
masking in hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):1–
21, 2018.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing
methodology for side-channel resistance validation. In NIST non-invasive
attack testing workshop, 2011.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
In TIS@CCS 2016, page 3. ACM, 2016.

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An efficient side-channel
protected AES implementation with arbitrary protection order. In CT-RSA
2017, volume 10159 of LNCS, pages 95–112. Springer, 2017.

[GMP+20] Johann Großschädl, Ben Marshall, Dan Page, Thinh Hung Pham, and
Francesco Regazzoni. An instruction set extension to support software-based
masking. IACR Cryptol. ePrint Arch., 2020.

[GOP21] Si Gao, Elisabeth Oswald, and Dan Page. Reverse engineering the micro-
architectural leakage features of a commercial processor. IACR Cryptol. ePrint
Arch., page 794, 2021.

[GPM21] Barbara Gigerl, Robert Primas, and Stefan Mangard. Secure and efficient
software masking on superscalar pipelined processors. In Mehdi Tibouchi and
Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2021 - 27th
International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 6-10, 2021, Proceedings, Part II,
volume 13091 of Lecture Notes in Computer Science, pages 3–32. Springer,
2021.

34 PoMMES

[GSM+19] Hannes Groß, Ko Stoffelen, Lauren De Meyer, Martin Krenn, and Stefan
Mangard. First-order masking with only two random bits. In Begül Bilgin,
Svetla Petkova-Nikova, and Vincent Rijmen, editors, Proceedings of ACM
Workshop on Theory of Implementation Security, TIS@CCS 2019, London,
UK, November 11, 2019, pages 10–23. ACM, 2019.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO 2003, volume 2729 of LNCS,
pages 463–481. Springer, 2003.

[Kil73] Gary A. Kildall. A unified approach to global program optimization. In
Patrick C. Fischer and Jeffrey D. Ullman, editors, Conference Record of the
ACM Symposium on Principles of Programming Languages, Boston, Mas-
sachusetts, USA, October 1973, pages 194–206. ACM Press, 1973.

[KM22] David Knichel and Amir Moradi. Low-latency hardware private circuits. In
CCS 2022, pages 1799–1812. ACM, 2022.

[KMMS22] David Knichel, Amir Moradi, Nicolai Müller, and Pascal Sasdrich. Automated
generation of masked hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2022(1):589–629, 2022.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical
independence and leakage verification. In ASIACRYPT 2020, volume 12491
of LNCS, pages 787–816. Springer, 2020.

[KSM22] David Knichel, Pascal Sasdrich, and Amir Moradi. Generic hardware private
circuits: Towards automated generation of composable secure gadgets. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):323–344, 2022.

[Ler09] Xavier Leroy. Formal verification of a realistic compiler. Communications of
the ACM, 52(7):107–115, 2009.

[MM22] Nicolai Müller and Amir Moradi. PROLEAD A probing-based hardware leak-
age detection tool. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):311–
348, 2022.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
- revealing the secrets of smart cards. Springer, 2007.

[MOPT12] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Compiler
assisted masking. In Emmanuel Prouff and Patrick Schaumont, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2012 - 14th International
Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings, volume 7428
of Lecture Notes in Computer Science, pages 58–75, 2012.

[MOW17] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards practical
tools for side channel aware software engineering: ’grey box’ modelling for
instruction leakages. In USENIX 2017, pages 199–216. USENIX Association,
2017.

[MPW22] Ben Marshall, Dan Page, and James Webb. MIRACLE: micro-architectural
leakage evaluation A study of micro-architectural power leakage across many
devices. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):175–220, 2022.

[MPZ22] Maria Chiara Molteni, Jürgen Pulkus, and Vittorio Zaccaria. On robust strong-
non-interferent low-latency multiplications. IET Inf. Secur., 16(2):127–132,
2022.

J. Zeitschner, A. Moradi 35

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, Information and Communications Security,
8th International Conference, ICICS 2006, Raleigh, NC, USA, December 4-7,
2006, Proceedings, volume 4307 of Lecture Notes in Computer Science, pages
529–545. Springer, 2006.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware im-
plementation of nonlinear functions in the presence of glitches. J. Cryptol.,
24(2):292–321, 2011.

[PS99] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM
Trans. Program. Lang. Syst., 1999.

[PV17] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: Towards
secure 1st-order masking in software. In Sylvain Guilley, editor, Construc-
tive Side-Channel Analysis and Secure Design - 8th International Workshop,
COSADE 2017, Paris, France, April 13-14, 2017, Revised Selected Papers,
volume 10348 of Lecture Notes in Computer Science, pages 282–297. Springer,
2017.

[RP10a] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In CHES 2010, volume 6225 of LNCS, pages 413–427. Springer, 2010.

[RP10b] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of aes. In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 413–427. Springer, 2010.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22, 1979.

[SSB+21] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus
Wagner, and Yuval Yarom. Rosita: Towards automatic elimination of
power-analysis leakage in ciphers. In NDSS 2021. The Internet Society,
2021. https://www.ndss-symposium.org/ndss-paper/rosita-towards-automatic-
elimination-of-power-analysis-leakage-in-ciphers/.

[ZMM23] Jannik Zeitschner, Nicolai Müller, and Amir Moradi. Prolead_sw - probing-
based software leakage detection for ARM binaries. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2023(3):391–421, 2023.

https://www.ndss-symposium.org/ndss-paper/rosita-towards-automatic-elimination-of-power-analysis-leakage-in-ciphers/
https://www.ndss-symposium.org/ndss-paper/rosita-towards-automatic-elimination-of-power-analysis-leakage-in-ciphers/

	Introduction
	Background
	Boolean Masking
	Probing Model
	Composability and Gadget-Based Masking
	CPU-Independent Leakage Model
	Compiler
	Linear Scan Register Allocation Algorithm

	Related Works
	Technique
	Refinement of the CPU-Independent Leakage Model
	GIMPLE
	Sensitivity Tracking
	Our Linear Scan Register Allocation Algorithm

	Case Studies
	Setup
	Results
	Comparison
	Security vs. Efficiency
	Limitations and Future Work

	Conclusions

